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Abstract

Coordinating a team of autonomous agents is one of the ma-
jor challenges in building effective multiagent systems. Many
techniques have been devised for this problem, and coordi-
nated teamwork has been demonstrated even in highly dy-
namic and adversarial environments. A key assumption of
these techniques, though, is that the team members are devel-
oped together as a whole. In many multiagent scenarios, this
assumption is violated. We study the problem of coordination
in impromptu teams, where a team is composed of indepen-
dent agents each unknown to the others. The team members
have their own skills, models, strategies, and coordination
mechanisms, and no external organization is imposed upon
them. In particular, we propose two techniques, one adaptive
and one predictive, for coordinating a single agent that joins
an unknown team of existing agents. We experimentally eval-
uate these mechanisms in the robot soccer domain, while in-
troducing useful baselines for evaluating the performance of
impromptu teams. We show some encouraging success while
demonstrating this is a very fertile area of research.

Introduction
Coordinating a team of agents to complete a joint task is a
challenging problem. Despite the many difficulties, a large
body of literature attests to the many successful techniques
for building effective teams of agents. These techniques
range from methods with very strong theoretical underpin-
nings (Grosz & Kraus 1996; Cohen & Levesque 1991) to
practical heuristic methods (Parker 1998), as well as combi-
nations of the two (Tambe 1997). Even robot soccer, where
the dynamic and adversarial environment further compli-
cates the problem, has seen many effective mechanisms pro-
posed and implemented. Just within the RoboCup Small-
Size League we see much variety (Tews & Wyeth 1999;
Yoshimura et al. 2003; Bowling, Browning, & Veloso
2004).

A common assumption in these techniques is that the
members of the team are all under the agent designer’s con-
trol. Therefore agents can be designed knowing that their
teammates will share their models of the world, decompo-
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sition hierarchies, arbitration mechanisms, and communica-
tion languages and protocols. In robot soccer, this is codified
in Stone’s “locker-room agreement”: an implied set of con-
ventions, protocols, strategies, and plans that each member
adheres to, and assumes its teammates will as well (Stone
& Veloso 1999). Some techniques have focused on issues
of robustness where coordination can continue despite agent
failures or even rogue team members. However, few tech-
niques have looked at dropping this assumption entirely.

Another very active area of research is learning
team behavior, particularly in the reinforcement learning
paradigm (Sen, Sekaran, & Hale 1994; Claus & Boutilier
1998; Wang & Sandholm 2002). A common feature in
this work is to focus on situations of “self-play”, where
the teammates are all using identical learning algorithms.
This assumption is essentially a “locker-room agreement”.
Case-studies on particular games (Sandholm & Crites 1996;
Stimpson & Goodrich 2003), such as iterated prisoner’s
dilemma, have sometimes dropped this assumption. It’s not
clear how to generalize these results beyond small strategic
game settings, nor is it clear that the learning timescales are
practical for real applications.

In many realistic settings, the agents in a team can come
from multiple sources and therefore be designed indepen-
dently. For example, robots participating in search and res-
cue operations are no more likely to come from a single or-
ganization than the human rescuers (e.g., EMS, fire, police,
military services). Some settings involve teams of agents
only collaborating temporarily on smaller tasks, such as au-
tonomous personal assistants scheduling meetings. The col-
laboration may be entirely impromptu, and the agents or
agent designers may not have agreed on models, decompo-
sitions, subgoals, coordination mechanisms, or even a com-
munication protocol. This is analogous to humans playing a
friendly “pickup game”, where players who may never have
played together are divided into teams in an impromptu fash-
ion. We will call these impromptu teams or pickup teams.
Humans handle these situations with little difficulty; they
often coordinate implicitly while also adapting to both the
new teammates and new opponents. Most techniques for
coordinating autonomous agents are not nearly so flexible.

In this paper we examine this problem of coordination
in impromptu teams. We focus on the problem of a single
agent, a pickup player, joining an existing unknown team of
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Figure 1: The CMDragons’ team architecture.

agents, and present two techniques for coordination. Both
techniques were implemented and evaluated in the context
of robot soccer, building upon the CMDragons’ team archi-
tecture (Browning et al. 2005). Since the techniques rely
only on the generic concept of a team plan, or play, to pro-
vide impromptu coordination, this work is quite general. In
fact, it is directly applicable to almost any domain where
possible plans for coordinated action can be enumerated.

The rest of the paper is organized as follows. First we
summarize the CMDragons’ robot soccer team and play sys-
tem, which forms the foundation for this work. We then
describe how the system is adapted for coordinating an im-
promptu team. We evaluate our proposed techniques in
terms of resulting team performance. We then conclude.

Play-Based Coordination
Our techniques for the coordination of impromptu teams are
based upon and implemented in the CMDragons’ team ar-
chitecture. CMDragons is a robot soccer team that has com-
peted in RoboCup’s Small-Size League (SSL) from 2001
through 2004. An SSL team consists of five robots, each no
larger than 18cm in diameter, playing soccer with a golf ball
on a 4.9m by 3.4m field. The game is very fast; robots reach
speeds as high as 2m/s and the ball exceeds speeds of 5m/s.
This highly dynamic and adversarial environment makes for
a very challenging team coordination problem. The CM-
Dragons have been very successful in competition, reaching
the semi-finals the past two years. An overview of the CM-
Dragons’03 team architecture is shown in Figure 1. Full de-
tails of the various components are described in (Browning
et al. 2005).

We are primarily interested in the darkly shaded compo-
nents of Figure 1, called the strategy module. The strategy
is responsible for coordinating the five robots, through the
specification of tactics. Tactics are simple individual robot
goals, which are implemented by the lightly shaded compo-
nents using various shared robot skills, a fast path planning
technique, and localized motion control algorithms. The
strategy module’s goals, then, are to define tactics for all
five robots over time to bring about coordinated team play.
In this section we overview the key components of this mod-
ule, as it is the basis for coordination in our techniques for

PLAY Two Attackers, Pass from Corner

APPLICABLE offense in_their_corner

DONE aborted !offense

ROLE 1

pass 3

mark 0 from_shot

ROLE 2

block 320 900 -1

ROLE 3

position_for_pass { R { B 1000 0 } ...

receive_pass

shoot A

ROLE 4

defend_line { -1400 1150 } ...

Table 1: A complex play in the CMDragons’ play language.

impromptu teams.

Plays. Plays are essentially team plans, defined in a simple
text format. An example play is given in Table 1, which
defines a team plan for crossing the ball from an opponent’s
corner to create a shot on goal. We will use this example
throughout this section. The three key parts of a play are
applicability conditions, termination conditions, and roles.

Applicability conditions, labeled by the keyword
APPLICABLE, are like preconditions of operators in classi-
cal planning. They specify a conjunction of high-level pred-
icates that must hold true before the play is selected for ex-
ecution. This allows plays to specify whether they should
be used when on offense or defense, or even more narrow
situations such as a kick-off or if the ball is in a particular
region of the field. In our example play, the play can only
be executed when we are on offense and the ball is already
in one of their corners (offense and in their corner
are high-level predicates).

Termination conditions, labeled by the keyword DONE,
specify possible outcomes of a play. Each termination con-
dition is associated with a conjunction of predicates. The
predicates are preceded by a result that identifies whether
the play succeeded, failed, was completed, or
aborted. If the conjunction of predicates is true, the play
is terminated, and the play is tagged with the condition’s re-
sult. These results affect the future selection of plays. In
our example, the play is stopped and the result is considered
aborted if at any time the team is no longer on offense.
All plays contain implied termination conditions with ap-
propriate results for the calls of the referee, such as goals
and fouls.

The roles are the action component of the play, defining
the behavior of the four non-goalie robots. A role consists
of a list of tactics, which a robot will perform in sequence.
This sequence is synchronized so that the entire team fol-
lows through their sequence of tactics simultaneously. Since
tactics are heavily parameterized, many variations of indi-
vidual and team behavior are possible. In the example play,
the primary role involves passing the ball to the robot ful-
filling role three, and then marking an opponent. Role three
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involves positioning itself to be open in a particular area of
the field, receiving the pass, and then shooting toward the
goal. The other two roles are defensive.

Play Execution. Instantiating a play into actual robot be-
havior involves some key executive decisions. Primarily,
this involves role assignment, and possibly role switching
during the play. Roles are expected to be ordered by prior-
ity and are filled in this order. Every tactic has an evaluation
function that measures the suitability of a robot for achieving
the goal based on the current state (e.g., the robot’s position).
This function is used to select the most suitable robot for the
first role. The second role is filled by choosing from the re-
maining team members, and so on. Role switching uses a
similar mechanism with bias toward the currently assigned
robot. Other details, such as synchronizing the team in the
sequence, taking advantage of short-lived opportunities, and
timeouts also must be handled by the play executor.

Play Selection. The last detail is how to determine which
play to select. The team’s human “coaches” can provide a
team with a library, or playbook, of possible plays to be used
during the game. At a restart or when a play terminates, a
new play must be selected for execution. Applicability con-
ditions can narrow down the choice, but there can still be
more than one play available. We use this decision as an op-
portunity to adapt our team’s behavior to our unknown ad-
versary. Using the results of previously selected plays, i.e.,
based on their termination conditions, the probability of se-
lecting those plays in the future can be adjusted. This is done
through a weight update algorithm based on techniques from
the online learning literature. The full details are available
in (Bowling, Browning, & Veloso 2004). Essentially, plays
that result in the team scoring, receiving a penalty kick, or
just completing are more likely to be selected again. Plays
that result in the team being scored upon, or penalized, or
aborted are less likely. This allows the team to focus on par-
ticular styles of play that are most successful for the current
opponent.

In summary, CMDragons’ play-based strategy system en-
ables coordinated and adaptive team behavior. We now ex-
amine the situation of a pickup team and present a method
for using plays as the basis for impromptu coordination.

Impromptu Teams
There are many possible ways to form an impromptu team.
In this investigation we focus on teams where a single agent
in a coordinated team is replaced by an independent team-
mate. All but one of the teammates, referred to as the core
team, are able to coordinate and act as a normal team. The
remaining agent, referred to as the pickup player, acts as a
separate entity and is unable to communicate with its team-
mates. The core team and the pickup player are together
referred to as the impromptu team or pickup team. Our fo-
cus will be on examining different ways in which the pickup
player can participate on the team.

In order to more directly focus on the behavior of the
pickup player, the core team was made oblivious to the in-
dependence of the pickup agent. We modified the CMDrag-
ons’03 team described above to control the pickup team.

The core team views the pickup player as a normal mem-
ber of the team and includes the player in its play and role
selection. This means that this independent player is implic-
itly assigned a role in the current play, although this role is
never communicated to the player. The core team, therefore,
considers the pickup player as an option for passes, allows it
to handle the ball, and even positions to receive passes from
the player.

The pickup player, though, has a more complicated prob-
lem. Without any knowledge of how its own team is coordi-
nating, it must choose to act in a way that both complements
its own unknown team and plays well against its unknown
opponent. We use plays as the primary, and very general,
mechanism for determining how to act. The challenge for
this player, then, is to (1) choose a play, and (2) choose a
role on this play, both in a way that complements its own
team’s actions. Ideally, the pickup player will choose a play
similar to the core team’s own strategy, and then choose a
role that matches the role the core team expects it to per-
form. In reality, the pickup player’s playbook is not identical
to the core team’s playbook, or the core team may not even
be using plays for coordination. To be effective, however,
the pickup player needs only to choose a role that comple-
ments its teammates’ behavior, whether they are using plays
or not. In order to better focus on this more realistic situation
in our experiments, we made sure that the plays available to
the pickup players were not the same as those available to
the core team.

Play Selection. For the pickup player, we tested two dif-
ferent implementations for play selection: an adaptive ver-
sion and a predictive version. The adaptive pickup player
uses learning to discover which plays work well with the
core team. It uses the weight update play selection algo-
rithm described in (Bowling, Browning, & Veloso 2004),
and increases the likelihood of choosing plays that resulted
in the pickup team doing well. After each context switch
(possession of the ball changing, goal scored, etc.), the adap-
tive pickup player selects from a weighted list of applicable
plays. Once the play is over, the player increases or de-
creases the weight of the play it chose based on the outcome
of the play. In this way, the pickup player will be more likely
to select plays that work well with whatever style the rest of
its team uses.

The predictive pickup player attempts to explicitly predict
which of its plays matches its team’s style based on the cur-
rent positions and trajectories of its teammates. After each
context switch it is assumed that the core team may change
its style of play. The predictive pickup player waits for a
short period after each context switch, and then considers
all of the applicable plays in its playbook. For each play,
it computes a matching score based on how well its team-
mates match the roles of the play. The score component for
each role is computed greedily; the highest priority role is
paired with the player that most closely matches that role,
based on the player’s field location and current trajectory.
That player cannot then be matched to any other roles. Ex-
actly how a matching score is calculated for a player and
role depends on the specific tactics involved in the role. The
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overall matching score for a play is the sum of the matching
scores of each of its roles. The play with the best score is
chosen by the pickup player as the play it believes best co-
ordinates with the core team. For these experiments, a delay
of two seconds was used between a context switch and when
the predictive player selects its next play. For the duration
of these two seconds, the predictive player chooses a play
using the same mechanism as the adaptive player.

Role Selection. Once the pickup player has decided on the
play it will execute, it must choose a role from that play.
Role selection is performed in the same manner as described
in the previous section. The pickup player implicitly assigns
roles to the players on the pickup team, and in this process
also chooses a role for itself. We make the assumption that
the pickup player is never the goal keeper and is only decid-
ing among the field roles.

Experiments
The purpose of our experiments in the pickup soccer do-
main is to show the effect that a single non-integrated player
can make on a team’s performance. We compare the pickup
teams’ performance to several interesting baseline tests.

Experimental Setup
The effectiveness of the pickup players was tested in sim-
ulation using the Ubersim simulator from Carnegie Mellon
University (Browning & Tryzelaar 2003). Using a simulator
allows games to be played in parallel on different comput-
ers, and with no human supervision, so more tests could be
run in total. An automated referee was used to declare goals,
throw-ins, and kick-offs. Each of the experiments consisted
of a single game of soccer, between an impromptu team and
an opponent team. The opponent team was a standard co-
ordinated team, with no pickup player or imposed disadvan-
tage. Its playbook contained a variety of plays so that it
could adapt to different styles of play used by the impromptu
team.

Our experiments test the effectiveness of the pickup and
baseline players under different team conditions. We var-
ied the style of pickup player, the playbook used by the
core team, and the number of players on each team. For
each combination, 100 games were simulated, each lasting
15 minutes of simulated game time. After each game, the
positions of the robots were reset and the simulation was
restarted, so that adaptation did not occur between games.

Different Playbooks. Ideally, a single pickup player
should be able to integrate well with different teams, even
if these teams have different styles of play. To simulate this
we ran experiments using three different playbooks for the
pickup team. Each of the playbooks used by the pickup team
contained only two plays1: one applicable when attempting
to score a goal, and one applicable when guarding against a
goal. This means that in any given situation, the core team
had only one play available to it. This simulates the most

1In addition, all of the playbooks used in our experiments con-
tained a standard set of plays for special situations, like kick-offs
and penalty kicks.

common situations seen in actual RoboCup play, where a
team employs a single style of play throughout the game.

We selected three archetypes of play strategy for the core
team. One of the playbooks contained only highly guarded
plays (defensive playbook), one contained only aggressive
plays (offensive playbook), and the third contained plays
that were more balanced and less extreme than the other
two playbooks (balanced playbook). For instance, in the de-
fensive playbook, the goal-scoring play had a single player
attempting to score a goal, and the remaining three field
players attempting to guard their end. In contrast, the goal-
scoring play from the offensive playbook had only a single
player on defense, with the other three players either shoot-
ing or trying to positioning to catch a deflected ball. By em-
phasizing three very different styles of play, we hope to see
how the play selection methods used by the pickup player
can adapt to perform well with very different teammates.

The adaptive and predictive pickup agents, and also the
opponent team, used a more complete playbook than was
available to the core team. This playbook contained a variety
of plays for both offensive and defensive situations, and did
not necessarily contain plays similar to the ones used by the
pickup team. Having multiple plays for different situations
gives the pickup player options in how to coordinate with its
unknown team.

Types of Pickup Player. In order to provide a baseline
against which to compare the results of the teams with the
two types of pickup players, we also tested three other team
situations. The first and most rudimentary baseline we in-
vestigated was a team in which the core team are functional
players, but the pickup player is an immobile “brick” that
does not respond to any commands. This brick player can
be detrimental to the core team, as it will be relied on to per-
form tactics and accept passes, yet it never reacts. Based on
intuition, a pickup team should be able to outperform this
baseline, as remaining motionless could always be an option
for the pickup player. A second baseline is simply to have
the pickup player be non-existent. It may seem at first that
this baseline would be trivially outperformed by any reason-
able pickup player. However, because the core team includes
the pickup player in their role assignment, a pickup player
that operates far differently than how the core team expects
could degrade the team’s performance. When the pickup
player is missing, though, the core team has no expectations
for the player. The final baseline used was a regular full-
player team. This shows how well a pickup player could
perform if it was perfectly coordinated with the rest of the
team, being controlled by the same central strategy mech-
anisms and sharing the same playbook. Intuitively, a suc-
cessful impromptu team would not be able to outperform a
completely coordinated full-player team, but may achieve
close performance. The five types of pickup teams used in
our experiments are summarized in Table 2.

Number of Players. Normal SSL RoboCup teams have
five players. However, in a normal five player game, the
contribution of an individual player to a team is small. The
small field also makes it difficult for the fifth team member
to be effective, without being “in the way”. This is supported
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Type Description

regular
The ‘pickup’ player is coordinated with the
core team during play and and shares the
same playbook. This is a normal soccer team.

missing
The pickup player is not present on the field.
This is equivalent to a ‘regular’ team with one
fewer player.

brick
The pickup player is present on the field, but
remains immobile and does not respond to
any commands.

adapt

The pickup player does not communicate
with its team and has a different playbook;
it attempts to adapt which plays it chooses
based on which plays worked well in the past.

predict

The pickup player does not communicate
with its team and has a different playbook;
it predicts which play its teammates are per-
forming based on their locations and trajecto-
ries.

Table 2: A summary of the types of pickup player.

by the strong results of the missing team, as seen in Figure 2.
In order to get a better understanding of the effect a pickup
player has on the impromptu team’s performance, we ran ex-
periments in which the number of players on each team was
reduced. In games with four or three players on each team,
coordination between teammates becomes increasingly im-
portant.

Team Performance
Figure 2 shows the results of the simulated games. The re-
sults are presented as the probability that the next goal in
a game will be scored by the impromptu team. Each of
the charts contains the data for using a particular playbook,
and is partitioned according to the number of players on the
teams. The error bars give a 95% confidence interval around
the probabilities. Due to the stochastic nature of soccer and
the fact that goals are relatively infrequent, the given proba-
bilities possess a large degree of variance. Nevertheless, we
believe that the general trend of the results is apparent and
significant.

Performance of the Baseline Teams. The performance of
the regular team is used as the comparison level for the other
teams, since it shows the most “pure” performance of the
playbook. The reason the regular team did not have a prob-
ability to score of 0.5 against the opponent team was due
to the difference in playbooks between the impromptu team
and the opponent team. The defensive playbook turned out
to be quite strong against the opponent’s playbook, but the
balanced and offensive playbooks did not perform as well.

The first comparison to notice is the poor performance of
the brick team compared to the regular coordinated team.
In almost every case, the brick team performs statistically
worse than the regular team (the exceptions are the five
player games using the balanced and offensive playbook).
The drastic difference suggests that the brick player must
have been assigned crucial roles by the team, and its failure
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(a) Using the balanced playbook.
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Figure 2: Results from the simulation pickup games.

to perform those roles led to losses. This result suggests that
coordinating roles on a team is critical. When a teammate is
present on the field but does not do what is expected of it,
the effect on team performance can be disastrous.

The performance of the missing team is also interesting.
In five player games (i.e. games in which the missing team
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has four players), the missing team actually performed the
same as, or better than, the regular team. It seems that the
extra player in these circumstances must have been assigned
to roles that actually hindered the performance of the team.
For some strategies, the additional field congestion created
by the extra player may be detrimental. As the number of
players on the teams decreased, the effect of a missing player
became more pronounced. In three player games, the miss-
ing team performed essentially the same as the brick team.

Performance of the Pickup Teams. Both the adaptive
and the predictive pickup players performed similarly, and
were not statistically different in any case. As discussed, a
reasonable pickup player should be able to improve upon the
performance of the baseline brick and missing strategies. We
found this to be generally true of our pickup strategies. In
almost all cases, both the adaptive and the predictive pickup
players significantly outperformed the brick team, and in
most cases also outperformed the missing team, especially
when the number of players on each team was reduced. In
the five player cases, notice that in the situations where the
pickup teams did not match the performance of the missing
team, the missing team itself had little drop in performance
from the regular team. This suggests that the extra player
in these situations is simply detrimental to the team, coordi-
nated or not.

The regular team was included in our experiments as an
upper bound baseline; it was meant to show how well a team
could perform if it had complete coordination and a shared
playbook. We expected the performance of the pickup teams
to fall somewhere between the performance of the regular
team and the baselines, brick and missing. We were sur-
prised to find that the performance of the pickup teams us-
ing the adaptive and predictive players was competitive with
the regular team. Even as the number of players on the team
decreased, and thus the importance of each individual player
increased, the adapt and predict teams still performed as well
as the regular team. In the balanced playbook situation, the
adaptive pickup team actually outperformed the coordinated
five player team. This indicates an interesting potential of
pickup players: to improve the performance of an existing
team by adding knowledge in the form of new plays and
roles.

Conclusion

In this paper we examined the problem of impromptu teams,
where an agent’s teammates are unknown and independent.
We introduced two techniques for coordination in this set-
ting, one adaptive and one predictive. We demonstrated that
both techniques can make substantial improvements to the
team’s overall performance. The improvements were mea-
sured with respect to two baselines introduced for evaluat-
ing impromptu teams: a team with an immobile player and a
team with an absent player. The performance of the pickup
teams was even competitive with an unhindered full-player
team. Our results demonstrate that impromptu coordination
is a challenging problem, while giving encouraging evidence
that such teamwork is possible.
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