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An Improved Proof of Theorem 1

The following theorem appears in McCracken and Bowling [2004].

Theorem 1. As T → ∞, the worst case average reward of following the Safe Policy Selection algorithm
will be at least that of the safety policy.

The original proof relied on a fact that is not at all self-evident: the worst-case is achieved when the opponent
maximally and myopically exploits π(t) at every time step. While this is true, showing it amounts to proving
Theorem 1 itself. The proof below is a more direct, non-circular proof.

Proof. First, we need to show that ε(t) > 0 for t = 1, 2, . . .. This is evident by induction on t. When
t = 1, ε(t) = f(1) = β > 0. Assume it holds for t. Then, we know π(t) is ε(t)-safe, so for all a(t)−i,

V (π(t), a
(t)
−i)− r∗ ≥ −ε(t). Therefore, ε(t+1) ≥ f(t+ 1) = β

T+1 > 0.
Looking at the definition for how ε(T ) is computed, we can recursively apply the definition to get,

ε(T ) = ε(T−1) + f(T ) + V (π(T−1), a
(T−1)
−i )− r∗ (1)

=
T∑
t=1

f(t) +
T−1∑
t=1

(V (π(t), a
(t)
−i)− r

∗) (2)

We know that π(T ) is ε(T )-safe, so

r∗ − V (π(T ), a
(T )
−i ) ≤ ε

(T ) (3)

=
T∑
t=1

f(t) +
T−1∑
t=1

(V (π(t), a
(t)
−i)− r

∗) (4)

By rearranging and collecting the sums,

T∑
t=1

(V (π(t), a
(t)
− i)− r∗) ≥ −

T∑
t=1

f(t) (5)

1

T

T∑
t=1

V (π(t), a
(t)
− i) ≥ r∗ − 1

T

T∑
t=1

f(t) (6)

In the limit as T → ∞, the right-hand-side approaches r∗, and thus the left-hand-side is at least the safety
value.
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