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Abstract

Planning has traditionally focused on single agent sys-
tems. Although planning domain languages have been
extended to multiagent domains, solution concepts have
not. Previous solution concepts either focus on planning
for teams of agents with a single goal, or on a single
agent in an environment containing other agents with
unknown and unpredictable behavior. In reality other
agents are usually acting to achieve their own explicit
goals, which may not be the same or even related. In
game theory the notion of an equilibria provides a frame-
work for thinking about self-interested, utility maximiz-
ing agents. We define a formalization of the multiagent
nondeterministic planning problem and introduce a no-
tion of equilibria inspired by the game theoretic con-
cept. As far as we know, this is the first solution frame-
work that explicitly accounts for the various goals ofall
agents. In addition to the formalization we also demon-
strate how this framework applies in a number of differ-
ent domains.

Introduction
Traditionally, planning assumes a single agent for
which a planner needs to find a sequence of actions
that can transform some initial state into some state
where a given goal statement is satisfied. But in gen-
eral, “planning” can be viewed as being concerned
with the general action selection problem. The plan-
ning framework has extended the classical deterministic
state-action plan generation focus to many other dimen-
sions, in particular nondeterministic actions. With the
introduction of nondeterministic actions, the presence
of an environment and other agents becomes a consider-
ation. In fact, actions may have nondeterministic effects
not only because of the uncertainty of their own execu-
tion, but also due to the uncertainty of the model of the
environment where the actions are executed, or due to
uncertainty in the actions of other agents. The possi-
ble presence of other agents as executors is viewed as
the substrate of “multiagent planning.” The interest in
this area has been steadily increasing and many issues
remain open.
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We note that appropriate languages have been con-
tributed for the representation of domains with nonde-
terministic actions including an explicit statement of the
existence of other agents (Jensen & Veloso 2000). Other
efforts offer modular architectures to represent multia-
gent planning domains (Wilkins & Myers 1998). How-
ever, we believe that there has not been a formal dis-
cussion of the space of multiagent plans orsolutions.
In this work, we do not focus on the problem of plan
generation for multiagent planning. Instead, we focus
on the interesting question of analyzing and compar-
ing solutions for multiagent planning. Our motivation
comes from making an analogy with game theory and
the notion of equilibria (Owen 1995). In simple terms,
in game theory an equilibrium is ajoint solution for all
the agents, such that there is no reason for any agent to
change their own choice of actions given their desire to
maximize some real-valued utility function.

Inspired by game theory and extending previous for-
mal definitions of single-agent planning (Cimattiet al.
2000), in this paper, we introduce a formal definition of
equilibria for multiagent planning. We begin motivat-
ing through an example that multiagent planning must
address domains where agents have different goals.
This is a rich space of scenarios including planning for
teammates, agents with similar goals, adversaries, and
the large spectrum in between. We then present a for-
malization of themultiagent planning problemthat in-
cludes all multiagent goal situations. We also define the
concept ofmultiagent planning equilibriaas a unifying
solution concept for these varied scenarios. Throughout
the paper, the theoretical definitions are illustrated in
a number of carefully designed examples. Finally, we
discuss some questions raised by this work along with
future directions and conclude.

Multiagent Plans Depend on Goals
From the beginning, plans have been contingent upon
the agent’s goals. Plans are usually evaluated as to
whether they achieve the goals; sometimes considering
how quickly, with what probability, or from what initial
states. In addition, goals are often the driving mecha-
nism for finding good plans through Means-Ends Anal-
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Figure 1: A soccer-like domain.

ysis (Newell & Simon 1963). In multiagent domains
plans are of course still contingent on goals. There is
an additional dependence, though. Good plans also de-
pend on the plans of the other agents, which as we have
stated, depends heavily on their goals. We will illustrate
this with an example to demonstrate the importance of
taking into account the other agents’ goals.

Soccer Domain

Consider the simple soccer-like domain simplified from
Littman’s two-player grid game (1994), diagrammed in
Figure 1. There are two agents A and B each of which
solely occupies one of the four unshaded squares on the
field. Agent A begins in possession of the ball. The
shaded squares are out-of-bounds for our simplification
of the domain. The agents have operators or actions
associated with each of the compass directions (N, S,
E, and W) or can wait, holding its position (H). The
two agents in this domain select their actions simultane-
ously, but in execution there is an undetermined delay
before these actions are carried out. So, the execution
is serial but it is nondeterministic as to which agent’s
action is carried out first. The effect of an action is to
simply move the agent in the specified direction or re-
main in its position as long as the target square is unoc-
cupied. If the target is occupied then the agent does not
move, but if the agent was carrying the ball it loses the
ball. For agent A, losing the ball terminates execution
as a failure. The goal for agent A is to move into either
of the two labeled goal squares, which also terminates
execution.

Figure 2 shows two examples of how the agents op-
erators affect the state. From the initial state, if both
agents choose their south operator (S,S) they will both
simply move south. But if agent A selects south and
agent B selects East (S,E), then there are two possi-
ble outcomes depending on their order of execution: (i)
agent A moves south first, and then agent B moves east
into the now unoccupied square; or (ii) agent B bumps
into agent A first causing no position change, and then
agent A moves south.

Possible Plans

There are a number of different possible plans for agent
A to achieve its goals in this domain. The various plans
depend on what actions we expect agent B to perform.
We describe these plans without rigorous definitions or
proofs, appealing to the reader’s intuition as to what
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Figure 2: Two example effects of joint actions in the
soccer domain. The ordered pairs of actions represent
the actions of agents A and B, respectively.

constitutes a “good” plan. The concept of a “good” plan
will be rigorously formalized later in the paper.

Nondeterministic. One very simple case is if we be-
lieve agent B will select its actions nondeterministically,
i.e., randomly. A sensible plan would be to hold po-
sition until the agent’s actions carry it into the bottom
right state. From this position regardless of the action
of the other agent, a plan of two consecutive west ac-
tions is guaranteed to reach the goal. Since agent B se-
lects actions nondeterministically it will eventually en-
ter the bottom right state and so this plan is guaranteed
to reach the goal. Other plans risk agent B’s random
actions causing it to move in the way, resulting in the
loss of the ball and failure. Although this plan guaran-
tees reaching the goal, it does not necessarily guarantee
achievement in a finite time, as it requires waiting a pos-
sibly infinite number of cycles before agent B moves to
the bottom right square.

Teammate.As we assume that most agents have goals,
and often these goals are known, we go beyond the as-
sumption that the other agent selects actions randomly.
Their actions therefore are not likely to be nondeter-
ministic but rather planned carefully to reach their own
goals. Consider the case that agent B is actually agent
A’s teammate and therefore they have identical set of
goal states. Then there is a much more efficient plan.
Agent A should simply hold at the initial state while its
teammate moves south out of its way. Then move west
into the goal, without fear that the other agent will move
in front of it. As a teammate it can be sure that the agent
will comply with these assumptions since its goals are
identical.1 This plan is guaranteed to reach the goal in
a finite number of steps, as opposed to the plan for the
nondeterministic agent.

Adversary. Neither of these plans though have any
guarantees if agent B is in fact planning to stop agent
A from succeeding. In this case agent B’s goal states

1This admittedly does not address crucial issues of how
this team compliance can be achieved, and may require
planned communication and coordination strategies for dis-
tributed execution.



are all the states that are not goal states for agent A.
If agent B simply holds its ground, then neither the
nondeterministic nor teammate plan for agent A would
ever reach its goal. In this situation an adversarial
plan (Jensen, Veloso, & Bowling 2001) that can provide
worst-case guarantees is more appropriate. One such
plan is to nondeterministically select between holding
and moving north or south until the other agent is not
in front of it. Then, move west into the goal hoping its
action gets executed first. This plan has no guarantee
of success as the opponent may still move in front of it
while it advances toward the goal causing the ball to be
lost. It does, though, have some possibility of success.
In fact, against a good plan by the opponent this is all
that can be guaranteed.

Overlapping Goals. A whole new situation arises if
we believe that agent B is not quite an opponent but
not quite a teammate. Suppose its goal is to have agent
A score, but only across the south square. In this case
moving south from the initial state and then west would
reach the goal without its interference. This plan, like
the teammate plan, is guaranteed to succeed in a finite
number of steps. Notice that the teammate-based plan
and the nondeterministic-based plan would both fail in
this case as both agents would hold indefinitely.

These four plans all are completely different, despite
the fact that the conditions that generated the plans, the
domain rules, and the agent’s goal did not change from
situation to situation. This demonstrates that multiagent
planning solutions need to take into account the goals of
the other agent. Under certain specific circumstances,
such as nondeterministic agents or adversarial agents,
plans may and have been rigorously specified. On the
other hand, there is no unifying framework for defining
these sorts of planning solutions. In the next section,
we define precisely a solution concept for multiagent
planning that accounts for the other agents’ goals.

Planning Equilibria

In this section, we formalize the concept of a multia-
gent planning equilibrium. In order to help make these
concepts clear we will first describe an example sim-
pler than the soccer domain. We will use this example
to make our formal concepts more concrete, and will
return to the soccer domain later.

A Simple Example — The Narrow Doorway

Consider a two agent robot domain where both agents
are in a hallway and want to move into the same room
through a single doorway. The agents have an opera-
tor to go through the door (G) that only succeeds if the
other agent is not also trying to go through the door.
They also have the choice of waiting (W). Each agent’s
goal is simply to be in the room.

The Formalization
We first begin by formalizing some planning related
concepts. The definitions parallel closely with Cimatti
and colleagues’ single-agent formalization (2000). We
extend their definitions of planning domains, problems,
and solutions to encompass multiple agents. We then
follow this formal framework with a definition of mul-
tiagent planning equilibrium. Notice that the definitions
and concepts presented are not bound to any particular
planning algorithm or language.

We start by defining a multiagent planning domain.
Definition 1 (Multiagent Planning Domain)
A multiagent planning domain D is a tuple
〈P,S, n,Ai=1...n,R〉 where,
• P is the finite set of propositions,
• S ⊆ 2P is the set of valid states,
• n is the number of agents,
• Ai is agenti’s finite set of actions, and
• R ⊆ S × A × S is a nondeterministic transition

relation whereA = A1 × . . . × An and must sat-
isfy the following condition. If〈s, a, s′〉 ∈ R and
〈s, b, s′′〉 ∈ R then,∀i there existss′′′ ∈ S,

〈s, 〈a1, . . . , ai−1, bi, ai+1, . . . , an〉 , s′′′〉 ∈ R.
I.e., each agent’s set of actions that can be executed
from a state are independent.
In addition, let ACTi(s) ⊆ Ai be the set of applicable

or executable actions in states. Formally,

ACTi(s) = {ai ∈ Ai | ∃ 〈s, 〈· · · , ai, · · ·〉 , ·〉 ∈ R}.
The additional condition in the planning domain defi-
nition onR requires that each agent be capable of se-
lecting actions independently. Formally this amounts to
the following. For all statess and executable actions
for the agentsai ∈ Acti(s) there exists some transition
〈s, 〈ai=1...n〉 , s′〉 that is inR.

In the doorway domain,P contains two propositions,
A-in-room and B-in-room. The set of statesS corre-
sponds to all four possible subsets ofP, since all com-
binations of propositions are valid in this domain.n is
two andAA,B is the set of actions{G,W}. The transi-
tion relationR is defined by the rules described above.
The complete enumeration of states and transitions is
shown in Figure 3. The figure also numbers the states
so they can be referred to in an abbreviated form. Note
that this domain satisfies the independent action condi-
tion onR.

Definition 2 (Multiagent Planning Problem)
Let D = 〈P,S, n,Ai=1...n,R〉 be a multiagent plan-
ning domain. A multiagent planning problemP for D
is a tuple〈D, I,Gi=1...n〉, whereI ⊆ S is the set of pos-
sible initial states andGi ⊆ S is the set of goal states
for agenti.

In the doorway example, the goal states for agent A
are{1, 3} and for agent B are{2, 3}. The initial state set
is the singular set{0}. With this definition of domain
and problem, we can now formalize a notion of a plan.
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Definition 3 (State-Action Table)
A state-action tableπi for agenti in domainD is a set
of pairs{〈s, ai〉 |s ∈ S, ai ∈ ACTi(s)}. A joint state-
action tableπ constructed from state-action tables for
each agentπi=1...n is the set of pairs

{〈s, 〈a1, . . . , an〉〉 |s ∈ S, 〈s, ai〉 ∈ πi}
A (joint) state-action table is complete if and only if for
any s ∈ S there exists some pair〈s, ·〉 in the state-
action table.

For the doorway domain, a state-action table (or plan)
for each agent might be,

πA = {〈0, G〉 , 〈1,W 〉 , 〈2, G〉 , 〈2,W 〉 〈3,W 〉},
πB = {〈0, G〉 , 〈0,W 〉 , 〈1, G〉 , 〈2,W 〉 , 〈3,W 〉}.

These are alsocompletestate-action tables since they
specify at least one action for each state. We can com-
bine these tables into a completejoint state-action table.
In general, a joint state-action table together with a mul-
tiagent planning domain determines the entire execution
of the system. In order to define what it means for a plan
to be a solution to a planning problem we need to for-
malize the notion of reachability and paths of execution.
We will do this by first defining the execution structure
of the multiagent system.

Definition 4 (Induced Execution Structure)
Letπ be a joint state-action table of a multiagent plan-
ning domainD = 〈P,S, n,Ai,R〉. The execution
structure induced byπ from the set of initial states
I ⊆ S is a tupleK = 〈Q,T 〉 with Q ⊆ S and
T ⊆ S × S inductively defined as follows:

• if s ∈ I, thens ∈ Q, and
• if s ∈ Q and there exists a state-action pair〈s, a〉 ∈
π and transition〈s, a, s′〉 ∈ R, thens′ ∈ Q and
〈s, s′〉 ∈ T .

A states ∈ Q is a terminal state ofK if and only if
there is nos′ ∈ Q such that〈s, s′〉 ∈ T .

Intuitively,Q is the set of states that the system could
reach during execution of the planπ, andT is the set

of transitions that the system could cross during execu-
tion. For our doorway domain the execution structure
induced by our example joint state-action table is,

Q = {0, 1, 3},
T = {〈0, 1〉 , 〈0, 0〉 , 〈1, 3〉 , 〈1, 1〉 , 〈3, 3〉}.

We can now formalize an execution path.

Definition 5 (Execution Path)
LetK = 〈Q,T 〉 be the execution structure induced by
a state-action tableπ from I. An execution path ofK
froms0 ∈ I is a possibly infinite sequences0, s1, s2, . . .
of states inQ such that, for all statessi in the sequence:

• either si is the last state of the sequence, in which
casesi is a terminal state ofK, or

• 〈si, si+1〉 ∈ T .

A states′ is reachable from a states if and only if there
is an execution path withs0 = s andsi = s′.

For our doorway domain and example joint state-
action table one execution path from the initial state is,

0, 0, 0, 0, 1, 1, . . .

We are now in a position to define what it means for our
plan to solve a planning problem. We actually define
multiple concepts increasing in strength. These con-
cepts formalize some of the intuitive discussion from
the previous section about whether a plan has one or
more of the following properties:

• the possibility of reaching the goal,

• a guarantee of reaching the goal, and

• a guarantee of reaching the goal in a finite number of
steps.

These concepts and their formalization are inspired and
highly related to Cimatti and colleagues’ single-agent
solution concepts (Cimattiet al. 2000).

Definition 6 (Multiagent Planning Solutions)
Let D be a multiagent planning domain andP =
〈D, I,Gi=1...n〉 be a multiagent planning problem. Let
π be a completejoint state-action table forD. Let
K = 〈Q,T 〉 be the execution structure induced byπ
fromI. The following is an ordered list of solution con-
cepts increasing in strength.

1. π is a weak solution for agenti if and only if for any
state inI some state inGi is reachable.

2. π is a strong cyclic solution for agenti if and only if
from any state inQ some state inGi is reachable.

3. π is a strong solution for agenti if and only if all
execution paths, including infinite length paths, from
a state inQ contain a state inGi.

4. π is a perfect solution for agenti if and only if forall
execution pathss0, s1, s2 . . . from a state inQ there
exists somen ≥ 0 such that∀i ≥ n, si ∈ Gi.



A state-action table’s strengthSTRENGTH(D,P, i, π)
is the largest number whose condition above ap-
plies for agent i. If no conditions apply then
STRENGTH(D,P, i, π) = 0.

For our doorway domain, the joint state-action ta-
ble is a strong cyclic solution for both agents but not
strong (i.e., it has a strength of 2 for both agents). This
means that there is a path to the goal from any reachable
state. But there are also paths that do not include either
agents’ goal states, and so it is not a strong solution for
either agent.

The plans from the soccer domain can also be de-
scribed under this solution framework. The plan that
handles the nondeterministic agent B is a strong cyclic
solution since a goal state is always reachable but there
are infinite execution paths where agent A does not
reach the goal (e.g., if agent B holds indefinitely). For
the teammate case, the plan is a perfect solution since it
is guaranteed to reach the goal in three steps and remain
there. The same is true for the situation where agent B’s
goal is to have the ball scored in the southern square. In
the adversarial case, the plan is only weak since some
execution paths result in losing the ball and failing.

These solutions define what it means for one agent
to be successful given a joint state-action table. The
goal of planning from one agent’s perspective is to find
a plan that has the highest strength given the plans of the
other agents. But the other agents’ selection of a plan
is equally contingent upon the first agent’s plan. This
recursive dependency leads to our main contribution of
the paper: planning equilibria.

Definition 7 (Multiagent Planning Equilibria)
Let D be a multiagent planning domain andP =
〈D, I,Gi=1...n〉 be a multiagent planning problem. Let
π be a completejoint state-action table forD. Let
K = 〈Q,T 〉 be the execution structure induced byπ
fromI. π is an equilibrium solution toP if and only if
for all agentsi and for any complete joint state-action
tableπ′ such thatπ′j 6=i = πj ,

STRENGTH(D,P, i, π) ≥ STRENGTH(D,P, i, π′).
I.e., each agent’s state-action table attains the strongest
solution concept possible given the state-action tables
of the other agents.

Note that our example joint state-action table for the
doorway domain isnot an equilibrium. Both agents A
and B currently have strength 2, but B can achieve a
strength of 4 by choosing a different state-action table.
Specifically, B should select the wait (W) action from
the initial state and the go (G) action in state 1.

Examples
To make the concept of planning equilibria clearer, we
will examine it in a number of illustrative domains. We
return to the doorway domain. We then consider a do-
main representation of Rock-Paper-Scissors, and finally
we reexamine the various plans in the soccer domain.

Doorway Domain
We gave above an example joint state-action table that
is not a multiagent planning equilibria for this domain.
An equilibria is the following state-action tables:

πA = {〈0, G〉 , 〈1,W 〉 , 〈2, G〉 , 〈3,W 〉},
πB = {〈0,W 〉 , 〈1, G〉 , 〈2,W 〉 , 〈3,W 〉}.

In this case agent A goes through the door while agent
B waits and then follows through the door. This is a per-
fect plan for both agents and so obviously no agent can
achieve a higher strength with a different state-action
table. Similarly, the symmetric tables where agent B
goes through the door while agent A waits is also an
equilibrium. There is an additional equilibrium,

πA = {〈0, G〉 , 〈0,W 〉 , 〈1,W 〉 , 〈2, G〉 , 〈3,W 〉},
πB = {〈0, G〉 , 〈0,W 〉 , 〈1, G〉 , 〈2,W 〉 , 〈3,W 〉}.

Here both agents nondeterministically decide between
going through the door and waiting. This results in a
strong cyclic solution for both agents, but given this
state-action table for the other agent no strong or perfect
plan exists for either agent. So this is also an equilib-
rium although obviously inferior to the other equilibria
where both agents have higher strength plans. In game
theory, such a joint strategy is called Pareto dominated.
Collision variation. Consider a variation on this do-
main where collisions (when both agents choose G)
result in the robots becoming damaged and unable to
move. In this case, the first two state-action tables above
remain equilibria, but the third inferior table no longer
is an equilibrium. The joint plan is now only a weak
solution for both agents since there is a possibility of
never achieving the goal. Each agent can also change
to a different plan where it waits for the other agent to
get through the door thus achieving a strong cyclic plan
and a higher strength.
Door closing variation. Finally, consider that one
agent entering the room sometimes causes the door to
close behind it. Once the door is closed it cannot be
opened and the doorway cannot be used. In this
case, the same two joint plans are again an equilibrium
but now they have different strengths for the different
agents. The first joint state-action table is a strong plan
for agent A, but only a weak plan for agent B, though it
can do no better. The second is just a symmetry of this.

Rock-Paper-Scissors
Consider a planning domain representation of the chil-
dren’s game Rock-Paper-Scissors. Each agent simulta-
neously chooses one of rock (R), paper (P), or scissors
(S). The winner is determined by a cyclic rule: rock
loses to paper, paper loses to scissors, scissors loses to
rock. Figure 4 gives the enumeration of states, tran-
sitions, and goals for this planning problem. In this
case, there is a unique planning equilibrium where each
agent’s state-action table contains every action. This
joint plan is a weak solution (strength 1) for both agents
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Figure 4: Rock-Paper-Scissors as multiagent planning.

and neither agent can switch to a different plan and get
a higher strength. This plan is analogous to the game’s
game theoretic equilibrium which randomizes evenly
between all three actions (Fudenberg & Levine 1999).

Soccer Domain
Let us reconsider the soccer-like domain. We presented
three distinct planning problems where agent A’s goals
remained constant, but agent B’s goals varied from hav-
ing identical goals to A, opposing goals to A, and a sub-
set of A’s goals. The example plans described for these
situations, if we add in the implied plan for agent B,
are all equilibria to their respective multiagent planning
problems. In the teammate case and the overlapping
goal case, the equilibrium is a perfect solution for both
agents. So, obviously, no agent can switch plans to im-
prove on this solution. In the adversarial case, it is a
weak solution for both agents, and neither agent can im-
prove on this strength. This formalization of the plan-
ning equilibrium matches well with our intuitive notions
of “good” plans in multiagent domains.

Discussion
Multiagent planning equilibria is a powerful concept
both to understand the multiagent planning problem and
as a viable solution that accounts for the other agents’
goals. It also opens up many avenues for further re-
search and understanding. We consider a couple impor-
tant questions this work raises.

The first issue is the number of planning equilibria.
The doorway domain illustrates that multiple equilibria
may exist. Although some equilibria are obviously infe-
rior to others, the equilibria framework does not select a
single planning solution. For example, the two symmet-
ric equilibria in the doorway domain are not equivalent,
nor is one Pareto dominant. This calls for coordination
or communication mechanisms to decide between com-
peting equilibria.

Although some problems have many equilibria, other
planning problems may have none. We believe that
we have devised a (rather contrived) example of a do-
main with no equilibria (publication in preparation).
Large classes of domains can be proven to have an equi-
librium (e.g., team domains and adversarial domains.)
Still, interesting questions are whether equilibria exist
in most useful domains, or what are reasonable plans
when equilibria do not exist.

Finally, this work presents a compelling framework
and solution concept for multiagent planning, and gives

the challenge of devising methods to find a planning
equilibrium. The equilibrium definition involves uni-
versal quantification over an agent’s possible plans,
which is exponential in the number of states, which in
turn is exponential in the number of propositions. This
is of course intractable for anything but domains with
a handful of propositions. This opens up a new realm
of interesting issues relating to efficiently finding equi-
libria under different planning frameworks, languages,
or classes of domains. There are techniques for finding
plans for teams of agents with identical goals as well
as adversarial situations with competing goals (Jensen,
Veloso, & Bowling 2001). These techniques, although
limited to certain multiagent planning problems, pro-
vide evidence that multiagent planning equilibria can be
both a theoretically and practically powerful concept.

Conclusion
We presented a formalization of multiagent planning
and introduced the concept of a multiagent planning
equilibrium. This is the first known solution concept
that explicitly accounts for the goals of all the agents.
This work provides a unifying framework for consider-
ing planning in multiagent domains with identical, com-
peting, or overlapping goals. It also opens up many ex-
citing questions related to practical algorithms for find-
ing equilibria, the existence of equilibria, and the coor-
dination of equilibria selection.
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