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Abstract
As multiagent environments become more preva-
lent we need to understand how this changes the
agent-based paradigm. One aspect that is heav-
ily affected by the presence of multiple agents
is learning. Traditional learning algorithms have
core assumptions, such as Markovian transi-
tions, which are violated in these environments.
Yet, understanding the behavior of learning al-
gorithms in these domains is critical. Singh,
Kearns, and Mansour (2000) examine gradient
ascent learning, specifically within a restricted
class of repeated matrix games. They prove that
when using this technique the average of ex-
pected payoffs over time converges. On the other
hand, they also show that neither the players’
strategies nor their expected payoffs themselves
are guaranteed to converge. In this paper we in-
troduce a variable learning rate for gradient as-
cent, along with the WoLF (“Win or Learn Fast”)
principle for regulating the learning rate. We then
prove that this modification to gradient ascent has
the stronger notion of convergence, that is, strate-
gies and payoffs converge to a Nash equilibrium.

1. Introduction

Environments involving multiple agents are becoming
more prevalent. Information and electronic commerce
agents are opening new arenas of multiagent systems. Also,
the decreasing cost of robotic agents is creating many
new environments involving collaboration, competition,
and other interactions. Learning is a key element to agent-
based systems both to improve the agent’s performance and
to adapt to a potentially dynamic environment. In multia-
gent systems, learning is even more critical since the agent
needs to adapt to the behavior of the other agents. If the
other agents are also adapting then this becomes quite a
challenging problem. Game theory studies strategic inter-
actions among multiple players and provides a framework
for analyzing these interactions. In this paper, we exam-
ine the multiagent learning problem in the game theoretic

framework of a repeated matrix game.

Learning in repeated games have been studied extensively
in game theory (Fudenberg & Levine, 1999). Fictitious
play (Robinson, 1951) is one mechanism where the learner
assumes the other players are following some Markovian
strategy, which is estimated from their historical play. The
player then uses these empirically estimated strategies to
select its optimal action. For a class of repeated games,
fictitious play in self-play (i.e. when all agents use fic-
titious play) has the property that the empirical averages
of the strategies played will approach a Nash equilibrium.
On the other hand, their actual strategies do not necessarily
converge, nor does the expected payoff at the current time
step.

Another learning approach is that of model learning. An
example of this is where the other agent is modelled as a fi-
nite automata, and optimal play is then calculated using the
learned automata (Carmel & Markovitch, 1996). This has
very desirable properties when the other players can indeed
be modelled as small fixed finite automata, but in situations
of simultaneous adaptation or even self-play the behavior
is unclear. This also assumes that the other players are
computationally inferior since it assumes their automaton
is strictly smaller in order to be learned and exploited.

A different approach is to examine a simple learning tech-
nique that does not make hindering assumptions about the
other players. Singh, Kearns, and Mansour (2000) exam-
ined the use of a simple gradient ascent learner. Specifi-
cally, they examined the use of gradient ascent in the space
of mixed strategies, where players sought to maximize their
expected payoffs. They analyzed this technique in the
class of two-player, two-action, general-sum repeated ma-
trix games. As they pointed out, examining gradient as-
cent in this setting is necessary to understanding its use in
complex environments. These problems often necessitate
biased learning using a parameterized solution space, mak-
ing gradient ascent very appealing.

Singh and colleagues proved that gradient ascent in self-
play displays a weak notion of convergence. Specifically,
they prove the players’ strategies are guaranteed to con-



verge to a Nash equilibrium or the payoffs to the players
over time would average to the equilibrium. There is no
guarantee of convergence of the players’ expected payoffs
or even a non-trivial bound. Instead, they give an exam-
ple of a class of games where the expected payoffs do not
converge (see Section 4.3).

In this paper we look at the effects of applying a vari-
able learning rate to gradient ascent, specifically using the
WoLF principle (“Win or Learn Fast”) to regulate the learn-
ing rate. We had observed empirically that this had strong
effects on the convergence properties of a learning algo-
rithm (Bowling & Veloso, 2001). Building on the results
of Singh and colleagues, we prove theoretically that this
modification does in fact exhibit the strong notion of con-
vergence. Specifically, we prove that the players strategies
and expected payoffs converge to a Nash equilibrium in
two-player, two-action general-sum repeated games. We
will begin by reviewing the original results for gradient as-
cent in Section 2, and then introduce the concepts of a vari-
able learning rate and the WoLF principle in Section 3. In
Section 4 we prove the convergence properties of this mod-
ified gradient ascent, and a short discussion follows before
concluding.

2. Gradient Ascent

We begin with a very brief overview of repeated matrix
games and the concept of Nash equilibrium. We will then
discuss the previous work examining gradient ascent dy-
namics, highlighting what is necessary for our analysis.

2.1 Repeated Matrix Games

We will examine infinitely repeated matrix (or normal-
form) games. (Osborne & Rubinstein, 1994) The players
simultaneously select an action from their available set, and
the joint action of the players determine their payoffs ac-
cording to their payoff matrix. This process is then repeated
indefinitely. Players may also select actions stochastically
using some probability distribution over their available ac-
tions. This is said to be a mixed strategy. This will be
made more concrete when we examine two-player, two-
action matrix games below.

A Nash equilibrium (Nash, Jr., 1950) of a matrix game is a
set of strategies, one for each player, where no player can
increase its expected payoff by deviating from this equilib-
rium strategy. This is a powerful concept, and in classical
game theory equilibria are considered to be the set of “ra-
tional” solutions. We will examine Nash equilibria not as
a goal in their own right, but rather as strategies with zero
gradient, and therefore possible convergence points for gra-
dient ascent learners. This is stated formally in Lemma 2.

2.2 Learning using Gradient Ascent

Singh, Kearns, and Mansour (2000) examined the dynam-
ics of using gradient ascent in two-player, two-action, iter-
ated matrix games. We can represent this problem as two
matrices,���������	�
���������
������� � ������������������������	�����
Each player selects an action from � 1, 2  which determines
the payoffs to the players. If the row player selects action !
and the column player selects action " , then the row player
receives a payoff ��#%$ and the column player receives the
payoff �&#%$ .
Since this is a two-action game, a strategy (i.e. a prob-
ability distribution over the two available actions) can be
represented as a single value. Let ')(+* ,.-�/�0 be a strategy
for the row player, where ' corresponds to the probability
the player selects the first action and 1�/324'65 is the proba-
bility the player selects the second action. Similarly, let 7
be a strategy for the column player. We can consider the
joint strategy 18'9-	7:5 as a point in ; � constrained to the unit
square.

For any pair of strategies 1<'=-7:5 , we can write the ex-
pected payoffs the row and column player will receive. Let>@? 18'9-	7:5 and

>BA 18'9-	7:5 be these expected payoffs, respec-
tively. Then,> ? 18'9-	7:5 � 'C7 � �	�=D 'E1�/32�7:5 � ��ED1�/F2G'H5�7 � ���9D 1�/I2G'65�1�/32�7:5 � ���� J ':7 D 'E1 � ��� 2 � �	� 5 D791 ����� 2 ���	� 5 D ����� (1)>@A 18'9-	7:5 � 'C7 ���	� D 'E1�/F2K7:5 ����� D1�/F2G'H5�7 ����� D 1�/F2G'H5&1�/F2K7:5 ���	�� JBL 'C7 D 'E1 ���� 2 ����� 5 D791 ����� 2 ����� 5 D ����� (2)

where, J � � �	� 2 � ��� 2 � ���MD � ���JNLO� � ��� 2 � �� 2 � ���MD � ��� �
A player can now consider the effect of changing its strat-
egy on its expected payoff. This can be computed as just
the partial derivative of its expected payoff with respect to
its strategy, P > ? 18'9-	7:5P ' � 7 J D 1 ����� 2 ���	� 5 (3)P >BA 18'9-	7:5P 7 � ' JNL D 1 � ��� 2 � ��� 5 � (4)



In the gradient ascent algorithm a player will adjust its
strategy after each iteration so as to increase its expected
payoffs. This means the player will move its strategy in
the direction of the current gradient with some step size, � .
If 18'�� -	7�� 5 are the strategies on the � th iteration, and both
players are using gradient ascent then the new strategies
will be, '���� � � '�� D � P > ? 1<'�� -7�� 5P ' �7���� � � 7�� D � P >@? 18'�� -7�� 5P 7 � �
If the gradient will move the strategy out of the valid prob-
ability space (i.e. the unit square) then the gradient is pro-
jected back on to the probability space. This will only occur
on the boundaries of the probability space. The question to
consider then is what can we expect will happen if both
players are using gradient ascent to update their strategies.

The analysis, by Singh and colleagues, of gradient ascent
examines the dynamics of the learners in the case of an in-
finitesimal step size ( 	�
������� ). They call this algorithm In-
finitesimal Gradient Ascent (IGA). They observe later that
an algorithm with an appropriately decreasing step size will
have the same properties as IGA. In the next section we will
briefly outline their analysis.

2.3 Analysis of IGA

The main conclusion of Singh, Kearns, and Man-
sour (2000) is the following theorem.

Theorem 1 If both players follow Infinitesimal Gradient
Ascent (IGA), where ��� , , then their strategies will con-
verge to a Nash equilibrium OR the average payoffs over
time will converge in the limit to the expected payoffs of a
Nash equilibrium.

Their proof of this theorem proceeds by examining the dy-
namics of the strategy pair, 1<'=-7:5 . This is an affine dy-
namical system in ; � where the dynamics are defined by
the differential equation,���������������� � � , JJ L , � � '7 � D � 1 � ��� 2 � �	� 51 � ��� 2 � ��� 5 � �
If we define  to be the multiplicative matrix term above
with off-diagonal values

J
and

J L
, then we can classify the

dynamics of the system based on properties of  . From
dynamical systems theory, if  is invertible then there are
only two qualitative forms for the dynamics of the system,
depending on whether  has purely real or purely imagi-
nary eigenvalues. This results in three cases:  is not in-
vertible,  has purely real eigenvalues, or  has purely

imaginary eigenvalues. The qualitative forms of these dif-
ferent cases are shown in Figure 1. Their analysis then pro-
ceeded by examining each case geometrically. One impor-
tant consideration is that the basic forms above are for the
unconstrained dynamics not the dynamics that projects the
gradient onto the unit square. Basically, this requires con-
sidering all possible positions of the unit square relative to
the dynamics shown in Figure 1.

One crucial aspect to their analysis were points of zero-
gradient in the constrained dynamics, which they show
to correspond to Nash equilibria. In the unconstrained
dynamics, there exist at most one point of zero-gradient,
which is called the center and denoted 18'"! -7�!�5 . This point
can be found mathematically by setting equations 3 and 4
to zero and solving,

18' ! -	7 ! 5 �$# 1 ����� 2 �&��� 5J L - 1 ����� 2 ���� 5J % �
Notice that the center may not even be inside the unit
square. In addition, if  is not invertible then there is no
point of zero gradient in the unconstrained dynamics. But
in the constrained dynamics, where gradients on the bound-
aries of the unit square are projected onto the unit square,
additional points of zero gradient may exist. When IGA
converges it will be to one of these points with zero gradi-
ent.

This theorem is an exciting result since it is one of the first
convergence results for a payoff-maximizing multiagent
learning algorithm. The notion of convergence, though,
is rather weak. In fact, not only may the players’ poli-
cies not converge when playing gradient ascent but the ex-
pected payoffs may not converge either. Furthermore, at
any moment in time the expected payoff of a player could
be arbitrarily poor.1 Not only does this make it difficult
to evaluate a learner, it also could be potentially disastrous
when applied with temporal differencing for multiple state
stochastic games, which assumes that expected payoffs in
the past predict expected payoffs in the future.

In the next section we will examine a method for addressing
this convergence problem. We will then prove that this new
method has the stronger notion of convergence, i.e. players
will always converge to a Nash equilibrium.

3. Variable Learning Rate and the WoLF
Principle

We now introduce the concept and study the impact of a
variable learning rate. In the gradient ascent algorithm pre-

1The idea that average payoffs converge only means that if
there’s a period of arbitrarily low expected payoffs there must be
some corresponding period in the past or in the future of arbitrar-
ily high expected payoffs.
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Figure 1. Qualitative forms of the IGA dynamics.

sented above the steps taken in the direction of the gradient
were constant. We will now allow them to vary over time,
thus changing the update rules to,'���� � � '�� D � � ? � P > ? 1<'�� -7�� 5P '7���� � � 7�� D � � A� P > ? 1<' � -7 � 5P 7
where, � ?�� A� (4* ����� � - �����
	 0�� ,
At the � th iteration the algorithm takes a step of size � � � in
the direction of the gradient. Notice the restrictions on

� �
require that it be strictly positive and bounded, thus bound-
ing the step sizes as well.

The specific method for varying the learning rate that we
are contributing is the WoLF (“Win or Learn Fast”) prin-
ciple. The essence of this method is to learn quickly when
losing, and cautiously when winning. The intuition is that a
learner should adapt quickly when it is doing more poorly
than expected. When it is doing better than expected, it
should be cautious since the other players are likely to
change their policy. The heart of the algorithm is how to
determine whether a player is winning or losing. For the
analysis in this section each player will select a Nash equi-
librium and compare their expected payoff with the payoff

they would receive if they played according to the selected
equilibrium strategy. Let '� be the equilibrium strategy se-
lected by the row player, and 7� be the equilibrium strategy
selected by the column player. Notice that no requirement
is made that the players choose the same equilibrium (i.e.
the strategy pair 1<'��-7��5 may not be a Nash equilibrium).
Formally,� ? � ��� � ��� �

if
> ? 1<' � -7 � 5�� > ? 18'��-7 � 5 WINNING� ����	

otherwise LOSING� A� ��� ����� �
if
>@A 18'�� -	7�� 5�� >BA 18'�� -7��5 WINNING�����
	

otherwise LOSING

With a variable learning rate such as this we can still con-
sider the case of an infinitesimal step size ( 	
� ��� � ). We
will call this algorithm WoLF-IGA and in the next section
show that the WoLF adjustment has a very interesting ef-
fect on the convergence of the algorithm.

4. Analysis of WoLF-IGA

We will prove the following result.

Theorem 2 If in a two-person, two-action, iterated
general-sum game, both players follow the WoLF-IGA al-
gorithm (with

�����
	 � ����� �
), then their strategies will con-

verge to a Nash equilibrium.

Notice that this is the more standard notion of convergence
and strictly stronger than what is true for basic IGA.

The proof of this theorem will follow closely with the proof
of Theorem 1 from Singh and colleagues, by examining the
possible cases for the dynamics of the learners. First, let us
write down the differential equations that define the system
with an infinitesimal step size,� ������������ � � � , � ? 1��5 J� A 1��5 J L , � � '7 � D � � ? 1��5�1 ����� 2 ����� 5� A 1��5�1 �&��� 2 ����� 5 � �
We will call the multiplicative matrix with off-diagonal en-
tries  1��5 since it now depends on the learning rates at time� , � ? 1��5 and

� A 1��5 . At time � , the qualitative form of the dy-
namics is determined by the  1��5 matrix and can be sum-
marized into three general cases,

�  1��5 is not invertible,�  1��5 has purely real eigenvalues, or�  1��5 has purely imaginary eigenvalues.

The first thing to note is that the above cases do not depend
on � . The following lemma is even stronger.

Lemma 1  1��5 is invertible if and only if  (as defined for
IGA in Section 2.3) is invertible.  1��5 has purely imaginary



eigenvalues if and only if  has purely imaginary eigenval-
ues.  1��5 has purely real eigenvalues if and only if  has
purely real eigenvalues.

Proof. Since
� ?
� A 1��5 is positive, it is trivial to see that1 � ? 1��5 J 5�1 � A 1��5 J L 5 � 1 � ? 1��5 � A 1��55 J@J L is greater-than, less-

than, or equal-to zero, if and only if
JBJ L

is greater-than,
less-than, or equal-to zero, respectively. Since these are the
exact conditions of invertibility and purely real/imaginary
eigenvalues the lemma is true.

�

So  1��5 will always satisfy the same case (and therefore
have the same general dynamics) as IGA without a variable
learning rate. In the sections that follow we will be exam-
ining each of these cases separately. The proofs of most
of the cases will proceed similarly to the proof for IGA. In
fact most of the proof will not rely on any particular learn-
ing rate adjustment at all. Only in the final sub-case of the
final case will we be forced to deviate from their arguments.
This is due to the fact that variable learning rates in general
do not change the overall direction of the gradient (i.e. the
sign of the partial derivatives). Since most of the proof of
IGA’s convergence only depends on the signs of the deriva-
tives, we can use the same arguments. For these cases we
will present only an abbreviated proof of convergence to il-
lustrate that the variable learning rate does not affect their
arguments. We recommend the IGA analysis for a more
thorough examination including helpful diagrams. In the
remaining sub-case, where IGA is shown not to converge,
we will show that in this case WoLF-IGA will converge to
a Nash equilibrium.

We will make liberal use of a crucial lemma from their
proof for IGA. This lemma implies that if the algorithms
converge then what the strategies converge to must be a
Nash equilibrium.

Lemma 2 If, in following IGA or WoLF-IGA,	
� � ��� 1<'E1��5�-791��55 � 1��'9- �7H5 , then 1��'E- �7:5 is a Nash
equilibrium.

Proof. The proof for IGA is given in (Singh et al., 2000),
and shows that the algorithm converges if and only if the
projected gradient is zero, and such strategy pairs must be
a Nash equilibrium. For WoLF-IGA notice also that the al-
gorithm converges if and only if the projected gradient is
zero, which is true if and only if the projected gradient in
IGA is zero. Therefore that point must be a Nash equilib-
rium.

�

Now we will examine the individual cases.

4.1  1��5 is Not Invertible

In this case the dynamics of the strategy pair has the quali-
tative form shown in Figure 1(a).

Lemma 3 When U(t) is not invertible, IGA with any learn-
ing rate adjustment leads the strategy pair to converge to a
point on the boundary that is a Nash equilibrium.

Proof. Notice that  1��5 is not invertible if and only if
J

or
J L

is zero. Without loss of generality, assume
J

is zero,
then the gradient for the column player is constant. The
column player’s strategy, 7 , will converge to either zero
or one (depending on whether the gradient was positive or
negative). At this point, the row player’s gradient becomes
constant and therefore must also converge to zero or one,
depending on the sign of the gradient. The joint strategy
therefore converges to some corner, which by Lemma 2 is
a Nash equilibrium.

�

4.2  1��5 has Real Eigenvalues

In this case the dynamics of the strategy pair has the quali-
tative form shown in Figure 1(b).

Lemma 4 When U(t) has real eigenvalues, IGA with any
learning rate adjustment leads the strategy pair to converge
to a point that is a Nash equilibrium.

Proof. Without loss of generality, assume that
J - J L � , .

This is the dynamics shown in Figure 1(b). Consider the
case where the center is inside the unit square. Notice that
if the strategy pair is in quadrant A, the gradient is always
up and right. Therefore, any strategy pair in this region
will eventually converge to the upper-right corner of the
unit square. Likewise, strategies in quadrant C will always
converge to the bottom-left corner. Now consider a strat-
egy pair in quadrant B. The gradient is always up and left,
and therefore the strategy will eventually exit this quadrant,
entering quadrant A or C, or possibly hitting the center. At
the center the gradient is zero, and so it has converged. If it
enters one of quadrants A or C then we’ve already shown it
will converge to the upper-right or lower-left corner. There-
fore, the strategies always converge and by Lemma 2 the
point must be a Nash equilibrium. Cases where the cen-
ter is not within the unit square or is on the boundary of
the unit square can also be shown to converge by a similar
analysis, and is discussed in (Singh et al., 2000).

�

4.3  1��5 has Imaginary Eigenvalues

In this case the dynamics of the strategy pair has the qual-
itative form shown in Figure 1(c). This case can be fur-
ther broken down into sub-cases depending where the unit
square is in relation to the center.

Center is Not Inside the Unit Square. In this case we
still can use the same argument as for IGA.

Lemma 5 When U(t) has imaginary eigenvalues and the
center, 1<' ! -7�!�5 , is not inside the unit square, IGA with any



learning rate adjustment leads the strategy pair to converge
to a point on the boundary that is a Nash equilibrium.

Proof. There are three cases to consider. The first is the unit
square lies entirely within a single quadrant. In this case
the direction of the gradient will be constant (e.g. down-
and-right in quadrant A). Therefore the strategies will con-
verge to the appropriate corner (e.g. bottom-right corner
in quadrant A). The second case is the unit square is en-
tirely within two neighboring quadrants. Consider the case
that it lies entirely within quadrants A and D. The gradient
always points to the right and therefore the strategy will
eventually hit the right boundary at which point it will be
in quadrant A and the gradient will be pointing downward.
Therefore in this case it will converge to the bottom right
corner. We can similarly show convergence for other pairs
of quadrants. The third and final case is when the center
is on the boundary of the unit square. In this case some
points along the boundary will have a projected gradient
of zero. By similar arguments to those above, any strategy
will converge to one of these boundary points. See (Singh
et al., 2000) for a diagram and further explanation. Since
in all cases the strategy pairs converge, by Lemma 2 they
must have converged to a Nash equilibrium.

�

Center is Inside the Unit Square. This is the final sub-
case and is the point where the dynamics of IGA and
WoLF-IGA qualitatively differ. We will show that, al-
though IGA will not converge in this case, WoLF-IGA will.
The proof will identify the areas of the strategy space where
the players are “winning” and “losing” and show that the
trajectories are actually piecewise elliptical in such a way
that they spiral towards the center. All of the lemmas in
this subsection implicitly assume that  1��5 has imaginary
eigenvalues and the center is inside the unit square. We be-
gin with the following lemma that considers the dynamics
for fixed learning rates.

Lemma 6 If the learning rates,
� ?

and
� A

, remain constant,
then the trajectory of the strategy pair is an elliptical orbit
around the center, 1<'"! -7�!�5 , and the axes of this ellipse are,� ,� ����� ������	� ��
�� � - � /, ���
Proof. This is just a result from dynamical systems the-
ory (Reinhard, 1987) as mentioned in (Singh et al., 2000)
when  1��5 has imaginary eigenvalues.

�

We now need the critical lemma that identifies the areas of
strategy space where the players are using a constant learn-
ing rate. Notice that this corresponds to the areas where the
players are “winning” or “losing”.

Lemma 7 The player is “winning” if and only if that
player’s strategy is moving away from the center.

Proof. Notice that in this sub-case where  1��5 has imag-
inary eigenvalues and the center is within the unit square,
the game has a single Nash equilibrium, which is the cen-
ter. So, the players’ selected equilibrium strategies for
the WoLF principle must be the center, i.e. 1<' �-	7��5 �18'�! -	7�!&5 . Now, consider the row player. The player is
“winning” when its current expected payoffs is larger than
the expected payoffs if it were to play its selected equilib-
rium. This can be written as,> ? 1<'=-7H562 >@? 18'  -7:5�� , �
We can write out the left hand side by using equation 1.18'C7 J D 'E1 � ��� 2 � �	� 5 D 791 � ��� 2 � �	� 5 D � ��� 5�218'��7 J D '��1 � �� 2 � ��� 5 D 791 � ��� 2 � ��� 5 D � ��� 5�-
and then simplify substituting the center for the equilibrium
strategies, 18' 2G'�!�5 7 J D 1<' 2G' !&5&1 ���� 2 ����� 5 �1<'�2K' !�5�1 7 J 2 1 � �� 2 � ��� 5	5 �18'�2G'�!�5 �� �	� � � ������ �
Notice that this is positive if and only if the two factors have
the same sign. This is true if and only if the player’s strat-
egy, ' , is greater than the center, '"! , and it is increasing, or
it is smaller than the center and decreasing. So the player is
winning if and only if its strategy is moving away from the
center. The same can be shown for the column player.

�

Corollary 1 Throughout any one quadrant, the learning
rate is constant.

Combining Lemmas 6 and 7, we find that the trajectories
will be piece-wise elliptical orbits around the center, where
the pieces correspond to the quadrants defined by the cen-
ter. We can now prove convergence for a limited number
of starting strategy pairs. We will then use this lemma to
prove convergence for any initial strategy pairs.

Lemma 8 If
� ����	 � � ��� �

then for any initial strategy pair,18'�! -	7 � 5 or 1<' � -	7�!�5 , that is “sufficiently close” to the cen-
ter, the strategy pair will converge to the center. “Suffi-
ciently close” here means that the elliptical trajectory from
this point defined when both players use / as their learning
rate lies entirely within the unit square.

Proof. Without loss of generality assume
J �+, and

J L��, . This is the case shown in Figure 1(c). Let � � � ����� �� ����� �/ � , , and � � � � ��
��� ��� . Consider an initial strategy 1<'"! -7 � 5
with 7 � � 7�! .
For any fixed learning rates for the players, by Lemma 6,
the trajectory forms an ellipse centered at 1<' !�-	7�!�5 and with
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Figure 2. The trajectory of learning rates using WoLF-IGA when�! #"	$
has imaginary eigenvalues and the center is inside the unit

square.

the ratio of its y-radius to its x-radius equal to,% � A� ? � �
Since the trajectory is piecewise elliptical we can consider
the ellipse that the trajectory follows while in each quad-
rant. This is shown graphically in Figure 2. As the tra-
jectory travels through quadrant A, by Lemma 7, we can
observe that the row player is “winning” and the column
player is “losing”. Therefore,

� ? � ����� �
and

� A � ������	
,

so the ratio of the ellipse’s axes will be �'& � , and this ellipse
will cross into quadrant B at the point 1<7��)(? -7�!�5 . Similarly,
in quadrant B, the row player is “losing” and the column
player is “winning” therefore the ratio of the ellipse’s axes
will be � � and the ellipse will cross into quadrant C at the
point 18' ! -	7 � � � 5 .
We can continue this to return to the axis where the tra-
jectory began. The strategy pair at that point will be18'�! -	7 �	��*�5 . So, for each orbit around the center we de-
crease the distance to the center by a factor of �+* � / � , ,
and therefore the trajectory will converge to the center. We
can reason identically for any other sufficiently close initial
strategies on the axes.

�

Lemma 9 When U(t) has imaginary eigenvalues and the
center, 1<' ! -7 ! 5 , is inside the unit square, WoLF-IGA leads
the strategy pair to converge to the center, and therefore to
a Nash equilibrium.

Proof. The proof is just an extension of Lemma 8. Con-
sider the largest ellipse when both players learning rates
are one that fits entirely within the unit square. This ellipse
will touch the boundary of the unit square and do so at the
boundary of two quadrants. Now consider any initial strat-
egy pair. The strategy pair will follow piecewise elliptical
orbits or move along the unit square boundary and eventu-
ally will hit the boundary between those same quadrants.
At this point it is on or inside the largest ellipse defined
when players have a learning rate of one, and therefore we
can apply Lemma 8 and so the trajectory will converge to
the center. So, from any initial strategy pair the trajectory
will converge to the center, which is a Nash equilibrium.

�

Lemmas 3, 4, 5, and 9 combine to prove Theorem 2. In
summary the WoLF principle strengthens the IGA conver-
gence result. In self-play with WoLF-IGA, players’ strate-
gies and their expected payoffs converge to Nash equilib-
rium strategies and payoffs of the matrix game. This result
can be generalized beyond self-play in the following corol-
lary, which we state without proof.

Corollary 2 If in a two-person, two-action, iterated
general-sum game, both players follow the WoLF-IGA al-
gorithm but with different

����� �
and

������	
, then their strate-

gies will converge to a Nash equilibrium if,� ?��� � � A��� �� ?����	 � A����	 � / �
Specifically, WoLF-IGA (with

������	 � ����� �
) versus IGA

(
������	 � ����� �

) will converge to a Nash equilibrium.

5. Discussion

There are some final points to be made about this result.
First, we will present some further justification for the
WoLF principle as it has been used in other learning re-
lated problems. Second, we will present a short discussion
on determining when a player is “winning”.

5.1 Why WoLF?

Apart from this theoretical result the WoLF principle may
appear to be just an unfounded heuristic. But actually it
has been studied in some form in other areas, notably when
considering an adversary. In evolutionary game theory the
adjusted replicator dynamics (Weibull, 1995) scales the in-
dividual’s growth rate by the inverse of the overall success
of the population. This will cause the population’s com-
position to change more quickly when the population as a
whole is performing poorly. A form of this also appears
as a modification to the randomized weighted majority al-
gorithm (Blum & Burch, 1997). In this algorithm, when
an expert makes a mistake, a portion of its weight loss is
redistributed among the other experts. If the algorithm is



placing large weights on mistaken experts (i.e. the algo-
rithm is “losing”), then a larger portion of the weights are
redistributed (i.e. the algorithm adapts more quickly.)

In addition, a variable learning rate and the WoLF prin-
ciple has been applied to a reinforcement algorithm, pol-
icy hill-climbing (Bowling & Veloso, 2001). WoLF policy
hill-climbing was empirically demonstrated to converge to
equilibria in self-play in both repeated matrix games, as
well as more complex multiple state stochastic games.

5.2 Defining “Winning”

The WoLF principle for adjusting the learning rate is to
learn faster when losing, more slowly when winning. This
places a great deal of emphasis on how to determine that a
player is winning. In the description of WoLF-IGA above,
the row-player was considered winning when,> ? 1<'�� -	7���5 � > ? 1<'  -7�� 5 �
Essentially, the player was winning if he’d prefer his cur-
rent strategy to that of playing some equilibrium strategy
against the other player’s current strategy.

Another possible choice of determining when a player is
winning might be if its expected payoff is currently larger
than the value of the game’s equilibrium (or some equi-
librium if multiple exist). It is interesting to note that in
zero-sum games with mixed strategy equilibria these two
rules are actually identical.

In general-sum games, though, this is not necessarily the
case. There exist games with points in the strategy space
where the player is receiving a lower expected payoff than
the equilibrium value, but the equilibrium strategy would
not do any better.2 Essentially, the player is not doing poor
because of its strategy, but rather because of the play of the
other player. It is at this point that the gradient is likely to
be moving the strategy away from the equilibrium, and so
learning quickly would discourage convergence.

6. Conclusion

This paper examines the effects of using a variable learn-
ing rate, specifically the WoLF principle, on gradient as-
cent learning. We show that this modification to gradient
ascent has a surprising affect on the dynamics of learn-
ing in two-player, two-action, general-sum repeated matrix
games. We prove a strong notion of convergence, that is not
true of basic gradient ascent, such that both player’s strate-

2An example of such a matrix game is,��� ������
	��� � ��� 	� �����
with the strategy point,

 �� ��� $��  � � ��� � $
. The only Nash equilib-

rium is
 ��� � � ��� � $

. Hence, ���  ���� ��� $�� � � !#" ���  �� ��� $$� � � � "� �  �� �%���$� $$� 	
, and so the two rules would disagree.

gies and expected payoffs converge to those of a Nash equi-
librium. This result will simplify the application of gradient
ascent techniques to more rich policy and problem spaces.
The convergence of expected payoffs makes evaluation of
policies and hence the credit assignment problem in multi-
ple state problems considerably easier.
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