Revisiting Safe Strategies for Agent Modelling in Games

Michael Bowling Department of Computing Science University of Alberta bowling@cs.ualberta.ca

An Improved Proof of Theorem 1

The following theorem appears in McCracken and Bowling [2004].

Theorem 1. As $T \to \infty$, the worst case average reward of following the Safe Policy Selection algorithm will be at least that of the safety policy.

The original proof relied on a fact that is not at all self-evident: the worst-case is achieved when the opponent maximally and myopically exploits $\pi^{(t)}$ at every time step. While this is true, showing it amounts to proving Theorem 1 itself. The proof below is a more direct, non-circular proof.

Proof. First, we need to show that $\epsilon^{(t)} > 0$ for $t = 1, 2, \ldots$. This is evident by induction on t. When $t = 1, \epsilon^{(t)} = f(1) = \beta > 0$. Assume it holds for t. Then, we know $\pi^{(t)}$ is $\epsilon^{(t)}$ -safe, so for all $a_{-i}^{(t)}$, $V(\pi^{(t)}, a_{-i}^{(t)}) - r^* \ge -\epsilon^{(t)}$. Therefore, $\epsilon^{(t+1)} \ge f(t+1) = \frac{\beta}{T+1} > 0$.

Looking at the definition for how $\epsilon^{(T)}$ is computed, we can recursively apply the definition to get,

$$\epsilon^{(T)} = \epsilon^{(T-1)} + f(T) + V(\pi^{(T-1)}, a_{-i}^{(T-1)}) - r^*$$
(1)

$$=\sum_{t=1}^{T} f(t) + \sum_{t=1}^{T-1} (V(\pi^{(t)}, a_{-i}^{(t)}) - r^*)$$
(2)

We know that $\pi^{(T)}$ is $\epsilon^{(T)}$ -safe, so

$$r^* - V(\pi^{(T)}, a_{-i}^{(T)}) \le \epsilon^{(T)}$$
(3)

$$=\sum_{t=1}^{I} f(t) + \sum_{t=1}^{I-1} (V(\pi^{(t)}, a_{-i}^{(t)}) - r^{*})$$
(4)

By rearranging and collecting the sums,

$$\sum_{t=1}^{T} (V(\pi^{(t)}, a_{-}^{(t)}i) - r^{*}) \ge -\sum_{t=1}^{T} f(t)$$
(5)

$$\frac{1}{T}\sum_{t=1}^{T}V(\pi^{(t)}, a_{-}^{(t)}i) \ge r^* - \frac{1}{T}\sum_{t=1}^{T}f(t)$$
(6)

In the limit as $T \to \infty$, the right-hand-side approaches r^* , and thus the left-hand-side is at least the safety value.

Acknowledgements

Thanks to Sam Ganzfried for noting the circular argument in the original proof.

References

Peter McCracken and Michael Bowling. Safe strategies for agent modelling in games. In AAAI Fall Symposium on Artificial Multi-agent Learning, October 2004.