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Abstract
We present an efficient “sparse sampling” tech-
nique for approximating Bayes optimal decision
making in reinforcement learning, addressing
the well known exploration versus exploitation
tradeoff. Our approach combines sparse sam-
pling with Bayesian exploration to achieve im-
proved decision making while controlling com-
putational cost. The idea is to grow a sparse
lookahead tree, intelligently, by exploiting in-
formation in a Bayesian posterior—rather than
enumerate action branches (standard sparse sam-
pling) or compensate myopically (value of per-
fect information). The outcome is a flexible,
practical technique for improving action selec-
tion in simple reinforcement learning scenarios.

1. Introduction

Even though reinforcement learning is a rapidly maturing
subject, there remains little convergence on the fundamen-
tal question of action selection; that is, how to choose ac-
tions during learning. Beyond the standardε-greedy and
Boltzmann selection strategies, few techniques have been
adopted beyond the papers that originally proposed them.
However, there remains a persistent belief that more so-
phisticated selection strategies can yield improved results
(Kaelbling, 1994; Dearden et al., 1999; Strens, 2000; Wy-
att, 2001). Possible reasons for the limited use of sophis-
ticated exploration approaches might be the complexity of
implementing some proposed methods, or the presumption
that the degree of improvement might not always be dra-
matic. Therefore, beyond the quality of action selection
results, it is also important to consider the complexity and
computational cost of choosing the actions. In this paper
we adopt a Bayesian approach to reinforcement learning
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and attempt to derive relatively straightforward action se-
lection strategies for a class of problems.

The Bayesian approach to reinforcement learning still ap-
pears to be under-researched given the prominent role it has
played in other areas of machine learning (Jordan, 1999;
Neal, 1996). Flexible Bayesian tools, such as Gaussian
process regression (Williams, 1999; Neal, 1996), have
had a significant impact on other areas of machine learn-
ing research but have only just recently been introduced
to reinforcement learning (Engel et al., 2003). Neverthe-
less, Bayesian approaches seem ideally suited to reinforce-
ment learning as they offer an explicit representation of
uncertainty—essential for reasoning about the exploration
versus exploitation tradeoff. In fact, Bayesian approaches
offer the prospect ofoptimal action selection. Bayesian
decision theory solves the exploration versus exploitation
tradeoff directly (but implicitly) by stipulating that the opti-
mal action is one which, over the entire time horizon being
considered, maximizes the total expected reward (averaged
over possible world models). Therefore, any gain in re-
ducing uncertainty is not valued for its own sake, but mea-
sured instead in terms of the potential gain in future reward
it offers. In this way, explicit reasoning about exploration
versus exploitation is subsumed by direct reasoning about
rewards obtained over the long term.

Despite the apparent elegance and conceptual simplicity of
the Bayesian approach, there remain serious barriers to its
application. The most serious drawback is the computa-
tional challenge posed by optimal Bayesian decision mak-
ing, which is known to be intractable in all but trivial de-
cision making contexts (Mundhenk et al., 2000; Lusena
et al., 2001). This means that with a Bayesian approach
one is forced to consider heuristic approximations. In re-
sponse, a small body of research has developed on on-
line approximations of optimal Bayesian action selection
(Dearden et al., 1999; Duff, 2002; Strens, 2000). Although
the number of proposals remains relatively small and no
widely adopted approximation strategy has emerged, the
potential power of Bayesian modeling makes this approach
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worth investigating.

In this paper we attempt to further develop practical ap-
proximations of optimal Bayesian action selection for rein-
forcement learning. Specifically, we combine the Bayesian
approach (Dearden et al., 1999) with the (non-Bayesian)
sparse samplingtechnique of (Kearns et al., 2001). Our
idea is to exploit information in the posterior to make in-
telligent action selection decisions during lookahead sim-
ulation, rather than simply enumerating actions (Kearns
et al., 2001). This approach yields improved action se-
lection quality while controlling computational cost. We
also show that our technique improves the myopic value
of perfect information approximation strategy of (Dearden
et al., 1999) by allowing deeper lookahead. Throughout,
we attempt to propose simple strategies that can be easily
implemented in a Bayesian framework.

2. Background

The standard reinforcement learning problem involves
learning to behave optimally in an unknown Markov de-
cision process.

Markov decision processesA Markov decision process
(MDP) is defined by a set of actionsA; a set of statesS;
a transition modelp(st+1|stat), specifying the conditional
probability of a successor statest+1 given that the process
is in statest and actionat is executed; and a reward model
p(rt|stat), specifying the conditional distribution over re-
wardsrt given that actionat is taken in statest. The goal
is to choose actions to maximize the reward obtained over
the long run, where this can be defined in a few different
ways: (1) maximizing the episodic (or finite horizon) re-
ward r0 + r1 + · · · + rT obtained over a finite episode
t = 0, ..., T ; (2) maximizing infinite horizon (discounted)
rewardr0+γr1+γ2r2+· · · obtained over an infinite run of
the system,0 < γ < 1; or (3) maximizing the asymptotic
rate of return. We will focus onfinite horizonproblems in
this paper, although all of our techniques easily extend to
the infinite horizon discounted case.

Under general conditions, for a fully specified MDP there is
always a deterministic policyπ∗ : S → A that gives the op-
timal action in each state (Bertsekas, 1995). Such a policy
can be conveniently characterized by theaction value func-
tion (or Q-function),Q(s, a), which is defined as the supre-
mum of the expected (discounted) reward obtainable by
first taking actiona in states and then following an optimal
action selection strategy thereafter. The Q-function satis-
fies the well known Bellman equation (Bertsekas, 1995)
Q(st, at) = E [rt|stat] + γE [maxa∈A Q(st+1, a)| stat]
where we assume the maximum always exists inA. (In
the finite horizon case we also assumeγ = 1.) If the Q-
function is known for a particular domain, then the opti-

mal action selection strategy can be recovered byπ∗(st) =
arg maxa∈A Q(st, a). Classical algorithms for comput-
ing π∗, or so called “planning” algorithms, can be based
on value iteration, policy iteration, or linear programming
(Bertsekas, 1995).

Reinforcement learning Of course, we are interested in
the problem oflearning to behave optimally in an ini-
tially unknownMDP. Let p(st+1|statθ) and p(rt|statµ)
denote the transition and reward models, whereθ and µ
denote the unknown parameters defining these models re-
spectively. Thus, we consider a learning scenario where
the transition and reward parameters,θ andµ, are not pre-
cisely known, but instead assumed only to belong to a gen-
eral set,θ ∈ Θ and µ ∈ M . The three standard ap-
proaches to reinforcement learning are value based, pol-
icy based and model based learning. Roughly speaking, in
thevalue basedapproach one attempts to estimate the opti-
mal Q-function (or state value function) directly (Sutton &
Barto, 1998; Watkins, 1989), from which a greedy policy
is recovered. Thepolicy basedapproach tries to estimate a
good policy directly (Ng & Jordan, 2000; Strens & Moore,
2002). Inmodel basedreinforcement learning, one first at-
tempts to estimate the transition and reward models, and
then determines a policy by solving the planning problem
in the learned model.

Bayesian reinforcement learning The literature on
Bayesianreinforcement learning by comparison is rel-
atively small. Nevertheless, Bayesian approaches have
been considered from the outset (Martin, 1967; Bellman,
1961) and interest has re-emerged in this approach (En-
gel et al., 2003; Dearden et al., 1999; Strens, 2000;
Wyatt, 2001). Much of the research on Bayesian re-
inforcement learning ismodel based: A prior distri-
bution is defined over transition and reward models,
P (θ, µ|s0), which is usually assumed to be factored
P (θ, µ|s0) = P (θ|s0)P (µ|s0) = pθ

0(θ)p
µ
0 (µ). Given expe-

riences0a0r0s1...statrtst+1 one determines theposterior
distributionP (θ, µ|s0a0r0s1...statrtst+1) = pθ

t (θ)p
µ
t (µ);

thus learning consists essentially of updating the posterior.
Given this model based approach, one of the main difficul-
ties with the Bayesian method (or any model based method)
is thatplanningis required for action selection.

Except for the heavy reliance on planning, Bayesian ap-
proaches seem ideally suited to reinforcement learning
problems. Bayesian modeling is not only a flexible tool
that allows prior knowledge about the transition and reward
models to be explicitly stated, it also readily allows gener-
alization across actions, states and rewards, through a prin-
cipled mechanism. Some of the best developed Bayesian
modeling tools, such as Gaussian processes (Williams,
1999), are suited specifically for continuous state and ac-
tion spaces, where classical reinforcement learning meth-
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ods are not always conveniently applicable. Bayesian ap-
proaches also naturally provide an explicit representation
of uncertaintyin the posterior distribution, which is emi-
nently useful for exploration/exploitation decision making.

3. Action selection

We focus on the problem ofon-linereinforcement learning
where action selection decisions involve a tradeoff between
exploration and exploitation.1 Intuitively, achieving a large
reward over the long run would seem to involve, early on,
taking exploratory actions to allow a good model (or value
function or policy) to be estimated, and then later exploit-
ing this model (or value function or policy) to consistently
obtain high reward. Of course, the two phases are not nec-
essarily distinct and it is not always advantageous to think
of an action as either purely exploratory or exploitive. Clas-
sically, action selection in reinforcement learning has not
been thought of in Bayesian terms but instead tackled intu-
itively. The most common action selection strategies have
been:

ε-greedy With probability 1 − ε, choose the current best
estimatea∗ = arg maxa Q̂(s, a). Otherwise choose a (uni-
form) random actiona ∈ A.2

Boltzmann Sample a random action according to
P (a|s) = exp(Q̂(s, a)/τ)/Z whereτ is a temperature pa-
rameter andZ is a normalization constant.

Interval estimation (Kaelbling, 1994) Choose an action
according toa = arg maxa[Q̂(s, a) + U(s, a)] where
U(s, a) is a(1 − δ) upper confidence interval on the point
estimateQ̂(s, a). This approach has been extended by
(Wiering, 1999) to general MDPs.

These non-Bayesian action selection strategies are allmy-
opic, in that they do not explicitly consider the effects that
actions have on future value estimates. Instead, they use
uncertainty as a proxy for lookahead. The basic intuition
is that the greater the uncertainty in an action’s value, the
greater the chance that it might actually prove to be opti-

1There is an important distinction betweenon-lineandbatch
reinforcement learning. Batch learning distinguishes an initial
training phase from a subsequent testing phase. During train-
ing, the learning algorithm has no responsibility for obtaining re-
ward and focuses solely on gaining information. During subse-
quent testing, a non-adaptive policy is executed. Although batch
learning is a slightly unnatural model for reinforcement learning,
important theoretical results have been obtained which show that
near optimal policies can be learned in time polynomial in the size
of the state and action spaces (Kearns & Singh, 1998; Brafman &
Tennenholtz, 2001). Curiously, these efficient “exploration” al-
gorithms behave by putting artificially high rewards on unknown
state-action pairs and then executing exploitive actions.

2For infinite action spaces we assume the range of possible
actions is bounded.

mal, and therefore we should give a greater bonus to ex-
ploring this action. One difficulty with this type of intuitive
reasoning, however, is that it is hard to quantify. The result-
ing selection procedures are heuristic, sometimes difficult
to justify, and do not perform well in all circumstances.

Bayesian action selectionA conceptually more elegant
solution to the action selection problem is offered by
Bayesian decision theory. A Bayesian approach to learn-
ing optimally in a Markov decision process is essentially
equivalent to solving a partially observable Markov deci-
sion process (POMDP). More precisely, it is equivalent
to solving for an optimal action selection strategy in a
meta-level Markov decision process defined by the be-
lief states of the problem. This meta-level problem is
sometimes referred to as a belief state MDP or a Bayes-
adaptive MDP (Duff, 2002). In the meta-level prob-
lem, each statebt is given by a current base-level state
st and a posterior distribution over the base-level transi-
tion and reward models,θ and µ, respectively. That is,
bt = 〈pθ

t p
µ
t st〉 wherepθ

t = P (θ|s0a0...st−1at−1st) and
pµ

t = P (µ|s0a0r0...st−1at−1rt−1). The meta-level reward
model is then simply given by the expectation

P (rt|pθ
t p

µ
t stat) =

∫

µ

P (rt|statµ)pµ
t (µ)dµ

= P (rt|s0...stat) (1)

and the meta-level transition model is given by

P (pθ
t+1p

µ
t+1st+1|pθ

t p
µ
t stat)

= 1[pθ
t+1=P (θ|s0a0...st+1)]

[∫

θ

P (st+1|statθ)pθ
t (θ)dθ

]

∫

rt

1[pµ
t+1=P (µ|s0...statrt)]

∫

µ

P (rt|statµ)pµ
t (µ)dµdrt

= P (rtst+1|s0...stat) (2)

wherert is such thatpµ
t+1 = P (µ|s0...statrt). In fact,

the meta-level statesbt = 〈pθ
t p

µ
t st〉 are equivalent to his-

tories bt ≡ s0a0r0...st−1at−1rt−1st, and the state tran-
sition probability is simply the probability of a partic-
ular history extensionrt, st+1 given the current history
s0a0r0...st−1at−1rt−1st and actionat.

An optimal action selection strategy for reinforcement
learning in this setting is given by a policy that obtains
maximum expected reward in the meta-level (belief state)
Markov decision process. However, even though this ob-
servation nicely characterizes optimal action selection for
Bayesian reinforcement learning, there is no efficient way
to compute or even approximate this strategy in a guaran-
teed way (Mundhenk et al., 2000; Lusena et al., 2001). One
obvious difficulty is that there are far more meta-level be-
lief states (i.e. base-level histories) than original base-level
states. In all but trivial circumstances, there is no hope of
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exactly following an optimal action selection strategy.3

For the most part, work on approximating Bayes op-
timal action selection has followed two approaches:
pre-compilation and on-line computation. In thepre-
compilationapproach, one attempts to derive a compact
approximation to the optimal value function (Bertsekas &
Tsitsiklis, 1996; Boyan & Moore, 1996) or the optimal
policy (Ng & Jordan, 2000; Strens & Moore, 2002) for
the meta-level belief state MDP. In fact, any approxima-
tion strategy for general POMDPs is applicable in this case,
although a few interesting specializations have been at-
tempted for belief state MDPs (Duff, 2002). One potential
shortcoming of the pre-compilation approach is that once
an action selection strategy has been fixed, it is hard to
adapt it to the belief states that are actually encountered
during learning. Moreover, this approach necessarily can-
not obtain a uniformly accurate approximation over the en-
tire state and action space, and there is no guarantee that
the approximation holds over the belief states that are en-
countered in a particular learning episode. Pre-compilation
might nevertheless be the only viable approach if actions
need to be selected in real time (Ng & Jordan, 2000).

In contrast, theon-line approach to approximating Bayes
optimal action selection attends only to the particular be-
lief states encountered during learning, which would seem
to relax the burden on the approximation strategy and of-
fer the prospect of higher quality decisions. The drawback
is that instead of extensive pre-compilation (allowing fast
on-line decisions), these techniques can require nontrivial
computation for each action selection decision.

The simplest on-line strategies are pure myopic strate-
gies. In fact, Bayesian variants of theε-greedy and Boltz-
mann action selection strategies are easy to develop. In
this case one uses theexpectedQ-function Q̄t(s, a) =
Eθ∼pθ

t ,µ∼pµ
t
[Qθµ(s, a)] defined by the current belief state.

Since Bayesian approaches are generallymodel based, in
that the belief state keeps a distribution over transition and
reward models, the mean Q-value function has to be com-
puted byplanningin the underlying mean Markov decision
process defined by the belief state distributionspθ

t andpµ
t

(Dearden et al., 1999).4 The fact that Bayesian on-line ac-

3Perhaps the only well known exception to this is the result of
(Gittins, 1989) which shows that in the special case where there
are finitely many actions, each with their own independent (finite)
state spaces (i.e., bandit problems), then optimal action decisions
can be made in polynomial time to maximize the expected sum of
infinite horizon discounted rewards. However, the restrictiveness
of the independence assumption has prevented this approach from
being widely applied in reinforcement learning problems. Beyond
(Salganicoff & Ungar, 1995; Duff, 2002) very few successes have
been reported in this direction.

4Note however that planning in a base-level MDP is much eas-
ier than planning in the meta-level MDP.

tion selection strategies require (even limited) replanning
for every belief state they encounter is probably the single
greatest barrier to their routine use. Nevertheless, replan-
ning is still viable in a range of interesting scenarios, which
we will exploit below. For example, planning is trivial in
bandit problems, and remains feasible in many episodic
problems. Dearden et al. (1999) also show how importance
sampling and prioritized sweeping can reduce the cost of
replanning to just a few sampled models while maintaining
reasonable estimates ofQ̄t(s, a).

One of the most interesting myopic action selection strate-
gies in the Bayesian setting is in fact one of the first action
selection strategies to have ever been proposed (Thompson,
1933; Berry & Fristedt, 1985).

Thompson sampling Given a current belief statebt =
〈pθ

t p
µ
t st〉, sample a transition and reward model,θ andµ,

from the belief state distributionspθ
t andpµ

t , solve for the
optimal Q-functionQθµ(s, a) for this model, then select
the optimal actionat = arg maxa∈A Qθµ(st, a).

This technique was originally proposed by (Thompson,
1933) for bandit problems, and has recently reemerged
in the reinforcement learning literature (Strens, 2000).
Thompson sampling selects actions according to theprob-
ability that they are optimal in models drawn randomly
from the current belief state. Although old, this remains
an elegant and effective action selection strategy that often
outperforms modern proposals (Berry & Fristedt, 1985).
Thompson sampling is not Bayes optimal however, as it is
still myopic. In our experiments we find that it tends to
over-explore (which is obviously true at the horizon).

A more recent action selection strategy of significance is
that of (Dearden et al., 1999), which attempts to take the
effects of exploration explicitly into account (see also (Wy-
att, 2001)). This approach is based on considering the value
that is gained by improving a Q-value estimate.

Value of perfect information Given the distribution over
action value functionsQθµ(st, a), defined by the current
belief state,θ ∼ pθ

t , µ ∼ pµ
t , for each actiona ∈ A, con-

sider the value of learning the exact valueQ∗(st, a) under
the true model. Leta1 anda2 be the actions with the largest
and second largest expected Q-values respectively. The
gain in value of learningQ∗(st, a) for an actiona is given
by Gain(Q∗(st, a1)) =

(
Q̄(st, a2)−Q∗(st, a1)

)
+

if a =
a1, and Gain(Q∗(st, a)) =

(
Q∗(st, a)− Q̄(st, a1)

)
+

otherwise, where the mean Q-values are taken with respect
to θ ∼ pθ

t , µ ∼ pµ
t . (That is, value is gained only if

a new action becomes the best, but not otherwise.) The
value of learning the exact Q-value of an action in the cur-
rent belief state is then simply given by the expected gain
V PIt(a) = EθµGain(Qθµ(st, a)), which provides an up-
per bound on the myopic value of information of executing
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Figure 1.Illustration of a lookahead tree, showing decision (max)
nodes and outcome (expectation) nodes. Once built, optimal value
and action estimates are backed up to the root.

actiona. Finally, one chooses the action that maximizes
Q̄t(st, a) + V PIt(a).

Although these myopic strategies are interesting, a short-
coming of all such strategies is that they cannot explicitly
account for the effects that actions have on future belief
states, and therefore can only supply proxy summaries for
the future rewards that might indirectly accrue as the result
of a current action.

4. Bayesian sparse sampling

The gap between Bayes optimal and myopic action selec-
tion strategies appears to be intuitively large. For exam-
ple, for a finite horizon problem the Bayes optimal action
is determined by dynamic programming: first solve for the
optimal actions and values at the horizon, and then pro-
gressively back these up to earlier belief states (see Figure
1). Bayes optimal action selection essentially involves enu-
merating possible futures, averaging according to their re-
alization probabilities, and choosing the best action. It is no
surprise therefore that the only guaranteed way to approx-
imate Bayes optimal action selection at a given belief state
is to simulate the belief state MDP to the effective horizon.

Thesparse samplingapproach of (Kearns et al., 2001) re-
places myopic estimates of the value of exploration with
explicit lookahead to the effective horizon. This approach
yields a general strategy for approximating optimal ac-
tion selection in Markov decision processes, including the
meta-level belief state MDPs we consider. A generic out-
line of the sparse sampling algorithm for finite horizon
problems is given in Figure 2.

Note that sparse sampling requires a generative model, but
this is conveniently exactly what a model based Bayesian
approach provides, as shown in Equations (1) and (2). In
this approach, lookahead is performed only by simulation
in the meta-level belief state MDP which is maintained in-
ternally, not by actually taking actions in the world. That

GrowSparseTree(node, branchfactor, horizon)

If node.depth = horizon; return

If node.type = “decision”
For eacha ∈ A

child = (“outcome”, depth, node.belstate,a)
GrowSparseTree(child, branchfactor, horizon)

If node.type = “outcome”
For i = 1...branchfactor

[rew,obs] = sample(node.belstate, node.act)
post = posterior(node.belstate, obs)
child = (“decision”, depth+1, post, [rew,obs])
GrowSparseTree(child, branchfactor, horizon)

EvaluateSubTree(node, horizon)

If node.children = empty
immed =MaxExpectedValue(node.belstate)
return immed * (horizon - node.depth)

If node.type = “decision”
return max(EvaluateSubTree(node.children))

If node.type = “outcome”
values =EvaluateSubTree(node.children)
return avg(node.rewards + values)

Figure 2.Sketch of sparse sampling algorithm. Grows a balanced
lookahead tree, enumerating actions at decision nodes and sam-
pling at outcome nodes. Sufficient values of branchfactor and
horizon yield approximation guarantees.

is, sparse sampling is an action selection strategy where,
upon entering a belief state, extensive computation is ex-
ploited to determine an action that would yield near opti-
mal reward over the long run (i.e. to the horizon) in the
meta-level belief state MDP. Once chosen, the action is ex-
ecuted, and a new belief state is entered. To the extent that
the Bayesian posterior concentrates on the true underlying
model, this next belief state would have been influential in
the previous computation.

Ignoring the obviously massive computation it requires to
select each action, sparse sampling has some advantages.
First, as (Kearns et al., 2001) show, it is guaranteed to pro-
duce a near optimal action foranybelief state encountered,
not just a restricted class of belief states. Second, sparse
sampling can be easily applied toinfinite state spaces. Of
course, the theoretical procedure is too expensive to be ap-
plied in any real problem. But as Figure 2 shows, this pro-
cedure can be parameterized so that the computational cost
can be controlled, by making the outcome branching fac-
tor and lookahead depth inputs to the procedure. Doing so
requires us to forgo any theoretical guarantees of near op-
timality, but of course, one should not be surprised, since
guaranteed approximation in this case is still provably in-
tractable (Mundhenk et al., 2000; Lusena et al., 2001).

Even though sparse sampling can be parameterized to ren-
der a controllable lookahead strategy, it is still not a so-
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GrowSparseBayesianTree(node, budget,ρ, horizon)

While # nodes< budget
branchnode =BayesDescend(root,ρ)
If branchnode.type = “decision”

Add outcome then leaf node below branchnode
If branchnode.type = “outcome”

Add leaf decision node below branchnode
returnEvaluateTree(root)

BayesDescend(node,ρ)

If node.type = “decision”
a = ThompsonSample(node.belstate)
If a 6∈ node.children % new branch

return [node,a]
Else % follow

returnBayesDescendTree(node.child(a))

If node.type = “outcome”
If possible to branch, with probabilityρ % new branch

return node
Else % follow

[rew,obs] = sample(node.belstate,node.act)
returnBayesDescend(node.child([rew,obs]))

Figure 3.A Bayesian sparse sampling algorithm that adaptively
grows a lookahead tree.

phisticated action value estimator, and can be easily im-
proved by addressing some shortcomings. Given a belief
state, our goal is to use lookahead search to estimate the
long term value of possible actions. This situation is not
unlike game tree search where one wants to expand the
lookahead tree (here an expecti-max tree) intelligently so
that search effort is not wasted and important branches are
explored. The first idea we pursue is not to build a fully
balanced lookahead tree, but instead attempt to grow the
tree adaptively. The intuition is that one need only inves-
tigate actions in detail that are potentially optimal, and not
waste computational resources on proving that unpromis-
ing actions are, indeed, suboptimal. That is, uniformly ac-
curate estimates are not required at every decision node in
the lookahead tree. Our second idea is to use an effective
myopic action selection strategy—specifically Thompson
sampling—to preferentially expand the tree below actions
that at least appear to be locally promising. Finally, to re-
duce the variance of the estimates at outcome nodes, we
also exploit the fact that unbiased reward expectations, lo-
cally, can be obtained by sampling them from the mean
model, rather than first sampling a model and then sam-
pling rewards from a random model. These ideas lead to
the algorithm shown in Figure 3.

Once grown, the sparse lookahead tree must be evaluated
to choose an action at the root. There are a few subtleties
in doing so effectively. Clearly, values are backed up from
the leaves; averaging at outcome nodes, and maximizing at
decision nodes, as shown in Figure 1. However, when eval-
uating leaf nodes (which are always decision nodes in this

approach) it is important to account for differing depths.
Therefore, at each leaf, the mean posterior reward for each
action is first multiplied by the number of decisions remain-
ing to the horizon, thus correcting the leaf values to the
same absolute depth. Another important issue is to con-
sidereveryaction at each decision node, even if some were
not sampled during the tree growing phase.5 That is, ac-
tions that have not been explored at a decision node are
still evaluated by multiplying their posterior mean reward
by the number of decisions remaining to the horizon.

Note that in this overall approach, myopic strategies are
only used to decide where to look ahead in the simulation,
not make any real action selection decisions. Real deci-
sions are left to the full lookahead search. The procedure
exploits the fact that there is a lot of latitude, during looka-
head, to make heuristic action choices at the internal deci-
sion nodes (i.e. max nodes). In fact, the Bayesian sparse
sampling procedure can be easily applied toinfinite action
spaces, whereas standard sparse sampling is inapplicable if
actions cannot be enumerated. The Bayesian approach also
has an advantage in that it allows one to approximate the
maximum of a set of random variables without enumera-
tion: Given a prior and sampled values, a posterior is de-
termined over the distribution of the remaining variables.
Thus, it is possible to stop whenever the expected poste-
rior maximum value is no larger than the current maximum
value, plusε. In this way, it appears as though one can de-
rive sparser sampling bounds in the Bayesian setting that
are applicable to infinite action spaces.

5. Experimental results

To investigate the effectiveness of this sampling approach
we conducted experiments on a number of simple domains
where the planning problem is not difficult. These include
bandit problems, but also episodic reinforcement learning
problems. Our goal in this paper is not to focus on MDP
planning, but rather to demonstrate action selection im-
provements, which is already a challenge even in simple re-
inforcement learning scenarios. (However, subject to cop-
ing with MDP planning challenges (Dearden et al., 1999)
our approach can be applied to richer domains.)

We compare Bayesian sparse sampling (BayesSamp) with
standard sparse sampling (SparseSamp) and standard my-
opic action selection strategies. These included Bayesianε-
greedy withε = 0.1 (eps-Greedy), Boltzmann exploration
with temperatureτ = 0.1 (Boltzmann), and interval es-
timation (IE) with a range of two standard deviations, all
using the expected Q-values given the current belief state.

5In the continuous action case we did not consider actions be-
yond those explicitly sampled, although additional local sampling
could be used to ensure that a reasonable number of actions are
considered at each decision node.
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We also compared to Thompson sampling (Thompson) and
the myopic value of perfect information (MVPI), using the
same number of samples as a full lookahead tree of depth
one to estimate the Q-value distributions. Finally, we com-
pared to a lookahead strategy for action selection in MDPs
proposed by (Ṕeret & Garcia, 2004). This technique can
be applied to Bayesian reinforcement learning simply by
treating the problem as acting in a belief-state MDP. The
Péret & Garcia strategy uses fixed length lookahead trajec-
tories sampled from a current state; employing Boltzmann
selection to choose the actions along each trajectory. Inde-
pendent trajectories to a fixed horizonH are generated (set
to H = 5 in our experiments) and the action with the best
overall trajectory reward on average is selected at the root.

For each problem domain, we set a finite horizon timeT
and measure the rewards accumulated by each action se-
lection strategy, averaged over 1000 to 10,000 repeats to
estimate the expected total reward achieved as a function
of horizon time. The lookahead strategies were set up to
give a controlled comparison with each other. First, stan-
dard sparse sampling was run with a given lookahead depth
(1 or 2) and fixed decision and outcome branching factors,
yielding a balanced tree. Then the total number of nodes
expanded in the balanced tree generated by sparse sam-
pling was set as a maximum node budget for both Bayesian
sparse sampling and Péret & Garcia sampling. Figures 4 to
7 show the results obtained.

The first domain is a simple bandit problem with five ac-
tions, each yielding{0, 1} rewards according to indepen-
dent Bernoulli distributions with payoff probabilities dis-
tributed according to a Beta prior. Here we see that looka-
head strategies outperform the myopic strategies, even
MVPI which uses comparable computation (Figure 4).
Nevertheless this simple problem does not show much ad-
vantage for Bayesian over standard sparse sampling. Sim-
ilar results were obtained for a related five action bandit
problem where instead each action yields a reward accord-
ing to an independent Gaussian distribution with means
distributed according to a Gaussian prior (Figure 5).

More interesting results are obtained on complex domains
where the action rewards are correlated. Here we con-
ducted experiments in a scenario that involvedcontinu-
ous action spaces. Specifically, we considered problems
where the reward distribution over actions is defined by a
Gaussian processprior over the action space (Williams,
1999). This creates an interesting exploration problem
where rewards are correlated between actions, and the
acions themselves are not restricted to a trivial finite set.

Figures 6 and 7 show the results of the two continu-
ous problems we considered. The first involved a 1-
dimensional action space and the second a 2-dimensional
action space. In each case, a Gaussian process prior over

5 10 15 20
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Horizon

Av
er

ag
e 

Re
wa

rd
 p

er
 st

ep

Five Bernoulli Bandits

eps−Greedy
Boltzmann
IE
Thompson
MVPI
PeretGarcia
SparseSamp
BayesSamp

Figure 4.Bernoulli bandits
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Figure 6.1-dimensional continuous action Gaussian process
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rewards was defined by an RBF kernel on actions, speci-
fying the covariance between action rewards. (We used a
Gaussian RBF kernel with width parameter 1. The noise
standard deviation was set toσ = 0.5.) Technically stan-
dard sparse sampling and MPI are unable to cope with con-
tinuous action spaces, so we sampled actions for them to
consider according to a uniform distribution. Figures 6 and
7 show a clear advantage for Bayesian sparse sampling over
standard sparse sampling and the myopic approaches—
using the same number of lookahead nodes as standard
sparse sampling and Péret & Garcia sampling, and similar
computation to MVPI. Surprisingly, Ṕeret & Garcia sam-
pling performed nearly as well in this case, even though it
exhibits weaker performance in the bandit problems.

6. Conclusion

We have proposed a simple approach to improving action
selection quality in model based Bayesian reinforcement
learning. The main advantage is that the approach yields
improved exploration/exploitation decision making when-
ever Bayesian posteriors can be conveniently calculated.
The main drawback of our approach is shared by all model
based Bayesian approaches to reinforcement learning: the
need to repeatedly solve an MDP planning problem. Nev-
ertheless, there are many interesting domains where this
is not a significant barrier, and promising approaches have
been developed for mitigating this expense (Dearden et al.,
1999). Another area for future research is to compare
on-line action selection strategies with pre-compilation ap-
proaches (Boyan & Moore, 1996) to verify that the per-
ceived advantages of the on-line approach are real. It is
also interesting to contemplate the prospect of hybrid ac-
tion selection strategies that combine pre-compilation with
on-line computation, perhaps by allowing a pre-compiled
value function approximation to guide lookahead simula-
tion without the need for on-line MDP planning.
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