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Abstract

Predictive state representations (PSRs) are a method of modeling dynam-
ical systems using only observable data, such as actions and observations,
to describe their model. PSRs use predictions about the outcome of fu-
ture tests to summarize the system state. The best existing techniques
for discovery and learning of PSRs use a Monte Carlo approach to ex-
plicitly estimate these outcome probabilities. In this paper, we present
a new algorithm for discovery and learning of PSRs that uses a gradi-
ent descent approach to compute the predictions for the current state.
The algorithm takes advantage of the large amount of structure inherent
in a valid prediction matrix to constrain its predictions. Furthermore,
the algorithm can be used online by an agent to constantly improve its
prediction quality; something that current state of the art discovery and
learning algorithms are unable to do. We give empirical results to show
that our constrained gradient algorithm is able to discover core tests using
very small amounts of data, and with larger amounts of data can compute
accurate predictions of the system dynamics.

1 Introduction

Representations of state in dynamical systems fall into three main categories. Methods
like k-order Markov models attempt to identify state by remembering what has happened
in the past. Methods such as partially observable Markov decision processes (POMDPs)
identify state as a distribution over postulated base states. A more recently developed group
of algorithms, known as predictive representations, identify state in dynamical systems by
predicting what will happen in the future. Algorithms following this paradigm include
observable operator models [1], predictive state representations [2, 3], TD-Nets [4] and
TPSRs [5]. In this research we focus on predictive state representations (PSRs). PSRs are
completely grounded in data obtained from the system, and they have been shown to be at
least as general and as compact as other methods, like POMDPs [3].
Until recently, algorithms for discovery and learning of PSRs could be used only in spe-
cial cases. They have required explicit control of the system using a reset action [6, 5],
or have required the incoming data stream to be generated using an open-loop policy [7].



The algorithm presented in this paper does not require a reset action, nor does it make any
assumptions about the policy used to generate the data stream. Furthermore, we focus on
the online learning problem, i.e., how can an estimate of the current state vector and pa-
rameters be maintained and improved during a single pass over a string of data. Like the
myopic gradient descent algorithm [8], the algorithm we propose uses a gradient approach
to move its predictions closer to its empirical observations; however, our algorithm also
takes advantage of known constraints on valid test predictions. We show that this con-
strained gradient approach is capable of discovering a set of core tests quickly, and also of
making online predictions that improve as more data is available.

2 Predictive State Representations

Predictive state representations (PSRs) were introduced by Littman et al. [2] as a method
of modeling discrete-time, controlled dynamical systems. They possess several advantages
over other popular models such as POMDPs and k-order Markov models, foremost being
their ability to be learned entirely from sensorimotor data, requiring only a prior knowledge
of the set of actions, A, and observations,O.

Notation. An agent in a dynamical system experiences a sequence of action-observation
pairs, or ao pairs. The sequence of ao pairs the agent has already experienced, beginning at
the first time step, is known as a history. For instance, the history hn = a1o1a2o2 . . . anon

of length n means that the agent chose action a1 and perceived observation o1 at the first
time step, after which the agent chose a2 and perceived o2, and so on1. A test is a se-
quence of ao pairs that begins immediately after a history. A test is said to succeed if the
observations in the sequence are observed in order, given that the actions in the sequence
are chosen in order. For instance, the test t = a1o1a2o2 succeeds if the agent observes o1

followed by o2, given that it performs actions a1 followed by a2. A test fails if the action
sequence is taken but the observation sequence is not observed. A prediction about the
outcome of a test t depends on the history h that preceded it, so we write predictions as
p(t|h), to represent the probability of t succeeding after history h. For test t of length n, we
define a prediction p(t|h) as

∏n

i=1
Pr(oi|a1o1 . . . ai). This definition is equivalent to the

usual definition in the PSR literature, but makes it explicit that predictions are independent
of the policy used to select actions. The special length zero test is called ε. If T is a set of
tests and H is a set of histories, p(t|h) is a single value, p(T |h) is a row vector containing
p(ti|h) for all tests ti ∈ T , p(t|H) is a column vector containing p(t|hj) for all histories
hj ∈ H , and p(T |H) is a matrix containing p(ti|hj) for all ti ∈ T and hj ∈ H .

PSRS. The fundamental principle underlying PSRs is that in most systems there exists a
set of tests, Q, that at any history are a sufficient statistic for determining the probability of
success for all possible tests. This means that for any test t there exists a function ft such
that p(t|h) = ft (p(Q|h)). In this paper, we restrict our discussion of PSRs to linear PSRs,
in which the function ft is a linear function of the tests in Q. Thus, p(t|h) = p(Q|h)mt,
where mt is a column vector of weights. The tests in Q are known as core tests, and
determining which tests are core tests is known as the discovery problem. In addition to Q,
it will be convenient to discuss the set of one-step extensions of Q. A one-step extension
of a test t is a test aot, that prefixes the original test with a single ao pair. The set of all
one-step extensions of Q ∪ {ε} will be called X .
The state vector of a PSR at time i is the set of predictions p(Q|hi). At each time step, the

1Much of the notation used in this paper is adopted from Wolfe et al. [7]. Here we use the notation
that a superscript ai or oi indicates the time step of an action or observation, and a subscript ai or oi

indicates that the action or observation is a particular element of the set A or O.



state vector is updated by computing, for each qj ∈ Q:

p(qj |h
i) =

p(aioiqj |h
i−1)

p(aioi|hi−1)
=

p(Q|hi−1)maioiqj

p(Q|hi−1)maioi

Thus, in order to update the PSR at each time step, the vector mt must be known for each
test t ∈ X . This set of update vectors, that we will call mX , are the parameters of the PSR,
and estimation of these parameters is known as the learning problem.

3 Constrained Gradient Learning of PSRs

The goal of this paper is to develop an online algorithm for discovering and learning a
PSR without the necessity of a reset action. To be online, the algorithm must always have
an estimate of the current state vector, p(Q|hi), and estimates of the parameters mX . In
this section, we introduce our constrained gradient approach to solving this problem. A
more complete explanation of this algorithm can be found in an expanded version of this
work [9]. To begin, in Section 3.1, we will assume that the set of core tests Q is given to
the algorithm; we describe how Q can be estimated online in Section 3.2.

3.1 Learning the PSR Parameters

The approach to learning taken by the constrained gradient algorithm is to approximate the
matrix p(T |H), for a selected set of tests T and histories H . We first discuss the proper
selection of T and H , and then describe how this matrix can be constructed online. Finally,
we show how the current PSR is extracted from the matrix.

Tests and Histories. At a minimum, T must contain the union of Q and X , since Q is
required to create the state vector and X is required to compute mX . However, as will
be explained in the next section, these tests are not sufficient to take full advantage of the
structure in a prediction matrix. The constrained gradient algorithm requires the tests in T
to satisfy two properties:

1. If tao ∈ T then t ∈ T
2. If taoi ∈ T then taoj ∈ T ∀oj ∈ O

To build a valid set of tests, T is initialized to Q∪X . Tests are iteratively added to T until
it satisfies both of the above properties.
All histories in H are histories that have been experienced by the agent. The current history,
hi, must always be in H in order to make online predictions, and also to compute hi+1.
The only other requirement of H is that it contain sufficient histories to compute the linear
functions mt for the tests in T (see Section 3.1). Our strategy is impose a bound N on the
size of H , and to restrict H to the N most recent histories encountered by the agent. When
a new data point is seen and a new row is added to the matrix, the oldest row in the matrix is
“forgotten.” In addition to restricting the size of H , forgetting old rows has the side-effect
that the rows estimated using the least amount of data are removed from the matrix, and no
longer affect the computation of mX .

Constructing the Prediction Matrix. The approach used to build the matrix p(T |H) is
to estimate and append a new row, p(T |hi), after each new aioi pair is encountered. Once
a row has been added, it is never changed. To initialize the algorithm, the first row of the
matrix p(T |h0), is set to uniform probabilities.2 The creation of the new row is performed
in two stages: a row estimation stage, and a gradient descent stage.

2Each p(t|h0) is set to 1/|O|k , where k is the length of test t.



Both stages take advantage of four constraints on the predictions p(T |h) in order to be a
valid row in the prediction matrix:

1. Range: 0 ≤ p(t|h) ≤ 1
2. Null Test: p(ε|h) = 1
3. Internal Consistency: p(t|h) =

∑
oj∈O p(taoj |h) ∀a ∈ A

4. Conditional Probability: p(t|hao) = p(aot|h)/p(ao|h) ∀a ∈ A, o ∈ O

The range constraint restricts the entries in the matrix to be valid probabilities. The null test
constraint defines the value of the null test. The internal consistency constraint ensures that
the probabilities within a single row form valid probability distributions. The conditional
probability constraint is required to maintain consistency between consecutive rows of the
matrix.
Consider time i − 1 so that the last row of p(T |H) is hi−1. After action ai is taken and
observation oi is seen, a new row for history hi = hi−1aioi must be added to the matrix.
First, as much of the new row as possible is computed using the conditional probability
constraint, and the predictions for history hi−1. For all tests t ∈ T for which aioit ∈ T :

p(t|hi)←
p(aioit|hi−1)

p(aioi|hi−1)

Because X ⊂ T , it is guaranteed that p(Q|hi) is estimated in this step.
The second phase of adding a new row is to compute predictions for the tests t ∈ T for
which aioit 6∈ T . An estimate of p(t|hi) can be found by computing p(Q|hi)mt for an
appropriate mt, using the PSR assumption that any prediction is a linear combination of
core test predictions. Regression is used to find a vector mt that minimizes ||p(Q|H)mt −
p(t|H)||2. At this stage, the entire row for hi has been estimated. The regression step can
create probabilities that violate the range and normalization properties of a valid prediction.
To enforce the range property, any predictions that are less than 0 are set to a small positive
value3. Then, to ensure internal consistency within the row, the normalization property is
enforced by setting predictions:

p(taoj |h
i)←

p(t|hi)p(taoj |h
i)∑

oi∈O p(taoi|hi)
∀oj ∈ O

This preserves the ratio among sibling predictions and creates a valid probability distribu-
tion from them. The normalization is performed by normalizing shorter tests first, which
guarantees that a set of tests are not normalized to a value that will later change. The length
one tests are normalized to sum to 1.
The gradient descent stage of estimating a new row moves the constraint-generated pre-
dictions in the direction of the gradient created by the new observation. Any prediction
p(tao|hi) whose test tao is successfully executed over the next several time steps is up-
dated using p(tao|hi)← (1−α)p(tao|hi)+α(p(t|hi)), for some learning rate 0 ≤ α ≤ 1.
Note that this learning rule is a temporal difference update; prediction values are adjusted
toward the value of their parent.4 The update is accomplished by adding an appropriate
positive value to p(tao|hi) and then running the normalization procedure on the row. The
value is computed such that after normalization, p(tao|hi) contains the desired value. Tests

3Setting values to zero can cause division by zero errors, if the prediction probability was not
actually supposed to be zero.

4When the algorithm is used online, looking forward into the stream is impossible. In this case,
we maintain a buffer of ao pairs between the current time step and the histories that are added to the
prediction matrix. The length of the buffer is the length of the longest test in T . To compute the
predictions for the current time step, we iteratively update the PSR using the buffered data.



that are unsuccessfully executed (i.e. their action sequence is executed but their observation
sequence is not observed) will have their probability reduced due to this re-normalization
step. The learning parameter, α, is decayed throughout the learning process.

Extracting the PSR. Once a new row for hi is estimated, the current PSR state vector
is p(Q|hi). The parameters mX can be found by using the output of the regression from
the second phase, above. Thus, at every time step, the current best estimated PSR of the
system is available.

3.2 Discovery of Core Tests

In the previous section, we assumed that the set of core tests was given to the algorithm. In
general, though, Q is not known. A rudimentary, but effective, method of finding core tests
is to choose tests whose corresponding columns of the matrix p(T |H) are most linearly
unrelated to the set of core tests already selected. Call the set of selected core tests Q̂. The
condition number of the matrix p({Q̂, t}|H) is an indication of the linear relatedness of
test t; if it is well-conditioned, the test is likely to be linearly independent. To choose core
tests, we find the test t in X whose matrix p({Q̂, t}|H) is most well-conditioned. If the
condition number of that test is below a threshold parameter, it is chosen as a new core
test. The process can be repeated until no test can be added to Q̂ without surpassing the
threshold. Because candidate tests are selected from X , the discovered set Q̂ will be a
regular form PSR [10].

The set Q̂ is initialized to {ε}. The above core test selection procedure runs after every N
data points are seen, where N is the maximum number of histories kept in H . After each
new core test is selected, T is augmented with the one-step extensions of the new test, as
well as any other tests needed to satisfy the rules in Section 3.1.

4 Experiments and Results

The goal of the constrained gradient algorithm is to choose a correct set of core tests and
to make accurate, online predictions. In this section, we show empirical results that the
algorithm is capable of these goals. We also show offline results, in order to compare our
results with the suffix-history algorithm [7]. A more thorough suite of experiments can be
found in an expanded version of this work [9].
We tested our algorithm on the same set of problems from Cassandra’s POMDP page [11]
used as the test domain in other PSR trials [8, 6, 7]. For each problem, 10 trials were run,
with different training sequences and test sequences used for each trial. The sequences
were generated using a uniform random policy over actions. The error for each history
hi was computed using the error measure 1

|O|

∑
oj∈O(p(ai+1oj |h

i) − p̂(ai+1oj |h
i))2 [7].

This measures the mean error in the one-step tests involving the action that was actually
taken at step i + 1.
The same parameterization of the algorithm was used for all domains. The size bound
on H was set to 1000, and the condition threshold for adding new tests was 10. The
learning parameter α was initialized to 1 and halved every 100,000 time steps. The core
test discovery procedure was run every 1000 data points.

4.1 Discovery Results

In this section, we examine the success of the constrained gradient algorithm at discover-
ing core tests. Table 1 shows, for each test domain, the true number of core tests for the



Table 1: The number of core tests found by the constrained gradient algorithm. Data for
the suffix-history algorithm [7] is repeated here for comparison. See text for explanation.

Domain Constrained Gradient Suffix-History
Name |Q| |Q̂| Correct # Data |Q̂|/Correct # Data

Float Reset 5 6.1 4.5 4000 - -
Tiger 2 4.0 2.0 1000 2 4000
Paint 2 2.6 2.0 4000 2 4000
Shuttle 7 8.7 7.0 2000 7 1024000
4x3 Maze 10 10.4 8.6 2000 9 1024000
Cheese Maze 11 12.1 9.6 1000 9 32000
Bridge Repair 5 7.2 5.0 1000 5 1024000
Network 7 4.7 4.5 2000 3 2048000

dynamical system (|Q|), the number of core tests selected by the constrained gradient al-
gorithm (|Q̂|), and how many of the selected core tests were actually core tests (Correct).
The results are averaged over 10 trials. Table 1 also shows the time step at which the last
core test was chosen (# Data). In all domains, the algorithm found a majority of the core
tests after only several thousand data points; in several cases, the core tests were found after
only a single run of the core test selection procedure.
Table 1 also shows discovery results published for the suffix-history algorithm [7]. All
of the core tests found by the suffix-history algorithm were true core tests. In all cases
except the 4x3 Maze, the constrained gradient algorithm was able to find at least as many
core tests as the suffix-history method, and required significantly less data. To be fair, the
suffix-history algorithm uses a conservative approach of selecting core tests, and therefore
requires more data. The constrained gradient algorithm chooses tests that give an early
indication of being linearly independent. Therefore, the constrained gradient finds most, or
all, core tests extremely quickly, but can also choose tests that are not linearly independent.

4.2 Online and Offline Results

Figure 1 shows the performance of the constrained gradient approach, in online and offline
settings. The question answered by the online experiments is: How accurately can the
constrained gradient algorithm predict the outcome of the next time step? At each time i,
we measured the error in the algorithm’s predictions of p(ai+1oj |h

i) for each oj ∈ O. The
‘Online’ plot in Figure 1 shows the mean online error from the previous 1000 time steps.
The question posed for the offline experiments was: What is the long-term performance
of the PSRs learned by the constrained gradient algorithm? To test this, we stopped the
learning process at different points in the training sequence and computed the current PSR.
The initial state vector for the offline tests was set to the column means of p(Q̂|H), which
approximates the state vector of the system’s stationary distribution. In Figure 1, the ‘Of-
fline’ plot shows the mean error of this PSR on a test sequence of length 10,000. The offline
and online performances of the algorithm are very similar. This indicates that, after a given
amount of data, the immediate error on the next observation and the long-term error of the
generated PSR are approximately the same. This result is encouraging because it implies
that the PSR remains stable in its predictions, even in the long term.
Previously published [7] performance results for the suffix-history algorithm are also shown
in Figure 1. A direct comparison between the performance of the two algorithms is some-
what inappropriate, because the suffix-history algorithm solves the ‘batch’ problem and is
able to make multiple passes over the data stream. However, the comparison does show that
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Figure 1: The PSR error on the test domains. The x-axis is the length of the sequence used
for training, which ranges from 1,000 to 1,000,000. The y-axis shows the mean error on
the one-step predictions (Online) or on a test sequence (Offline and Suffix-History). The
results for Suffix-History are repeated from previous work [7]. See text for explanations.

the constrained gradient approach is competitive with current PSR learning algorithms.
The performance plateau in the 4x3 Maze and Network domains is unsurprising, because in
these domains only a subset of the correct core tests were found (see Table 1). The plateau
in the Bridge domain is more concerning, because in this domains all of the correct core
tests were found. We suspect this may be due to a local minimum in the error space; more
tests need to be performed to investigate this phenomenon.

5 Future Work and Conclusion

We have demonstrated that the constrained gradient algorithm can do online learning and
discovery of predictive state representations from an arbitrary stream of experience. We



have also shown that it is competitive with the alternative batch methods. There are still a
number of interesting directions for future improvement.

In the current method of core test selection, the condition of the core test matrix p(Q̂|H) is
important. If the matrix becomes ill-conditioned, it prevents new core tests from becoming
selected. This can happen if the true core test matrix p(Q|H) is poorly conditioned (be-
cause some core tests are similar), or if incorrect core tests are added to Q̂. To prevent this
problem, there needs to be a mechanism for removing chosen core tests if they turn out to
be linearly dependent. Also, the condition threshold should be gradually increased during
learning, to allow more obscure core tests to be selected.
Another interesting modification to the algorithm is to replace the current multi-step esti-
mation of new rows with a single optimization. We want to simultaneously minimize the
regression error and next observation error subject to the constraints on valid predictions.
This optimization could be solved with quadratic programming.
To date, the constrained gradient algorithm is the only PSR algorithm that takes advantage
of the sequential nature of the data stream experienced by the agent, and the constraints
such a sequence imposes on the system. It handles the lack of a reset action without parti-
tioning histories. Also, at the end of learning the algorithm has an estimate of the current
state, instead of a prediction of the initial distribution or a stationary distribution over states.
Empirical results show that, while there is room for improvement, the constrained gradient
algorithm is competitive in both discovery and learning of PSRs.
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