
Action Respecting Embedding

Michael Bowling BOWLING@CS.UALBERTA .CA

Department of Computing Science, University of Alberta, Edmonton AB, Canada

Ali Ghodsi AGHODSIB@UWATERLOO.CA

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada

Dana Wilkinson D3WILKIN @UWATERLOO.CA

School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Abstract
Dimensionality reduction is the problem of find-
ing a low-dimensional representation of high-
dimensional input data. This paper examines
the case where additional information is known
about the data. In particular, we assume the data
are given in a sequence with action labels asso-
ciated with adjacent data points, such as might
come from a mobile robot. The goal is a varia-
tion on dimensionality reduction, where the out-
put should be a representation of the input data
that is both low-dimensional and respects the ac-
tions (i.e., actions correspond to simple transfor-
mations in the output representation). We show
how this variation can be solved with a semidef-
inite program. We evaluate the technique in a
synthetic, robot-inspired domain, demonstrating
qualitatively superior representations and quanti-
tative improvements on a data prediction task.

1. Introduction

Dimensionality reduction and manifold learning are pop-
ular topics in machine learning. Traditionally, lin-
ear dimensionality-reduction techniques, such as princi-
ple components analysis, have been used to find low-
dimensional linear subspaces in high-dimensional data.
Manifolds in natural data are rarely linear, however, leading
to a variety of research in discovering non-linear manifolds.

Historically, the two main ideas for discovering low-
dimensional manifolds in high-dimensional data have been
to find a mapping from the original space to a lower-
dimensional space that: (i) preserves pairwise distances,

Appearing inProceedings of the22nd International Conference
on Machine Learning, Bonn, Germany, 2005. Copyright 2005 by
the author(s)/owner(s).

e.g., multidimensional scaling (Cox & Cox, 2001); or
(ii) preserves mutual linear reconstruction ability,e.g.,
principle components analysis (Jolliffe, 1986). In each
case, globally optimal solutions are linear manifolds.
The more recent techniques for manifold discovery,e.g.,
Isomap (Tenenbaum et al., 2000), LLE (Saul & Roweis,
2003), and SDE (Weinberger & Saul, 2004b), are based on
these same two principles, with the generalization that the
new methods only seek low-dimensional representations
that locally preserve distances or linear reconstructions. In
this way, they avoid recovering globally linear solutions.

Although these techniques produce non-linear manifolds
in different ways, they all share one feature. All knowl-
edge about the input data, and therefore the desired low-
dimensional manifold, must be encoded in the similarity
function. Not all such knowledge can be so easily encoded.
Consider sensor readings, such as images, taken from a
mobile robot. The most natural representation of the ob-
servations would be the robot’s pose (e.g., for a wheeled
robot:x, y andθ describing the robot’s position and orien-
tation), which allows the high-dimensional sensor data to
be described with only a few dimensions. This represen-
tation is desirable not only because it is low-dimensional,
but because within it the robot’s actions (e.g., forward and
rotation) correspond to simple transformations. This objec-
tive pose is an ideal representation for robot planning and
localization. There is no natural way, though, to encode ei-
ther the robot’s actions nor the desire that the representation
respect these actions through a simple similarity function.

This paper introduces a new algorithm, Action Respect-
ing Embedding (ARE), to address this variation on tradi-
tional manifold learning. Specifically, we examine situa-
tions where the input data are given in sequence, along with
uninterpreted1 action labels that are associated with adja-

1This means that the action labels themselves have no implied
meaning. We may refer to actions as ‘go left’ or ‘go right’ but the



Action Respecting Embedding

cent pairs of data points. ARE learns a low-dimensional
representation of the data, in which the actions are simple
transformations. For ARE to extract such a representation
it exploits the knowledge of action labels in two key ways:

1. It uses the action-labeled pairs of data points to build
a non-uniform neighborhood graph. The graph is
constructed using the assumption that pairs of data
points that can be reached in a small number of ac-
tions should be nearby in the learned representation.
Other non-linear manifold-learning techniques use a
k-nearest neighbor graph with a globally uniformk
which can create overly dense neighborhood graphs.

2. The action labels individually have no implied mean-
ing. However, every time an action is repeated it pro-
vides more implicit information about the data. From
these repetitions we can buildaction-respecting con-
straints that ensure that each action corresponds to a
simple transformation in the learned representation.

Using non-uniform neighborhoods and action-respecting
constraints, ARE constructs a semidefinite program to learn
a kernel that describes the desired low-dimensional repre-
sentation. The result is a very natural representation of the
original high-dimensional data, with a strong correspon-
dence to the actual low-dimensional process that generated
the data. Although manifold-learning techniques often rely
on qualitative evaluation, our knowledge of the actions in-
volved in generating the data allows for a more objective
evaluation. Therefore, along with traditional qualitative
comparisons we introduce a data-prediction task as a quan-
titative measure of the success of a learned representation.

In Section 2 of this paper, we review previous relevant
manifold-learning techniques. The focus is on Semidefi-
nite Embedding, which is the foundation for our new al-
gorithm. The Action Respecting Embedding algorithm is
introduced in Section 3. We extract a non-uniform neigh-
borhood graph based on the fact that the data are connected
by actions, and we create additional manifold constraints
which respect the action labeling. We also introduce the
task of data prediction and show how ARE can solve this
problem. Experimental results of the proposed algorithm
are presented in Section 4 before we conclude in Section 5.

2. Background

Dimensionality reduction or manifold learning can be seen
as the process of deriving a set of degrees of freedom which
can be used to reproduce most of the variability of a data
set. For example, consider a set of images produced by
rotating a camera through different angles. Clearly only

algorithm gets the actions as simply ‘Action 1’ and ‘Action 2’.

one degree of freedom is being altered, and thus the images
lie along a continuous curve through image space.

Many algorithms for dimensionality reduction have been
developed, beginning with PCA. Principal components
analysis (PCA) (Jolliffe, 1986) is a classical method which
provides a sequence of best linear approximations to a
given high-dimensional observation. It is a popular tech-
nique for dimensionality reduction, but its effectiveness
is limited by its global linearity. Multidimensional scal-
ing (MDS) (Cox & Cox, 2001), closely related to PCA,
suffers from the same drawback. In order to resolve the
problem of dimensionality reduction in non-linear cases,
many techniques including Kernel PCA (Schölkopf et al.,
1998; Mika et al., 1999; Schölkopf & Smola, 2002), lo-
cally linear embedding (LLE) (Roweis & Saul, 2000; Saul
& Roweis, 2003), Isomap (Tenenbaum, 1998; Tenenbaum
et al., 2000), and Semidefinite Embedding (Weinberger &
Saul, 2004b) have been proposed. Motivating our algo-
rithm requires a brief overview of Kernel PCA and SDE.

Kernel PCA is a non-linear generalization of PCA. In Ker-
nel PCA, using kernels, principle components are com-
puted efficiently in high-dimensional feature spaces that re-
late to the input space by some non-linear mapping. PCA
finds an orthogonal transformation of the coordinate sys-
tem which describes the data. Kernel PCA finds princi-
pal components which are non-linearly related to the input
space. The key observation is that PCA can be formulated
entirely in terms of dot products between data points. In
Kernel PCA, this dot product is replaced by the inner prod-
uct of a Hilbert space—equivalent to performing PCA in
the space produced by the non-linear mapping, where the
low-dimensional latent structure is easier to discover.

Consider a feature spaceH such thatΦ : X → H. Let∑n
i=1 Φ(xi) = 0 (since a simple transformation onX can

center the data). The solution for PCA could be found by
taking the singular value decomposition:

Φ(X) = UΣV T (1)

whereU contains the eigenvectors ofΦ(X)Φ(X)T , Σ is a
diagonal matrix containing the square roots of the eigenval-
ues ofΦ(X)Φ(X)T andΦ(X)T Φ(X), andV contains the
eigenvectors ofΦ(X)T Φ(X). The primal PCA solution
for encoding the data isY = UT Φ(X). SinceΦ(X) might
be very high-dimensional, simply applying PCA might be
impractical. From equation 1,UT Φ(X) = ΣV T . This
is the dual form of PCA which allows us to employ the
kernel functionk(·, ·) to compute the kernel matrixK =
Φ(X)T Φ(X) whereKij = k(xi, xj). Note that this matrix
does not depend on the dimensionality of the feature space.
The Kernel PCA procedure is summarized in Table 1. The
choice of kernel plays an important role—linear, polyno-
mial and Gaussian kernels are widely used kernels which
reveal different types of low-dimensional structure.



Action Respecting Embedding

Algorithm: Kernel PCA

Recover basis: CalculateΦ(X)>Φ(X) = K and let
V be the eigenvectors ofK corresponding to the topd
eigenvalues. LetΣ = diagonal matrix ofsquare rootsof
the topd eigenvalues.

Encode training data: Y = U>Φ(X) = ΣV > where
Y is ad× n matrix of encodings of the original data.

Table 1. Kernel PCA Algorithm.

In 2004 Weinberger and Saul introduced SDE (Weinberger
& Saul, 2004b; Weinberger & Saul, 2004a), which learns
a kernel matrix instead of choosing a kernel function a pri-
ori. They formulated the problem of learning the kernel
matrix as an instance of semidefinite programming. Since
the kernel matrixK represents inner products of vectors
in a Hilbert space it must be positive semidefinite. Also
the kernel should be centered,i.e.,

∑
ij Kij = 0. Lastly,

SDE imposes constraints on the kernel matrix to ensure that
the distances and angles between points and their neighbors
are preserved under the neighborhood graphη. That is, if
bothxi andxj are neighbors (i.e., ηij = 1) or are common
neighbors of another input (i.e., [ηT η]ij > 0), then:

||Φ(xi)− Φ(xj)||2 = ||xi − xj ||2.

In terms of the kernel matrix, this can be written as:

Kii − 2Kij + Kjj = ||xi − xj ||2.

By adding an objective function to maximize Tr(K), which
represents the variance of the data points in the learned
feature space, SDE constructs a semidefinite program for
learning the kernel matrix,K. The last detail of SDE is the
neighborhood graph,ηij , constructed by connecting thek
nearest neighbors using a similarity function over the data,
||xi − xj ||. The algorithm is summarized in Table 2.

Algorithm: SDE

Construct neighbors,η, usingk-nearest neighbors.

Maximize Tr(K) subject toK � 0,
∑

ij Kij = 0, and
∀ij ηij > 0 ∨ [ηT η]ij > 0 ⇒

Kii − 2Kij + Kjj = ||xi − xj ||2 we Run

Kernel PCA with learned kernel, K.

Table 2. SDE Algorithm.

The manifolds learned by SDE are comparable to those of
other non-linear dimensionality-reduction methods. Also,
at its core is a semidefinite optimization. The next section
demonstrates that our variant on dimensionality reduction
can be solved by adding appropriate constraints to this core.

3. Action Respecting Embedding

Action respecting embedding takes a sequence of high-
dimensional datax1, . . . , xn, along with associated dis-
crete actionsa1, . . . , an−1. The data are assumed to be
in some order, where actionai was taken between data
pointsxi andxi+1. The final piece of input is a similar-
ity function, ||xi − xj ||, defining a distance over the high-
dimensional data points. For vector data, Euclidean dis-
tance is often sufficient, but other similarities can be used.

The overall structure of the algorithm follows the same
three steps of SDE: (i) construct a neighborhood graph, (ii)
solve a semidefinite program to find the maximum vari-
ance embedding subject to constraints, (iii) extract a low-
dimensional embedding from the dominant eigenvectors of
the learned kernel matrix. ARE, though, seeks to exploit
the additional information provided by the action labels
of the data. We exploit this information through two key
insights. The first modifies step (i) by constructing non-
uniform neighborhoods based on action-labeled pairs of
data points. The second modifies step (ii) by adding action-
respecting constraints into the semidefinite program.

3.1. Non-Uniform Neighborhoods

Many of the current non-linear manifold-learning tech-
niques seek to preserve local properties of the original data.
They often require a neighborhood graph over the original
data points to define a notion of locality. As we’ve seen,
SDE creates this graph by connecting each data point to its
k-nearest neighbors for some chosen value ofk. Since the
neighborhood graph must be fully connected for SDE to
have a bounded solution, this choice ofk can be forced to
be quite large and may over-constrain the learned manifold.
Another possibility would be to choose a distance thresh-
old δ and connect any two data points within that threshold
as neighbors. Again, this may result in an over-constrained
manifold asδ must be set large enough to make the graph
fully connected. The key drawback in these techniques is
that they require a globally uniformk or δ.

Since we are given additional information relating the
points in our set,i.e., that certain pairs of data points are
connected by an action, we can build a more intuitive, non-
uniform neighborhood graph. The idea is based on the as-
sumption that data points connected by an action are nearby
and should be considered neighbors. We use these assumed
neighbors to define a neighborhood ball around each data
point, whose radius is large enough to encompass all data
points connected by an action. We then include an edge
in the neighborhood graph between two images if they are
both in each other’s neighborhood ball. We can increase the
connectivity of the neighborhood graph by increasing the
action window,i.e., requiring data points withinT actions
of each other to be neighbors. Since our data is generated



Action Respecting Embedding

a
b

Figure 1. An example of the use of action labels to find non-
uniform neighborhoods. The arrows show the points that are con-
nected by an action. The circles show the neighborhood for the
points labeled ‘a’ and ‘b’ withT = 1. Black points are in both,
white points in neither. Shaded points are in ’b’ but not ’a’.

from a sequence of actions, we can define the neighbor-
hood graph as follows. Letηij be the adjacency matrix of
the neighborhood graph. Given an action window ofT ,

ηij = 1 ⇔ ∃k, l such that

|k − i| < T, |l − j| < T,

||xi − xk|| > ||xi − xj || and

||xj − xl|| > ||xi − xj ||. (2)

Figure 1 shows some two-dimensional points connected by
actions, and the resulting neighborhood balls whenT = 1.

Note that since the data come from a sequence of actions,
the neighborhood graph (T ≥ 1) is fully connected. This
satisfies a critical requirement that the semidefinite opti-
mization be bounded (or a solution may not exist).

3.2. Action-Respecting Constraints

The second, and more important, contribution of ARE is
the addition of action-respecting constraints. The evalua-
tion of learned manifolds is often subjective and usually
amounts to demonstrating that a manifold corresponds to
a known data generator’s own underlying degrees of free-
dom. Action labels, even without interpretation or implied
meaning, provide more information about the underlying
generation of the data. It is natural to expect that the actions
correspond to some simple operator on the generator’s own
degrees of freedom. For example, a camera that is being
panned left and then right, has actions that correspond to a
simple translation in the camera’s actuator space. We there-
fore want to constrain the learned representation so that la-
beled actions correspond to simple transformations in it. In
particular, an action should correspond to a rotation-plus-
translation2 in the low-dimensional representation.

2The subset of linear transforms that don’t involve scaling.

This constraint can be formalized by first observing that
rotation-plus-translation is exactly the space ofdistance-
preservingtransformations. Transformationf is distance
preserving, thus a rotation-plus-translation, if and only if:

∀x, x′ ||f(x)− f(x′)|| = ||x− x′||.

Consider this in the context of an action-labeled data se-
quence. All actions must be distance-preserving transfor-
mations in the learned representation. Therefore, for any
two data points,xi andxj , the same action taken at each
data point must preserve the distance between them. Let
Φ(xi) denote data pointxi in the the learned space, then
actiona’s transformation,fa, must satisfy:

∀i, j ||fa(Φ(xi))− fa(Φ(xj))|| =
||Φ(xi)− Φ(xj)||. (3)

Now, let a = ai and consider the case whereaj = ai.
Then,fa(Φ(xi)) = Φ(xi+1) andfa(Φ(xj)) = Φ(xj+1),
so Constraint 3 becomes:

||Φ(xi+1)− Φ(xj+1)|| = ||Φ(xi)− Φ(xj)||. (4)

We don’t want to pose this as a constraint on distances, but
rather as a constraint on inner products (i.e., on the learned
kernel matrix,K). Squaring both sides of the equation and
rewriting in terms ofK results in the following constraints:

∀i, j ai = aj ⇒
K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =
Kii − 2Kij + Kjj (5)

We can add Constraint 5 into SDE’s usual constraints to
arrive at the optimization and algorithm shown in Table 3.
There is a slight modification to SDE’s usual neighbor con-
straint, changing strict equality into an upper bound. This
modification insures that the constraints are feasible by al-
lowing the zero matrix to be a feasible solution. Notice that
the additional action-respecting constraints are still linear
in the optimization variables,Kij , and so the optimization
remains a semidefinite program. Since the neighborhood
graphηij is fully connected, the optimization is bounded,
convex, and feasible, and therefore can be solved efficiently
with various general-purpose toolboxes. The results in this
paper were obtained using CSDP (Borchers, 1999) in MAT-
LAB. Our results also used highly-penalized slack vari-
ables in SDE’s neighborhood constraint to help improve
solution stability. This was recommended by Weinbergeret
al. in the original SDE paper (Weinberger & Saul, 2004b).

3.3. Data Prediction

As manifold learning is an unsupervised learning problem,
evaluation of algorithms is often qualitative. We now intro-
duce the task ofdata prediction, which (i) can be measured



Action Respecting Embedding

Algorithm: ARE

Construct neighbors,η, according to Equation 2.

Maximize Tr(K) subject toK � 0:
∑

ij Kij = 0,
∀ij ηij > 0 ∨ [ηT η]ij > 0 ⇒

Kii − 2Kij + Kjj ≤ ||xi − xj ||2 , and
∀ij ai = aj ⇒

K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =
Kii − 2Kij + Kjj

Run Kernel PCA with learned kernel, K.

Table 3. ARE Algorithm.

quantitatively and (ii) seeks to evaluate how well a low-
dimensional representation has captured the actions. Data
prediction is: given a data point and an action, predict the
resulting data point. In general, this is a very challenging
task. Manifolds learned with ARE can be used to tackle a
partial version of this task: given a data point and action
from the training set,xi anda (wherea is not necessarily
ai), predict the next data point assuming it is also in the
training set. Here we describe how ARE can be used to
solve this task, and in Section 4 we present results of this
quantitative evaluation of accuracy of ARE’s predictions.

ARE learns a space where actions correspond to distance-
preserving operators. By Constraint 3, this implies:

∀i, j ||fa(Φ(xi))− fa(Φ(xj))|| = ||Φ(xi)− Φ(xj)||.

Considering onlyj’s such thataj = a, results in the follow-
ing constraint on the result of the action’s transformation:

∀j aj = a ⇒ ||fa(Φ(xi))− Φ(xj+1)|| =
||Φ(xi)− Φ(xj)||. (6)

If action a appears in the training setm times, then this
givesm constraints onfa(Φ(xi))’s distance to other known
points,Φ(xj+1). In fact, if the learned manifold has dimen-
sionalityd, d+1 independent distance constraints uniquely
determinefa(Φ(xi)). In this case, it is a simple matter to
find pointΦ(xp) nearest the constrained pointfa(Φ(xi)),
and usexp as our prediction. If a point is under-constrained
(m <= d), then the index,p, is selected by:

p = argmax
k=1...n

∑
j:aj=a

(
||fa(Φ(xi))− Φ(xj+1)||−
||Φ(xk)− Φ(xj+1)||

)2

. (7)

In other words,Φ(xp) is the embedded point whose dis-
tances to other points most closely agrees withfa(Φ(xi))’s
distance constraints. We then usexp as our prediction.

4. Results

We now examine the effect of ARE’s non-uniform neigh-
borhoods and action-respecting constraints on learning
low-dimensional action-respecting representations. Our re-
sults are in a synthetic, robot-inspired, image manipulation
domain called IMAGEBOT. We first present this domain.
We then show manifolds produced by ARE and SDE from
data generated in this domain. In addition to the compelling
qualitative comparisons, we also present quantitative evalu-
ation using the data prediction task described in Section 3.3

4.1. IMAGEBOT Domain

Given an image, one can imagine a virtual robot that ob-
serves a small patch on that image and can take actions
which move that observable patch around on the image.
This “image robot” provides an excellent domain for test-
ing ARE, with obvious connections to robotic applications.

For these experiments, IMAGEBOT is always viewing a200
by 200 patch of a2048 by 1536 image. IMAGEBOT is re-
stricted to eight distinct actions: four translation actions,
two rotation actions and two zoom actions. The transla-
tions are ‘forward’, ‘backward’, ‘left’ and ‘right’, each by
25 pixels. The rotation actions are ‘turn left’ and ‘turn
right’, each by22 1

2

◦
. The zoom actions are ‘zoom in’ and

‘zoom out’, each changing the scale by a factor of8
√

2 (i.e.,
eight zoom actions double the image scale).

Figure 2. IMAGEBOT’s world.

Figure 2 shows the image used for the experiments, while
Figure 3 shows an example trajectory from IMAGEBOT

(Figure 3 is an enlargement of the long, thin highlighted
rectangular section in Figure 2.) The trajectory starts on
the far left with IMAGEBOT facing right. IMAGEBOT then
takes40 steps forward (to the right) and then20 steps back-
ward. Figure 4 shows a more complicated ‘A’-shaped tra-
jectory that IMAGEBOT followed (Figure 4 is a blow up of



Action Respecting Embedding

Figure 3. A sample 60-action trajectory from IMAGEBOT.

Figure 4. A more complicated 45-action trajectory from IMAGE-
BOT.

the other highlighted rectangular section in Figure 2.)

IMAGEBOT’s observations as it follows these paths, along
with the actions associated with the paths, gives a per-
fect domain for testing ARE—ordered high-dimensional
data with each consecutive pair related by an action. Note
that while IMAGEBOT knows what action it takes at every
step there is no semantic information associated with that
knowledge,i.e., the labels are uninterpreted.

4.2. Manifold Learning

Both SDE and ARE were applied to the IMAGEBOT data
from the trajectory in Figure 3. As might be expected, the
resulting manifold for both algorithms is not surprising—
essentially one-dimensional as the first eigenvalue of the re-
sulting kernel dominates the others. Of interest, however, is
a plot of the trajectory on this manifold over time, which is
shown in Figure 5. Note that the result from SDE indicates
that IMAGEBOT doubled back on itself seven times. The
result from ARE is markedly smoother and corresponds
almost exactly to IMAGEBOT’s actual manifold. Despite
not having any meaning attached to the actions, ARE has
clearly managed to learn a representation which captures
the essential properties of the actual actions. Namely, that
the two different actions are opposites of each other in
terms of direction and have the same magnitude.

We can subtly change the actions which generate the data,

time

po
si

tio
n 

on
 m

an
ifo

ld

SDE
ARE

Figure 5. Manifolds from trajectory shown in Figure 3. Lines
show the distance along the manifold over time.

making the backward action move twice as far as the for-
ward one. Figure 6 demonstrates that ARE is capable of
learning a manifold that can capture this property as well.

ARE can correctly handle periodic actions, such as rota-
tion, as well. Figure 7 shows the first two dimensions of a
manifold corresponding to a trajectory consisting of sixteen
‘turn right’ and eight ‘turn left’ actions. ARE essentially
discovers the representation,(sin (θ) , cos (θ)), as well as
discovering that the actions are opposites and are periodic.

ARE continues to yield good results in the face of more
complicated collections of transformations. ARE and SDE
were both run with the more complex example shown in
Figure 4. The resulting manifolds are displayed in Fig-
ure 8. SDE, as with the previous example, fails to generate
a manifold in which the actions have a simple interpreta-
tion. Notice that again, ARE’s manifold has a strong corre-
spondence with IMAGEBOT’s actual trajectory. ARE again
captures the expected relationships between the ’forward’
and ’back’ actions, as well as the ’right’ and ’left’ actions.
Even more impressive, the manifold has captured the ’for-
ward’/’back’ actions independence and orthogonality from
the ’right’/’left’ actions—despite the fact that none of this
meaning was explicitly coded in the problem input.

In the final example, IMAGEBOT follows a variation of
the ‘A’ trajectory. Instead of the actions ‘left’, ‘right’,
‘forward’ and ‘backward’ IMAGEBOT uses the actions
‘zoom in’, ‘zoom out’, ‘forward’ and ‘backward’. In this
case it is no longer true that the two pairs of actions—



Action Respecting Embedding

time

po
si

tio
n 

on
 m

an
ifo

ld
SDE
ARE

Figure 6. Manifolds from a trajectory similar to that from Figure 3
but with slightly different actions. Lines show the distance along
the manifold over time.

1st dimension of manifold

2n
d 

di
m

en
si

on
 o

f m
an

ifo
ld

SDE
ARE

Figure 7. Manifolds learned on data generated by rotation.

‘forward’/‘backward’ and ‘zoom in’/‘zoom out’—are in-
dependent, as the distance IMAGEBOT moves when imple-
menting the first pair is dependent on IMAGEBOT’s zoom
level. Nonetheless, as Figure 9 demonstrates, ARE again
learns a manifold that captures this relationship. The left
leg of the ‘A’ corresponds to images gathered when IM-
AGEBOT was zoomed in, the right leg corresponds to im-
ages gathered when IMAGEBOT was zoomed out. Note that
distance between consecutive points is less on the left leg
than on the right. On this example ARE has successfully
learned the radial relationship between the two sets of ac-
tions without knowing the relationship ahead of time.

Finally, ARE is flexible in choice of image-similarity func-
tion. All though not shown here, similar results can be ob-
tained using distance metrics other than Euclidean distance.

4.3. Data Prediction

Section 3.3 introduced the task of data prediction and de-
scribed how ARE could be used to solve this problem. We

1st dimension of manifold

2n
d 

di
m

en
si

on
 o

f m
an

ifo
ld

SDE
ARE

Figure 8. Manifolds corresponding to Figure 4.

1st dimension of manifold

2n
d 

di
m

en
si

on
 o

f m
an

ifo
ld

SDE
ARE

Figure 9. Manifolds learned on data generated with zoom actions.

applied the data prediction algorithm to the four trajecto-
ries from the previous section. Since data prediction is a
form of supervised learning, we wanted to only measure
accuracy on queries outside of the training data. Queries of
the form, “What training image would result from taking
actiona1 from imagex1?”, can easily be answered, (x2),
from the original data stream. Other queries, such as, “In
Figure 4, what training image would result from taking ac-
tiona11 from imagex28?”, are not so easily answered. This
query can only be answered by understanding that some
actions are inverses of each other (i.e., when the extracted
representation appropriately respects the action labels).

We generated all possible image-action pairs resulting in
an image in the training data, then excluded pairs of the
form (xi, ai) as these are queries answered directly in the
training data. The remaining queries were used to evaluate
ARE’s data prediction algorithm. For a comparison base-
line, we also performed the same evaluation using SDE’s
learned manifolds. To be as fair as possible, we examined
two prediction techniques for SDE. First, we used ARE’s
data-prediction algorithm with SDE’s manifold. Second,



Action Respecting Embedding

Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9
ARE 100.0% 100.0% 100.0% 100.0% 97.2%
SDE-d 10.2% 14.0% 28.0% 41.7% 25.0%
SDE-l 11.9% 29.8% 20.0% 39.6% 29.2%

Table 4. Prediction accuracy across the four trajectories.

we used regression on SDE’s manifold to find the best lin-
ear transformation for each action, with the nearest training
point to the transformed query point being the prediction.

Table 4 shows prediction accuracy for all three methods
across all trajectories. “SDE-d” is SDE using ARE’s data
prediction and “SDE-l” is SDE using a linear transforma-
tion. ARE achieves near-perfect accuracy, quantitatively
demonstrating ARE’s ability to learn better manifolds.

5. Conclusion

We described a variant of dimensionality reduction where
we are given action labels in addition to data points. As-
suming these labels correspond to particular movements of
a camera or other actuator, the goal becomes learning a
manifold in which actions have meaningful representation.

Traditional dimensionality-reduction methods can be ap-
plied to this problem, but none of them make use of action
labels. We therefore developed ARE: a semidefinite opti-
mization for solving this problem inspired by SDE. ARE
introduces two critical components. First, using the action
labels to build a non-uniform neighborhood graph. Second,
and more important, using the action labels to build con-
straints which force the learned manifold to be one in which
the actions are represented as simple transformations.

We demonstrated the effectiveness of ARE in learning
manifolds from the IMAGEBOT domain. We evaluated the
results qualitatively and quantitatively. ARE was able to
capture properties of the actions underlying the original
data, despite the fact that none of these properties were
explicitly coded in the input. Additionally, ARE greatly
out-performed SDE in the provided data-prediction task.

As mentioned in the introduction, low-dimensional repre-
sentations where actions can be defined as simple transfor-
mations are essential for many AI applications. Finding
sequences of actions to achieve particular outcomes (plan-
ning) and maintaining a representation of one’s location
(localization) are two such tasks. We have demonstrated
that ARE canautomaticallyextract representations suited
to these tasks from only a stream of experience. Although
beyond the scope of this paper, we have successfully im-
plemented planning (Wilkinson et al., 2005a) and localiza-
tion (Wilkinson et al., 2005b) with ARE on small problems.
Other AI tasks may also be able to benefit from ARE’s abil-
ity to automatically extract good representations.

Acknowledgments

We would like to thank Michael Littman, Dan Lizotte, Dale
Schuurmans, Finnegan Southey, and Tao Wang for discus-
sions and insight. We would like to acknowledge Alberta
Ingenuity Fund for their support of this research through
the Alberta Ingenuity Centre for Machine Learning.

References
Borchers, B. (1999). CSDP, a C library for semidefinite program-

ming. Optimization Methods and Software, 11, 613–623.

Cox, T., & Cox, M. (2001). Multidimensional scaling. Boca
Raton: Chapman Hall. 2nd edition.

Jolliffe, I. (1986). Principal component analysis. New York:
Springer-Verlag.

Mika, S., Scḧolkopf, B., Smola, A., M̈uller, K.-R., Scholz, M.,
& Rätsch, G. (1999). Kernel PCA and de-noising in feature
spaces.Advances in Neural Information Processing Systems
11 (pp. 536–542). MIT Press.

Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduc-
tion by locally linear embedding.Science, 290, 2323–2326.

Saul, L., & Roweis, S. (2003). Think globally, fit locally: Unsu-
pervised learning of nonlinear manifolds.Journal of Machine
Learning Research, 4, 119–155.

Scḧolkopf, B., & Smola, A. (2002).Learning with kernels. Cam-
bridge, Massachusetts: MIT Press.

Scḧolkopf, B., Smola, A., & M̈uller, K.-R. (1998). Nonlinear
component analysis as a kernel eigenvalue problem.Neural
Computation, 10, 1299–1319.

Tenenbaum, J. (1998). Mapping a manifold of perceptual obser-
vations. Advances in Neural Information Processing Systems
10 (pp. 682–687). MIT Press.

Tenenbaum, J., de Silva, V., & Langford, J. (2000). A global
geometric framework for nonlinear dimensionality reduction.
Science, 290, 2319–2323.

Weinberger, K., & Saul, L. (2004a). Learning a kernel matrix for
nonlinear dimensionality reduction.Proceedings of the Inter-
national Conference on Machine Learning(pp. 839–846).

Weinberger, K., & Saul, L. (2004b). Unsupervised learning of im-
age manifolds by semidefinite programing.Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(pp. 988–995).

Wilkinson, D., Bowling, M., & Ghodsi, A. (2005a). Learning
subjective representations for planning.The 19th International
Joint Conference on Artificial Intelligence.

Wilkinson, D., Bowling, M., Ghodsi, A., & Milstein, A.
(2005b). Subjective localization with action respecting em-
bedding(Technical Report TR05-12). University of Alberta,
Edmonton, Alberta, Canada.


