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Abstract

There are two ways to model the output space of visual recognition tasks like object

detection and segmentation. The conventional approach is to use a continuous-valued

and �xed-sized feature map. A newer alternative is to use a variable-length sequence

of discrete tokens that are output by the network one at a time through autoregression.

The token-based approach combines elements from both computer vision and

natural language processing and is inspired by image and video captioning models

that take one or more images as input to produce a variable-length sentence as

output. It has two main advantages. Firstly, it allows us to succinctly model the

output space in domains where the output-size is highly variable. For example, the

number of objects in a video can vary widely across videos and the �xed-sized

representation used in conventional object-detectors introduces a great deal of

sparsity in the loss computation which makes training di�cult. Secondly, it

eliminates the need to perform heuristics-based postprocessing on the raw network

output to convert it into a form suitable for downstream processing, thereby

allowing true end-to-end training. For example, usable bounding boxes can be

constructed directly from the tokens output by a token-based detector without

having to perform con�dence thresholding and non-maximum suppression.

This thesis uses a wide range of real-world applications to make a case for the

bene�ts of the second approach. It also presents a novel way to extend a token-based

object detector for video detection and semantic segmentation.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Conventional Modeling

Deep learning models for computer vision tasks like object detection and segmentation

conventionally produce �xed-sized outputs, where the output size is determined by

the architecture itself and is independent of the contents of the input image or video.

This is true of models based on both convolutional neural networks (CNNs) [32] and

transformers [33, 34, 26]. Further, this output is usually in the continuous domain,

that is, it consists of real numbers rather than discrete integers.

This is not well suited to many visual recognition tasks where the outputs are

inherently discrete in nature. The two tasks that exemplify this best are object

detection and multi-object tracking (MOT). In both cases, the output size depends

on the input and is highly variable across inputs since the number of objects in an

image or the number of trajectories in a video can vary widely in real-world scenarios

from none to many tens of instances. In addition, the space of all possible objects in

an image is not only much larger than the number of objects that might realistically

be present in an image but it is also far too large to be sampled densely by any �xed-

sized representation. This problem is greatly compounded in MOT and video object

detection since the space of all possible objects or trajectories in a video increases

exponentially with the length of the video while the actual number of such instances

remains the same as in a single image. Any �xed-sized modeling of this output space

must therefore employ an output size that is much larger than the actual number of

output instances that the model needs to produce.
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This in turn leads to two main problems. Firstly, it causes the loss function to

become very sparse since the training signal only comes from objects that are

actually present in the training images and these objects constitute a tiny fraction

of the space of all possible objects that the network output, and therefore the loss

function, needs to represent. As a consequence, a vast majority of this output

corresponds to the background and the resultant class imbalance needs to be

handled through complex loss engineering. Examples of this engineering include

careful domain-speci�c anchor box design along with one-to-many ground truth

(GT) to anchor box associations [11], focal loss [1] and hard example mining [35].

Secondly, we need to perform a lot of heuristics-based postprocessing on the raw

network output to produce the small number of discrete outputs that we actually

need for downstream processing. Con�dence thresholding and non-maximum

suppression are a couple of examples of this postprocessing typically employed in

object detection. This introduces a disconnect between what the network learns

from the training data and how it actually performs during inference. In some cases,

especially with MOT, this postprocessing can have a greater impact on the overall

performance than the underlying model itself [36, 37]. Further, when the detector or

tracker is used as one component of a larger system that is otherwise fully

di�erentiable, the presence of these heuristics makes it di�cult to train the entire

system end-to-end since most of these are non-di�erentiable.

An important example of this problem is furnished by anchor boxes or similar

methods of sampling the space of possible boxes, that are used in both RCNN [38,

11, 19, 1, 39, 40] and YOLO [41, 42, 22, 43, 44, 45, 46, 47, 48] families of detectors.

Let us consider the standard Faster RCNN [11] network output which is a feature

map of size 33× 33× 80. Each one of the 33× 33 = 1089 pixels in this feature map

is an anchor point that has a �xed number of associated anchor boxes to represent

various scales and aspect ratios. Since each of these boxes needs to be encoded by 4

numbers, this feature map can represent 80/4 = 20 anchor boxes. This gives the total

number of boxes output by the network as 1089 × 20 = 21780. Figure 1.1 shows a

couple examples1 of these boxes, although only 1% of all the boxes are shown here for

clarity. This number remains �xed irrespective of the contents of any actual image.

As a result, even if the image has only one object or no objects at all, the network will

still output values for all of the nearly 22K boxes. This leads to enormous sparsity in

the loss function since most training images have < 10 objects, so that > 99.95% of

1These examples have been borrowed from this online article
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Figure 1.1: Two examples of anchor boxes as used by RetinaNet [1]. Only 1% of
all the anchor boxes are shown here for clarity. The images on the left and right
respectively show boxes that have been �ne-tuned for detecting larger and smaller
objects.

these anchor boxes corresponding to background image patches.

1.1.2 Language Modeling

The above issues with conventional modeling can be resolved by modeling the output

space with a discrete variable-length representation. There has in fact been a trend

towards such discretization in the vision literature over the last couple of years by

representing the outputs as sequences of discrete tokens [31, 49, 50, 51, 52, 53, 54, 55,

56, 57]. This seems to have been inspired by the remarkable success of transformer-

based natural language processing (NLP) models [58] in recent years, especially large

language models (LLMs) [59, 60] like Chat-GPT [61, 62]. The tokens in these models

are produced one at a time, similar to the way a language translation model outputs

words from the target language one at a time. This is usually done by autoregression

[31, 49], where the next output token depends on the past output tokens along with

the input signal. The input is a sentence from the source language in case of language

translation and can be one or more images in the case of vision tasks.

The problem of variable-length outputs is handled by a special end of sequence

(EOS) token that is output by the network to indicate that it has completed
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producing all the required tokens for the current input. For example, if each object

is represented by 4 tokens and there are 20 objects in an image, the network will

output 80 tokens followed by EOS. On the contrary, if the image has only one

object, the network will output 4 tokens followed by EOS. While the EOS token

allows the network to produce variable length outputs, there is still an architectural

limit on the maximum number of tokens that it can produce, as imposed by the

maximum sequence length L. There is also a limit on the total number of unique

tokens that can constitute this sequence, as imposed by the vocabulary size V .

Language modeling e�ectively simpli�es vision tasks into classi�cation problems

since the L tokens can be thought of as solutions to L sequential V -class

classi�cation problems. Each token is represented by a probability distribution over

the V tokens in the vocabulary. These probability distributions are output as a

single L × V matrix, where each row represents a probability distribution over all

the tokens in the vocabulary. Even though L and V are architectural

hyperparameters just like the size of the output feature map in conventional models,

and therefore also independent of the actual input image, they do not cause the

same loss sparsity issue as the conventional models.

This can be best illustrated by a quantitative example. Let us assume that V =

32K and L = 500. The corresponding 500 × 32000 probability distribution matrix

actually has two orders of magnitude more values than the 33× 33× 80 feature map

in the anchor box example (16M versus 87K). However, training the token-based

model involves learning to produce only 500 probability distributions, irrespective of

the vocabulary size. This is in contrast to training the conventional model which must

learn to regress nearly 22K boxes or 87K real numbers. Further, each GT object can

provide a training signal for 4 of these 500 distributions in language modeling, while

it will only provide a training signal for 1 of the 22K boxes in conventional modeling.

This makes the loss sparsity in the latter two orders of magnitude greater than the

former. Also, at least in my experience, probability distributions seem to be easier

to learn than regressing over real numbers. This discretization also helps during

inference since the argmax process of converting probabilities into tokens �lters out

a lot of the prediction noise that remains in the regression output of conventional

models.

Against the above advantages, language models do have the practical

disadvantage of being signi�cantly more di�cult to train. The large size of the

probability matrix requires more computational resources to train since it must �t
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in the limited memory available on the graphics processing unit (GPU), that is

currently necessary for accelerating the training process to make it time-feasible.

Transformer-based models in general and language models in particular also require

large amounts of training data and larger batch sizes to train well [63, 64], all of

which also increases the amount of GPU memory and training time needed.

This thesis studies the extent to which the theoretical advantages can be realized

in practice in the face of these challenges. For this purpose, I propose several new

token-based modeling schemes for video object detection and semantic segmentation

and compare these with conventional modeling on a wide range of real world problems.

It turns out that the limited training hardware available for this project prevents me

from demonstrating signi�cant performance advantage of token-based models over

conventional models in this thesis. However, this work still represents an important

step in the direction of discretizing vision tasks and does provide evidence of the

immense potential of these models to improve with better training hardware and

more e�cient implementations.

It is also important to note that the new way of representing video detection

and semantic segmentation outputs with tokens has value in its own right beyond its

current or future performance bene�ts since it opens up the possibility of improving

the tokenization in clever ways to encode additional attributes that would be either

impossible or much more di�cult with conventional modeling. An example of this is

the IW tokenization in Section 7.3.3 that supplements semantic segmentation with

instance information by simply reordering the tokens. This would require an entire

channel to be added to the output mask with conventional segmentation models.

1.1.3 MOT to Language Modeling

My original thesis topic was actually to design an end-to-end di�erentiable MOT

system. The goal of MOT is to detect each object of interest that enters the scene in

a video and track it as it moves about and then exits the scene, in order to output

its complete trajectory as a sequence of boxes. As mentioned earlier, the principal

challenge here is that the number and lengths of trajectories can vary widely across

videos, which makes it very di�cult to represent these through a �xed-sized output.

To the best of my knowledge, a true end-to-end di�erentiable MOT system that takes

video frames as input and directly outputs the trajectories has not been proposed yet.

Most existing MOT methods use some variant of tracking-by-detection [65] where
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a separate object detector �rst detects all the objects in each video frame and then an

association algorithm links these objects across frames. This involves a lot of domain-

speci�c heuristics-based postprocessing which does not generalize well and often has

more impact on the overall tracking performance than the association algorithm itself

[36, 37]. I spent most of the �rst three years of my program working on adapting a

modular tracking-by-detection framework [66] to replace each of its non-di�erentiable

components with di�erentiable deep learning-based alternatives so as to make the

entire MOT pipeline di�erentiable and integrate it with the object detector to create

an end-to-end trainable system. However, I discovered that the heuristics played

such an important role in determining the overall tracking performance and were so

�nely tuned to the existing components that replacing the latter with improved deep

learning-based models did not improve the tracking performance and in many cases

actually made it slightly worse.

I therefore abandoned this project and instead started looking into ways to

dispense with the separate object detector and all the accompanying heuristics. The

most promising idea I had, on which I spent much of the next two years, was to

represent MOT as a sequence prediction problem. This idea was inspired by image

and video captioning tasks, especially dense video captioning (DVC) [67]. As

opposed to standard video captioning which describes a short video clip showing a

single event with a single sentence, the goal of DVC is to describe multiple events in

a long video clip through one or more sentences, while also localizing each event in

time. Since a trajectory can be thought of as an event, a DVC network [68, 69]

could be modi�ed to output a sentence for each trajectory. Each word would then

represent a single box in that trajectory and a set of sentences would represent all

the trajectories in the video clip.

I did manage to adapt an end-to-end di�erentiable DVC model [68] for MOT

but could not get it to learn meaningful trajectories even after several months of

experimentation with many feature extractors and tokenization strategies. This may

have been because the DVC model was designed only to detect high-level events

and did not have the granularity required to learn frame-level information like the

bounding boxes that make up trajectories. It might also have been because I simply

did not have enough computational resources to retrain it for a completely di�erent

domain from what it had been designed for. In retrospect, it was probably a bad idea

to start with the most complex of the three captioning tasks instead of starting with

the simplest one by adapting an image captioning network for static object detection
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followed by standard video captioning for video detection and �nally DVC for MOT.

When I �nally started running out of time to complete my program, I decided that

this was too complex a task to solve with my very limited computational resources

in the little time I had left. I therefore decided to simplify it to adapting image

captioning for object detection which is probably what I should have started with

in the �rst place. While looking for a suitable image captioning network to adapt, I

came across the Pix2Seq framework from Google [31] which had already done this.

However, this framework had not yet been extended for video detection so I worked

on that instead and succeeded in getting it working in a few months (chapter 6).

Over the course of my program, I have also completed several projects unrelated

to my main thesis topic, both as industrial internships and collaborations with other

departments. Three of these projects have led to publications [70, 71, 72] while my

main thesis research has not resulted in any publication so far due to the failure of

both my main ideas. Since extending Pix2Seq for video detection is insu�cient to

merit a doctoral-level thesis by itself, I needed to link the tokenization idea with the

three published works to create a single coherent narrative. Two of these projects are

about object detection and instance segmentation [71, 72] and therefore applicable

for my video detector. However, the third project [70] involves semantic segmentation

and contains neither video annotations nor instance level information. I have therefore

adapted Pix2Seq for this new task (chapter 7) to be able to include this project as

part of this thesis too. This also serves as an example of applying language modeling

to a dense prediction task which does not inherently require discrete outputs but

nonetheless turns out to work quite well when modeled thus.

1.2 Contributions

To summarize, following are my main contributions in this thesis:

� I have adapted conventional deep learning models to solve a wide range of novel

problems in the domain of object detection and segmentation.

� I have presented a new way to perform video object detection by language

modeling.

� I have presented new ways to perform semantic and panoptic segmentation in

images and videos by language modeling.
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� I have compared the language models with the conventional models through a

wide range of experiments to highlight their current limitations along with the

promise they hold for future improvements.

I would like to reiterate that, even though I have not been able to show signi�cant

performance bene�ts of language modeling due to hardware limitations, these new

ways of representing vision outputs are signi�cant contributions in their own right.

This is both due to their demonstrated suitability for end-to-end video processing

and the potential they o�er for clever tokenization schemes to embed additional

information in the output that would be very di�cult or even impossible with

conventional modeling.

1.3 Thesis Outline

A brief review of existing literature relevant to my proposed token-based models is

presented in chapter 2. This is followed by details of three projects I have undertaken

in the course of my doctoral program in chapters 3 through 5. These chapters are

adapted from respective publications and serve to demonstrate the application of

conventional deep learning models for object detection and segmentation. Chapters

6 and 7 respectively present details of my adaptation of Pix2Seq for object detection

in videos and semantic segmentation in both images and videos. Chapter 8 compares

these token-based models with the conventional models from chapters 3 to 5. This

chapter also includes results for some of my experiments with their con�guration

parameters to make them better. Finally, chapter 9 concludes with a summary of the

�ndings in chapter 8 along with suggestions for future improvements.
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Chapter 2

Background

This chapter presents a brief review of recent language modeling methods for solving

vision tasks like object detection, segmentation and tracking. Reviews of conventional

deep learning models for tackling these tasks have been deferred to chapters 3 - 5.

2.1 Pix2Seq

This section brie�y describes the Pix2Seq framework [73], especially the object

detection component [31], that chapters 6 and 7 are based on.

2.1.1 Overview

Pix2Seq is a language modeling framework for computer vision that comprises a

series of papers produced by the same research group at Google DeepMind and

implemented within the same codebase [73]. The original paper [31] dealt with

static object detection in images. It was soon followed by a multi-task version [49]

for performing instance segmentation, keypoint detection and image captioning, in

addition to object detection. Next, the authors replaced the autoregressive

transformer decoder with a di�usion module [50] to be able to do dense prediction

and applied this for image generation and captioning. Finally, they adapted this

di�usion-based dense prediction model to perform panoptic segmentation in images

and videos [51], although the video component was very rudimentary and seemed

rather like an afterthought. Around this time, a di�erent research group at Google

proposed a related method for DVC named Vid2Seq [74], though this is an LLM

and is not implemented within the main Pix2Seq repository. The Pix2Seq group has
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also proposed several secondary methodological and architectural improvements

that are implemented in the same repository. These include the Recurrent Interface

Network [75] and improved noise scheduling [76] for di�usion and an improved

transformer architecture with two-level hierarchical token generation [77].

2.1.2 Object Detection

2.1.2.1 Tokenization

Pix2Seq object detector [31] represents each object in the image by �ve tokens - four

for the (x, y) coordinates of the bounding box corners and one for the class. The

image-space is quantized into 2000 bins to represent the continuous coordinates with

discrete tokens and shared tokens are used for both x and y coordinates. The tokens

for all the objects are output sequentially followed by the EOS token so the network

and output a total of 5 × n + 1 tokens for an image with n objects. Further details

of Pix2Seq tokenization strategy are included in Section 6.1.1.

2.1.2.2 Architecture

The network has a transformer-based encoder-decoder architecture [33] with an

autoregressive decoder. During training, it takes the image and the GT token

sequence pre�xed with the start of sequence (SOS) token as input and is trained to

output the same token sequence without the SOS token but su�xed with the EOS

token. For example, if an image has two objects, the input and output token

sequences would respectively be [SOS, ty1, lx1, by1, rx1, cls1, ty2, lx2, by2, rx2, cls2]

and [ty1, lx1, by1, rx1, cls1, ty2, lx2, by2, rx2, cls2, EOS]. Here, (lxi, tyi) and

(rxi, byi) are the quantized coordinates of the top left and bottom right corners of

the ith object bounding box1, while clsi is its class token. The autoregressive

constraint is imposed through a causal mask [33] that prevents the network from

using future tokens in the input sequence to in�uence its next output token. This

ensures that the kth token in the output sequence is a�ected only by the �rst k − 1

tokens in the input sequence. The network is therefore trained to output, for

example, the token lx1 with [SOS, ty1] as the input tokens and by2 with

[SOS, ty1, lx1, by1, rx1, cls1, ty2, lx2] as the input tokens. During inference, the

network gets only the SOS token as input to bootstrap it to output tokens for all

the objects in the image. Section 6.2.1 includes more details of Pix2Seq architecture.

1this notation is reused in Section 6.1.2 with slightly di�erent meaning
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2.1.2.3 Localization

One of the most remarkable aspects of this method is that it is able to produce

spatially precise bounding boxes without needing any localization cues, thereby

completely doing away with the need to sample the space of all possible boxes. This

in turn makes it particularly suitable for video object detection and MOT since the

space of possible trajectories in a video is exponentially larger than the space of

possible boxes in an image, which makes sampling it impractical. The authors

demonstrated an interesting fact about the learnt token embeddings which helps to

explain this ability. Even though the coordinate and class tokens are part of the

same shared vocabulary, the learnt coordinate embeddings show greater cosine

similarity not only with other coordinate tokens but speci�cally with nearby

coordinate tokens. This implies that the network is not only able to learn that the

coordinate and class tokens belong to two separate categories of tokens but that

coordinate tokens corresponding to spatialy proximal regions of the image are more

similar to each other than to tokens from more distant parts of the image.

2.1.2.4 Object ordering

An important consideration when representing objects by a sequence is the order in

which these objects appear in that sequence. There are many ways to order the

objects but there are no domain-agnostic theoretical reasons for considering one

method as superior to others. The authors experimented with several ways to sort

the objects, including bounding box area and distance from the top left corner, but

empirically determined that random ordering works best. As a result, they not only

randomize the order of objects but randomly reorder the objects in each image for

every forward pass of that image during training. The network is therefore trained

to be able to output multiple sequences of tokens for the same image, though with

all of them containing the same subsequences of 5 tokens, only in di�erent orders.

This is somewhat analogous to how captioning networks are trained with multiple

captions for the same image, but all of them are semantically equivalent.

2.1.2.5 Sequence Augmentation

The authors discovered that training the model with only real boxes results in

somewhat low recall rates because the network has a tendency to output the EOS

token too soon. To �x this, they augmented the sequence of real boxes with a large
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number of synthetic boxes sampled from the background. These are generated by

both adding noise to the real objects (e.g. random shifting and scaling) as well as

by sampling completely random background regions. These so-called noise boxes

e�ectively provide a means to include background patches in the training set. While

this is somewhat similar to conventional bounding box sampling techniques like

anchor boxes, it is on a di�erent plane numerically because the total number of such

boxes is only a few tens rather than tens of thousands. Similar to the random

ordering of real objects, the noise objects are re-generated for each forward pass, so

that the network is trained with a new set of synthetic boxes each time it sees the

same image. This essentially teaches the network that the noise boxes can be

anywhere in the background except on the real objects and all such sets of

background boxes are semantically equivalent, exactly like every possible ordering of

real boxes. It is undesirable for the network to learn to mimic the random

coordinates of noise boxes so no loss is assigned to the coordinate tokens of these

boxes but the corresponding class tokens are weighted the same as those of real

boxes. The network is therefore able to learn that any sequence of coordinate tokens

that does not correspond to actual boxes belongs to the special noise class that is

created for the synthetic boxes.

2.1.2.6 Postprocessing

The authors do perform some heuristics-based postprocessing during inference to �lter

out invalid boxes from the raw network output. They consider output boxes labeled

as noise to be potential real objects that get assigned to the real (i.e., non-noise) class

with the maximum probability among all the real classes.2. The usual dense-to-sparse

object detection heuristics like con�dence thresholding and NMS are then performed

using this probability value as the con�dence score for that object. The assumption

here is that any invalid object will either not have a real-class probability high enough

to exceed the con�dence threshold or a nearby valid object will have higher probability

for the same class and will therefore be able to suppress the invalid box. Even though

such postprocessing is an unwelcome trait if the goal is to use the detector as one

component of a larger system which needs to be trained end-to-end, it has minimal

impact on the overall detection performance as measured by the average precision

(AP) (44.7% vs. 43.7% on COCO) since it is mainly a trick to reduce missing boxes.

2since the object is labeled as noise, the noise class token is assigned the highest probability among
all the class tokens but we pick the real class whose token got the second highest probability
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The impact on recall is greater (61.7% vs. 55.4%) but still not very signi�cant. In

other words, the detector remains competitive with the state of the art even without

sequence augmentation or postprocessing. We can therefore completely dispense with

these tricks and still have a viable detector.

2.1.2.7 Performance

The overall performance of this detector was shown to be similar to other standard

detectors like Faster-RCNN [11] and DETR [78]. This is to be expected since detection

performance seems to have reached a plateau in terms of output modeling and most

improvements since the original RCNN [79] have been achieved by increasing the

dataset and network sizes.

2.1.3 Multi-Task

A multi-task version of the Pix2Seq detector was proposed in [49] to support instance

segmentation, human keypoint detection and image captioning, in addition to object

detection. This uses a single shared vocabulary along with a single prediction head

to produce output for all the tasks. It takes a task-speci�c prompt as input to �gure

out which task is to be performed. For example, a task prompt consisting only of

the special detect token causes it to perform object detection. Similarly, a prompt

that starts with the segment token, followed by 5 tokens representing the bounding

box coordinates and class of an object, causes it to segment the speci�ed object. If

this same prompt were to start with the keypoint token, the network would instead

detect keypoints on the object. Finally, a prompt consisting only of the describe

token results in the network outputting a natural language sentence describing the

image. The vocabulary has 35K tokens in all, out of which 32K are English words,

1K are coordinate tokens and remaining are reserved and class tokens.

2.1.3.1 Instance Segmentation

As noted above, the variety of instance segmentation that this network performs is

di�erent from what is typically meant by this task. An instance segmentation method

would normally take an image as input and output bounding boxes and masks for all

the objects in that image. This network, on the other hand, requires a speci�c object

as input and produces a mask only for that object. We would �rst need to run it on

the detection task and then run it again for every single object detected in the �rst
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step to be able to complete the standard instance segmentation task. This not only

makes it ine�cient at runtime, but probably also makes the training less e�ective

since the network cannot bene�t from the global image context, being trained to

segment only one object at a time.

The instance segmentation output modeling is a straightforward extension of

object detection by means of representing the segmentation masks with polygons

[80, 81] instead of pixelwise binary labels. Since a polygon does not have a canonical

starting point, the authors randomize the starting point each time the same image

is shown to the network, so it is able to learn an order-agnostic representation of

that polygon. They also support disjointed masks by allowing multiple polygons to

represent the same object, in which case the polygons are separated by a special

separator token. However, they do limit the total number of points across all the

polygons that represent an object to 128.

The authors employ several heuristics at inference to improve the performance.

They found that polygon masks tend to be noisy, a shortcoming that they attribute to

the absence of geometric regularization. If the model is repeatedly asked to generate

polygons for the same object, it produces slightly di�erent polygons, some of which

might be of low quality. The authors resolve this issue by averaging the corresponding

masks through a voting scheme where pixels that are foreground in at least half of the

generated masks are considered to be foreground in the �nal averaged mask. They

found that averaging over 8 samples in this way gave a 6% improvement in AP over

using a single sample. They also tried running inference on only the image patch

corresponding to the bounding box instead of the entire image but this only gave a

small 1.3% improvement.

2.1.3.2 Human Keypoint Detection

Similar to the instance segmentation masks, human keypoints are also modeled after

object detection by using a couple of coordinate tokens for every keypoint. In the

general case, each keypoint can be accompanied by a class token to represent the

speci�c body part that the keypoint corresponds to. In this paper, however, the

authors simpli�ed the representation by eliminating the class token and simply

outputting a �xed set of 14 keypoints since that is how many are available in the

COCO dataset that the authors use for all their testing.
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2.1.4 Dense Video Captioning

Vid2Seq [74] was introduced by a di�erent group at Google Research and is not

implemented as part of the Pix2Seq repository, but it does use many of the same

concepts. This performs DVC by adding a couple of time tokens to each sentence to

mark the start and end of the corresponding subclip in the video. Time is quantized

by dividing the video into 100 equally-spaced timestamps. The model was trained

unsupervised on the massive unlabeled YT-Temporal 1B [82] dataset. The authors

use speech recognition to transcribe narration audio into subtitles, followed by

Google cloud API to convert the subtitles into sentences. They consider each

sentence as a pseudo-event caption, that is, sentence boundaries become

pseudo-event boundaries and each sentence is assumed to describe a single event.

This simple heuristic apparently generalizes quite well to real captions. The model

used here is an LLM with 314M parameters and required 64 TPUs for training with

a total of 2TB RAM. Such hardware requirements render this model of limited

relevance to academic research beyond informing us that such unsupervised training

can work.

2.1.5 Image Generation and Captioning

The next step in this progression was BIT Di�usion [50] where the authors generate

the output sequence using di�usion [83] instead of autoregression. The rationale for

this substitution was that di�usion is known to work better for very long sequences

and also has less stringent computation and memory requirements for such sequences.

This makes it more suitable for dense prediction tasks like image generation where,

for example, a 512 × 1024 RGB image requires > 1.5M tokens. However, di�usion

brings back the problem of �xed-sized and continuous valued outputs that besets

conventional modeling and this makes it unsuitable for sparse and discrete prediction

tasks like object detection and MOT that I am interested in.

The encoding scheme that the authors used to convert the discrete output back

into continuous values is quite simple � they represent each token by the corresponding

bits (i.e. binary digits), convert these bits into real numbers (i.e. 0 and 1 become 0.0

and 1.0 respectively) followed by shifting and scaling these numbers to −1.0 and +1.0.

During inference, the di�usion model outputs real numbers between −1.0 and +1.0

and they use simple thresholding to decode this output back into discrete tokens.

The authors tested this idea on two prediction tasks � one dense and the other
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sparse. The dense prediction task is discrete image generation. Here, they represent

each of the three sub-pixels in an RGB image by 8 bits so that each pixel is represented

by 24 bits and the image as a whole is represented by a 24-channel output. They

experimented with three di�erent bit conversion schemes for pixel values - direct 8-

bit representation, assigning a unique 8-bit binary code to each possible pixel value

such that consecutive values di�er by only 1 bit, and shu�ing the standard 8-bit

representation. They found that all three schemes can work but the direct 8-bit

representation outperforms the other two.

The authors use image captioning as the sparse prediction task. They use a

vocabulary of 32K words so they encode each word using 15 analog bits since 15

is the minimum number of bits needed to represent integers up to 32K. They limit

the maximum number of tokens in the output sequence to 64 for a total sequence

length of 960 bits. They showed that this model performs similarly to the standard

autoregressive version in [49], which indicates that densifying the output does not

necessarily cause performance degradation in the sparse output domain.

2.1.6 Panoptic Segmentation

The �nal paper in the Pix2Seq series is a generalist model [51] that extends BIT

di�usion for panoptic segmentation. Panoptic segmentation combines both semantic

and instance segmentation so that the panoptic mask can be represented by a 2-

channel image � one channel for the class ID and the other one for the instance ID.

The authors use 8 bits to represent each pixel so that we get an H ×W × 16 analog

bit mask for an H × W image. The instance IDs are shu�ed each time the same

image is shown to the network, similar to the randomization strategies in the earlier

papers. Since they use 8 bits to represent instance IDs, this imposes a limit of 256

on the maximum number of object instances that can be detected by the network.

The authors train the model by corrupting the analog bit mask with noise and

training the network to denoise this corrupted mask. An important di�erence in the

bit encoding scheme here as compared to [50] is that the bits are scaled and shifted to

[−b, b] instead of [−1,+1] that was used by the latter. The parameter b has signi�cant

impact on performance by a�ecting the signal-to-noise ratio (SNR) of the corrupted

masks - smaller b leads to lower SNR and thus better models since masks become

more di�cult to denoise which in turn allows a better denoising model to be trained.

The authors show empirically that b = 0.1 works better than b = 1.0.
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This paper brie�y considers video panoptic segmentation too, but only for the

streaming or online setting. The network takes only one frame as input so it does

not fully utilize video information. Video denoising is instead performed by simply

concatenating the predicted masks from previous timesteps to the noisy mask for the

current timestep. This network is supposed to be able to do implicit frame-to-frame

tracking, although no results are presented for the same. In fact, the entire video

segmentation portion of the paper seemed like an afterthought rather than a core

component of the paper.

2.2 Language modeling in Visual Recognition

This section provides additional examples of language modeling in computer vision.

These models are categorized by the principal vision tasks that they address, although

many of these are multi-task models that can handle multiple tasks simultaneously.

2.2.1 Learnt Tokenization

The speci�c way in which the output of a vision task is discretized and tokenized

can be either designed manually or it can be learnt from data. There are many more

methods in the �rst category because learning the tokenization strategy is

apparently quite di�cult and requires large amounts of data and computation.

Learnt tokenization is also less satisfying from the perspective of interpretability.

All the Pix2Seq methods covered so far are examples of manual tokenization. This

section provides two examples of learning the tokenization strategy from data while

the next section provides more examples of manually designed tokens.

2.2.1.1 Depth Estimation

UViM [84] is a multi-task model from Google DeepMind that supports depth

estimation in addition to panoptic segmentation and image colorization. It proposes

a two-stage architecture with a base model and a language model that are trained

separately. It also proposes the so-called restricted oracle which learns to tokenize

the dense visual output. The latter may, for example, be the depth image,

segmentation mask, or colored image. The restricted oracle takes this visual output

as its input and produces a �xed-sized sequence of tokens, referred to as the guiding

code. The base model takes this code as an additional input along with the source
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image and is trained jointly with the oracle to reconstruct the visual output using a

standard reconstruction loss like pixelwise cross-entropy or mean squared error.

This e�ectively makes the oracle and the base model respectively equivalent to the

encoder and decoder components of an autoencoder that learns to reconstruct the

visual output within the constraint of a �xed-sized discrete bottleneck in the

middle, as represented by the guiding code.

The oracle is then frozen and the language model is trained to reproduce its

discrete output from the source image alone. Note that the oracle is used only

during training. During inference, the language model, which learnt to mimic the

oracle output, produces the guiding code from the input image alone and this goes

into the base model along with the image to produce the dense visual output. The

authors use the standard vision transformer (VIT) [34] architecture for both the

base model and the oracle, along with a standard encoder-decoder transformer

architecture [85] for the language model, where the latter also has a VIT backbone.

Training the oracle in stage 1 is di�cult because the discrete bottleneck it imposes

does not have a gradient. The authors solve this by mapping the embeddings to be

quantized to their nearest-neighbours in a �xed-sized dictionary of �xed-dimensional

embeddings [86]. Training in this way also turned out to be unstable and they had

to use additional tricks including the Linde-Buzo-Gray splitting algorithm [87] to

cull suboptimal embeddings.

2.2.1.2 Instance Segmentation

AiT [88] is another multi-task model that supports depth estimation and instance

segmentation. AiT employs a similar two-stage architecture as UViM and a VQ-VAE

based tokenizer [86] to learn the tokenization strategy. The authors refer to the base

model, oracle and language model of UViM as the tokenizer, detokenizer and tasks

solver respectively. They propose two new techniques to improve the performance of

this model. The �rst one is to replace the standard one-hot tokens that are typically

used in language modeling with the so-called soft tokens. A soft token is represented

by a probability distribution over the vocabulary and when such a token is to be fed

into the detokenizer or the autoregressive token-predictor, its embedding is generated

by taking the weighted average of the embeddings of all the tokens in the vocabulary.

The second novelty is a mask augmentation technique to handle corrupted or missing

values in the label image. This is particularly common in depth estimation where

occluded areas do not have their depth de�ned. The authors randomly mask patches
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of the label image with valid values so the VQ-VAE tokenizer learns to �ll in the

known values of these patches and this apparently helps it to predict the values of

missing patches as well.

2.2.2 Manual Tokenization

2.2.2.1 Single Object Tracking

SeqTrack [52] is an example of performing single object tracking (SOT) with language

modeling though it performs only frame-to-frame tracking and therefore does not

bene�t from long-term motion information. SeqTrack shares much of its design with

Pix2Seq, including the encoder-decoder architecture comprising an image encoder

with VIT [34] backbone and an autoregressive sequence decoder. It likewise represents

each object with 4 tokens (although in a slightly di�erent [x, y, w, h] format that

encodes box center and size rather than corner coordinates), discretizes image-space

into bins (4000 in SeqTrack vs. 2000 in Pix2Seq) and uses shared tokens for both x

and y coordinates. However, since it needs to output the position of only one object

in each frame, it is able to restrict the maximum sequence length to 5. The SOS

token followed by x, y, w, h from the previous frame becomes the input sequence and

x, y, w, h for the current frame followed by the EOS token is the output sequence.

The authors enlarge the template image to the same size as the search image by

adding nearby background to the bounding box patch, which they found to help

improve performance. They then extract features from both patches using the VIT

backbone, concatenate these features and feed them into the encoder to produce the

�nal features that combine information from both images. However, only a subset of

these combined features that correspond to the search image are fed into the

decoder, along with the input sequence, to produce the output sequence that

represents the position of the object in the current frame. They still employ the

usual SOT heuristics like online template updating and window penalty to improve

their localization accuracy. SeqTrack is relatively heavy on hardware requirements

since the authors needed 8 × Tesla A100 80 GB GPUs with combined 640 GB GPU

memory to be able to train it with a batch size of 64. It also needs a lot of training

data since they had to combine training data from 4 large datasets � COCO [89],

LaSOT [90], GOT-10k [91], and TrackingNet [92]. It is comparatively light at

inference, however, since it can run at 5 - 40 FPS on a single Geforce RTX 2080 Ti

GPU, depending on the size and input resolution of the VIT backbone.
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2.2.2.2 Vision-Language Tasks

This section covers some examples of vision-language (VL) tasks that combine images

with text input or output.

2.2.2.2.1 VL Tracking

VL Tracking is a more complex version of SOT where the object to be tracked is

speci�ed by a natural language description in addition to the bounding box. MMTrack

[53] applies language modeling to VL Tracking, with an overall methodology very

similar to SeqTrack, except the obvious di�erence that it uses both the image and

natural language description as inputs. It uses a similar encoder-decoder architecture

but with separate encoders for image and text inputs - RoBERTa-Base [93] for text

and OSTrack [94] for image - followed by a single autoregressive decoder. The main

novelty here is in the form of the composite conditional queries that are composed of

two parts - a language query with text embedding and a vision query with bounding

box coordinates. Training MMTrack is much less demanding on hardware when

compared to SeqTrack. The authors were able to train it on only a couple of Geforce

RTX 2080 Ti GPUs with a total of only 22 GB GPU memory, albeit with a reduced

batch size of 32. It was shown to be capable of running inference on a single 2080 Ti

at 36 FPS so its inference speed is comparable to SeqTrack.

2.2.2.2.2 Referring Image Segmentation

Referring image segmentation (RIS) is a VL task whose objective is to create the

instance segmentation mask of an object given the image and a natural language

description of the object to be segmented. Unlike standard instance segmentation

which only requires objects belonging to a prede�ned set of classes to be segmented,

RIS involves segmenting any objects that can be described by a natural language

sentence. PolyFormer [57] uses language modeling to accomplish this by

representing the mask with a sequence of polygons whose vertices are output

autoregressively. This is very similar to the instance segmentation component of the

multi-task version of Pix2Seq [49]. The primary di�erence between the two is that

the latter accepts a bounding box and class as input to specify the object to be

segmented while the former takes a natural language description of the object.

Another di�erence is that PolyFormer uses a regression-based decoder which

outputs the �oating-point coordinates of the polygon vertices instead of discrete
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tokens, supposedly in order to increase localization accuracy by eliminating the

quantization loss. It accomplishes this by using bilinear interpolation [95] to

generate feature embeddings for �oating point coordinates from those of the nearby

indexed locations. Similar to [49], PolyFormer allows the object to be represented

by multiple disconnected polygons by using a special separator token between the

vertices of these polygons.

SeqTR [96] is another multi-task model that does RIS, in addition to other

visual grounding tasks like phrase localization and referring expression

comprehension. Similar to PolyFormer, it casts visual grounding as a

point-prediction problem where either the bounding box or the binary segmentation

mask is represented as a sequence of discrete coordinate tokens. Similar to UniTab,

SeqTR is heavily inspired by Pix2Seq and uses the same coordinate discretization

strategy along with the same encoder-decoder architecture, adapted to take text as

input in addition to the image. The text is encoded by a one layer bidirectional

gated recurrent unit (GRU), followed by max pooling the features along the channel

dimension and then taking the Hadamard product with the image features to fuse

them together. It claims to propose a new mask contour sampling scheme to convert

binary masks into polygons but it is not clear how this is di�erent from the

representation in Polyformer and [49], except that it does not appear to support

multiple polygons to represent disjointed masks.

2.2.2.2.3 Grounded Image Captioning

Grounded Image Captioning a VL task that combines object detection and image

captioning. It involves accompanying the text description of standard image

captioning with bounding boxes in such a way that each noun entity in the

description is aligned with a single box. UniTab [56] is a multi-task model that

performs four di�erent VL tasks including grounded captioning, visual grounding,

image captioning and visual question answering, although its focus is on grounded

captioning. UniTab is strongly inspired by Pix2Seq and can be thought of as an

extension of the same that adds text tokens to the existing bounding box tokens. It

uses the same transformer based encoder-decoder architecture as Pix2Seq, with the

main di�erence being that it takes text as input alongside the image, and uses

RoBERTa-Base [93] and ResNet-101 [12] as the respective feature extractors. It

adds two special tokens - <obj> and </obj> - that are respectively inserted before

any word to be grounded and after the box tokens corresponding to that word. This
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token allows the model to seamlessly switch between the text and bounding box

tokens that are both part of a single shared vocabulary.

2.2.2.3 Set Prediction

This section covers two examples of output tokenization being cast as a set prediction

problem [97, 98] instead of language modeling. They are both architecturally inspired

by Pix2Seq but di�er from it in having �xed-sized outputs like conventional models

and using bipartite graph matching loss [78, 99] instead of autoregressive loss.

2.2.2.3.1 3D Object Detection

Point2Seq [54] has applied tokenization for 3D object detection from point clouds.

The authors emphasize three main di�erences from Pix2Seq. Firstly, Pix2Seq

outputs a single sequence representing all the objects while Point2Seq represents

each object by a sequence and outputs the sequences of all the objects in parallel.

Secondly, Point2Seq uses a continuous word representation instead of discrete tokens

to make it easier to integrate with existing loss functions designed for 3D object

detection. Finally, it uses a scene-to-sequence decoder instead of a transformer since

it works better for detecting small and sparse targets that are common in 3D object

detection. Point2Seq represents each 3D object by 5 words - region, location,

orientation, size, category - where each word is composed of two or three parameters

except the category word which has only one. Its architecture is composed of three

main parts � a 3D backbone [100, 101] that converts the point cloud into a

Bird-Eye-View (BEV) feature map, a scene to sequence decoder that takes the BEV

feature map along with region cues as input and outputs the 5 words for each 3D

box, and a similarity based sequence matching scheme to match the predicted

sequences with the GT sequences for computing the set loss [78]. The authors tested

this method on the ONCE [102] and Waymo Open [103] datasets and showed it to

be superior to both point [100] and anchor-based [101] conventional detectors.

2.2.2.3.2 Pose Estimation

Obj2Seq [55] is a multi-task framework that performs human pose estimation in

addition to object detection and image classi�cation. It is somewhat similar to the

multi-task version of Pix2Seq [49] and di�ers from the latter primarily in using object

queries and a bipartite graph matching loss [78, 99] as opposed to the autoregressive
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loss [33] that is standard in language modeling. In fact, it can more appropriately

be conceptualized as an extended version of DETR [78, 99], with a class-conditioned

query generator, rather than a general-purpose sequence generation framework for

object-level vision tasks that it claims to be.

Obj2Seq employs a two-step pipeline. It �rst takes an image along with a set of

class prompts as input and detects all objects belonging to each class in the prompt.

It then passes the corresponding object queries to the so-called object transformer

decoder which outputs a sequence describing the required attributes for each object.

The speci�c attributes that are output in the second step depend on which task is to

be performed. For example, it outputs the location and size for object detection and

a set of keypoints for pose estimation. The latter is composed of 38 attributes, out

of which 4 are for the bounding box and the remaining represent the x and y o�sets

of 17 keypoints. Similar to DETR, the number of detected objects is �xed as part

of the architecture and this brings back the problem of sparsity that we are trying

to solve with language modeling. For example, in their experiments on the COCO

dataset, the authors set this to 100 objects per class and then select the top 20 classes

for detecting the objects out of the total 80 classes in this dataset. This results in a

total of 2000 objects which greatly exceeds the actual number of objects that might

be present in any image.

2.3 Language modeling in Generalist Models

There has also been a trend towards trying to train a single generalist model that

is able to output tokens corresponding to a variety of heterogenous tasks from many

di�erent and completely unrelated domains and modalities. Unfortunately, most of

these models require vast amounts of data and industrial-levels of computational

resources to be trained so they are of limited academic interest.

For example, GATO [104] was trained to perform 604 diverse tasks from multiple

modalities. These included stacking blocks with a robotic arm, playing Atari video

games, captioning images, chatting and many more tasks, all using the same network

with the same weights. However, it required a 16 × 16 TPUv3 slice with a total of

8 TB of memory to train, which renders it completely infeasible in most academic

settings. There is nothing particularly novel or clever about the tokenization strategies

used in GATO since it relies mainly on the brute-force of the large network size and

truly vast amounts of training data to make it work. Text and images are encoded
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by SentencePiece [105] and VIT [34] while continuous �oating point values are mu-

law encoded into the range [-1, 1] and then discretized into 1024 bins. The token

embeddings are likewise generated using standard techniques, including a lookup

table into a learnable embedding matrix for text, discrete and continuous values and

a single ResNet block for image patches. GATO was trained on a combination of

control-task and vision�language datasets, although > 85% weightage was given to

the former which consisted of 596 tasks, 63M episodes and 1.5T tokens.

OFA [106] is another multi-modal generalist model, although not quite as

comprehensive as GATO, and restricted to vision and language domains. It

supports 5 cross-modal tasks - visual grounding, grounded captioning, image-text

matching, image captioning, and visual question answering - in addition to 2 vision

tasks - image in�lling an object detection - and a single language task � text

in�lling. Its multi-model training data is also much smaller than GATO, being

comprised only of 20M image-text pairs, though, unlike GATO, it needed to be

�ne-tuned on task-speci�c datasets before it could be tested on each task. Also, the

model sizes in OFA going upto 940M parameters and are still too large for most

academic settings.

Uni�ed-IO [107] is another example that combines vision tasks like pose

estimation, object detection, depth estimation and image generation with VL tasks

like region captioning and referring expression and NLP tasks like question

answering and paraphrasing.
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Chapter 3

River Ice Segmentation

This chapter is adapted from [70] and details my adaptation of conventional deep

learning based semantic segmentation models for river ice segmentation. This is

the �rst of the three projects where I applied conventional modeling to solve a novel

problem. This chapter is focused only on the conventional models and the comparison

of these models with my proposed language models is deferred to Sections 8.4.3.1

and 8.5. This work was done in collaboration with the Department of Civil and

Environmental Engineering at the University of Alberta.

3.1 Introduction

The study of surface ice concentration and variation over time and place is crucial for

understanding the process of river ice formation. The computation of temporal and

spatial ice distributions can help to validate models of this process. The additional

ability to distinguish frazil ice from the sediment-carrying anchor ice can also improve

our estimation accuracy of the sediment transportation capacity of the river. Towards

this end, a large amount of video data has been captured using an unmanned aerial

vehicle (UAV) and bridge-mounted game cameras from two Alberta rivers during the

winters of 2016 and 2017. My objective in this chapter is to analyze this data and

perform dense pixel-wise segmentation on these images to automatically compute the

concentrations of the two types of ice.

The main challenge in this task is the lack of labeled data since it is extremely

di�cult and time consuming to manually segment images into the three categories,

owing to the arbitrary shapes that the ice pans can assume. As a result, there

are currently only 50 labeled images (Figure 3.1) to accompany 564 unlabeled test
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Figure 3.1: A sample training image with corresponding label where white, gray and
black pixels respectively denote frazil ice, anchor ice, and water.

images and over 100 minutes of unlabeled high resolution (4K) videos. These labeled

images along with 205 additional images with only ice-water labeling had previously

been used to train a Support Vector Machine (SVM) classi�ers [2, 3, 4] to perform

segmentation. These models provided water-ice classi�cation accuracies ranging from

80.1% - 93.5% and surface ice concentration errors of 0.7% - 3.3%. Though these

methods were fairly successful at separating ice from water, they had di�culty in

distinguishing between frazil and anchor ice pans, especially in cases where they are

not physically separated and are hard to di�erentiate, even for human eyes. This

chapter is mainly concerned with handling these more di�cult cases.

To address the limitations of SVM-based ice classi�cation, this work uses recent

semantic segmentation methods based on deep CNNs. Since CNNs need large

amounts of training data to work well, several data augmentation techniques

(Section 3.3.3) have been used to generate enough training images. Detailed

ablation studies have also been performed (Section 3.4.2.2, 3.4.2.3) to evaluate the

extent to which few and partially labeled training images can be used to obtain

results that are conducive to generating further training data with minimum human

e�ort and thus set up a bootstrapping process.
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3.2 Background

Surface ice is formed on rivers in cold regions like Canada when the air temperature

remains below freezing for extended periods of time. It begins with the formation

of frazil ice crystals and �ocs as water columns become supercooled [108]. Being

naturally adhesive [109], these ice crystals sinter together to form larger �ocs whose

increasing buoyancy brings them to the surface as slush. As the moving slush is in

turn subjected to freezing temperatures, it forms solid frazil pans and rafts which can

become circular with upturned edges on colliding with each other. Figure 3.1 shows

examples of these formations.

Anchor ice can be formed on the river bed by direct deposition of frazil particles

and �ocs or by in-situ growth of ice crystals on the bottom sediments [110]. The

growth of anchor ice accumulations occurs in multiple stages [111] and in some cases

they can become thick enough to reach the water surface. However, as the thickness

increases, the hydrodynamic drag and buoyancy forces also increase which may cause

the anchor ice to release from the bed. Warming of the water by solar radiation can

also cause the release of anchor ice. Once released, the ice �oats to the surface forming

anchor ice pans which can carry entrapped sediments and other materials from the

river bed and transport them downstream.

An improved understanding of the importance of such transportation to the

overall sediment budget of the river would be useful for developing and validating

models of river processes. Thus, we require accurate estimates of the surface

concentrations of sediment-carrying anchor ice in the river for which �eld

measurements are unavailable. Note that, in order to accurately estimate the

sediment transported by anchor ice, we also need to know the sediment

concentration (kg/m3) in the ice and the thickness of the pans. In this chapter, we

are only considering the problem of obtaining accurate estimates of the surface

concentration of the pans from digital image data. Since there is far too much data

for manual analysis to be practical, one of the objectives of this work is to estimate

this concentration from digital images and videos of the river surface in an

automated or semi-automated manner using deep learning. Distinguishing ice from

water is relatively straightforward and has been accomplished fairly successfully

using simple techniques like thresholding [112] as well as classic machine learning

methods like SVM with handcrafted features [2, 3, 4]. The main goal of this work is

therefore to be able to distinguish between frazil and anchor ice pans with high
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accuracy using state of the art deep learning techniques.

River ice images bear a signi�cant resemblance to microscopic images of cells in the

bloodstream which initially suggested the use of existing cell classi�cation networks

from medical imaging. There are several promising studies employing a range of

architectures including ConvNet [113], LeNet [114], Resnet [115] and Inception [116]

that might have provided the base networks for such an approach. However, a more

detailed examination of these studies revealed that medical imaging tasks are mainly

concerned with the detection and localization of speci�c kinds of cells rather than

performing pixel-wise segmentation that is necessary to estimate ice concentration.

Further, unsupervised and semi-supervised video segmentation techniques were

considered to better utilize the large amount of unlabeled but high-quality video

data that has been collected. Most of these methods use optical �ow for performing

motion segmentation [117], though some appearance based [118] and hybrid [119, 120]

methods have also been proposed. An unsupervised bootstrapping approach has been

proposed in [121] where motion segmented images are used as training data to learn

an implicit representation of this object under the assumption that all moving pixels

belong to the same foreground object. This learnt model is then used to re�ne the

motion segmentation and the improved results are in turn used to bootstrap further

re�nements.

Unfortunately, two underlying assumptions in [121], and motion segmentation,

in general, render such methods unsuitable for the current task. First, they assume

that there is a single moving foreground object whereas the objective here is to

distinguish between two di�erent types of moving ice, both of which are foreground

objects. Second, they assume a static background while the river, which makes up

the background here, is itself moving. Preliminary attempts to perform optical

�ow-based motion segmentation on the river ice videos con�rmed its unsuitability

for this work. There is a method [122] for performing simultaneous optical �ow

estimation and segmentation which might be able to address these limitations to

some extent. However, it had only a Matlab implementation available that was far

too slow for our purpose so its further exploration was deferred to future work.

Finally, it seems that very limited existing work has been done on the application

of deep learning for surface ice analysis as the only one that was found [123] uses

microwave sensor data instead of images.
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Table 3.1: Trainable parameter counts for the four models

Model DeepLab UNet SegNet DenseNet
Parameters 41,050,787 12,284,019 11,546,739 90,948

3.3 Methodology

3.3.1 Data Collection and Labeling

Digital images and videos of surface ice conditions were collected from two Alberta

rivers - North Saskatchewan River and Peace River - in the 2016-2017 winter seasons.

Images from North Saskatchewan River were collected using both Reconyx PC800

Hyper�re Professional game cameras mounted on two bridges in Edmonton as well

as a Blade Chroma UAV equipped with a CGO3 4K camera at the Genesee boat

launch. Data for the Peace River was collected using only the UAV at the Dunvegan

Bridge boat launch and Shaftesbury Ferry crossing. The game camera captured 3.1

megapixels resolution still images at one-minute frequency while the UAV camera

captured 4K videos (8.3 megapixels) of up to 10 minutes duration.

Large 3840× 2160 UAV images were cropped into several 1280× 1080 images to

make labeling more convenient while the smaller 2048 × 1536 game camera images

were only cropped to remove text information added by the camera software. More

than 200 of these images were labeled for binary ice-water classi�cation but only 50

of these were labeled into 3 classes to distinguish between the two types of ice and

the water. Only the latter images were used for training in this work. More details

of the data collection and labeling process along with images of the camera setups

are available in [3, Section 4.1]. We make both labeled and unlabeled data publicly

available as the Alberta River Ice Segmentation (ARIS) dataset [124].

3.3.2 Image Segmentation

Since neither cell classi�cation nor video segmentation methods seemed promising, it

was decided to rely only on supervised image segmentation. After extensive research

through several excellent resources for these methods [125, 126], four of the most

widely cited and best performing methods with publicly available implementations

were selected. Descriptions of these methods that follow have been kept brief and

high-level because of the empirical nature of this work and the target audience.

The �rst of these models is UNet [7] from the medical imaging community. It was
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introduced for neuronal structure segmentation in electron microscopic images and

won the ISBI challenge 2015. As the name suggests, UNet combines a contracting

part with a symmetric expanding part to yield a U-shaped architecture that can both

utilize contextual information and achieve good localization owing to the two parts

respectively. It was shown to be trainable with relatively few training samples while

relying heavily on patch based augmentation which seemed to make it an ideal �t for

this study.

The second network is called SegNet [9] and was introduced for segmenting

natural images of outdoor and indoor scenes for scene understanding application. It

uses a 13-layer VGG net [8] as its backbone and features a somewhat similar

architecture as UNet. The contracting and expanding parts are called encoder and

decoder respectively. The upsampling units in the decoder are not trainable, instead

sharing weights with the corresponding max-pooling layers in the encoder. Keras

[127] implementations were used for both UNet and SegNet, available as part of the

same repository [128]1.

The third method is called DeepLab [131] and is one of the best performing

methods in the Tensor�ow research models repository [132]. It uses convolutions

with upsampled �lters - the so called atrous convolutions [133] - both to achieve

better control over the feature response resolution and to incorporate larger context

without increasing the computational cost. It also uses pyramidal max pooling to

achieve scale-invariance and combines its last layer output with a fully connected

conditional random �eld layer to improve localization accuracy while maintaining

spatial invariance. This work uses a more recent version called DeepLabv3+ [5]

which adds a decoder module to produce sharper object boundaries and uses the

powerful Xception backbone architecture [6] for further performance improvements.

DeepLab was also tested with two newer backbone architectures: Auto DeepLab

[134], a segmentation speci�c architecture discovered by neural architecture search

[14, 15], and a modi�ed version of ResNet101 [12] where the �rst 7 × 7 convolution

has been replaced by three 3 × 3 convolutions similar to PSPNet [135]. The three

backbones were found to perform quite similarly and the corresponding results have

therefore been relegated to Section A.1. The fourth method is based on the

DenseNet architecture [10]. To the best of our knowledge, this architecture has not

yet been applied for segmentation, but is included here owing to its ability to

1This repository also includes two variants of the FCN architecture [129, 130] that were also tested
but did not perform as well as UNet and SegNet so are excluded here.
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provide comparable performance with a much smaller network size. The basic idea

of DenseNet is to connect each hidden layer of the network to all subsequent layers

so that the feature maps output by each layer are used as input in all subsequent

layers. This allows better multi-resolution feature propagation and reuse, while

drastically reducing the total number of parameters and mitigating the vanishing

gradient problem. Results are only included here for a 9-layer architecture, though

experiments were done using architectures with up to 21 layers which did not

provide any performance improvement. As shown in Table 3.1, DenseNet has by far

the fewest parameters of the four models and is over two orders of magnitude

smaller than the next smallest model.

3.3.3 Data Augmentation and Training

A simple sliding window approach was used to extract a large set of sub-images or

patches from each training image. The window was moved by a random stride between

10% to 40% of the patch size P . This process was repeated after applying random

rotations to the entire image between 15 to 345 degrees divided into four bands of

equal width to allow for multiple rotations for each image. Finally, each patch was

also subjected to horizontal and vertical �ipping to generate two additional patches.

All resultant patches were combined together to create the dataset for each P . For

testing a model, patches of size P were extracted from the test image using a stride

of P , segmentation was performed on each patch and the results were stitched back

to get the �nal result.

All models were trained and tested using patch sizes

P ∈ {256, 384, 512, 640, 800, 1000}. DenseNet turned out to perform best with

P = 800 while all other models did so with P = 640. All results in Section 3.4 were

therefore obtained using these patch sizes. The 50 labeled images were divided into

two sets of 32 and 18 for generating the training and testing/validation images,

respectively. Results on some of the unlabeled videos (Section 3.4.3.2) were also

generated using models trained on all 50 images.

UNet and SegNet were both trained for 1000 epochs and the training and

validation accuracies were evaluated after each. The trained model used for testing

was the one with either the maximum validation accuracy or the maximum mean

accuracy depending on how well the training and validation accuracies were

matched in the two cases. DeepLab was trained for between 100K and 200K steps.
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Batch size of 10 was used for P = 256 and 2 for P ∈ {640, 800, 1000}, with the

latter chosen due to memory limitations. P = 384 was tested with batch sizes 6 and

8 while P = 512 was tested with 6 and 2. Most tests were conducted using the

default stride of 16 with corresponding atrous rates of [6, 12, 18], though one model

with P = 256 was also trained using Stride 8 with atrous rates of [12, 24, 36].

DenseNet training was a bit more complicated. Simply using all the pixels for

training caused the network to rapidly converge to a model that labeled all pixels with

the class that had the most training pixels - water in most cases. To get meaningful

results, the number of pixels belonging to each of the classes had to be balanced.

Therefore 10, 000 random pixels belonging to each class were selected in each epoch

using Gaussian sampling, with a di�erent set of pixels chosen each time, and only

these were used for computing the loss. An epoch here refers to a single pass over

all images in the training set while training the network which consists of multiple

such passes till convergence is achieved. Training images with less than 10, 000

pixels in any class were discarded. The number of epochs were between 1000− 1600

for all P . In all cases, the performance metrics in Section 3.4.1 were computed on

the validation set every 10 epochs and training was stopped when these became high

enough or remained unchanged for over 100 epochs.

3.3.4 Ablation Experiments

One of the principal di�culties in training deep models for performing segmentation

is the lack of su�cient labeled data due to the tedious and time-consuming manual

segmentation of images. This problem is exacerbated in the current task because of

the di�culty in distinguishing between the two types of ice that exhibit both high

intraclass variation and signi�cant appearance overlap, in addition to arbitrary and

di�cult to delineate shapes. As a result, a highly desirable attribute of a practically

applicable model would be its ability to learn from as few images as possible, including

partially labeled ones.

Two di�erent types of ablation experiments were performed in order to explore

the suitability of the tested models in this regard. The �rst one was to train the

models using di�erent subsets of the training set. The second one was to consider

the labels from only a small subset of pixels in each image to simulate the scenario of

partially labeled training data. Note that the input image itself was left unchanged

so that the models did have access to all the pixels but the loss function minimized
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during training was computed using only the labels from the selected pixels.

SegNet exhibited similar performance patterns as UNet in the ablation tests, while

being slightly worse on average, probably because they share the same base network.

SegNet results have thus been excluded in Section 3.4.2.2 and 3.4.2.3 for the sake of

brevity. All the code and data used for training, augmentation and ablation tests

is made publicly available [136][137], along with detailed instructions for using it, in

order to to facilitate further work in this domain and easy replication of our results.

3.4 Results

3.4.1 Evaluation Metrics

3.4.1.1 Segmentation

Following evaluation metrics are typically used in image segmentation [130, 138]:

� Pixel accuracy:

pix_acc =

∑
i nii∑
i ti

(3.1)

� Mean accuracy:

mean_acc =
1

C

∑
i

nii

ti
(3.2)

� Mean Intersection-Over-Union (IOU):

mean_iou =
1

C

∑
i

nii

ti +
∑

j nji − nii

(3.3)

� Frequency Weighted IOU:

fw_iou =
∑
k

(tk)
−1

∑
i

tinii

ti +
∑

j nji − nii

(3.4)

where C is the number of classes, nij is the number of pixels of class i predicted

to belong to class j (1 ≤ i, j ≤ C), and ti is the total number of pixels of class

i in the ground truth. Note that accuracy metrics measure only the rate of true

positives while IOU also accounts for false positives. Hence, accuracy and IOU
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Table 3.2: Class frequencies (%) in the two test sets indicating the ratio of pixels that
are classi�ed as water and the two types of ice. The 18-image test set was used for
most of the experiments while the 46-image set was used for the image and pixel-level
ablation tests (Sections 3.4.2.2, 3.4.2.3).

test images water anchor ice frazil ice
18 55.7 17.5 26.8
46 61.0 16.6 22.4

are respectively equivalent to recall and precision metrics that are more widely

used in pattern recognition and are referenced thus in the remainder of this thesis.

Note also that pix_acc is a frequency weighted version of mean_acc and is thus referred

to as frequency weighted (fw) recall in Table 3.3.

Using these metrics to measure the combined segmentation performance over all

three classes can lead to biased results when the number of image pixels is not evenly

distributed between the classes. This is particularly so in the current work whose

main objective is to distinguish between the two types of ice. However, as shown in

Table 3.2, more than half the pixels in both sets of test images are of water while

anchor ice, which is the most di�cult to segment, covers only about 17% of the pixels.

Therefore, results in the next section are mostly restricted to class-speci�c versions

of these metrics.

3.4.1.2 Ice Concentration

In addition to these segmentation metrics, the estimated ice concentration accuracy

has also been used as an additional metric. This is computed through a three-step

process. First, column-wise ice concentration is obtained for each frame by computing

the percentage of all pixels in each column that are classi�ed as ice (combined, anchor

or frazil). These values are stacked together for all columns from left to right to form

a vector of the same size as the frame width. Next, the mean absolute error (MAE)

is computed between the ice concentrations vectors produced by the GT and a model

prediction to obtain the overall accuracy for that frame. Finally, the median of MAE

values over the entire test set is taken as the �nal metric. Median has been preferred

over mean as being signi�cantly more robust to outliers.
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3.4.1.3 Unsupervised

The above metrics are only applicable to labeled images so that unlabeled videos

can only be evaluated qualitatively but the conclusions thus obtained are usually

somewhat subjective. In order to ameliorate this, an unsupervised metric named

mean ice concentrations di�erence has been proposed to measure the consistency

of segmentation results between consecutive video frames as a proxy for its accuracy.

This metric is computed as the mean absolute di�erence between the ice concentration

vectors of each pair of consecutive frames in the video. Segmentation consistency over

the entire video is summarized by taking the average of these di�erences over all pairs

of consecutive frames. The rationale behind this metric is that, since the ice and/or

river are moving slowly and the video speed in frames per second (FPS) is fairly high,

the ice concentration changes very gradually and its di�erence between consecutive

frames remains small. A model that fails to generalize well to the videos would give

inconsistent results in corresponding patches from nearby frames that would therefore

result in a high mean concentration di�erence.

Experiments were also done using direct pixel-wise di�erences between the

segmentation masks themselves, both with and without incorporating motion

estimation by optical �ow [139, 140, 141]. Results were less consistent, however, and

thus excluded here.

3.4.2 Quantitative Results

3.4.2.1 Overview

As shown in Table 3.3, all of the deep models provide signi�cant improvement over

SVM for all cases except a couple instances of frazil ice. This is most notable for

anchor ice where an increase of 12−20% in recall and 6−20% in precision is achieved

in absolute terms, with the respective relative increases being 19 − 34% and 13 −
44%. It is noteworthy that the two best models � DeepLab and UNet � provide

greater performance improvement, in both absolute and relative terms, with respect

to precision than recall over all 4 categories. This is particularly impressive since high

precision is usually harder to achieve than recall, as testi�ed by its lower values across

all models and categories.

Further, we see that DenseNet and SegNet fall slightly behind SVM on frazil ice,

especially with respect to recall, even though they have the two highest recalls on

anchor ice. This trend of an inverse relationship between anchor and frazil ice recall
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Table 3.3: Segmentation recall and precision along with ice concentration median
MAE for SVM and all deep models trained and tested on the 32 and 18 image
sets respectively. The fw in ice+water (fw) stands for frequency weighted and the
corresponding recall and precision metrics refer to pix_acc (Eq. 3.1) and fw_iou (Eq.
3.4) as detailed in Section 3.4.1. Relative increase over SVM in recall and precision is
computed as (model_value−svm_value)/svm_value×100 while the relative decrease
in median MAE is computed as (svm_mae− model_mae)/svm_mae× 100.

was consistently observed in the ablation tests too (Section 3.4.2.2). It seems that

learning to better distinguish anchor from frazil ice often comes at the cost of either

a decrease in the capability to recognize frazil ice itself or an overcorrection which

causes some of the more ambiguous cases of frazil to be misclassi�ed as anchor ice.

It is likely that the loss function can be minimized equally well by over-�tting either

to frazil or to anchor ice, thus leading to two stable training states.

Comparing between the deep models themselves, DeepLab turns out to be the

best overall, followed closely by UNet. It is interesting to note that, while DenseNet

and SegNet provide better recall with anchor ice, their corresponding precision is

lower. Since recall does not penalize false positives while precision does, this probably

indicates that DenseNet and SegNet misclassify frazil as anchor ice more often than

DeepLab and UNet, which is consistent with the inverse relationship hypothesis.

Further, it can be seen that the performance di�erence between deep models and

SVM decreases when all three classes are considered and even more so when the

averaging is frequency weighted. As mentioned before, these are the cases where high

segmentation accuracy of water starts to dominate. Finally, the greater di�culty of

recognizing anchor ice over frazil ice is con�rmed by its signi�cantly lower recall and

precision in almost all cases.
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Table 3.3 shows the ice concentration estimation accuracy of all the models in

terms of median MAE. It should be noted that recall and precision are better

indicators of raw segmentation performance since MAE su�ers from an averaging

e�ect where false positives can cancel out false negatives to provide an overall

concentration value that happens to be closer to the ground truth. As a result,

MAE does not always provide a true indication of the actual recognition ability of

the model. As an example, SegNet has slightly better MAE than UNet on frazil ice

even though it has signi�cantly lower (9 − 16%) precision and recall. Nevertheless,

except for the single case of DenseNet with frazil ice, the deep models are

consistently better than SVM here too, especially on anchor ice. As with the

segmentation metrics, DeepLab is the best model and provides around 3% absolute

and 40% relative improvement over SVM.

3.4.2.2 Ablation study with training images

For this study, models were trained using 4, 8, 16, 24 and 32 images and each one was

tested using the same 18-image test set. Results for both anchor and frazil ice are given

in Figure 3.2. Contrary to expectation, a distinct pattern of improvement with more

images is not shown by most of the models. There is a slight improvement in anchor

ice performance but it seems too weak to clearly demonstrate model improvement

with increase in training images. A more likely conclusion is that the test set is just

too similar to the training set and does not contain enough challenging variation to

allow the extra information from additional training images to be re�ected in the

performance numbers. This is lent some credence by the fact that the 50 labeled

images were speci�cally chosen for their ease of labeling owing to the highly tedious

and time-consuming nature of performing pixel-wise segmentations, in addition to

the high degree of ambiguity and subjectivity in classifying ice in the more di�cult

cases. Combined with the fact that they were labeled by the same person, it would

not be unusual for them to be similar, both in terms of content and level of challenge.

The inverse relation between anchor and frazil ice recall that was observed in

the previous section is apparent here too. For instance, the plot lines for anchor

and frazil ice (Figure 3.2 (a),(c)) are virtually re�ections of each other for all models

including SVM, except perhaps for DeepLab. DeepLab itself exhibits nearly constant

recall, though with a clearer upward trend in precision. It is also overall the best

model, as in the previous section. SVM shows the strongest improvement in anchor

ice recall, along with the corresponding decline in frazil ice, while DenseNet does so
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Figure 3.2: Results of ablation tests with training images for (a-b) anchor ice and
(c-d) frazil ice. Note the variable Y-axis limits.

among the deep models. Also, Figure 3.2 (a) and (b) illustrate the superiority of deep

models over SVM for anchor ice recognition more clearly than Table. 3.3. DeepLab

and UNet largely maintain an appreciable superiority over SVM for frazil ice too

(Figure 3.2 (c), (d)), though the overall improvement there is less distinct. Finally,

DenseNet does seem to be the worst performing deep model, especially for frazil ice,

but its competitiveness is still noteworthy considering that it has over two orders of

magnitude fewer parameters than the other models (Table 3.1).
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Figure 3.3: Results of ablation tests with selective pixels for (a-b) anchor ice and
(c-d) frazil ice. Note the variable Y-axis limits.

3.4.2.3 Ablation study with selective pixels

This study was performed by training models using 2, 10, 100 and 1000 pixels per class

selected randomly from each P × P training patch. The training set was generated

from only 4 training images and not subjected to augmentation. Also, P = 640 was

used for all models including DenseNet to ensure that the number of training pixels
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remained identical for all of them. Further, in an attempt to counteract the limited

challenges available in the 18-image test set, these models were tested on all of the

remaining 46 labeled images. Finally, SVM was not included here because its super-

pixel based method [2] does not lend itself well to training using randomly selected

pixels.

Results are given in Figure 3.3. It turns out that selective pixel training has

surprisingly little impact on quantitative performance, except perhaps in the case of

UNet with anchor ice and DeepLab with frazil ice. Though there is a more strongly

marked upward trend in performance compared to training images (Figure 3.2), it is

not as signi�cant as would be expected. The case of 2 pixels per class is particularly

remarkable. When combined with the fact that the unaugmented training set

contained only 46 patch images, this training was done using only 92 pixels per class

or 276 pixels in all. This might be another indicator of the limited challenges

available in the test set. This is further con�rmed by the qualitative results on

videos (Section 3.4.3.2) that show a much more strongly marked di�erence than

would be inferred by these plots.

3.4.3 Qualitative Results

3.4.3.1 Images

Figure 3.5 shows the results of applying the optimal con�gurations of the four

models (as used in Section 3.4.2.1) to segment several images from the unlabeled

test set. Additional results are in Figures A.3 and A.4. Several interesting

observations can be made. Firstly, both UNet and SegNet misclassify water as frazil

ice in several cases where water covers most of the image, e.g. in image 3. DenseNet

too seems to be susceptible to this issue, albeit to a much lesser extent, though a

careful examination of its video results (Figure 3.4) shows this problem to be more

prevalent than the images alone indicate. Secondly, DeepLab results show the

largest degree of discontinuity between adjacent patches due to its tendency to

occasionally produce completely meaningless segmentations on some individual

patches. Image 5 is an example. Thirdly, and consistent with the quantitative

results of the previous section, DenseNet is overall the best performing model, even

though its results are slightly more fragmented than the others. This is particularly

noticeable in the more di�cult cases of distinguishing between frazil and anchor ice

when they both form part of the same ice pan. Images 1 and 7 are examples.
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Figure 3.4: Mean ice concentration di�erence between consecutive frames for (a)
both types of ice combined, (b) anchor ice, (c) frazil ice and (d) all three for SVM
sequences. Details of videos corresponding to the IDs are in Table A.3 and su�xes
c, a and f in (d) respectively refer to combined, anchor and frazil ice.

Qualitative results on labeled test image are available in the accompanying data

[137] as well as in Google Photos albums whose categorized links are given in Table

A.1 for convenience.
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3.4.3.2 Videos

Figure 3.5: Results of testing the deep models on unlabeled images: left to right: raw
image, UNet, SegNet, DeepLab, DenseNet Individual rows are referred to in the text
by numbers from 1-7 representing rows from top to bottom.
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All the deep models were evaluated on 1 to 2 minutes sequences from 5 videos

captured on 3 di�erent days and containing wide variations in the scale and form of

ice pans. SVM took 5 minutes to process each frame so could only be evaluated on

30 seconds of video 1 and 10 seconds each of videos 3 and 4. Also, selective pixel

models were only evaluated on videos 1 and 3. Results for all videos are available in

the accompanying data [137]. Tables A.3 and A.4 respectively provide details of the

tested sequences and categorized links for some of the results.

The most noticeable point in these results is that DeepLab is susceptible to

completely misclassifying randomly distributed individual patches, which can lead

to strong discontinuities when these patches are stitched together to create complete

frames and the corresponding video. This is quantitatively con�rmed by Figure 3.4

that shows the mean ice concentration di�erence between consecutive frames in all

of the videos for each of the two types of ice as well as both combined. It can be

seen there that DeepLab has signi�cantly higher values than both UNet and

DenseNet, being more than 3 times higher in several cases, while DenseNet almost

always has the smallest di�erence, thus indicating the most consistent segmentation

results. Apart from con�rming the limited challenges available in the labeled test

sets, this inversion of relative performance between the 3 models as compared to the

quantitative results in Section 3.4.2, shows that DenseNet is able to generalize to

new scenarios much better than DeepLab. The latter has a tendency to over�t to

the training images while UNet provides a good balance between generalization and

over�tting. Figure 3.4 (d) shows the concentration di�erences over the 3 sequences

on which SVM was also tested. SVM classi�es pixels in groups of super pixels so it

doesn't su�er from the issue of misclassifying entire patches that the deep models

are susceptible to. Even so, its generalization ability is poor enough to give

signi�cantly higher concentration di�erences as compared to both DenseNet and

UNet, though being slightly better than DeepLab. Moreover, this group

classi�cation technique has the disadvantage of giving blocky appearance to its

segmentation masks, whose boundaries are often too coarse to correspond well with

the actual ice pans.

Examination of the ablation test videos gives another important result that was

mentioned in Section 3.4.2.3 - selective pixel training has signi�cantly greater impact

in practice than indicated by Figure 3.3. The segmentation masks seem to become

more grainy and sparse as the number of pixels is decreased and there is a very

noticeable di�erence between using 2 and 1000 pixels. Similarly, a greater di�erence
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is apparent between the results produced by models trained on 4 and 32 images than

suggested by Figure 3.2.

3.5 Conclusions

This chapter presented the results of using four state of the art deep CNNs for

segmenting images and videos of river surface into water and two types of ice. Three

of these models - UNet, SegNet and DeepLab - are previously published and well

studied methods while the fourth one - DenseNet - is a new method, though based

on an existing architecture. All of the models provided considerable improvements

over previous attempts based on SVM. These were particularly signi�cant for the

most challenging case of anchor ice where around 20% increase in both recall and

precision were obtained by the four models combined. The single best model -

DeepLab - provided respective improvements of 13− 19% in absolute and 21− 44%

in relative terms. Frazil ice performance was slightly less impressive but still

surpassed SVM by 12− 14% in absolute and 16− 22% in relative terms. Signi�cant

improvements were obtained in ice concentration estimation accuracy too, with

DeepLab providing around 3% absolute and 40% relative decrease in MAE over

SVM for both types of ice.

Among the four models, DeepLab gave the best quantitative performance on the

labeled test set. It provided 5 − 10% improvement in precision while maintaining

similar recall rates for anchor ice and 3−15% better recall and precision for frazil ice.

However, it showed poor generalization ability by giving the worst qualitative results

on the unlabeled images and videos - up to 7-fold mean concentration di�erence on

the videos. DenseNet, on the other hand, gave relatively poor quantitative results but

demonstrated excellent generalization ability on the unlabeled data. UNet provided a

good balance between the two and might be taken to be the single best model tested

here, if such a one needs to be chosen.
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Chapter 4

Animal Detection

This chapter is adapted from [71] and details my application of conventional deep

learning based object detection, instance segmentation and object tracking methods

for animal detection in man-made environments. This is the second of the three

projects where I applied conventional modeling to solve novel problems. This

chapter covers only conventional models and the comparison of these models with

language models is deferred to Sections 8.4.2.1 and 8.5. This work was done during

two industrial internships at a local non-pro�t named ACAMP which closed in 2023.

4.1 Introduction

Object detection is an important �eld in computer vision that has seen very rapid

improvements in recent years using deep learning [142, 143, 144]. Most detectors

are trained and tested on benchmark datasets like COCO [89], Open Images [145],

KITTI [146] and VOC [147]. In order to apply these in a particular domain like animal

detection, a model pre-trained on one of these datasets is �ne-tuned on domain-speci�c

data, usually by training only the last few layers. This is known as transfer learning

[148, 149] and is often enough to obtain good performance in the new domain as

long as it does not di�er drastically from the original. The goal of this work is to

use transfer learning to adapt state of the art object detection methods for detecting

several types of large Alberta animals in real-time video sequences captured from one

or more monocular cameras mounted on moving ground vehicles. The animals that

most commonly stray into human habitations include: deer, moose, coyotes, bears,

elks, bison, cows and horses. There are two deployment scenarios:

� Detecting threats in an autonomous all-terrain vehicle (ATV) patrolling the
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Edmonton International Airport perimeter for security and surveillance purposes.

� Finding approaching animals in side�mounted cameras on buses plying the Alberta

highways, in order to issue a timely warning to the driver for collision avoidance.

The main challenge here is the scarcity of existing labeled data with su�cient

speci�city to the target domain to yield good models by �ne-tuning pre-trained

detection networks. Although several of the large public datasets like COCO [89] do

include some of the more common animals like bears and horses, these rarely

include the Canadian varieties that are the focus of this work and often feature

incorrect backgrounds. Even larger classi�cation datasets like Imagenet [150] do

include images of many of the target animals but only provide image level labels so

the bounding boxes would have to be added manually. There are also several animal

speci�c datasets [151, 152] but these likewise fall short of meeting the target

requirements. For example, they have aerial viewpoints [153, 154], incorrect species

[155, 156, 157, 158, 159, 160, 161] or habitats [162, 163] and no bounding box

annotations [164, 160, 165, 166].

The lack of training data was addressed by collecting and labelling a su�ciently

large number of images of the target animals. This was initially con�ned to videos

since labeling videos was easier to semi-automate (Section 4.3.1) and training

detectors on videos showing the animals in a variety of poses seemed to concur

better with deployment on camera videos captured from moving vehicles. However,

tests showed that detection performance is far more sensitive to the range of

backgrounds present in the training set rather than variations in the appearance of

the animal itself (Section 4.4). Though static images helped to resolve this to a

certain extent, they are much harder to obtain in large numbers and a lot more

time-consuming to label. More importantly, neither static nor video images of

animals are easy to acquire with the kinds of structured man-made surroundings

that the airport perimeter and highways present. This chapter thus proposes a

solution based on synthetic data generation using a combination of interactive mask

labelling, instance segmentation and automatic mask generation (Section 4.3.4).

Another signi�cant challenge is the need for the detector to be fast enough to

process streams from up to 4 cameras in real time while running on relatively low-

power machines since both the deployment scenarios involve mobile computation

where limited power availability makes it impractical to run a multi-GPU system.

This is addressed using RetinaNet [18] and YOLOv3 [22] which turned out to be
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surprisingly competitive with respect to much slower models. To the best of our

knowledge, this is also the �rst large-scale study of applying deep learning for animal

detection in general and their Canadian varieties in particular. It presents interesting

insights about transfer learning gained by training and testing the models on static,

video and synthetic images in a large variety of con�gurations. Finally, it provides

practical tips that might be useful for real world deployment of deep learning models.

Code and data are made publicly available to facilitate further work in this �eld [167].

4.2 Related Work

Animal recognition in natural images is a well researched area with applications

mostly in ecological conservation. As in the case of available data, most of the

existing work is not closely allied to the domain investigated in this work. Three

main categories of methods can be distinguished from the literature corresponding

to the type of input images used. The �rst category corresponds to aerial images

captured from unmanned aerial vehicles (UAVs). A recent work [168] introduced an

active learning [169] method called transfer sampling that uses optimal transport

[170] to handle domain shift between training and testing images that occurs when

using training data from previous years for target re-acquisition in follow-up years.

This scenario is somewhat similar to the current work so transfer sampling might

have been useful here but most of this work had already been done by the time [168]

became available. Further, it would need to be reimplemented since its code is not

released and the considerable domain di�erence between aerial and ground imagery

is likely to make adaptation di�cult. Finally, most domain adaptation methods,

including [168], require unlabeled samples from the target domain which are not

available in the current case. Other examples of animal detection in UAV images

include [171, 172, 154, 153] but, like [168], all of these are focused on African

animals.

The second category corresponds to motion triggered camera trap images. These

have been reviewed in [173] and [174]. The latter reported similar di�culties in

generalizing to new environments as were found here. The earliest work using deep

learning was [175] where graph cut based video segmentation is �rst used to extract

the animal as a moving foreground object and then a classi�cation network is run

on the extracted patch. A more recent work [176], that most closely resembles ours,

tested two detectors - Faster RCNN [177] and YOLOv2 [42] - and reported respective
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Class
Videos (Real) Static Images

Total
Seq Images Real Syn Total

Bear 92 25715 1115 286 1401 27116
Bison 88 25133 0 0 0 25133
Cow 14 5221 0 0 0 5221
Coyote 113 23334 1736 260 1996 25330
Deer 67 23985 1549 286 1835 25820
Elk 78 25059 0 0 0 25059
Horse 23 4871 0 0 0 4871
Moose 97 24800 0 260 260 25060
Total 572 158118 4400 1092 5492 163610

1

Table 4.1: Annotation counts for both real and synthetic data (seq, syn: sequences,
synthetic)

accuracies of 93% and 76%. However, the evaluation criterion used there is more like

classi�cation than detection since it involves computing the overlaps of all detected

boxes with the ground truth and then comparing the class of only the maximum

overlap detection to decide if it is correct. Other recent works in this category, most of

them likewise dealing mainly with classi�cation, include [178, 166, 165, 179, 180, 181].

The third category, which includes this work, involves real-time videos captured

using ground-level cameras. An important application of such methods is in

ethology for which many general purpose end-to-end graphical interface systems

have been developed [182, 183, 184, 185, 186]. Methods specialized for particular

species like cows [187], beef cattle [188] and tigers [157] have also been proposed,

where the latter includes re-identi�cation that is typically done using camera trap

images. Surveillance and road safety applications like ours are much rarer in the

literature and it seems more common to employ non-vision sensors and

fencing/barrier based solutions, probably because many animal vehicle collisions

happen in the dark [189]. Examples include infrared images [190], thermal and

motion sensors [191], ultra wide band wireless sensor network [192] and kinect [193].
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Figure 4.1: Sample collected images: (clockwise from top left) bear (Calgary
Zoo), deer (Google Images), coyote (Google Images), elk (Nature Footage), horse
(YouTube), cow (YouTube), moose (YouTube) and bison (Calgary Zoo)

4.3 Methodology

4.3.1 Data Collection

To facilitate the large number of training images needed, a combination of video

and static images was used. Video was collected both directly with handheld video

cameras around Calgary area, such as the Calgary Zoo, as well as online via YouTube

and Nature Footage [194]. Due to the large quantity of static images that we required,

downloading them one by one was not feasible. Instead, ImageNet [150] was used as

it provides a searchable database of images with links, so they can be downloaded

in bulk using scripts. However, not all animal species are available there and not all

available ones have enough images. Google Images was thus also used by searching

for speci�c taxonomic classi�cation and downloading the results in bulk using browser

extensions. After downloading static images, it was necessary to verify that all were of

the intended animal and remove any mislabeled or unhelpful images. Figure 4.1 shows

sample images of all animals while Table 4.1 provides quantitative details. We make

this dataset publicly available as the ACAMP Canadian Animal Detection (ACAD)

dataset.
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4.3.2 Labeling

4.3.2.1 Bounding Boxes

Annotation was done using a heavily modi�ed version of an open source image

annotation tool called LabelImg [195]. This tool takes a video �le or sequence of

images as input and allows the user to annotate bounding boxes with class labels

over them. The SiamFC tracker [196] was integrated with the tool to make video

annotation semi�automated so that the user only needs to manually annotate the

animal in the �rst frame, track it till the tracker starts drifting, �x the box in the

last tracked frame, start tracking again and repeat this process till all frames are

labeled.

4.3.2.2 Segmentation Masks

Pixel wise masks were needed to generate high-quality synthetic data (Section 4.3.4).

Annotation tools that support masks do exist [197, 198, 199, 200, 201, 202, 203],

including AI assisted services [204], but all have issues such as too coarse masks

[197, 198, 199, 200], Linux incompatibility [202], paid or propriety license [204, 203] or

cloud-data restriction [201]. Also, it was desirable to semi-automate mask generation

using the already existing bounding boxes, which is not allowed by any of the tools.

Mask annotation functionality was thus added to the labelling tool with support for 3

di�erent modalities to add or re�ne masks - drawing, clicking to add boundary points

and painting with variable sized brushes.

Semi-automated mask generation was done using a combination of motion based

interpolation, edge detection and tracking. An approximate mask is generated for a

given frame by estimating the motion between its bounding box and that in a

previous frame whose mask has already been annotated. In addition, holistically

nested edge detection (HED) [205] followed by adaptive thresholding is used to

obtain a rough boundary of the animal that can be re�ned by painting. Finally, the

SiamMask tracker [206], that outputs both bounding boxes and segmentation

masks, was integrated with the labelling tool to generate low-quality masks in a

fully automated manner. Mask labelling was a slow and laborious task and took

anywhere from 1 - 8 minutes per frame depending on animal shape and background

clutter. An arguably more sophisticated pipeline for rapid generation of

segmentation masks has recently been proposed [207]. However, it became available

too late to be utilized in this project, does not provide a publicly available
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implementation and its proposed pipeline includes human involvement on too large

a scale to be practicable here. A recent video mask prediction method [208] likewise

came out too late and also rendered unnecessary by SiamMask.

4.3.3 Object Detection

Object detection has improved considerably since the advent of deep learning [142]

within which two main categories of detectors have been developed. The �rst category

includes methods based on the RCNN architecture [79, 209] that utilize a two-step

approach. A region proposal method is �rst used to generate a large number of

class agnostic bounding boxes that show high probability of containing a foreground

object. Some of these are then processed by a classi�cation and regression network

to give the �nal detections. Examples include Fast [38] and Faster [177, 11] RCNN

and RFCN [16]. The second category includes methods that combine the two steps

into a single end to end trainable network. Examples include YOLO [41, 42, 22], SSD

[19] and RetinaNet [17, 18]. Apart from its high-level architecture, the performance

of a detector also depends on the backbone network used for feature extraction.

Three of the most widely used families of performance-oriented backbones include

ResNet [12, 210, 211], Inception [212, 20, 6, 13] and Neural Architecture Search (NAS)

[14, 15]. Several architectures have also been developed with focus on high speed and

low computational requirements. The most widely used among these are the several

variants of MobileNet [213, 21, 214].

Five high level detector architectures have been used here � Faster RCNN, RFCN,

SSD, RetinaNet and YOLO. Three di�erent backbone networks are used for Faster

RCNN - ResNet101, InceptionResnetv2, NAS - and two for SSD - Inceptionv2 [20],

Mobilenetv2 [21] - for a total of 8 detectors. ResNet101 and ResNet50 are used as

backbones for RFCN and RetinaNet respectively. All 3 variants of YOLO [41, 42, 22]

were experimented with, though only YOLOv3 [22] results are included here as being

the best. These methods were chosen to cover a good range of accuracies and speeds

among modern detectors.

All of the above are static detectors that process each frame individually without

utilizing the temporal correlation inherent in video frames. Detectors have also been

developed to incorporate this information for reducing missed detections due to issues

like partial occlusions and motion blur. Examples include Seq-NMS [215], TCNN

[216, 217], TPN [218], D&T [219] and FGFA [220, 221]. However, none of these have
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Figure 4.2: Synthetic data samples with corresponding source and target images for
(top) coyote on airport and (bottom) moose on highway. Each row shows (left to
right) animal source image, target background image and crops of synthetic images
generated using (clockwise from top left) manual labeling, Mask RCNN, Gaussian
blending (no mask) and SiamMask.

compatible implementations and most need either optical �ow, patch tracking or both

to run in parallel with a static detector which makes them too slow to be used here.

LSTM-SSD [222, 223] is the only recent video detector that is both fast and open

source but attempts to incorporate this here showed its implementation [224] to be

too buggy and poorly documented to be usable without signi�cant reimplementation

e�ort not warranted by the modest improvement it seemed likely to provide. Instead,

a simple algorithm was devised to combine the DASiamRPN tracker [225] with YOLO

(Section 4.4.2.6) to gauge the potential bene�t of temporal information in videos.

4.3.4 Synthetic Data Generation

Experiments showed that detectors have limited ability to generalize to new

backgrounds (Section 4.4.2.1). A solution considered �rst was to collect static

images with as much background variation as possible to cover all target scenarios.

This proved to be impracticable due the di�culty of �nding and labeling su�cient

quantities of static images, exacerbated by our target scenarios consisting of

man-made environments where it is extremely rare to �nd animals at all. As a

result, synthetic data was generated by extracting animals from existing labeled

images and adding them to images of the target backgrounds. Attempts were

initially made to do this without masks by selecting only the best matching source
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images for each target background through techniques like histogram matching and

then using Gaussian blending to smoothen the transition from source to target

background. However, this failed to generate images that could either be perceived

as realistic by humans or improve detection performance (Section 4.4.3). Pixel wise

masks were therefore generated by manually labelling a sparse collection of frames

with as much background variation as possible and then training instance

segmentation models (Section 4.3.5) to automatically generate masks for remaining

frames with similar backgrounds. SiamMask tracker [206] was also used towards the

end of the project to make this process fully automated. Generating synthetic

images was much faster than labelling masks and only took about 1-10

seconds/frame. Most of the e�ort was focused on generating static images since

experiments (Section 4.4.2.2) showed that videos do not help to improve detectors

much. It is also signi�cantly harder to generate realistic videos as that requires

camera motion in the source and target video clips to be identical. Images were

generated from 14 airport and 12 highway backgrounds with 11 source images for

bears and deer, and 10 for coyotes and moose. Figure 4.2 shows examples.

4.3.5 Instance Segmentation

Instance segmentation distinguishes between each instance of an object as opposed

to semantic segmentation that only identi�es categories of objects. The former

intuitively seems more suitable for extracting animal boundaries from bounding

boxes since it uses object-level reasoning, whereas the latter is more oriented

towards pixel-level classi�cation. This was con�rmed by experiments with several

state of the art semantic segmentation methods, including DeepLab [131, 5], UNet

[7] and SegNet [9]. All of these generated masks that were too �ne-grained to

cleanly segment out the animal from its background, instead producing many small

groups of background pixels inside the animal and, conversely, animal pixels within

the background. Three instance segmentation methods were then considered �

SharpMask/DeepMask [226, 227], Mask RCNN [228] and FCIS [229]. Mask RCNN

was found to produce the highest quality masks so only its results are included.

4.3.6 Implementations and Training

Table 4.2 lists all implementations used here. Training was done by �ne tuning

models pre-trained on large benchmark datasets � COCO [89] for Mask RCNN and
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Table 4.2: Implementation details for the various methods (TF: Tensor�ow, PT:
PyTorch)

Methods Implementations
All static detectors except YOLO TF (Object Detection API) [230]
YOLOv3, YOLOv2, YOLOv1 PT [231], TF [232], Darknet [233]
Mask RCNN, Sharpmask, FCIS TF [230], TF [234], MXNet [235]
SiamFC, SiamMask, DASiamRPN TF [236], PT [237], PT [238]
DeepLab, UNet/SegNet, HED TF [132], Keras [128], OpenCV[239]

Table 4.3: Class con�gurations for training (c refers to the number of classes)

c Animals Comments
6 all except cow, horse these have only ∼5K images
4 bear, deer, moose, coyote synthetic images
3 bear, deer, coyote real static images

all detectors; ImageNet [150] for Sharpmask and FCIS; ADE20K [240] for DeepLab,

UNet and SegNet. HED and all trackers were used directly with pretrained weights

without any �ne tuning.

In order to avoid class bias while training, number of samples from all classes must

be similar [241]. Number of labeled images, however, varies signi�cantly between

animals (Table 4.1), especially when the source type � video or static � is taken into

account. Therefore, experiments were done with 3, 4 and 6 classes (Table 4.3) in

addition to all 8 to cover a range of scenarios while maintaining class balance.

4.4 Results

4.4.1 Evaluation Metrics

Object detectors are usually evaluated using theirmean average precision (mAP)

[242], de�ned as the mean, over all classes, of the area under the recall�precision

curve for each class. Although a good measure of the overall threshold-independent

performance, mAP may not accurately represent deployment accuracy where a single

threshold must be chosen. Since mAP considers the variation of recall and precision

with threshold separately for each class, and this can di�er greatly between classes

(Figure 4.3 (c)), it is more indicative of accuracy when a di�erent threshold can be

chosen for each class to optimize the recall-precision characteristics for that class. It is

also di�cult to interpret mAP to gauge the practical usability of a detector in terms of

how likely it is to miss objects or give false detections. This chapter therefore proposes
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Table 4.4: Training con�gurations for both real and synthetic data (c, img, seq
respectively refer to the number of classes, images, and sequences).

# c Details
Train Test

img (seq) img (seq)

1 8
1K video images/class sampled from
complete sequences

8001 (33) 150117 (539)

2 8
1K video images/class sampled evenly
across all sequences

8156 149962

3 6
10K video images/class sampled from
complete sequences

60003 (218) 88023 (317)

4 6
5% images from the start of each video
sequence

7169 140857

5 3 500 static images/class 1500 2900
6a-
6d

6
1, 2, 5, 10 images sampled evenly from
each of 67 sequences

402, 804, 2010,4020 103235

7 3
20K video images/class tested on static
images

60000 4400

8a,
8b

3
1K static images/class tested on video,
synthetic images

3000 73034, 598

9 4
20K video images/class tested on
synthetic images

80008 780

10a,
10b

3,
4

3, 4 class models trained on 28% of
synthetic images, tested on rest

234, 312 598, 780

another metric obtained by �rst averaging recall and precision for each threshold over

all classes and then taking the recall�precision (RP) value at the threshold where

the two are equal. This metric is named mean Recall-Precision (mRP) and

provides a more interpretable measure of performance when using a single threshold

for all classes.

Further, this work deals mainly with human-in-the-loop type security applications

where detections alert humans to take suitable measures after veri�cation. In such

cases, simply detecting an object can be far more crucial than classifying it correctly.

For example, when used as an early warning system for bus drivers, misclassi�cation

would have little impact on the driver's response as long as the animal is detected

early enough. A less stringent evaluation criterion named class-agnostic Recall-

Precision (cRP) is thus also used that treats all animals as belonging to the same

class so that misclassi�cations are not penalized.
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Figure 4.3: Detection mRP (solid), corresponding con�dence thresholds (dotted) and
cRP (dashed, only #1, #3): (a) #1 - #5 for all 8 models (b) #6 - #8 for 3 models (c)
class-speci�c #1 results for 3 models. Model Acronyms: NAS, RES101, INRES -
Faster RCNN w/ NAS, ResNet101, Inception-ResNetv2 backbones; RFCN - RFCN
w/ ResNet101; RETINA - RetinaNet w/ ResNet50; SSDIN, SSDMO - SSD w/
Inceptionv2, MobileNetv2; YOLO - YOLOv3. Best viewed under high magni�cation.
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4.4.2 Real Data

4.4.2.1 How well do detectors generalize ?

Figure 4.3 summarizes the results for several training and testing con�gurations

(Table 4.4) used to study the generalization ability of detectors in a range of

scenarios. These are henceforth referred to by their numeric IDs (�rst column of

Table 4.4) and detectors by acronyms (Figure 4.3) for brevity.

Figure 4.3 (a) gives results for all detectors in #1 - #5. The large di�erence

between #1 and #2 clearly demonstrates the inability of detectors to generalize to

unseen backgrounds. Both have 1K video images/class but the latter has these

sampled from all sequences to allow training over nearly all backgrounds in the test

set while the former does not get any frames from the test sequences. This is

su�cient for the detectors to achieve near perfect mRPs in #2 while giving far

poorer performance with only 35-60% mRP in #2. A similar trend is seen, though

to a lesser extent, in #3 and #4. The former, with 10K images/class from complete

sequences, is signi�cantly outperformed by the latter with only 5% images from the

start of each sequence (or ∼1.2K images/class). The smaller di�erence here is

attributable to the much greater frame count in #3 and the fact that #4 uses

consecutive frames from each sequence which contain a smaller range of

backgrounds than the evenly sampled frames in #2. Performance in #5 is

comparable to #4, even though #5 involves testing over a far greater proportion of

unseen backgrounds, probably because most static images depict animals in their

natural habitats (Section 4.3.1) which, exhibiting limited variability, allow the

detectors to generalize relatively well.

Figure 4.3 (a) also shows cRP, though only for #1 and #3 since remaining

con�gurations all had cRP > 90% whose inclusion would have cluttered the plots so

these have been deferred to Table B.2. As expected, cRPs are signi�cantly higher

than mRPs for all models, though the gain is most notable for YOLO, particularly

in #1 where it more than doubles its performance, outperforming both the SSDs as

well as RETINA. This suggests, and qualitative examination has con�rmed, that

the form of over�tting YOLO is susceptible to involves associating backgrounds to

speci�c animals whose training images had similar backgrounds. For example, if a

particular scene is present in bear training images but not in those of deer, a test

image of a similar scene, but containing deer, would have the animal detected as

bear. The other models are susceptible to this too but to a smaller degree and more
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often miss the animal altogether.

4.4.2.2 How much are video annotations worth ?

Figure 4.3 (b) shows results for #6 - #8; only 3 detectors are included to reduce

clutter since the others showed similar performance patterns. #6 involved training

with 1, 2, 5 and 10 frames/sequence, with the sequence count limited to 67 by the class

with the fewest sequences (deer) to maintain class balance. All 4 models were tested

on the same 67 sequences using frames not included in any of their training sets. It

can be seen that even 1 frame/sequence is enough for all detectors to give 90% mRP,

which improves only marginally with 2 and 5 frames, plateauing thereafter. Further,

though RETINA does catch up with RES101 using ≥ 2 frames, YOLO is unable to

even narrow the gap, which might indicate that domain specialization cannot entirely

overcome architectural limitations. #7 and #8 show the relative utility of video and

static frames by training on one and testing on the other. As expected, static models

demonstrate far superior generalizability by outperforming the video models by 4-12%

mRP even though the latter are trained and tested on 20×more and 16× fewer frames

respectively. Performance gap between #7 and #8 is also larger for worse performing

models, especially YOLO that has twice the gap of RETINA, which rea�rms its poor

generalizability. Finally, the fact that #8 has lower mRP than #6a even though the

former has nearly 15× more images with varied backgrounds shows the importance

of domain specialization.

4.4.2.3 How do the detector accuracies compare ?

RES101 turns out to be the best overall, though NAS, RFCN and INRES remain

comparable in all con�gurations. NAS even has a slight edge in #1, showing its better

generalizability under the most di�cult scenarios. Conversely, the shortcomings of

1-stage detectors compared to their 2-stage counterparts are also most apparent in

#1. This is particularly notable for RETINA that is comparable to RES101 and

signi�cantly better than the other 1-stage detectors in all remaining con�gs. YOLO

likewise performs much poorer relative to the two SSDs while being similar and even

better in other con�gs. This might indicate that 1-stage detectors in general, and

YOLO in particular, are more prone to over�tting with limited training data. From

a practical standpoint, though, YOLO redeems itself well by its relatively high cRPs,

outperforming RETINA in both #1 and #3.

58



Table 4.5: Speed, GPU memory consumption and maximum batch size for each
detector. Refer Figure 4.3 for model names. (Setup: Titan Xp 12GB, Threadripper
1900X, 32GB RAM)

Model
Batch Size 1 Batch Size 4 Max Batch Size

memory
(MB)

speed
(FPS)

memory
(MB)

speed
(FPS)

batch
size

speed
(FPS)

NAS 9687 1.36 - - 3 1.39
INRES 7889 3.95 8145 4.68 8 4.49
RES101 5077 19.61 5589 25.35 36 27.12
RFCN 5041 19.8 5553 32.12 76 26.94
RETINA 4785 31.5 5553 43.51 120 53.28
YOLO 1487 71.41 2039 104.25 48 119.64
SSDIN 3631 68.35 3631 155.63 160 181.66
SSDMO 1999 78.67 2031 167 480 246.56

4.4.2.4 How important is the con�dence threshold ?

Figure 4.3 shows con�dence thresholds corresponding to mRP or class-speci�c RP

using dotted lines. Figure 4.3 (c) shows that the threshold corresponding to the

class-speci�c RP varies widely between classes - much more than the RP itself. As

mentioned in Section 4.4.1, this motivates the use of mRP instead of mAP as a

practical evaluation criterion. Further, Figure 4.3 (a, b) show that the optimal mRP

threshold itself varies greatly between the detectors too. Therefore, choosing a

single threshold for all of them might not provide a true picture of their relative

performance in practice. It is also evident, especially in Figure 4.3 (b), that a weak

correlation exists between the relative performance and threshold, with better

performing detectors usually also having higher thresholds. Notable exceptions to

this are INRES and SSDIN, both having smaller thresholds than their respective

mRP levels. Since both use di�erent variants of Inception, this might be due to an

architectural peculiarity thereof. Also notable are the very low thresholds of YOLO

- often < 5% and sometimes even < 1%.

4.4.2.5 How resource intensive are the detectors ?

Since both of our target deployment scenarios of ATV and highway buses involve

mobile systems with limited power availability, it is important for the detector to

be as lightweight as possible. Table 4.5 shows the speed in FPS along with GPU

memory consumption for batch sizes 1 and 4, where the latter is chosen to represent

the 4 cameras needed for a simultaneous 360° �eld-of-view. The maximum batch size
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Figure 4.4: Results for (a - b) DASiamRPN + YOLO on con�g #1 and (c) RETINA
and YOLO on synthetic data

that can be run on a 12GB Titan Xp GPU is also shown for scalability comparison.

SSDMO turns out to be the fastest, though YOLO is comparable at batch size 1 and

also has signi�cantly smaller memory footprint. However, YOLO does not scale as

well in either speed or memory and ends up with only a tenth of the maximum batch

size of SSDMO and less than half the corresponding speed. NAS and INRES are the

slowest and most memory intensive by far and unsuitable for realtime applications.

RFCN and RES101 are similar with unit batch size, probably due to their identical

backbone, though RFCN scales better, allowing more than twice the maximum batch

size and 28% higher speed with batch size 4. Finally, RETINA provides the best

compromise between performance and speed. Its mRP is comparable to RES101 in

most con�gs and is fast enough to process 4 camera streams simultaneously at 10

FPS each and thus capture an animal visible for a fraction of a second.

4.4.2.6 Can tracking reduce false negatives ?

As mentioned in Section 4.3.3, tracking was used in an attempt to reduce false

negatives by utilizing temporal information in videos. DASiamRPN [225] was used

as the tracker since it is one of the fastest available Siamese type trackers. YOLO

was used as the detector since its PyTorch implementation was easier to integrate

with that of DASiamRPN, its speed with batch size 1 (necessary to use tracking) is

among the fastest and its poor performance in #1 provides ample scope for

improvement. Algorithm 1 gives the detailed steps for combining the tracker and

detector, though the high level idea is simple - associate detections with existing

trackers, create new trackers for unassociated detections and remove trackers that

remain unassociated for too long or those with the lowest con�dence when tracker
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count exceeds a threshold. Figure 4.4 (a) shows the mean Recall vs. Precision plots

while Figure 4.4 (b) gives mRP / cRP and speeds. Tracking mostly helps only when

the detector �nds an animal in at least one frame in a sequence and misses it in

several subsequent ones. It turns out that this seldom happens in practice so that

the resultant increase in recall is very slight and is o�set by a signi�cant decrease in

precision through tracking false positives. The latter can be mitigated by removing

unassociated trackers frequently but this leads to a large drop in recall and is

therefore not used in these results. There is thus no net gain in mRP/cRP using

tracking, rather signi�cant drops with > 1 trackers. When combined with the

reduction in FPS, it does not seem like an e�ective way to reduce false negatives.

4.4.2.7 Can multi-model pooling reduce false negatives ?

Another way to reduce missing detections is to run multiple detectors simultaneously

and pool their outputs. A large variety of methods were explored to pool YOLO,

SSDIN and SSDMO but none managed to increase recall enough to o�set the fall in

precision and the net mRPs were even worse than those from tracking. Descriptions

of these methods and corresponding results have thus been relegated to Section B.3.

4.4.3 Synthetic data

A training set was constructed from synthetic data by selecting images corresponding

to 3 animal poses per background, with a di�erent combination of poses selected

randomly for each background. All remaining images were used for testing. Table

4.4 denotes the corresponding con�gs as #10a and #10b for 3 and 4 class models

respectively. Corresponding real data con�gurations are #8b and #9 with 1K static

and 20K video images/class respectively. Seperate models were trained for each of

the 4 methods of extracting animals from source images (Section 4.3.4) � Gaussian

blending, manual masks, Mask RCNN and SiamMask. All were tested on images

generated by manual masks.

As shown in Figure 4.4 (c), models trained on synthetic data signi�cantly

outperform those trained on real data as long as masks are used. This is remarkable

considering that only 78 frames/class were used for the former compared to 1K or

20K for the latter. This reiterates the results in Section 4.4.2.2 where #6a with 67

images outperformed #8a with the same 1K images as #8b. However, unlike there,

YOLO does manage to match RETINA here, which suggests that high enough
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degree of specialization can indeed overcome its architectural shortcomings. More

importantly, there is no perceptible di�erence in mRP between models

corresponding to the three segmentation methods. This shows that even the fully

unsupervised and visibly coarse masks from SiamMask provide useful information

for training detectors that is comparable to precise manual masks. At the same

time, mask quality does indeed matter since the no mask / Gaussian blending

models perform even worse than real data.

4.5 Conclusions

This chapter presented a large scale study of animal detection with deep learning

where 8 state of the art detectors were compared in a wide range of con�gurations.

A particular focus of the study was to evaluate their generalization ability when

training and test scenarios do not match. It was shown that none of the detectors

can generalize well enough to provide usable models for deployment, with missed

detections on previously unseen backgrounds being the main issue. Attempts to

increase recall using tracking and multi-model pooling proved ine�ective. Synthetic

data generation using segmentation masks to extract animals from images of natural

habitats and inserting them in target scenes was shown to be an e�ective solution. An

almost fully automated way to achieve this was demonstrated by the competitiveness

of coarse unsupervised masks with precise manual ones in terms of the performance of

detectors trained on the corresponding synthetic images. RETINA and YOLO were

shown to be competitive with larger models while being su�ciently lightweight for

multi-camera mobile deployment.
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Chapter 5

Human iPSC Segmentation

This chapter is adapted from [72] and details my application of conventional deep

learning based static and video instance segmentation models along with image

classi�ers for detecting and classifying human induced pluripotent stem cells

(iPSCs) in time-lapse microscopy images. This is the last of the three projects

where I applied conventional modeling to novel domains. This chapter is focused

only on the conventional models and the comparison of these models with language

models is deferred to Sections 8.4.2.2, 8.4.3.2 and 8.5. This work was done in

collaboration with the Alberta Diabetes Institute.

5.1 Introduction

5.1.1 Motivation

The goal of this work is to apply machine learning to automate the identi�cation of

human iPSCs that show promise for clinical cell therapies in regenerative medicine.

IPSCs are generated by reprogramming a patient's own cells back in time to make

more malleable cells with di�erentiation potential for generating any cells or tissues of

interest. This technology has shown great potential for transforming regenerative cell

therapies, drug and disease modeling, tissue repair and regeneration, and personalized

gene-corrected products. However, the pipeline for iPSC generation, characterization

and cell banking is a highly labor-intensive, time-consuming and costly one. The

monetary cost of research-grade iPSC line generation is estimated at USD 10,000-

25,000 while that of clinical-grade iPSC line is approximately USD 800,000 based

on published reports [243]. The entire process of optimal iPSC line generation and
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selection can take up to 35 days and requires a further 3 months to produce large

scale iPSCs for therapeutic application in patients.

Additionally, quality control techniques for growing iPSCs to limit inter- or

intra-patient iPSC line variability, which is currently assessed manually, remain

imperfect in large-scale biomanufacturing. The current solution relies on the

judgement of an expert cell biologist, who determines precise iPSC induction,

con�rms pluripotency based on morphological changes and assesses molecular

characterization for multiple clones - all tasks that remain highly e�ort-intensive

and subjectively biased. Manual cell quality control therefore cannot be used to

scale up the production of iPSCs and derived products for therapeutic applications.

An automated method enabling high-throughput surveillance and validation of cell

identity, growth kinetics, and morphological features is desirable throughout the

entire manufacturing process. The screening is multifold and needed to not only

select optimal cells which have been fully converted to iPSCs during reprogramming

stage, but also to exclude unstable and pseudo iPSC contaminants during the

expansion stage. Automating this process using machine learning would therefore

be ground-breaking in improving iPSC bioprocess e�ciency and yield, thereby

drastically reducing the time and cost involved in the generation of iPSC-based

products for therapeutic applications. This chapter presents some early but

promising steps in this direction.

5.1.2 Background

5.1.2.1 iPSC Reprogramming

[244] demonstrated that mouse embryonic or adult �broblasts can be reprogrammed

into pluripotent stem cells by introducing four genes encoding transcription factors,

namely Oct3/4, Sox2, Klf4, and c-MYC [245, 246]. Generated stem cells showed

similar morphological or functional behavior as embryonic pluripotent stem cells

and were thus termed iPSCs. Soon thereafter, [245] reported directed conversion of

human �broblasts into pluripotent stem cells, termed as human iPSCs. With the

discovery of Yamanaka's human iPSC technology, patient-derived stem cells have

huge potential in regenerative medicine [247]. Human iPSCs show merit not only in

delivering any desired cell types for treating degenerative diseases, tissue repairing,

disease modeling, and drug screening [248, 249], but they also solve two major

problems associated with other pluripotent stem cells such as embryonic stem cells
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[246], namely immune tolrenace after transplantation and ethical concerns.

However, there still exist technical and biomedical challenges including the risk of

teratoma formation and the uncertainty of e�cient nuclear reprogramming

completeness due to variability and inconsistencies in the selection of optimal cells

[246]. There are two major problems to be solved before human iPSCs can be

applied as a standardized technique, Firstly, manually monitoring the quality of

growing iPSC colonies that is currently practiced does not scale. Secondly, only

colonies that satisfy clinical good manufacturing practice (GMP) standards need to

be identi�ed for use in downstream applications. Hence, there is an urgent need for

automated quality control, thereby also lending it an element of objectivity and

standardization.

5.1.2.2 Machine learning in iPSC Recognition

Though many applications of machine learning for iPSC recognition in images have

been presented in the literature [250, 251, 23, 252, 253, 254, 255], there are none

that include both detection and classi�cation or use time-lapse imaging, which is

the object of this study. To the best of our knowledge, [23] presented the method

that comes closest to this work though that too di�ers in several key respects. It

utilizes �uorescence imaging and the commercial closed-source IMARIS software to

segment cells and it captures 3D shape information that is the basis for extracting

morphological features to train the classi�er it uses. Our aim is to make open-source

cell segmentation possible without �uorescence and with only the 2D pixel data in

standard phase-contrast microscpy images.

5.1.2.3 Deep Learning in Visual Recognition

In the past decade, deep learning [256] has been applied extensively in computer vision

[257], especially for recognition tasks like image classi�cation [258], object detection

[259], instance segmentation [260], semantic segmentation [261], and object tracking

[262, 263, 264]. It has likewise seen broad application in medical image analysis [265,

266] including segmentation in general [267] and cell segmentation in particular [268].

The latter is the task most relevant to this work, though cell tracking [269, 270, 271,

272, 273] is also important here. More recently, the advent of transformers [33] has led

to signi�cant performance improvements [274] over the CNN-based architectures that

had been prominent earlier. [26] proposed the Swin transformer to further improve
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the original vision transformer [34] using shifted windows. This currently appears

to be the backbone of choice in most state of the art models, though that might

change with the recent introduction of ConvNext [24] as a competitive CNN-based

alternative. For this project, we needed instance segmentation models, preferably ones

that could bene�t from the temporal information in time-lapse images. Therefore,

we selected top-performing static and video segmentation models (Section 5.2.2) with

publicly available code from a popular leaderboard [275]. We also searched through

the leaderboards on a couple of cell tracking and segmentation benchmark challenges

[273, 276] but failed to �nd any models with publicly available code.

5.2 Methodology

5.2.1 Data Collection

5.2.1.1 Cell culturing

Cells were cultured in a Class-II biocontainment compliant lab with manipulation of

cells in a sterile environment using a laminar �ow hood with high e�ciency

particulate air �ltration. Cells were maintained at 37◦C with 5% CO2 within

humidi�ed incubators. Human iPSCs reprogrammed from patient-derived

peripheral blood mononuclear cells (PBMCs) were previously established and

characterized for pluripotency in the laboratory and cryostored in ultra-low

temperature freezers for long-term storage. Before starting the time-lapse imaging,

cells from a frozen vial were thawed in a 37◦C waterbath and cultured on a

matrix-coated 6-well plate in iPSC growth media at a seeding density of 100,000

cells per well according to previously published protocol [277]. Once the cells got

attached, fresh media was replenished in each well every day prior to the time-lapse

imaging which was initiated on day 6, right after cell-seeding.

5.2.1.2 Time-lapse imaging

Time-lapse images were captured at 15-minute intervals on a Nikon BioStudio-T

microscope using the NIS-Elements cell observation and image analysis software. The

images were captured with a 4x lens using a full plate scanning module. A total of

275 images were captured spanning 68.75 hours. The raw images were 10992× 10733

pixels or 714 megapixels in size, though the usable circular cell culture region in the

center comprised only about 85 megapixels with a diameter of 5200 pixels. A sample
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image is shown in Figure C.2. Manual examination showed that images before frame

146 (or 36.5 hours) were unsuitable for our experiments since they contained too

many clones, with most being too small and indistinct for reliable labeling. Three of

the remaining frames - 155, 186 and 189 - were blurry due to camera shake and had

to be discarded too. As a result, a total of 127 frames were used for all experiments.

5.2.1.3 Annotation

The original 714 megapixels images are too large to be processed directly so they

were �rst divided into several regions of interest (ROIs) (Figure C.2) varying in size

from 1700× 900 to 4333× 3833. These were then annotated in 3 stages.

5.2.1.3.1 Selective Uncategorized Semi-Automated Labeling

The 127 frames were �rst divided into three sets representing di�erent levels of cell

development � 146-200, 201-250 and 251-275. Set-speci�c ROI sequences were then

created, that is, each ROI spanned only one of the three sets instead of all 127 frames.

This strategy was chosen to include a good representation of cellular appearance from

all stages of development in the labeled data while requiring minimal amounts of

overall labeling. There were 3, 8 and 6 ROIs from the three sets respectively and

these 17 ROIs had a total of 656 frames and 4768 cells.

These were then labeled to mark the locations and pixel-wise masks of cells

through a custom-designed graphical labeling tool. This tool integrates the

SiamMask tracker [278] to semi-automate the labeling process by propagating

manually-created masks into future frames by joint unsupervised segmentation and

tracking. Tracking was stopped manually when it started to fail and then restarted

from the last frame where it worked, after making any required �xes in the

intermediate frames. The labeling tool also supports using a previously trained

segmentation model, if available, to automatically generate initial cell candidates

that can then be manually modi�ed instead of having to be drawn from scratch,

although this capability was not used at this stage. Note that this relatively

labor-intensive stage did not require involvement from iPSC detection experts since

the labeled cells were not categorized into good and bad. Table C.1 provides

numerical details of the dataset generated in this stage.
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5.2.1.3.2 Exhaustive Automated Labeling

A Swin transformer instance segmentation model [26] was �rst trained on the

annotations from the previous stage. Next, ROI sequences spanning all 127 frames

were created. These were designed to cover as much of the circular well area

containing cells as possible, while minimizing overlap between di�erent ROIs. A

total of 31 sequences were created by extending 11 of the 17 ROIs from the previous

stage to the remaining frames and creating 20 new ones. These sequences had 3937

frames with 22,598 cells in all. Table C.2 provides numerical details of these

sequences. Finally, the trained Swin transformer instance segmentation model was

used to automatically detect and segment cells in each of these frames.

5.2.1.3.3 Categorized Retrospective Labeling

An iPSC detection expert �rst manually categorized the cells in frame 275 from each

of the 31 ROIs into good and bad. The two categories were respectively named iPSC

and di�erentiating cell (DfC) to re�ect their likely future growth outcomes. A semi-

automated interactive MOT tool was then used to propagate these labels backwards

in time by tracking each cell line from frame 275 to 146. This process accounted for

cell division and fusion events1 by giving each child cell the same label as the parent

in case of division and requiring that all merging cells have the same label in case

of fusion. A violation of the latter requirement would have meant that the labels

provided by the human expert were incorrect but this never happened, which is a

sign of their reliability. Note that cell lines that disappear before reaching frame 275

cannot be categorized in this way so these have been excluded from all experiments.

The tracking algorithm was kept simple due to time and computational

constraints. Cells were associated between neighbouring frames on the basis of

location and shape, similar to the IOU tracker [37]. Possible fusion and division

events were detected using heuristics based on association failures along with the

extent of change in the size, shape, and location of associated cells. These events

then needed to be manually con�rmed or rejected using a convenient mouse-based

interface. The detailed algorithm is provided in Algorithm 2. Due to this simplicity,

the retrospective labelling process is currently more time- and labor-intensive than

ideal and it took between 10 and 30 minutes to label each ROI sequence, depending

on density of cells and frequency of division and fusion events.

1Note that a division event when going backwards in time is actually a fusion event and vice versa
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We have made the code for all three stages publicly available [279] along with

the annotated data and trained models to facilitate reproducibility of our results and

further work in this domain.

5.2.2 Models

We selected two state-of-the-art image classi�cation models to allow head-to-head

comparison with the XGBoost classi�er-based approach by [23] (XGB) which is the

only existing method in literature that is relevant to this work. The models we chose

are based on Swin transformer [26] (SWC) and ConvNext [24] (CNC) architectures.

We also selected �ve instance segmentation models since both cell detection and

classi�cation are needed in the absence of �uorescence that was used by [23] to identify

cells. Two of these are static detectors that process each frame independently and

discard any video information. They are both variants of Cascade Mask RCNN [25]

but di�er in their backbone architectures, these being the same as the classi�ers chosen

above - Swin transformer [26] (SWD) and ConvNext [24] (CND). The remaining

three are video detectors that combine information from multiple video frames to

make their decisions. One of these - IDOL [28] - is an online model that only uses

information from past frames. The other two models - SeqFormer [29] (SEQ) and

VITA [30] - are batch models that use information from the entire video sequence

including both past and future frames. All three video detectors use versions of the

Swin transformer backbone. We also experimented with two ResNet [12] variants of

VITA but they did not perform well and so have been excluded here. In addition, we

trained a Swin transformer semantic segmentation model and tried several ensemble

techniques to combine semantic and instance segmentation results but these did not

yield signi�cant performance improvements and are therefore likewise excluded.

5.2.3 Training

Since retrospective labeling is the most time-consuming part of our pipeline, it is

desirable to minimize the need to label backwards to as few frames as possible.

Therefore, in addition to comparing modern deep learning-based methods with

XGB, we also wanted to evaluate the extent to which model performance on

early-stage images depends on the lateness of the frames on which it is trained. We

constructed two di�erent training datasets to achieve this - an early-stage set with

38 frames from 163 to 202 and a late-stage set with 73 frames from 203 to 275.
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Models trained on both datasets were evaluated on the 16 frames from 146 to 162.

We also had to adapt the method proposed by [23] to work with our images since

that work computes several of the features using 3D image information which is not

available in our case. It turned out that only 7 of the 11 features used there could

be suitably approximated with 2D data so we trained XGB using only these 7

features (Section C.2). All models were trained to convergence using mostly default

settings recommended for each model by the respective authors except for minor

tinkering with batch sizes, data augmentation strategies and scaling factors to make

the models �t in the limited GPU memory available. The classi�cation datasets

were constructed from image patches corresponding to the bounding box around

each labeled cell, with an additional 5 pixel border added for context. Models were

trained on several di�erent GPU con�gurations - video detectors: 2 × Tesla A100

40 GB, static detectors: 2 × RTX 3090 24 GB, classi�ers: 3 × RTX 3060 12 GB

and 3 × GTX 1080 Ti 11 GB.

5.3 Evaluation

5.3.1 Classi�cation Metrics

We used standard receiver-operating-characteristic (ROC) curves and the

corresponding area-under-curve (AUC) metric to compare the models. Note that

head-to-head comparison between detectors and classi�ers is di�cult since the

former both detect and classify cells while the latter only do classi�cation on all the

cells in the GT. Two types of detector failures need to be accounted for in order to

render such a comparison meaningful:

� False Positives (FP): Detections without matching GT cells

� Misclassi�cation (FP-CLS): a GT DfC is detected but misclassi�ed as iPSC

� Duplicates (FP-DUP): the same GT iPSC is detected multiple times and

classi�ed each time as iPSC

� Non-Existent (FP-NEX): an iPSC is detected where no GT cell exists

(neither iPSC nor DfC)

� False Negatives (FN): GT cells without matching detections

� Misclassi�cation (FN-CLS): a GT iPSC is detected but misclassi�ed as DfC

� Missing detection (FN-DET): a GT iPSC is not detected at all (neither as

iPSC nor as DfC)
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FP-NEXs were ignored when computing the classi�cation metrics since manual

examination2 showed that virtually all of these corresponded to one of two cases,

neither of which is important in our application:

� FP-NEX-WHOLE: unlabeled cells whose labels could not be inferred by

retrospective labeling (Section 5.2.1.3.3)

� FP-NEX-PART: parts of labeled cells, mostly in scenarios involving

ambiguously-shaped cells that could plausibly be interpreted as undergoing

division or fusion events, but were labeled as whole cells.

FP-DUPs were also ignored since multiple detections of an iPSC have little impact in

our application. Finally, FN-DETs had to be discarded since ROC curves can only be

generated by varying the cut-o� used in �ltering detections based on their con�dence

values which are unavailable for undetected cells.

In addition to the AUC of the complete ROC curve, we also used partial AUCs

[280] with FP thresholds of 0.1%, 1% and 10%. Even a small number of FPs can be

extremely detrimental in our application due to the high cost of culturing non-viable

cells so that a model that performs better at these FP rates is preferable to another

that is better overall but underperforms here.

5.3.2 Detection Metrics

The exclusion of FN-DETs while computing the classi�cation metrics can make these

biased in favour of detectors with high rates of missing cells but high accuracy for the

few cells that they do detect. We accounted for this by incorporating the following

detection metrics to evaluate and compare only the detectors:

� Frequency of FN-DETs, FP-DUPs and FP-NEXs

� Standard detection metrics [281] of mean average precision (AP) and AUC of

the recall-precision curve (RP-AUC)

5.3.3 Temporal Metrics

The ability to detect iPSCs as early as possible is crucial to our application. Therefore,

we also evaluated the models in each of the 16 test frames one-by-one to judge how

their performance varied over time. A model that performs better in earlier frames

would be preferable to one that performs better overall but underperforms in earlier

frames.
2visualizations for all detection failures are included in apendix C.5
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5.3.3.1 Subsequential Inference

Video detectors detect cells spanning all the frames in their input video instead of

frame-by-frame. This is incompatible with temporal evaluation since even detections

in early frames are done using information from all 16 frames in the test set. To

resolve this, we used incremental inference where the detections for each frame are

generated by running the detector on a subsequence comprising only that frame and

all of the preceding ones so that information from future frames is not used. For

example, detections for frames 1, 2 and 3 are respectively generated by running the

detector only on subsequences comprising frames (1), (1, 2) and (1, 2, 3).

We used another variant of subsequential inference to evaluate the impact of the

number of frames on the performance of video detectors so we can judge whether

patterns in the way that cell boundaries change over time provide useful information

about their eventual outcome to these detectors. Here, we divided the 16-frame

sequence into a set of non-overlapping subsequences, each with a �xed size, and ran

inference on each subsequence independently. For example, with a subsequence size

of 2, our 16-frame sequence is divided into 8 subsequences - (1, 2), (3, 4), ..., (15, 16).

Detections for all frames in each subsequence are then generated by running on only

the frames in that subsequence. We experimented with subsequence sizes of 1, 2, 4

and 8.

5.4 Results

5.4.1 Classi�cation

ROC curves for both early and late-stage models are shown in the top row of Figure

5.1. It can be seen that the early models perform much better than the late ones,

which is expected since their training images are much more similar to the test images.

However, the extent of this di�erence does indicate that cell-appearance changes so

much over the course of just 9.5 hours (temporal gap between early and late-stage

training images) that long-term retrospective labelling right to the very early-stage

images is likely to be essential to generate training data for models that can do early-

stage iPSC detection reliably. The signi�cant performance advantage of deep learning

models over XGB is also apparent here. The main shortcoming of XGB seemed to

be its inability to handle class imbalance in the training set. Since about 75% of

all cells were DfCs, XGB apparently learnt to classifty nearly all cells as DfCs. We
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Figure 5.1: Classi�cation metrics for (left) early and (right) late-stage models. Top:
ROC curves (respective AUC values are in the legend); bottom: partial AUCs. Please
refer Section 5.2.2 for model acronyms.

tried all the standard techniques to handle class imbalance [282] but this is the best

performance we could get from it.

Further, all the video detectors are consistently better than the static ones,

which seems to con�rm the human experts' supposition that temporal information

is crucial for making good predictions. Also, the static detectors do outperform the

classi�ers but only signi�cantly so in the early-stage case. Since the precise shape of

cell boundaries is not available to the classi�ers, this lends some weight to the

additional supposition that cell-shape is important for recognizing iPSCs. However,

as already noted above, the cell-shapes change too rapidly for this information to be

generalizable from the later stages to the earlier ones. Finally, IDOL turns out to be

the best model overall even though it is the smallest and fastest of the three video

detectors, while the much larger VITA shows a susceptibility to over�tting, as
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Figure 5.2: Detection metrics for (left) early and (right) late-stage models. ROC-AUC
is included for comparison.

demonstrated by its sharp decline between the early and late-stage cases. This kind

of over�tting is exhibited by both the static detectors too, though it is more

strongly marked in case of SWD.

Partial AUCs are shown in the bottom row of Figure 5.1. Relative performance

between the models is broadly similar to that for overall AUC, though IDOL shows

greater performance advantage over other models in the early-stage case, especially

for 0.1% FP. The detectors also show greater improvement over the classi�ers in these

high-precision scenarios. We also analysed the temporal evolution of partial AUCs

by evaluating these frame-by-frame to generate 3D plots with time dimension on the

Z-axis (Section C.6) but could not �nd any useful patterns beyond those apparent in

these 2D plots.
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5.4.2 Detection

As shown in Figure 5.2, relative detection performance is mostly consistent with

classi�cation accuracy, and IDOL is still the best model overall. IDOL also shows

the smallest drop in performance between ROC-AUC and AP while the two static

detectors show the largest drops amounting to nearly 10-fold for SWD and 7-fold for

CND in the late-stage scenario. Among the video detectors, VITA su�ers the largest

performance drop, especially in the late-stage case which underlines its tendency to

over�t. Further, both SEQ and VITA have very high FN-DET rates that are also

at odds with their relatively good classi�cation performance. Conversely, SWD has

much lower rates of FN-DETs than its ROC-AUCs would suggest, especially in the

late-stage case where it outperforms all other models by a signi�cant margin, though

this does come at the cost of a corresponding rise in FP rates. We can also note that

this increase in FPs is dominated by only one subtype, namely FP-NEX-WHOLE,

while FP-DUP and FP-NEX-PART show little change, not only for SWD but also for

IDOL and VITA. It appears that either due to the greater range of cell-appearances in

the late-stage dataset (owing to its greater size) or larger disparity in cell-appearance

with respect to the test set, these models learnt to detect a lot more of the unlabeled

cells than their early-stage counterparts. The latter were therefore better than the

former at discriminating between the unlabeled and labeled cells.

5.4.3 Temporal

Frame-wise AUCs are shown in the top row of Figure 5.3. Somewhat contrary to

expectation, AUC does not show consistent increase with time even though test

images are becoming more similar to the training images. In fact, many of the

early-stage models do show a weak upward trend while late-stage ones do not show

any. This is particularly unexpected since the latter perform signi�cantly worse

overall and show signs of over�tting, which should lead to a more strongly marked

increase in accuracy as resemblance between the test and training images increases.

A possible explanation might be that the late-stage training images are just too far

away from the test set for any intra-set variations in test images to make enough of

a di�erence in their resemblance to training images to bene�t the models.

Bottom row of Figure 5.3 shows the impact of subsequence length on the video

detectors. These plots include only ROC-AUC but detection metrics showed similar

patterns and have thus been relegated to appendix C.4. In order to incorporate the
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Figure 5.3: Temporal metrics - top: frame-wise ROC-AUCs for (left) early and (right)
late-stage models; bottom: subsequential ROC-AUCs for video detectors - left and
center plots show early and late-stage models tested on the standard test set of frames
146 - 162 while the right one shows the latter tested on an extended test set with
frames 146 - 201. Note the curtailed and variable Y-axis ranges in the subsequential
ROC-AUC plots.

longest-term temporal information possible with our dataset, we also tested the late-

stage model on an extended test set comprising frames 146 to 201. Unfortunately,

there is a visual discontinuity between frames 184 and 185 due to which this 54-frame

sequence had to be divided into two subsequences - one with 38 frames from 146 to 184

and another with 16 frames from 185 to 201 - so that the longest subsequence length

was 38 instead of 54. There is indeed a general upward trend with subsequence

length but it is much weaker than might be expected. Early-stage models showed

negligible impact of subsequence length while the greatest overall gains were 5.2%

in the second case and 3.6% in the third case, achieved respectively by IDOL and

VITA. Neither of these seem su�cient considering the 4 to 9 hours worth of extra

temporal information available to the models. This might indicate that changes in

cell-appearance over time are not as useful for recognizing iPSCs as supposed by

experts. More likely, it might mean that existing video detectors are simply not good
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enough to exploit this information su�ciently well and better long-term models are

needed.

5.5 Conclusions and Future Work

This chapter presented a labeling, training and evaluation pipeline along with baseline

performance results for early-stage prediction of iPSC reprogramming outcome to help

select the best quality clones. These are still early days of research in this domain

and it is di�cult to say how practical such an automation can be. While it is clear

that deep learning models hold signi�cant advantage over previous methods, they also

show signs of over�tting and it is unclear how much training data would be needed

to overcome such issues.

We are currently working to improve the tracking algorithm in the retrospective

labeling system to make the process faster and less tedious since that is the current

bottleneck in the labelling pipeline. We are trying out several state-of-the-art

real-time multi object trackers, especially those specialized for tracking cells

[270, 271, 272], to replace the simple IOU based algorithm used in this work. We

are also looking into ways to improve this algorithm by exploiting recursive

parent-child relationships in our labels that can be used to construct hierarchical

tree-like structures. Transformer architectures that support such structures

[283, 284, 285, 286] might help to incorporate cell division and fusion events directly

into the algorithm to not only improve the cell association reliability but also reduce

the incidence of false positives in the detection of these events, which is the most

time-consuming and tedious aspect of this process. A recent method uses graph

neural networks to exploit these structures [269] for cell tracking. We are trying to

incorporate it into our pipeline and also improve it further using transformers. If

these e�orts prove successful, we hope to make long term retrospective labelling

spanning multiple weeks feasible so any such demands for data can be met.

We are also exploring ways to better exploit long-term patterns in the evolution

of cell-appearance over time to improve prediction quality since the current ability of

video detectors in this regard does not appear to commensurate with the importance

that human experts attach to this information. This discrepancy might be due to both

the limited temporal span of our data or the models being unable to bene�t from this

information because they do not learn from su�ciently wide temporal windows. We

hope to resolve the former by extending our data from its current span of only 3 days
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to as much as 5 weeks once the retrospective labeling system have been improved

enough to make such long-term labeling feasible. The latter can be addressed by

using more memory-e�cient models since increasing the size of temporal windows

for training is an extremely memory-expensive process for which our computational

resources are insu�cient.

Another related issue we are trying to address is that of the black-box nature of

deep learning which makes it very di�cult for the medical experts in our team to �gure

out the reasons behind particular failures of the models. It makes it equally di�cult

for us to incorporate their suggestions to �x such failures. We are hoping that recent

advances in the �eld of interpretable deep learning [287, 288, 289, 290, 291], especially

with regard to transformers [292], video processing [293] and medical imaging [294],

might help with these limitations.
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Chapter 6

Language Modeling for Video

Detection

This chapter details my adaptation of Google's Pix2Seq framework [31, 49] for video

object detection. I �rst brie�y revisit the modeling of static object detection in

Pix2Seq (Section 6.1.1) and then explain how I adapted it for video object detection

(Section 6.1.2). This is followed by a brief description of Pix2Seq network architecture

(Section 6.2.1) and how I adaped it for video processing (Section 6.2.2).

Note that many of the tokenization concepts in this chapter and the next one

can be better illustrated with animations rather than still images. Since it is not

possible to include animations here, I have created a website for this project [295]

which contains the videos corresponding to many of the images included here. The

links to the actual videos are included in the caption to each such image.

6.1 Tokenization

6.1.1 Static Object Detection

Pix2Seq performs object detection in static images by representing each object by

�ve tokens - four for the bounding box corner coordinates and one for the class:

ty,lx,by,rx, cls

where (lx, ty) and (rx, by) are the x -y pixel coordinates of the top left and bottom

right corners of the bounding box respectively, while cls is the class token. These

coordinates are in image-space which is discretized into bins. The number of such

bins can be either greater than the image resolution to achieve sub-pixel accuracy or
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Figure 6.1: Visualization of object tokenization in Pix2Seq on an image from UA-
DETRAC dataset. This dataset has a single class, represented here by the vehicle
token. An animated version of this image is available here.

less than it to reduce vocabulary size. Both x and y coordinates are represented by

the same shared set of tokens so that the total number of tokens in the vocabulary V

is given by:

V = H + C + r (6.1)

where H is the number of coordinate bins, C is the number of classes and r is number

of reserved tokens (e.g. EOS and padding token). Pix2Seq uses H = 2000 and

V = 3000 by default.

The tokens for all the objects in the image are produced sequentially so that the

total number of output tokens = 5 × n + 1 where n is the number of objects in the

image and the extra token at the end is the EOS token that marks the end of all

objects. The order of objects is not de�ned and is randomized each time the same

image is shown to the network during training so the network is able to learn an

order-agnostic representation of the objects. Figures 6.1 and 6.2 show examples of

static object detection tokenization for single- and multi-class cases respectively.
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Figure 6.2: Visualization of object tokenization in Pix2Seq on an image from IPSC
dataset. This dataset has two classes of cells - IPSC and di�erentiating - shown here
with green and red masks and represented with ipsc and di� tokens respectively. An
animated version of this image is available here.

6.1.2 Video Object Detection

I adapted this tokenization strategy for video object detection by considering all the

bounding boxes of an object in an N -frame temporal window as a single 3D polygon

or tubelet [216] that can be represented by a sequence of N 4-tuples, one for each

bounding box, followed by the class token. Therefore, each object can be represented

by 4 ×N + 1 tokens and all n objects by n × (4 ×N + 1) + 1 tokens. For example,

we need:

� 9 tokens per object for N = 2:

ty1, lx1, by1, rx1, ty2, lx2, by2, rx2, cls

� 13 tokens per object for N = 3:

ty1, lx1, by1, rx1, ty2, lx2, by2, rx2,ty3, lx3, by3, rx3, cls

where (lxi, tyi) and (rxi, byi) are respectively the coordinates of the top left and

bottom right corners of the bounding box in the ith frame Fi.
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Figure 6.3: Visualization of video object tokenization on a video clip from UA-
DETRAC dataset with N = 2 and G = 10. An animated version of this image
is available here.

Figures 6.3 and 6.4 show a couple of examples of video detection tokenization.

6.1.2.1 NA Token

It is possible that an object is not present in each of the N frames in the temporal

window. I account for this possibility by adding a special NA token to the vocabulary

to denote non-existence Missing objects usually happen because an object either

enters or leaves the scene in the middle of the temporal window, though sometimes

it can also happen if the object is brie�y occluded in the middle of the window.

Following are examples of all three cases:

� N = 3, object leaves the scene in the third frame:

ty1, lx1, by1, rx1,ty2, lx2, by2, rx2,NA,NA,NA,NA,cls

� N = 4, object enters the scene in the third frame:

NA,NA,NA,NA,NA,NA,NA,NA,ty3, lx3, by3, rx3,ty4, lx4, by4, rx4,cls

� N = 6, object occluded in the fourth and �fth frames:
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Figure 6.4: Visualization of video object tokenization on a video clip from IPSC
dataset with N = 2 and G = 5. An animated version of this image is available here.

ty1, lx1, by1, rx1,ty2, lx2, by2, rx2,ty3, lx3, by3, rx3,NA,NA,NA,NA,NA,NA,NA,NA,

ty6, tx6, by6, rx6,cls

NA tokens become more common as N increases, especially in scenarios where the

camera �eld of view is limited and objects are fast-moving. An animated example

from UA-DETRAC dataset [296] with N = 6 is available here.

6.1.2.2 Limits on N

In theory, N could be large enough to cover the entire video, in which case video

detection graduates into MOT. In practice, however, it is severely limited by the

amount of available GPU RAM. Using the smallest ResNet-50 based Pix2Seq

architecture (Section 6.2.1) and without freezing any layers, N = 16 is the

maximum that can be trained on a RTX 3090 GPU with 24 GB RAM, which is the

maximum available on a consumer-grade GPU. It should be possible to get close to
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N = 50 on a Tesla A100 with 80 GB RAM, which is the maximum available on a

workstation GPU. With the backbone frozen, it is possible to go as high as N = 64

on 24 GB RAM, though this limits the batch size to 1 per GPU or total 6 over the 3

dual-GPU servers available to me (Section 8.3). This is far too small to be able to

learn something as complex as the the set of all objects in a 64-frame temporal

window.

I have successfully trained models upto N = 32, although performance drops

sharply beyond N = 8 (Section 8.5.4), indicating that such models cannot be

successfully trained on my existing hardware. This is very likely due to the above

problem of too small batch sizes, exacerbated by the frozen backbone and the

relatively small number of videos in the datasets (Table 8.1). Another constraint on

how large N can be made in practice is the the number of training iterations

required for the model to reach convergence, which increases rapidly with N .Finally,

the maximum sequence length L, that must be ≥ number of tokens required to

represent all the objects in each temporal window, imposes another limit on N .

With N = 64, we need 64 × 4 + 1 = 257 tokens to represent a single object and

therefore several thousand tokens for tens of objects which are not unusual in many

real-world scenarios. Pix2Seq has a default limit of L = 512 on the maximum

number of tokens that can be produced by the network. I have managed to increase

this to as high as L = 4096 but any increase in L causes both GPU memory

consumption and training time to rise quickly, even if N itself is not changed.

6.1.2.3 1D Coordinate Tokens

The problem of L rising rapidly with increase in N can be partially ameliorated by

using 1D coordinate tokens corresponding to a �attened image instead of the standard

2D (x, y) tokens. Each bounding box can then be represented by only 2 tokens instead

of 4 and each object by 2×N+1 tokens, thus reducing L nearly by half. For example:

� N = 3, object leaves the scene in the third frame:

tl1, br1,tl2, br2,NA,NA,cls

where tli and bri are respectively the �attened coordinates of the top left and bottom

right corners of the bounding box in the ith frame Fi.

However, using 1D coordinates greatly increases the required vocabulary size V

since now we need a total ofH2 di�erent coordinates tokens instead ofH and therefore

V = H2 + C + r. As explained in Section 7.2.1.1, it is important that V ≤ 32K.

This severely limits the number of coordinate bins H that we can use, which in turn
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signi�cantly reduces the localization accuracy of the detector. Also, while increasing

V does not a�ect the GPU memory consumption and training time to the same extent

as L, it does cause both to increase too, thereby limiting the batch size we can use

and the number of epochs we can train for. I did perform some experiments with

H = 160 and H = 256, using respective vocabulary sizes of V = 18K and V = 28K

(Section 8.5.5), but found the models to be training far too slowly to be practicable.

It appears that the 1D coordinate tokenization is too much of a change from the

standard 2D version used in training the pretrained weights for successful �ne-tuning

to be viable with the limited dataset and computational resources available to me.

6.1.2.4 Temporal Windows

Since we cannot process the entire video at once, we divide it into N -frame temporal

windows which are processed one at a time in a sliding window manner. There are

two hyperparameters we can adjust to construct more varied temporal windows, both

as a form of training data augmentation and to improve inference results.

The �rst parameter is the temporal stride T which is the number of frames that

separate two consecutive windows. We can use a stride T < N to introduce

redundancy during inference which can help to deal with false negatives. For

example, with N = 3 and T = 1, we get frames 1, 2, 3 in the �rst temporal window;

2, 3, 4 in the second one; 3, 4, 5 in the third one and so on:

(F1, F2, F3), (F2, F3, F4), (F3, F4, F5), (F4, F5, F6), ...

As a result, we have detection outputs for F2 from two di�erent temporal windows

while the outputs for F3 onwards come from three di�erent windows. For any N in

general, T = 1 provides N -way redundancy for all but the �rst N − 1 frames in the

video. These redundant outputs can be combined using non-maximum suppression

to �ll-in objects that might have been missed in individual temporal windows but

not all of them.

The second parameter is the frame gap G between successive frames in the same

temporal window. We can make G > 1 as a form of training data augmentation to

allow the network to learn to deal with faster inter-frame motions, which would be

useful, for example, in handling dropped frames during live inference. Even for o�ine

inference, G > 1 can provide us with even more overlapping temporal windows for

each frame, thereby increasing the redundancy further. For example, with N = 6,

T = 3 and G = 2, we get temporal windows:

(F1, F3, F5, F7, F9, F11), (F4, F6, F8, F10, F12, F14), (F7, F9, F11, F13, F15, F16), ...
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All my experiments so far have been restricted to G = 1 but G > 1 provides an

interesting avenue for future exploration.

6.2 Network Archtectures

6.2.1 Static Image Input

Pix2Seq supports two backbone architectures - ResNet-50 [12] and VIT [34] - each

with three input sizes - 640 × 640, 1024 × 1024 and 1333 × 1333. I have used the

smallest version - 640×640 ResNet-50 - for most of my experiments so as to maximize

N and training batch size. I did perform a few experiments using 1024 × 1024 and

1333× 1333 ResNet-50 as well as 640× 640 VIT but did not observe any signi�cant

performance improvements. Note that I have only adapted the ResNet-50 version

for video modeling since the video fusion architectures proposed in Section 6.2.2 are

incompatible with VIT. I have left the adaptation of VIT for video processing as

future work since it requires far too much GPU memory for any video version to

be practicably trainable with my existing computational resources. The remainder

of this section is therefore restricted to describing the ResNet-50 variant of Pix2Seq

network architecture. The network itself has the standard transformer-based encoder-

decoder architecture [33] where the encoder performs only self-attention with image

features while the autoregressive decoder does self-attention with sequence features

as well as cross-attention between sequence and image features.

6.2.1.1 Encoder

The encoder takes the 640× 640 RGB image as input and applies multi-headed self-

attention [33] to convert it into 400 × 256 features which are used as input for the

decoder. This diagram in Figure 6.5 summarizes the encoder architecture. Here,

� B is the batch size

� FLATTEN FEAT refers to the spatial �atenning of the 20× 20 ResNet-50 feature

maps into 1D feature vectors of size 400

� POS EMBED is the operation of adding positional embedding to the �attened

features

� PROJ MLP is a multi-layer perceptron (MLP) that projects the �attened features

to 400× 256
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Figure 6.5: Flow diagram representing the high-level processing in the Pix2Seq
encoder. Please refer Section 6.2.1.1 for details.

� Self MHA X 6 module refers to the multi-headed attention (MHA) module that

applies self-attention to the image features which is repeated 6 times.

6.2.1.2 Decoder

The decoder takes the 400 × 256 image features from the encoder along with the

sequence tokens. It then applies multi-headed self-attention to the sequence

embedding features, followed by cross-attention between the sequence and image

features. This self + cross MHA operation is repeated 6 times just like the self-MHA

operation in the encoder. Figure 6.6 summarizes the decoder architecture. Here,

� SEQUENCE TOKENS refers to the sequence of target tokens constructed from

the GT objects and padded to the maximum sequence length (500 in this case)

� INPUT EMBEDDING is obtained by table-lookup into the 3000 × 256 weight

matrix of a single linear layer where each row corresponds to one token in the

vocabulary of size V = 3000

� OUTPUT EMBEDDING is obtained by projecting the 256 dimensional feature

vectors to 3000 dimensional ones using the same linear layer whose weights are

used in the input embedding module

� SELF MHA module applies self-attention to the sequence embedding features

� CROSS MHA module applies cross-attention between sequence features outputted
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Figure 6.6: Flow diagram representing the high-level processing in the Pix2Seq
decoder. Please refer Section 6.2.1.2 for details.

by the self MHA module and the image features from the encoder

6.2.2 Video Input

I have determined experimentally that, like most transformer-based language models,

Pix2Seq is very di�cult to train from scratch on the relatively small datasets that I

am working with. Therefore, we want to be able to use as much of the pre-trained

weights as possible. This in turn requires that the baseline architecture is modi�ed

as little as possible. With this in mind, I have come up with three ways to adapt the

architecture for processing videos. These di�er in the stage of the encoder-decoder

pipeline at which the features from individual video frames are fused together.

6.2.2.1 Early Fusion

This method replaces the ResNet-50 backbone with a video-speci�c backbone such

as the Video Swin Transformer [297] or 3D-ResNet [298] so that the feature fusion

happens within the backbone itself. I have only experimented with Video Swin

Transformer so far. Figure 6.7 summarizes the early-fusion architecture. This

method only changes the number of backbone feature maps from 2048 to 768 while

the rest of the pipeline remains unchanged. This means that we are unable to use

pretrained weights only for the projection MLP that projects the �attened backbone
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Figure 6.7: Flow diagram representing high-level processing in the early-fusion video
encoder with the video Swin transformer backbone. Please refer Section 6.2.2.1 for
details.

features from 400× 768 to 400× 256. Of course, we also lose the pretrained weights

for the ResNet50 backbone itself but the video swin transformer implementation I

am using [299] comes with its own weights which seem to work well enough as long

as the backbone is not frozen while training. Unlike the Pix2Seq pretrained weights

which were trained for token-based object detection, this backbone was trained on

the Kinetics video action recognition dataset [300] with conventional (i.e. non

token-based) modeling. As a result, the overall network fails to generalize to

token-based tasks if the backbone is kept frozen (Section 8.5.3.1). I have

experimented with both tiny and base variants of this backbone but found them to

have similar performance inspite of the latter having more than three times the

number of parameters (87.64M versus 27.85M), probably because of the much

smaller batch size necessitated by this larger network size.

6.2.2.2 Middle Fusion

As shown in Figure 6.8, we �rst �atten the temporal dimension along the batch

dimension to replace B with B × N images (and feature maps) while leaving the

rest of the encoder pipeline unchanged. The result of this reshaping is that all the

subsequent operations up to and including self-MHA are performed to each one of

89



FLATTEN
VID

B x N x 640 x 640 x 3

ResNet50
FLATTEN

FEATBN x 20 x 20 x 2048

PROJ 
MLP

BN x 400 x 2048

POS 
EMBED

+

BN x 400 x 256SELF 
MHA x 6

BN x 400 x 256

DECODER

VIDEO

BN x 640 x 640 x 3

CROSS 
MHA x 1

UNFLATTEN
VID

B x N x 400 x 256

B x 400 x 256

Figure 6.8: Flow diagram representing high-level processing in the middle-fusion video
encoder. Please refer Section 6.2.2.2 for details.

the video frames independently as if we had a batch size of B×N instead of B. Once

we have the BN × 400 × 256 output from the self-MHA module, we un�atten the

temporal dimension to separate out the 400×256 features for each one of the N video

frames.

We then apply some form of cross-attention between the features from di�erent

video frames to fuse them together. The speci�c technique I have used is pairwise

compositional cross-MHA as shown in Figure 6.9. Here, we �rst apply cross-MHA

between the features of F1 and F2, then between the output of this operation and

features of F3, then between the output of this operation and features of F4 and

so on. For the sake of simplicity, all the cross-MHA operations share weights in

my implementation although it would also be possible to have separate weights for

each one. Another way to perform video cross-MHA is hierarchical consecutive cross-

MHA as explained in Section D.1. There are probably many other ways to perform

this operation but these are the only two that I have considered and the pairwise

compositional variant is the one I have used for all of my experiments since the

hierarchical version is less stable to train due to the excessive number of cross-MHA

operations it requires for larger values of N (N × (N − 1)/2 in hierarchical versus

N − 1 in compositional).

Note that, unline the self-MHA operation, the video cross-MHA operation cannot

be repeated multiple times since the input and output shapes of each such operation
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Figure 6.9: Flow diagram for the pairwise compositional variant of the cross-MHA
module in the middle-fusion video encoder. Please refer Section 6.2.2.2 for details.

are di�erent. Middle-fusion allows us to use all the pretrained weights but we have to

learn the compositional cross-MHA weights from scratch. This can sometimes lead

to a bit of instability during training, especially for larger values of N . Nevertheless,

middle fusion outperforms the other two methods in most cases (Section 8.5.3), albeit

by small margins, so this is the one I have used for most of my experiments.

6.2.2.3 Late Fusion

This is the only method where feature fusion happens in the decoder, unlike the

other two methods where it happens in the encoder so that the decoder remains

exactly the same as in the static architecture. Figure 6.10 shows the late-fusion

encoder and decoder. The encoder here is identical to the middle-fusion encoder as

far as generating the BN × 400× 2048 backbone features, after which the temporal

dimension is un�attened to separate frame-speci�c features. 3D position embedding

is then added to these to encode information about the position of each frame within

the video. The 3D position embedding parameters are the only ones for which we

cannot use pre-trained weights and therefore have to learn from scratch. The 400

features for each of the N frames in each video are then concatenated together into

400×N features.This creates an overall feature map of size B × 400N × 2048 which

is processed normally for the remainder of the encoder pipeline, except that now we

have 400×N features instead of 400. Each of these 400×N image features is then

cross-attended with each of the 500 sequence features in the decoder so that every

single frame is directly able to attend to every single output token.

In theory, we would expect that the �exibility of every frame being able to

directly a�ect every token would make it possible to train better models since visual
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Figure 6.10: Flow diagram representing high-level processing in the late-fusion video
encoder and decoder. Please refer Section 6.2.2.3 for details.

information from any frame can be used to improve the prediction of tokens

corresponding to both past and future frames. This should be particularly useful for

handling occlusions since the frame where an object is actually occluded contains

little to no visual cues about this occluded state but this information can be

obtained from past and future frames where the object is not occluded. Late-fusion

is also the method with the fewest parameters for which we are unable to use the

Pix2Seq pretrained weights (409K in late fusion versus 800K in middle-fusion and

24M in early-fusion) However, in practice, I have not observed any consistent

performance improvement with late-fusion compared to the other two methods.
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Chapter 7

Language Modeling for

Semantic Segmentation

This chapter details my adaptation of the Pix2Seq framework [31] for semantic

segmentation in both images and videos. Section 7.1 brie�y explains the run length

encoding (RLE) representation I used to represent segmentation masks with

sequences of discrete tokens. Section 7.2 follows with details of how I tokenized RLE

for the case of static images including the sliding window patches (Section 7.2.2)

and Lengths-As-Class (LAC) encoding (Section 7.2.3) I employed to deal with high

resolution and multi-class masks. Finally, section 7.3 concludes with an extension of

this representation for videos, including the Time-As-Class (TAC) and

Lengths-and-Time-As-Class (LTAC) schemes (Section 7.3.1) I used to compress the

RLE further to make it feasible to incorporate multiple masks without exceeding

the token sequence length beyond practicable limits. I have used the same network

architectures for semantic segmentation as object detection (Section 6.2) so I do not

cover these again.

7.1 Run Length Encoding (RLE)

I have chosen to tokenize semantic segmentation masks using the run-length encoding

(RLE) representation [301]. This is a lossless data compression technique that �attens

the segmentation mask into a 1D vector and represents this as a sequence of runs.

A run is a continuous sequence of non-zero pixel values that can be represented by

a pair of integers - start, length - where start is the index of the �rst pixel in the

93



0 0 0 1 0

1 0 1 1 1
0 0 0 1 0 1 0 1 1 1 3 1 5 1 7 3

Figure 7.1: Generating RLE sequence for a 2 × 5 binary mask using row-major
�attening. Note that the start indices use 0-based indexing instead of the 1-based
indexing commonly used in RLE.

sequence and length is the number of pixels in the sequence. An example1 is shown

in Figure 7.1. A binary segmentation mask can thus be represented by a sequence of

these pairs:

start1, length1,start2, length2,start3, length3,...

while a multi-class mask would need a sequence of triplets since each run would also

have the class ID:

start1, length1, class1,start2, length2, class2,start3, length3, class3,...

The mask can be �attened in either row-major and column-major order. Both of these

lead to similar sequence lengths on average, although one might be more suitable than

the other for speci�c cases. For example, row-major would provide shorter sequences

if most of the objects are short and wide while column-major would work better for

tall and narrow objects.

I also considered two alternative mask representations including polygons [80, 81,

302, 303, 49] and quadtrees [304]. However, statistical tests showed that all of these

representations require roughly the same number of tokens as RLE so I chose the

latter since it provides two advantages over the others. Firstly, it is much easier

to implement, especially when generalizing to multi-class and video segmentation.

Secondly, it is likely to be more robust to noisy tokens during mask reconstruction at

inference since a single run, which forms the geometrical unit of RLE tokenization,

has a much smaller impact on the overall mask quality than a polygon or quadtree.

For example, if a few RLE tokens go missing at inference, it is likely to have minimal

impact on the overall mask quality since each run usually a�ects only a few nearby

pixels in the same row (or column). Also, the gaps or artifacts in the mask thus created

might be remedied relatively easily by image processing techniques like morphological

operations [305]. However, a single missing polygon token could severely degrade the

mask in a way that cannot be easily �xed by image processing.

On the other hand, RLE does have an important disadvantage in that it makes

1This example has been borrowed from this online article
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object-level information di�cult to learn since it represents each object by a large

number of independent tokens. It would be an interesting area of future work to

�gure out how to add object-level information to the mask tokens without losing the

robustness bene�t provided by the small quantum of RLE.

7.2 Static Image Segmentation

7.2.1 Tokenization

As mention in section 6.2.2, Pix2Seq is very di�cult to train from scratch, so it is

important that we are able to use as much of the pretrained weights as possible. This

in turn requires that the baseline architecture be modi�ed as little as possible. This

imposes a couple of architectural constraints on RLE tokenization � the size of the

vocabulary V and the maximum sequence length L.

7.2.1.1 Architectural Constraints

Out of the box, Pix2Seq has L = 512 and V = 3K in the original object-detection-

only variant [31], though the multi-task version [49] implemented in the same code-

base supports V upto 32K. The choice of how to tokenize RLE involves a trade-

o� between these two constraints, wherein a mask can be encoded by fewer tokens

(thereby decreasing L) by adding more unique tokens to the vocabulary (thereby

increasing V ) and vice versa. Also, increasing either L or V causes both training

time and GPU memory consumption to rise too, though this increase is signi�cantly

more pronounced for L than V . Hence, my overall objective was to keep the RLE

sequence as short as possible while allowing the number of required tokens to increase

up to 32K. I have been able to get the model working with RLE sequence lengths

up to 3K and vocabulary sizes up to 28K. It is possible to get training started

with sequence lengths up to 8K but anything much above 3K results in the training

crashing soon afterwards, irrespective of V , so it appears that 24 GB GPU RAM is

simply not enough for L >> 3K.

7.2.1.2 Mask Flattening

Let us assume that we have an S × S binary segmentation mask. If we employ the

conventional practice of �attening the mask into a 1D vector, we can use a single

token to represent the starts but we would need S2 di�erent tokens in the vocabulary

95



Figure 7.2: Visualization of RLE tokenization of binary segmentation masks with
row-major (top) and column-major (bottom) �attening of the masks. Each �gure
shows (from left to right) the source image patch with the foreground mask drawn on
it in yellow, binary version of this mask with the already tokenized segment in yellow,
and the corresponding tokens. The run that is currently being tokenized is shown in
purple. Animated versions of these �gures are available here and here.

for the start indices. Alternately, we can skip the �attening and just use the 2D

coordinates directly to represent the start of each run. In this case, we need only

S start tokens but now we need 3 tokens to represent each run, which increases L

by 50%. As mentioned above, reducing L is more important than reducing V so I

have mostly been working with the �attened version, though I did train a couple

models with 2D start tokens as well. Fig 7.2 shows examples of RLE tokenization for

binary segmentation mask with both row-major (top) and column-major (bottom)

mask �attening.
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Figure 7.3: An example of the sliding window patch extraction and mask subsampling
process on an image from the IPSC dataset. The top row shows (from left right) source
image resized to 2560×2560 with patch location shown by the blue box, corresponding
mask at its full resolution of 2560× 2560, and this mask subsampled by a factor of 8
to 320× 320. The bottom row shows (from left right) 640× 640 patch corresponding
to the blue box, corresponding patch mask at its full resolution 640 × 640, and this
mask subsampled by a factor of 8 to 80 × 80. This subsampled 80 × 80 mask is the
one that is used for generating the RLE sequence. An animated version of this �gure
is available here.

7.2.1.3 Shared Tokens

Further, we have the option to share the same set of tokens for both starts and lengths

since the lengths can theoretically be as large as the starts when a single run covers

the entire mask. However, in practice, very few runs extend across multiple rows (or

columns) so I decided to use separate tokens for lengths and imposed a limit of S

on the maximum length that a run can have. Runs that exceed S can be split into

multiple runs. For example with S = 80, an overlong run (300, 125) can be split into

two runs (300, 80) and (380, 45). In theory, this can increase the total number of runs

(and therefore L) dramatically but, as mentioned above, it is extremely rare for runs
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to extend across multiple rows (or columns) so it does not matter much in practice.

Having separate tokens for starts and lengths also provides a signi�cant advantage

during inference when we need to resolve the L × V probability distribution into

actual tokens. If starts and lengths are using the same set of S2 tokens (assuming the

�attened mask case), we would need to take the argmax over all the S2 probability

values to generate each length token. Using a separate set of S tokens for lengths

allows us to take the argmax over only these S probabilities which helps to correct

the run in cases where the network confounds the positioning of starts and lengths

tokens.

7.2.2 Sliding Windows

I collected statistics on the lengths of the RLE sequences required to represent

segmentation masks for complete images over the entire IPSC and ARIS datasets.

This turned out to be well over 512 for many images even when they were resized

down to I = 320, which itself reduced the resolution of many IPSC sequences by a

factor of more than 10 (Table C.3). In addition, even S = 320 is not feasible with

1D start tokens because of the impracticably large vocabulary size

V = S2 = 3202 = 102.4K that this requires. Although such resolutions can be

managed using 2D start tokens, this increases L by 50% which in turn signi�cantly

reduces the training batch sizes that can be used.

I resolved these issues by �rst extracting smaller patches of size P < I from those

images in a sliding window manner and then training on these patches instead of

the complete images. This is similar to how I handled over-large images in the river

ice segmentation project (Section 3.3.3). An example is shown in Figure 7.3. I also

applied all the patch dataset augmentation techniques from Section 3.3.3. These

include employing random strides smaller than P to generate overlapping patches,

and applying random geometric transforms like rotation and horizontal and vertical

�ipping to the patches thus generated.

7.2.2.1 Redundancy

Similar to overlapping temporal windows (Section 6.1.2.4), overlapping patches can

be used to increase redundancy during inference. In fact, when doing video

segmentation (Section 7.3), we can get redundancy from both temporal and spatial

windows. However, unlike object detection, there is no straightforward method to
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combine information from multiple masks of the same region in the image to create

a composite mask that is better than any of its constituents. The best method I

could think of was to employ a pixel-level voting strategy where we collect the class

label for every pixel from all the patches that contain that pixel and then use the

most frequently occurring class as the �nal label for that pixel. However, even this

resulted in a slight overall degradation of mask quality as compared to simply using

the class labels from the last patch that contains each pixel (Section 8.5.4). I also

experimented with other strategies like pixel-wise or, and, min and max but none

performed as well as the voting scheme.

7.2.2.2 Subsampling

I found empirically that patch sizes ranging from P = I/4 to P = I/8 are small

enough to produce RLE sequences of suitable sizes (i.e. with 512 ≤ L ≤ 3072) on

both IPSC and ARIS datasets, provided that the masks themselves are subsampled

down to between S = 80 and S = 160 (Tables E.1 - E.2). I am using the smallest

version of the Pix2Seq architecture which takes 640 × 640 images as input and this

gives the target size for the patches.

IPSC sequences have a large range of image sizes from 900 × 1700 to 3833 ×
4333 (Table C.3). Therefore, in addition to L exceeding the required limit for the

larger images, extracting patches directly from the source images leads to widely

varying magni�cation levels between the di�erent sequences. Therefore, for most of

my experiments on this dataset, I �rst resized the images to I = 2560 before extracting

the patches. This allows patches that are a quarter of the full image to reach the

target size P = I/4 = 2560/4 = 640 and is also large enough that we do not lose

much resolution in most of the images (Table C.3). Unlike IPSC, the ARIS dataset

has much more uniform sizes across its images (Table A.2) so extracting patches

directly from the source images with P = 640 works �ne on this dataset. Also, ARIS

images are small enough that directly resizing them to I = 640 and skipping patch

generation altogether also works without losing too much resolution.

After extracting the patches, I �nally subsampled the P = 640 patch masks down

to either S = 80 or S = 160 and generated the RLE training data using these

subsampled masks. I collected statistics on the amount of degradation in the mask

quality as a result of this subsampling, in terms of segmentation metrics (Section E.3)

obtained by comparing the subsampled masks to the original ones. This turned out

to be < 10% in most cases (Table E.9), which is su�cient for practical purposes.
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Figure 7.4: Visualization of LAC tokenization of multi-class segmentation mask. The
�gure shows (from left to right) the source image patch with the two classes shown
in red and green, binary version of this mask with the already tokenized segment in
red and green depending on the class, and the corresponding tokens. The run that
is currently being tokenized is shown in purple. The LAC tokens are shown here
as concatenations of class name and length but each such combination represents a
single unique token. Animated versions of this �gures is available here.

7.2.3 Lengths-As-Class (LAC)

As mentioned before, naïve encoding of multi-class segmentation masks requires 3

tokens per run since we need an extra token for the class. This can unnecessarily

increase the sequence length by 50% so we can go back to using 2 tokens per run by

combining the length and class tokens into a single composite token that represents

both. This can be done by considering the lengths as classes too, such that each

unique combination of length and class is represented by a separate LAC token. The

total number of LAC tokens is then the product of the maximum length of a run (i.e.

S) and the number of classes C. The �rst S LAC tokens correspond to runs of class

1, next S tokens correspond to class 2 and so on.

This tokenization is particularly e�cient when C is small. For example, IPSC

dataset has C = 2 so that, with S = 80, we get the number of starts tokens =

80 × 80 = 6400, number of LAC tokens = 80 × 2 = 160 and vocabulary size V =

6400 + 160 = 6560. Without LAC tokenization, number of lengths tokens = 80,

number of class tokens = 2 and V = 6400+ 80+ 2 = 6482. Therefore, we are able to

reduce the RLE sequence length substantially without any signi�cant increase in V .

However, for very large C, e.g. C = 80 as in the COCO dataset [89], V can nearly

double (12.8K versus 6.56K), though still remaining very much within the feasible

range (i.e. < 32K). Figure 7.4 shows examples of RLE tokenization for multi-class
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Figure 7.5: Visualization of TAC tokenization for multi-class video segmentation
masks with N = 2. The top row shows (from left to right) F1, F2, full resolution
TAC mask, and subsampled TAC mask. The TAC masks show 8 TAC classes whose
colors are shown at the top. The bottom row shows individual subsampled F1 and
F2 masks, partially colored with TAC colors for runs whose tokens are shown on the
right. Tokens are colored according to the TAC class in each run except the current
one that is shown in purple. Animated version of this �gure is available here.

segmentation masks, both with and without LAC tokenization.

7.3 Video Segmentation

A straightforward extension of this idea to perform semantic segmentation on videos

would involve �attening the N ×S×S 3D mask into a 1D vector of size N ×S2 using

either row-major or column-major ordering.

As shown in Figure E.1, row-major or C ordering (3D-C) results in the runs for

individual images in the video simply getting concatenated together, i.e. all the

runs for F1 come together in a sequence, followed by the runs for F2 and so on.

This does not account for spatiotemporal consistencies in the masks since the runs

corresponding to the same object from di�erent video frames are completely unrelated.

Column-major or Fortran ordering (3D-F) partially accounts for spatiotemporal mask

consistency but has large numbers of very short runs due to small changes in the object

position or shape between consecutive frames. This not only signi�cantly increases
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Table 7.1: TAC tokens for IPSC dataset with binary and multi-class masks for N = 2
and N = 3. Here, bkg refers to the background while ips and dif are the two classes
in the IPSC dataset. Both classes are represented by cell in the binary case. Note
that there is no TAC token corresponding to class combination with bkg in every
frame (i.e. bkg-bkg for N = 2 and bkg-bkg-bkg for N = 3) since RLE only represents
foreground pixels, which requires that atleast one class must be non-bkg . Also, N = 3
multi-class case would have (C + 1)N − 1 = 33 − 1 = 26 TAC tokens, out of which
only 15 are shown for brevity.

Binary Mask (C = 1)
N = 2 bkg-cell cell -bkg cell -cell

N = 3
bkg-bkg-cell bkg-cell -bkg bkg-cell -cell cell -bkg-bkg cell -bkg-cell
cell -cell -bkg cell -cell -cell

Multi-Class Mask (C = 2)

N = 2
ips-bkg dif -bkg bkg-ips ips-ips dif -ips
bkg-dif bkg-ips dif -dif

N = 3

ips-bkg-bkg dif -bkg-bkg bkg-ips-bkg ips-ips-bkg dif -ips-bkg
bkg-dif -bkg ips-dif -bkg dif -dif -bkg bkg-bkg-ips ips-bkg-ips
dif -bkg-ips bkg-bkg-dif ips-bkg-dif dif -bkg-dif bkg-dif -dif

.....

the sequence length but the very short, often unit sized, runs are also likely to be

di�cult to train on. An example is shown in Figure E.2.

Another problem with the straightforward 3D �attening of video masks (either

3D-C or 3D-F) is that the number of starts tokens increases linearly with N by a

factor of S2. This becomes infeasible for N > 5 with S = 80 and N > 1 with

S = 160.

7.3.1 Time-As-Class (TAC)

These issues can be largely resolved by extending the LAC idea into Time-As-Class

(TAC) tokenization to combine the temporal dimension with class IDs so that every

possible combination of class IDs across the video frames is represented by a separate

TAC token. For example, Table 7.1 shows TAC tokens for N = 2 and N = 3 for both

binary and multi-class cases. Due to the combinatorial nature of TAC tokenization,

the total number of TAC tokens becomes (C + 1)N − 1. Even though this increases

exponentially with N , V remains practicable for up to N = 14 and N = 9 respectively

for binary and multi-class cases with S = 80 (Table E.6) and upto N = 12 and N = 6

with S = 160 (Table E.8). This is aided by the fact that the number of starts tokens
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now becomes independent of N since the 3D video mask with C classes has e�ectively

been collapsed into a 2D mask with (C + 1)N − 1 classes. Figure 7.5, E.3 and E.4

show examples of TAC tokenization for both binary and multi-class cases with N = 2

and N = 3.

7.3.1.1 Length-and-Time-As-Class (LTAC)

TAC and LAC techniques can be combined to represent each run with only 2 tokens for

multi-class video masks too. However, the number of LTAC tokens = S×(C+1)N−1

becomes impractical for N > 8 and N > 5 respectively for binary and multi-class

cases. Figure E.5 shows examples of LTAC tokenization for both cases.

7.3.2 Class-wise (CW) Tokenization

As mentioned above, TAC and LTAC (and to a lesser extent LAC) tokenization

schemes su�er from the problem of exponential increase in V when C becomes high

(e.g. C = 80 in COCO dataset [89]). This can be ameliorated by decoupling the

class ID from the RLE sequence so that the latter is composed only of starts and

lengths. A simple way to achieve this is to generate RLE tokens for the binary mask

corresponding to each class and then concatenating these RLE sequences, separated

by the respective class tokens to mark the end of each sequence. The class tokens

would therefore serve the dual purpose of separating the RLE sequences for the

di�erent classes and specifying the classes themselves. This allows the number of

classes for the purpose of computing V for these tokenization schemes to remain

constant at C = 2, irrespective of the actual number of classes in the dataset.

On the �ip side, this representation at least partially nulli�es the advantage of

small quantum that RLE provides as far as classi�cation accuracy is concerned.

When each run is classi�ed separately, even if a few of them are misclassi�ed, it

does not a�ect the overall classi�cation accuracy greatly. However, when all the

runs corresponding to a class are classi�ed by a single token, an error in the latter

causes all of those runs to become misclassi�ed. Related to this is the fact that the

class tokens are greatly outweighed by the coordinate tokens since there are

anywhere from a few tens to a few hundreds of coordinate tokens for every class

token. This last problem can be handled by increasing the weight of the class token

(Section 8.5.1) so that all the coordinate tokens combined have about the same

weightage as the single class token.
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7.3.3 Instance-wise (IW) Tokenization

If object instance information is available, as in the IPSC dataset, RLE sequences

can be generated for the binary masks corresponding to each object instead of each

class. These sequences can again be concatenated, separated by the respective class

tokens, similar to CW tokenization. This representation allows us to perform instance

segmentation in addition to semantic segmentation and therefore achieve full video

panoptic segmentation. This also partially solves the problem of weight imbalance

between coordinate and class tokens because the number of runs required to represent

each object is usually much smaller than those needed to represent all the pixels

belonging to each class. Figure E.6 shows an example of IW tokenization for static

segmentation masks.

This idea occured to me very late in the development of this thesis and I have

only implemented and tested it for static segmentation so far. Early results have

shown it to be comparable to the other tokenization schemes in terms of semantic

segmentation performance. However, its instance segmentation performance does

not compare favourably with object detection models, mainly because of the low

resolution of the mask. Training with su�ciently high batch sizes is currently only

possible with S = 80 and S = 128 using respective image sizes of I = 640 and

I = 1024. Given the high resolution of the IPSC images (Table C.3), this requires the

original masks to be downsampled by a factor of anywhere from 10 to 50 which is far

too large to be able to extract spatially accurate bounding boxes. I have trained a

couple of models with S = 512 and S = 640 too but I had to use batch sizes that are

too small to train these successfully. As a result, these models underperform in terms

of both semantic and instance segmentation. I have left further exploration of these

tokenization schemes as part of future work when more GPU memory is available.
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Chapter 8

Results

This chapter presents the results of applying language modeling for both video

detection and semantic segmentation on datasets from chapters 3 to 5. Video

detection results are compared with those from the baseline Pix2Seq static detection

model [31] as well as the conventional deep learning models from chapters 4 and 5.

Semantic segmentation results are compared with the conventional models from

chapter 3 for the ARIS dataset and a Swin transformer model [26, 306] for the IPSC

dataset.

8.1 Datasets

8.1.1 Object Detection

I have evaluated object detection on the folowing three datasets:

� ACAD: I have trained on only 3 of the 8 con�gurations (Table 4.4) - #1, #3 and

#4 - since these are the only ones that contain video information.

� IPSC: I have trained on both early and late-stage training con�gurations (Section

5.2.3) and tested both sets of models on the same test set containing the �rst 16

images from each sequence.

� UA-DETRAC [296]: I have included some results from this dataset too since this

is a class-agnostic large-scale dataset with long and diverse sequences containing

relatively long-term motion information that is missing from the other two datasets.

This allows us to at least partially rule out dataset limitations when comparing

the static Pix2Seq detector with my proposed video version, especially for larger
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Table 8.1: Quantitative details of the datasets used for testing video detection.
Number of objects is the total number of frame-level objects (ignoring instance
information) while the number of trajectories is a total number of video-level object
instances. For example, if an object enters the scene in frame 1 and leaves the scene
in the frame 151 without being occluded in any frame, this will count as a single
trajectory but 150 objects.

#1 #3 #4 Early-stage Late-stage

8 6 6 2 2 1

Training 33 218 528 31 31 49

Testing 539 317 535 31 31 37

Total 572 535 535 31 31 86

Training 8,001 60,003 7,392 1,178 2,263 65,972

Testing 150,117 88,023 140,628 496 496 51,809

Total 158,118 148,026 148,020 1,674 2,759 117,781

Training 38 240 578 288 265 5,171

Testing 612 358 598 240 240 2,229

Total 650 598 1,176 528 505 7,400

Training 8,226 65,731 7,937 7,463 11,847 541,933

Testing 163,157 94,364 152,152 3,248 3,248 659,060

Total 171,383 160,095 160,089 10,711 15,095 1,200,993

Number of 

Sequences

Number of 

Images

Number of 

Trajectories

Number of 

Objects

ACAD
UA-DETRACDataset

Number of Classes

IPSC

values of N . UA-DETRAC has 100 sequences divided into 60 training and 40 test

sequences. I had to exclude 11 training and 3 test sequences since these have long

stretches of empty frames (i.e. where no objects are present) and these cause issues

with my data processing pipeline. As a result, I used 49 sequences for training and

37 for testing.

Table 8.1 provides quantitative details for these datasets.

8.1.2 Semantic Segmentation

I have evaluated semantic segmentation on the folowing two datasets from chapters

3 and 5:

� ARIS: I have tested on the standard con�guration with 32 training and 18 test

images (Section 3.3.3). I have also performed image-level ablation tests (Section

3.3.4) with 4, 8, 16 and 24 training images, all of these being tested on the same

18 test images. This dataset does not contain video labels so I have only used it

for testing the static segmentation models.

106



� IPSC: I have tested on both early and late-stage training con�gurations (Section

5.2.3) and, unlike ARIS, this dataset does contain video labels so I have used it for

testing both static and video segmentation models.

8.2 Metrics

8.2.1 Object Detection

I have used a wide range of object detection metrics over the course of my projects

since di�erent metrics are more suited to di�erent application domains. These metrics

include mAP, mRP and cRP for ACAD (Section 4.4.1), and ROC-AUC, RP-AUC,

FN-DET, FP-DUP, and FP-NEX for IPSC (Section 5.3.1, 5.3.2). Although many

of these detection metrics are strongly correlated with each other in many scenarios,

we have empirically found RP-AUC to correspond best with the overall detection

performance for most practical purposes. My principal objective in this chapter is to

compare the baseline Pix2Seq static detection model with my video detection model

as well as compare between di�erent variants of the latter so I use RP-AUC as the

single main metric for this purpose. I do still use the domain-speci�c metrics proposed

in chapters 4 and 5 when comparing the token-based models with the conventional

models from those chapters.

RP-AUC measures both localization and classi�cation performance so I also use

a class-agnostic version of RP-AUC which I have termed cRP-AUC. Similar to the

cRP metric in chapter 4, cRP-AUC is computed by considering all the predicted

and GT objects to belong to the same class so that misclassi�cations are not

penalized and we are able to measure the localization performance alone. In many

practical applications, especially those involving human-in-the-loop systems, being

able to correctly detect the presence or absence of an object is more important than

classifying it correctly and this metric allows us to measure the suitability of a

detector for such systems.

8.2.2 Semantic Segmentation

I have used three main metrics for measuring semantic segmentation performance.

The �rst two are recall and precision as de�ned in Section 3.4.1.1 and are used for

both ARIS and IPSC datasets. The third one is the Dice score, also known as the

Dice-Sørensen coe�cient [307, 308], which is used only for the IPSC dataset. Dice
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score is widely used as a single metric to represent the overall segmentation quality

by incorporating both recall and precision. It is de�ned as:

dicei =
2× nii

ti +
∑

j nji

(8.1)

where 1 ≤ i ≤ C is the class index, nij is the number of pixels of class i predicted to

belong to class j and ti is the total number of pixels of class i in the ground truth. I

have also used ice concentration median MAE (Section 3.4.1.2) for the ARIS dataset.

8.3 Training

8.3.1 Setup

I have performed most of the training on three GPU servers, each with 2 × Geforce

RTX 3090 24GB GPUs. I have also trained some of the smaller models on a fourth

GPU server with 3 × Geforce GTX 1080Ti 11GB GPUs. Finally, I used a �fth GPU

server with a Geforce RTX 3090 24GB and a Geforce RTX 3060 12GB for running

inference, including validation. Towards the end of my program, I was able to rent

a couple of Tesla A100 80GB GPUs and also build another dual RTX 3090 server

of my own so a few of the models have also been trained using these. More details

of these servers are provided in Table F.1. I trained all the models with the default

hyperparameter settings provided by the Pix2Seq authors, except for adjusting the

batch size to the maximum that would �t on the GPUs, along with the vocabulary

size V and the maximum sequence length L as needed for each model con�guration.

8.3.2 Validation

Pix2Seq codebase does not support performing validation as part of the training run.

While I did add support for this, I found that it not only slowed down training

signi�cantly, but also caused random crashes due to running out of GPU memory. As

a workaround, I implemented a remote validation pipeline where the inference server

periodically polls the training server for new checkpoints and runs inference on the

latest checkpoint thus found. I set the time period between successive polling attempts

to the maximum of two hours or the inference time. Since inference requires much

less GPU memory than training, it is possible to simultaneously perform validation

for multiple training runs on the same inference server.
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I performed validation directly on the test set rather than a subset of the training

set, as is considered the standard practice. I had to do this both in order to reduce

the total training time as well as to utilize as many of the limited number of labeled

images for training as possible. A separate validation set is principally needed to

prevent over�tting but it turned out that each of our test sets is su�ciently similar to

the corresponding training set that the test performance reached a plateau in every

single case and did not decline even when training was continued for several hundreds

of thousands of iterations after this plateauing. Some of the test sets are too large to

complete inference within a reasonable timeframe (e.g. < 10 hours) In such cases, I

validated on a small representative subset of the test set (e.g. 10 frames per sequence)

after empirically con�rming that the performance trend on this subset was consistent

with that on the full test set.

8.3.3 Distributed Training

Pix2Seq codebase does support multi-machine distributed training and I used it to

train a few models over two or three of the dual RTX 3090 servers in order to use the

combined 96 or 144 GB of GPU memory. It would have been extremely bene�cial

to have been able to do this for all (or at least most) of the models, especially on

larger datasets like ACAD and UA-DETRAC. However, Pix2Seq distributed training

implementation is optimized for Tensor Processing Units (TPUs) rather than GPUs

and this, combined with the relatively slow network connection between the GPU

servers, made the overhead so high that the GPU usage during these runs was < 50%

nearly the entire time, and the GPUs spent a good fraction of that time idling (Figure

F.1). In addition, one of my servers su�ers from hardware incompatibility between

its motherboard and RTX 3090 GPUs which causes it to restart randomly after a

while if it is used in a distributed training setup. These issues in turn extended the

training time to such an extent (often to several weeks) that it made distributed

training impracticable for more than a few models. Also, in my experience, a model

whose training has been interrupted multiple times due to server restarts never seems

to perform as well as a model that was trained continuously in a single training

session, especially in case of multi-machine distributed training. This might possibly

be due to some obscure bug in the Tensor�ow distributed training implementation or

perhaps all the optimizer parameters are not getting restored correctly in Pix2Seq so

the training does not resume seamlessly after a server restart.
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8.4 Performance Overview

This section presents results comparing my proposed token-based video detection

and semantic segmentation models with the conventual deep learning models from

chapters 3 to 6, along with the baseline Pix2Seq static detection model [31]. Unless

otherwise speci�ed, all Pix2Seq models have the 640×640 ResNet-50 as their backbone

and the video models use the middle-fusion video architecture (Section 6.2.2.2) with

N = 2. For the sake of brevity, Pix2Seq static and video detection models are referred

to as P2S and P2S-VID respectively for the remainder of this thesis. The static

and video semantic segmentation models are likewise abbreviated as P2S-SEG and

P2S-VIDSEG respectively. I experimented with many di�erent con�gurations or

variants of P2S, P2S-VID, P2S-SEG and P2S-VIDSEG (Section 8.5) but this section

only summarizes the best results I found. The speci�c model con�gurations that I

have included here for each dataset are detailed in Table F.3. Note that I was only

able to train a small fraction of all the models I would have liked to have trained

due to limited time and computational resources, so these results very likely do not

indicate the best performance that these models are capable of, especially in the case

of the video models with larger values of N .

8.4.1 Summary

Following are the key takeaways from the results presented in the remainder of this

chapter:

� Both static and video language models perform about the same as similarly sized

conventional models. As with deep learning in general, the overall performance

depends more on the size of the backbone than any speci�c output modeling.

� P2S-SEG and P2S-VIDSEG models compare more favourably against

conventional segmentation models, especially on ARIS dataset, than P2S and

P2S-VID do against conventional detectors.

� Pix2Seq models are better at localizing objects than classifying them correctly

so that their class-agnostic performance tends to compare more favourably with

conventional models than their overall performance.

� Related to the last point is that Pix2Seq models are relatively less robust to class

imbalance and tend to over�t to the more numerous class. This causes P2S-SEG
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and P2S-VIDSEG to compare more favourably against conventional models in

terms of segmentation recall rather than precision.

� This problem of poor classi�cation performance can be partially ameliorated by

equalizing the weights assigned to class tokens during training so that each class

token has the same weight as all of the corresponding bounding box coordinate

tokens combined (Section 8.5.1).

� P2S-VID does perform slightly better overall than the baseline P2S but this

improvement is mainly due to the output redundancy (Section 6.1.2.4) obtained

by using T < N and this performance advantage mostly disappears by setting

T = N .

� P2S-VIDSEG does not show any consistent improvement over P2S-SEG, probably

because the stride-based redundancy advantage does not apply to semantic

segmentation.

� There is no consistent improvement in detection or segmentation performance with

increase in N (Section 8.5.4).

� Static models trained to predict video outputs by processing only the �rst frame

in each video temporal window (Section 8.5.3.2) are able to keep up with the video

models surprisingly well, even for large values of N , indicating that the latter are

not able to make su�cient use of the video information.

� Video models exhibit strong signs of being bottlenecked, especially for larger values

of N , by the low batch sizes (Section 8.5.2) and possibly also the relatively small

amount of training data I had to use.

8.4.2 Object Detection

8.4.2.1 ACAD

Figure 8.1 summarizes object detection performance on all three con�gurations of

the ACAD dataset. The overall performance of the language models is comparable

to conventional models with similarly-sized backbones, especially RETINA with its

identical ResNet-50 backbone and YOLO with its comparable DarkNet-53. Once

classi�cation accuracy and over�tting are removed from the equation, Pix2Seq

models are in fact able to match the signi�cantly larger RES101, RFCN and NAS,
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Figure 8.1: Object detection results on ACAD dataset con�gurations #1, #3 and
#4 (Table 4.4) in terms of (top) mRP and (bottom) cRP (Section 4.4.1). Note
that di�erent Y axis limits have been used on the two plots to maximize the visible
performance di�erence between the models. P2S and P2S-VID respectively refer
to the static and video detection Pix2Seq models. Remaining model acronyms are
speci�ed in the caption of Figure 4.3. P2S-VID uses middle fusion architecture with
N = 2 and was trained with frozen backbone and class token weight equalization. A
bar plot version of this �gure is available in Figure F.2

as can be seen from the cRP results for all three con�gs and mRP results for con�g

#4. Even though con�g #4 has the smallest training set, it is the easiest to handle

from a classi�cation standpoint because the training set contains frames from nearly
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every sequence in the test set and therefore the model is able to train on every

combination of backgrounds and foregrounds available therein. While the other two

con�gs contain more frames overall, they have no overlap between the training and

test sequences and o�er the models access to far fewer combinations of foregrounds

and backgrounds in the test set. Models like P2S and P2S-VID that have a

tendency to over�t are therefore penalized much more heavily by these con�gs.

P2S-VID mostly performs about the same as P2S, but it does signi�cantly

outperform the latter in the challenging con�g #3 which is the only one that has

enough frames to at least partially alleviate the bottleneck imposed by the relatively

small datasets.

8.4.2.2 IPSC

Figure 8.2 shows classi�cation metrics for both early and late stage con�gurations of

the IPSC dataset. The language models rank between the static and video instance

segmentation models, with P2S-VID being closer to the latter than the former. This

is quite impressive considering that all of these conventional models have signi�cantly

larger backbones - either Swin Transformer or ConvNext - than the Pix2Seq models.

In addition, since these models perform instance segmentation rather than simple

object detection, they have access to the object masks in addition to the bounding

boxes during training. This additional information provides these models with a

signi�cant advantage in classifying the two types of cells since the shape of the cell

boundary is one of the most important cues used by human experts to do the same.

P2S-VID shows a more strongly marked improvement over P2S here, especially on the

more challenging late-stage con�guration and in terms of partial AUC that measures

classi�cation accuracy under high precision scenarios.

Figure 8.3 shows the high-level detection metrics RP-AUC and AP on this dataset.

Both language models compare signi�cantly more favourably with the conventional

models over the high-level detection metrics than the classi�cation metrics. This

make sense given the relatively poor classi�cation performance of these models. P2S-

VID in particular stands out here, outperforming P2S by nearly 20% in RP-AUC and

10% AP on the late-stage dataset. In fact, P2S-VID turned out to be among the two

best models on this dataset, with only IDOL signi�cantly outperforming it in AP.

Figure 8.4 shows the corresponding low-level detection metrics. P2S-VID remains

among the two best models in terms of FN DET, but both language models perform

poorly on the FP metrics, especially FP NEX-WHOLE. This is again consistent with

113



0 20 40 60 80 100
FP (%)

0

20

40

60

80

100

T
P 

(%
)

IPSC Early-Stage
ROC

XGB (49.81)
SWC (78.76)
CNC (81.46)
SWD (91.13)
CND (85.37)
IDOL (99.88)
SEQ (96.00)
VITA (99.89)
P2S (95.97)
P2S-VID (94.34)

0 20 40 60 80 100
FP (%)

0

20

40

60

80

100

T
P 

(%
)

IPSC Late-Stage
ROC

XGB (49.64)
SWC (63.43)
CNC (69.27)
SWD (60.27)
CND (68.51)
IDOL (89.51)
SEQ (81.97)
VITA (75.99)
P2S (70.93)
P2S-VID (78.64)

IPSC Late-Stage
Partial AUC

0.0 0.2

4.5

0.0 0.2

5.8

 1.6
 2.9

17.5

0.0 0.4

6.2

 0.0
 1.4

12.4

 4.9

17.1

49.8

 8.3

14.8

35.6

 0.0  0.3

21.2

 0.3
 2.4

19.4

 0.3
 2.9

36.1

Higher is Better

0.10% 1.00% 10%
FP Threshold (%)

0

10

20

30

40

50

Pa
rt

ia
l A

U
C

 (%
)

XGB
SWC
CNC
SWD
CND
IDOL
SEQ
VITA
P2S
P2S-VID

Figure 8.2: Classi�cation metrics for both early and late-stage training con�gurations
of the IPSC dataset. Top row shows ROC curves with respective AUC values (%) in
the legend. Middle and bottom rows show the partial ROC-AUC for three di�erent
FP thresholds.
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Figure 8.3: High-level detection metrics for both early and late-stage training
con�gurations of the IPSC dataset. ROC-AUC is also shown for comparison.

their tendency to misclassify. As mentioned in Section 5.4.2, FP NEX essentially

measures how many of the unlabeled cells are incorrectly detected and classi�ed

as IPSCs, something which the relatively poor classi�cation ability of the language

models makes them susceptible to.

8.4.2.3 UA-DETRAC

Figure 8.14 shows a summary of results on the UA-DETRAC dataset for P2S and

P2S-VID with N = 2 to N = 32. I had hoped that the size of this dataset would

allow the severe bottleneck on the video models to be at least partially overcome
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Figure 8.4: Low-level detection metrics for both early and late-stage training
con�gurations of the IPSC dataset. Note the di�erent Y-axis limits on the two plots.

but that turned out not to be the case. All the models, including P2S, appear to be

limited by the batch size here, judging by the identical ceiling of around 85% that

they all reach before N becomes too large. As seen in the example of ACAD #3

(Figure 8.8), the training batch size seems to be an even more important bottleneck

than the size of the dataset. In fact, the optimal batch size probably increases with

the size and complexity of the dataset, so the models are likely to be even more

bottlenecked on UA-DETRAC than ACAD. It is true that the ACAD example

demonstrated performance limitation only on the classi�cation task and this is not

relevant with UA-DETRAC since it has only one class. However, UA-DETRAC has
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much longer and more complex trajectories than ACAD. This makes its localization

task a lot more challenging and therefore just as likely to be bottlenecked as

classi�cation on ACAD. P2S-VID models upto N = 8 are able to mostly match P2S

with T = 1 but the performance drops sharply after that, thus con�rming the

inadequacy of my existing hardware for training such large models. I would expect

that all the models, including P2S, would be able to reach > 90% if trained with

su�ciently large batch sizes.

I would like to conclude this section with a recent result which is a promising step

in this direction. I generated this by training models on two Tesla A100 80 GB GPUs

that I rented to produce publication-quality results that are competitive with the

current state of the art. VSTAM [309] is the top-ranked model on the leaderboard

[310] at the time of this writing and has been so since it was released nearly 3 years ago.

However, as shown in Table 8.2, one of my models was able to outperform VSTAM

by 0.75%, so would take this spot once these results are published. This model uses

the late-fusion architecture which turns out to signi�cantly outperform the other two

fusion schemes once the batch size bottleneck is alleviated, as I had hypothesized

in Section 6.2.2.3 based on its theoretical advantage of cross-attending every token

with each of the N frames. Also, this model was trained with the smallest possible

video length of N = 2 because even 160 GB GPU RAM is apparently insu�cient to

relieve the bottleneck on models with higher N (Table F.2). I was hoping to rent 4

or even 8 of these GPUs to better exploit the video length but these con�gurations

were unfortunately not available. This result is perhaps the most convincing evidence

I have that most of the language modeling results in this chapter are of bottlenecked

models and do not represent their true potential.

8.4.3 Semantic Segmentation

8.4.3.1 ARIS

Table 8.3 presents a summary of results on the ARIS dataset. P2S-SEG performs

remarkably well here and turns out to be either the �rst or the second best model in

nearly every case. As in the last section, language modeling is particularly e�ective at

class agnostic tasks, as represented by the ice+water metrics, where it outperforms all

the other models by a large margin. Somewhat paradoxically, its performance drops

signi�cantly at the frequency weighted version of this metric, especially in terms of

precision. All other models �nd this metric easier since it gives greater weightage to
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Table 8.2: Performance of current state of the art video detection models on UA-
DETRAC. These results were generated using the entire UA-DETRAC dataset,
including the 14 sequences with empty frames (Section 8.1.1). This makes them
not directly comparable to other UA-DETRAC results in this chapter, although I
would expect the extra sequences to have minimal impact on the performance.

Model mAP (%)
TFEN [311] 82.42

YOLOv3-SPP [312] 84.96
MSVD_SPP [313] 85.29
SpotNet [314] 86.8

FFAVOD-SpotNet [315] 88.1
VSTAM [309] 90.39
P2S-VID 91.14

Table 8.3: Segmentation recall, precision and ice concentration median MAE on ARIS
dataset for P2S-SEG and conventional deep learning models along with SVM. The
fw in ice+water (fw) stands for frequency weighted and the corresponding recall and
precision metrics refer to pix_acc (Eq. 3.1) and fw_iou (Eq. 3.4), as detailed in
Section 3.4.1. Relative increase over SVM in recall and precision is computed as
(model_value− svm_value)/svm_value× 100 while the relative decrease in median
MAE is computed as (svm_mae − model_mae)/svm_mae × 100. The best and the
second best models in each case are shown in bold and highlighted in green and
yellow respectively. This data is shown as a bar plot in Figure F.3.

Metric 

Value

Relative 

Increase

Metric 

Value

Relative 

Increase

Metric 

Value

Relative 

Increase

Metric 

Value

Relative 

Increase

Metric 

Value

Relative 

Decrease

SVM 61.54 - 75.41 - 78.12 - 84.93 - 8.37 -

Deeplab 74.46 21.00 87.51 16.05 86.38 10.57 90.87 7.00 4.71 43.80

UNet 73.75 19.85 84.27 11.75 85.13 8.97 88.69 4.42 6.51 22.29

DenseNet 76.96 25.06 71.06 -5.77 81.42 4.22 85.02 0.11 7.24 13.59

SegNet 82.31 33.75 68.99 -8.51 83.06 6.32 85.90 1.14 6.48 22.61

P2S-SEG 82.70 34.39 87.47 15.99 98.27 25.79 91.27 7.46 5.34 36.20

SVM 43.32 - 63.07 - 65.84 - 76.84 - 7.18 -

Deeplab 62.39 44.03 77.14 22.32 77.25 17.33 84.32 9.72 4.52 37.01

UNet 54.89 26.72 71.17 12.84 73.19 11.17 81.73 6.36 6.80 5.22

DenseNet 48.98 13.07 60.97 -3.32 67.69 2.82 77.49 0.84 7.20 -0.30

SegNet 52.80 21.90 62.60 -0.73 69.60 5.72 78.46 2.10 6.64 7.51

P2S-SEG 57.73 33.26 71.88 13.98 87.57 33.01 77.98 1.48 6.09 15.18

Median MAE (%)

Model

anchor ice frazil ice ice+water ice+water (fw)

Recall (%) anchor ice

Precision (%) frazil ice

water which constitutes a majority of these images (Table 3.2) and is relatively easy

to separate from ice. Figure 8.5 shows the results of image-level ablation testing on
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Figure 8.5: Results of ablation tests with training images on ARIS dataset for (a-b)
anchor ice and (c-d) frazil ice. Note the variable Y-axis limits between the top and
bottom plots.

this dataset. P2S-SEG remains the best model in terms of recall and among the best

two models in terms of precision. It predictably �nds frazil ice precision most di�cult

to handle since there is signi�cantly more frazil ice than anchor ice in the training

images (Table 3.2). This causes the model to over�t to this class and misclassify

anchor ice as frazil ice which in turns lowers the corresponding precision.
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Figure 8.6: Semantic segmentation results on both (left) early and (right) late-stage
IPSC datasets in terms of (top to bottom) recall, precision and dice score. IPSC and
DfC on the x-axis refers to the two classes of cells while Cell represents the class-
agnostic case where all the cells are considered as belonging to the same class.
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8.4.3.2 IPSC

Figure 8.6 shows the segmentation results on both early and late-stage training

con�gurations of the IPSC dataset. Conventional modeling is represented here by

the single model SWS [26] which can be taken to represent the current state of the

art in semantic segmentation. Language modeling compares less favourably against

conventional modeling on this dataset than on ARIS, possibly because SWS is a

newer and bigger transformer-based model as opposed to the older CNN-based

models used on ARIS. Even so, P2S-SEG performs about the same as SWS overall,

being slightly better on the early-stage dataset and slightly worse on the late-stage

variant. Similarly, P2S-SEG is notably better on IPSC class while SWS is better on

DfC and Cell. Finally, P2S-SEG fares better in terms of recall while SWS has an

edge on precision. P2S-SEG also outperforms P2S-VIDSEG in nearly every case

except the most challenging case of IPSC recognition on the late-stage dataset,

where the latter outperforms both P2S-SEG and SWS on all three metrics.

8.4.3.2.1 Caveat

Semantic segmentation is very di�cult to evaluate quantitatively and the performance

numbers exhibit complex trade-o�s between the various metrics as well as between

the three classes. A couple of example are provided in Tables F.4 and F.5 that list

the values of these metrics along with some others (Section 4.4.1) on the validation

set during the training runs for P2S-SEG on early-stage and P2S-VIDSEG on late-

stage dataset respectively. I chose P2S-SEG and P2S-VIDSEG models for inclusion

here by looking for a good balance between all these con�icting considerations among

candidate checkpoints once the validation performance had plateaued over all the

metrics.

When looking for the best compromise, I did have a bias in favour of IPSC among

classes (Anchor Ice for ARIS) and Dice score among metrics, since these seem to me to

best represent the overall segmentation quality. Further, there are 2-3 times as many

DfC s as IPSC s in the GT (Table C.2) so models tend to perform better on DfC (and

Cell) later in their training run when they start over�tting to the more numerous

class, something I wanted to avoid. A di�erent choice of trade-o�s can generate quite

di�erent comparative plots so these results should be interpreted guardedly. I have

not implemented a live validation pipeline for SWS so the results shown here were

generated using the latest checkpoint once the training curve had plateaued. This is
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Figure 8.7: Performance impact of equalizing the class token weights on (left) ACAD
#3 and (right) IPSC late-stage datasets. N=1 denotes the baseline P2S model.
Models trained with and without class token weight equalization are respectively
shown in green and red and denoted with CLS EQ and STD in the legend. Note the
di�erent Y-axis limits in the two plots.

why SWS shows a consistent tendency to outperform P2S-SEG in terms of DfC and

Cell but is outperformed by the latter in terms of IPSC. The best we can say with

certainty is that the overall performance of language and conventional models is fairly

similar, the former being slightly better at recall and the latter at precision.

8.5 Experiments with Parameters

This section presents the results of my experimentation with some of the important

model parameters that were useful in �nding the optimal models that are reported

in Section 8.4. I used the IPSC late-stage dataset for most of these experiments since

it is small enough to allow training a large number of models while at the same time

also being challenging enough to be able to discriminate between these models.

8.5.1 Equalizing Class Token Weights

A possible reason for the poor classi�cation performance of Pix2Seq models, especially

in object detection, might be that the weight assigned to the class tokens during

training is equal to that assigned to every single coordinate token. Since the number

of coordinate tokens is 4 × N times greater than the number of class tokens, this
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e�ectively means that the localization task is assigned 4×N times greater weightage

than the classi�cation task. In order to address this disparity, I trained detection

models with each class token assigned the same weight as all of the corresponding

coordinate tokens combined.

As shown in Figure 8.7, this does improve the classi�cation performance

appreciably, particularly on large datasets and with higher vlues of N . The degree

of improvement also increases with N , especially in the IPSC case. This makes

sense since the factor by which coordinate tokens are over-weighted with respect to

class tokens without equalization increases linearly with N as does the overemphasis

on the localization task. This improvement does come at the cost of signi�cantly

slower training, at least in the case of larger datasets. For example, ACAD #3 took

700K iterations and close to 12 days to reach convergence with class equalization

and only 300K iterations and just over 5 days without it. These disparities were not

as strongly marked on the IPSC dataset, where both sets of models took

approximately the same amount of time to converge.

8.5.2 Training Batch Size

Extensive experiments have shown to me that the training batch size matters a lot

more for large datasets like ACAD and UA-DETRAC rather than smaller ones like

IPSC and ARIS. It also has a greater impact on video models than static ones,

especially with larger values of N . Finally, it has far greater impact on the

classi�cation task (i.e. RP-AUC) than localization (i.e. cRP-AUC). Fig. 8.8 shows

an example for both P2S and P2S-VID training on ACAD #3. It can be seen that

the peak RP-AUC on the validation set nearly doubles from 37% to 66% for P2S

and nearly triples from 28% to 78% for P2S-VID. On the other hand, cRP-AUC

peaks at just above 90% in all four cases and this is reached in just a few thousand

iterations as opposed to RP-AUC which takes from 200K to 700K iterations to

attain its plateau. The signi�cantly greater relative increase in the case of P2S-VID

(2.76 times vs. 1.75 times for P2S), along with the much lower absolute peak with

the smaller batch size (28% vs. 37%) con�rms the much greater bottleneck faced by

the video models.

P2S-VID here uses only N = 2 and this bottleneck only gets worse as N increases.

In my experience, and subject to the size and complexity of the dataset, the optimal

batch size required for a video model to achieve its full potential increases at least
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Figure 8.8: Impact of batch size on validation performance when training (top) P2S
and (bottom) P2S-VID on ACAD #3. The left plots show the results for training on
a single RTX 3090 GPU with batch sizes 48 and 32 while the ones on the right show
dual-GPU training with batch sizes 96 and 64.

linearly with N . However, the GPU memory required to train a video model also

increases linearly with N even if the batch size remains unchanged. Since the total

amount of available GPU memory is �xed, we have to actually decrease the batch

size linearly with N .
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Video Architectures
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Figure 8.9: Comparing the three video architectures (Section 6.2.2) with N = 2 and
trained with and without frozen backbone. The left and right plots show RP-AUC
and cRP-AUC respectively. All models were trained on the IPSC late-stage dataset.

8.5.3 Video Architecture

Figure 8.9 shows comparative results for the three video architectures (Section

6.2.2) with N = 2. Middle-fusion outperforms the other two models in terms of

mRP while early-fusion performs best in terms of cRP. I have seen this trend of

early-fusion models performing much better on the localization task than

classi�cation in other models I have trained as well. The video Swin transformer

backbone I am using for early-fusion was pre-trained for human action-recognition

and therefore unsurprisingly �nds it easier to localize objects than to classify them

correctly. Although late-fusion seems slightly inferior to middle-fusion in these

results, I have seen it outperform the latter with similar margins on other values of

N so, on the whole, the two models can be said to perform at par.

8.5.3.1 Frozen Backbone

I would have expected that the entire Pix2Seq network would need to be retrained

in order to work well on a new task � either video detection or semantic

segmentation - but this turned out not to be the case. As shown in Figure 8.9,

keeping the backbone frozen actually leads to signi�cantly better video detection

performance for both middle and late-fusion architectures. However, this is not true

for early-fusion, which completely fails to learn anything useful with its video Swin
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Figure 8.10: Comparing the segmentation performance of models trained with and
without frozen backbones on the (top) ARIS and (bottom) IPSC early-stage datasets.
Models trained with and without frozen backbones are respectively shown in shades
of green and red and denoted in the legend with pre�xes F and T. The P2S-SEG
su�xes patch and full respectively refer to models trained with and without sliding
window patches. In the former case, P = 640, S = 80 for both datasets, I = 1280
for ARIS and I = 2560 for IPSC. In the latter case, I = P = 640 for both datasets,
S = 160 for ARIS and S = 320 for IPSC.

transformer backbone frozen. This backbone was pretrained for action recognition

with conventional modeling and it seems that weights optimized for conventional

modeling cannot generalize to language modeling without retraining. Nevertheless,

these weights are useful in �ne-tuning the network for language modeling since I
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found that training the early-fusion models without loading the pretrained weights

for its backbone leads to signi�cantly worse performance. Note that freezing the

backbone allows us to use much higher batch sizes (e.g. 80 vs. 20 with N = 2)

which must partially account for this improvement as well.

Figure 8.10 shows that the bene�t of keeping the backbone frozen is much less

obvious in case of semantic segmentation. This might be explained by the fact that

RLE tokenization di�ers from static detection tokenization a lot more than does

video detection. In fact, given this di�erence, it is remarkable that frozen backbone is

mostly able to keep up with full network training even in case of P2S-VIDSEG with

N = 8. This might at least partly be due to the bottleneck imposed by the insu�cient

batch size, without which the full network training might well lead to much better

performance.

8.5.3.2 Video Output with Static Input

I wanted to �nd out how much useful information the network is able to learn from

video frames so I trained static models to predict video output (either detection or

segmentation) using only the �rst frame F1 in each video temporal window as input.

This means that the model is trained to produce the same output as a P2S-VID

or P2S-VIDSEG model but it only has access to the �rst frame in each temporal

window, rather than all N frames. It therefore needs to use the �rst frame to predict

the contents of the future N − 1 frames in the sequence. Since there is no more video

input, we can use the baseline P2S architecture for these models. I trained models

with N = 2, N = 4, N = 6 and N = 8, all with the backbone frozen, and all on

the IPSC late-stage dataset. Note that these static-video models can be trained with

the same (and much larger) batch size as P2S, irrespective of N . This gives them

an advantage over the true video models whose batch size decreases linearly with N .

The video stride T is important in evaluating these models since T = 1 ensures that

each frame would be the �rst frame in some temporal window so that the static input

models can output valid boxes only for the �rst frame and still not be penalized during

inference. However, this is unlikely to happen in practice since the model is trained

to output boxes for all N frames and therefore will be penalized during training for

learning a simple strategy like this.

P2S-VID results for IPSC late-stage and UA-DETRAC datasets are shown in

Figures 8.11 and 8.12 respectively. All video models were trained with middle-fusion

architecture and without class-weight equalization. Static input models show

127



IPSC Late-Stage      
Video vs Static Input

47.3
44.9

47.1
43.2

39.8 39.038.6
35.9

42.6

29.5
33.6

26.4

34.2
31.2

34.1

25.4

T=1 T=N

10

20

30

40

50

60

70

80

R
P-

A
U

C
 (%

)

V(N=2)
S(N=2)
V(N=4)
S(N=4)
V(N=6)
S(N=6)
V(N=8)
S(N=8)

71.4
68.6

72.0
68.1

72.5
70.569.0

63.7

74.9

52.3

62.5

42.1

70.9

65.6

58.8
55.4

T=1 T=N
0

10

20

30

40

50

60

70

80

cR
P-

A
U

C
 (%

)

Figure 8.11: Performance impact of replacing N video frames with only the �rst frame
in the sequence as input to P2S-VID models on IPSC late-stage dataset in terms of
(top) RP-AUC and (bottom) cRP-AUC. The two cases are respectively shown in
shades of red and green and denoted with V and S in the legend. Darker shades of
both colors represent higher N .

surprisingly little performance loss over the video models even for N as high as 32,

though this loss is greater for T = N than T = 1, as expected. Similarly, the

performance loss predictably increases with N , except for the odd case of N = 8

with T = 1 on IPSC (Section 8.5.4). The performance loss is also greater for

cRP-AUC than RP-AUC, which makes sense since the �rst frame is usually

su�cient to classify an object but we need the remaining frames to localize it
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Figure 8.12: Performance impact of replacing N video frames with only the �rst
frame in the sequence as input to P2S-VID models on UA-DETRAC. The two cases
are respectively shown in shades of red and green and denoted with V and S in the
legend. Darker shades of both colors represent higher N .
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Figure 8.13: Performance impact of replacing N video frames with only the �rst frame
in the sequence as input to P2S-VIDSEG models. The two cases are denoted with
V and S in the legend and shown in shades of red and green respectively. Results
are shown for both (left) early and (right) late-stage IPSC datasets in terms of Dice
score Recall and precision exhibited the same trends as Dice score and have therefore
be relegated to Figure F.4.
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IPSC Late-Stage        
Video Length and Stride
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Figure 8.14: Impact of video length N on video detection performance over the (top)
UA-DETRAC and (bottom) IPSC late-stage datasets. N=1 denotes the baseline P2S
model and is included for comparison. All the P2S-VID models use the middle-fusion
architecture and were trained with frozen backbone and without class token weight
equalization.

correctly in those frames. The fact that static input models are able to perform so

well even with T = N is explained at least partly by the relatively predictable

nature of trajectories in both datasets. Cells do not move a lot, instead mostly

remaining in place and changing their shape, and this makes the bounding boxes in

the IPSC dataset relatively easy to predict. The vehicles in UA-DETRAC likewise

show very similar and nearly linear motion in most sequences, except in a few where

130



50.5

77.0

87.0

51.0

82.2

90.8

55.3

68.5

74.0

61.1

69.8

76.7

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

R
ec

al
l (

%
)

T=1 (N=2)
T=N (N=2)
T=1 (N=8)
T=N (N=8)

IPSC Late-Stage Video Length and Stride

41.4

69.9
73.7

42.6

77.3
81.2

41.8

62.9
65.0

43.4

64.2
67.5

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

R
ec

al
l (

%
)

T=1 (N=2)
T=N (N=2)
T=1 (N=8)
T=N (N=8)

IPSC Early-Stage Video Length and Stride

43.3

57.9

71.3

44.5

56.2

69.6

52.0 50.9

61.6

54.2

49.4

60.3

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

Pr
ec

is
io

n 
(%

)

T=1 (N=2)
T=N (N=2)
T=1 (N=8)
T=N (N=8)

IPSC Late-Stage Video Length and Stride

41.3

46.8

58.4

42.4
45.9

57.5

41.7 43.0

52.0

43.2
40.6

49.9

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

Pr
ec

is
io

n 
(%

)

T=1 (N=2)
T=N (N=2)
T=1 (N=8)
T=N (N=8)

Figure 8.15: Impact of video length N and stride T on P2S-VIDSEG performance
over (left) early and (right) late-stage con�gurations of the IPSC dataset. T = 1 and
T = N are respectively represented with shades of red and green. Lighter shades of
each colour represent N = 2 while the darker shades represent N = 8. Dice score
showed similar patterns as precision and has thus been relegated to Figure F.4.

they remain stopped at tra�c lights for extended periods of times and it is in these

sequences that the static input models perform the worst relative to the video

models. The relatively poor performance of video models is probably also another

indicator of the batch size bottleneck on the video models which prevents them from

making full use of the video information.

P2S-VIDSEG results for both con�gurations of IPSC dataset are shown in Figure

8.13. Video input has more consistent and strongly marked performance advantage
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over static input here, especially for N = 8. In part, this is due to the absence of

temporal redundancy here, since N = T is used in all cases. It might also be due

to greater integration of the outputs corresponding to di�erent frames within the

same shared tokens in video segmentation through TAC (Section 7.3.1), as opposed

to frame-speci�c tokens employed by video detection.

8.5.4 Video Length and Stride

Figure 8.14 summarizes the impact of video length N and stride T on P2S-VID

performance over both UA-DETRAC and IPSC late-stage datasets. Neither dataset

shows any consistent improvement in performance with N . Quite the contrary, in

fact. The only case that shows any signs of steady improvement is IPSC cRP-AUC

with T = 1, at least as far as N = 6. There is, however, fairly consistent improvement

in going from T = N to T = 1 and the degree of this improvement also increases with

N , which is to be expected because of the greater redundancy. IPSC RP-AUC with

N = 8 is a notable exception to this latter trend and shows hardly any improvement

over T = N which is unusual for N so large. For comparison, N = 6 shows an

improvement of 13% between T = 1 and T = N while N = 8 shows only 3%. When

combined with the fact that the static-input version is able to match the performance

of this model (Section 8.5.3.2), I suspect that this might be a buggy model. I still

need to investigate this further and possibly retrain this model to be certain.

Figure 8.15 shows the impact of N and T on video segmentation. As mentioned in

Section 7.2.2.1, combining redundant outputs from overlapping temporal windows is

far less straightforward for segmentation than it is for detection. These plots show the

results of the voting strategy that I found to work best, though its overall performance

impact is still minimal. Non-redundant output (T = N) fares slightly better than

redundant output (T = 1) in terms of recall over all three classes. T = N is also

better in terms of precision for IPSC but T = 1 has a slight edge over DfC and Cell.

Like all Pix2Seq models, P2S-VIDSEG models have a tendency to over�t to the more

numerous class, which in this case corresponds to the background, followed by DfC.

Combining pixel labels from multiple temporal windows therefore results in some of

the pixels, mostly near the cell boundaries, getting misclassi�ed as either background

or DfC. Misclassi�cation as background explains the drop in recall across the board

while misclassi�cation as DfC explains the drop in precision for IPSC along with

concurrent increase for DfC and Cell.
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Figure 8.16: Comparing the standard 2D coordinate tokenization of P2S-VID with
its 1D variant on the (left) early and (right) late-stage IPSC datasets. 2D and 1D
tokenization models are respectively shown in shades of red and green. Models trained
with and without frozen backbone are shown respectively in darker and lighter shades
and denoted with the pre�xes F and T in the legend. All models use N = 2.

In terms of video length, N = 2 signi�cantly outperforms N = 8 for DfC and Cell

but the latter is appreciably better for IPSC, signi�cantly more so over the early-stage

datset and with T = N . This can be partly attributed to the much greater batch size

bottleneck on N = 8 and partly to my bias in favoring IPSC performance over DfC

(Section 8.4.3.2.1) when selecting the models for inclusion here.

8.5.5 1D Coordinate Tokens

As mentioned in Section 6.1.2.3, 1D coordinate tokens can be used to partially solve

the problem of L becoming too large as N increases. I trained a few models to judge

the practicability of this approach. As shown in Figure 8.16, it turned out to be not

doable, at least on my existing hardware. The 1D model was able to achieve barely

half the performance of the standard 2D model on the late-stage dataset, although

it fared slightly better on the easier early-stage variant. An interesting �nding here

was that training the 1D model without the backbone frozen causes a further sharp

decline in performance. This is surprising since one would expect that learning a

new coordinate tokenization di�erent from the one that was used for pretraining the

backbone would bene�t from �ne-tuning the backbone on the new tokenization, but
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that is not the case. Note that the 2D model was trained with the default Pix2Seq

vocabulary parameters H = 2K and V = 3K while the 1D version had H = 160 and

V = 28K. Although both 2D and 1D models were trained with the same B, it is

possible that this poor performance might be another case of a bottleneck introduced

by B since the much higher V in the 1D case probably requires much larger B to

work. This is also supported by the much greater performance advantage of frozen-

backbone models with 1D tokenization than with 2D tokenization. Freezing the

backbone allowed the 1D models to be trained with B = 64 while the full-network

trained models were restricted to B = 18. The performance drop can also be partially

attributed to the decrease in localization accuracy due to the drop in H by a factor of

more than 10 from H = 2000 to H = 160. I also trained a 1D model with L reduced

by half to 256 to take advantage of the shorter sequences but this turned out to have

no impact on the overall performance.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis has introduced a new way to perform object detection in videos and

semantic segmentation in images and videos by modeling the outputs of these tasks

as sequences of discrete tokens. I have proposed these new methods as another step

in the direction of the more general tokenization of visual recognition tasks that has

been happening over the last few years through the paradigm of language modeling.

I have presented theoretical arguments for why such tokenization can help to solve

the problems consequent upon trying to model the inherently discrete and

variable-length outputs that are common in vision tasks with the continuous-valued

and �xed-length representations in conventional modeling. I have tested these

models on a wide range of real-world problems with in-depth experiments to

demonstrate their competitiveness with the state of the art in conventional

modeling. Although I have not been able to demonstrate that my methods o�er

signi�cant and consistent performance advantage over conventional models, I do

present strong evidence to suggest that this is not due to any intrinsic weakness in

the models themselves. Rather, it is likely to be a consequence of the bottleneck

that is imposed upon these models by the small training batch sizes that I have

been constrained to use by my limited computational resources. Once these

constraints are lifted and the models can be trained to their full potential, I am

con�dent that they will be able to justify their theoretical advantages with practical

performance bene�ts.
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9.2 Future Work

I am currently planning to lease a few Tesla A100 80 GB GPUs to train my models

on large benchmark datasets with su�ciently high batch sizes, both as a means to

validate the above hypothesis and to generate results for peer-reviewed publications.

In addition to improving the performance of my existing models with better

training, the language modeling paradigm provides immense scope for designing

better models through more e�cient and clever tokenization schemes. As mentioned

in Section 7.1, one such avenue would be to �nd a way to add object-level

information to the RLE tokenization I have proposed without losing the bene�ts of

the small quantum and corresponding robustness to inference noise that it provides.

Section 7.3.2 proposed a possible way to achieve this by generating object-level

binary RLE tokens (instead of image-level tokens) separated by class tokens to mark

the end of each object. Such a representation can encode both instance and

semantic masks and therefore perform panoptic segmentation. I have completed

implementing this for static segmentation but still need to extend it for video

segmentation. Early results are promising, although exhibiting strong signs of batch

size bottleneck with higher resolution masks, which I hope to alleviate with the

better GPUs.

A further improvement upon this would be to add some information to the

tokens to be able to link the object instances from multiple consecutive temporal

windows into long trajectories without having to resort to heuristics. This would

achieve my original thesis objective of creating a true end-to-end di�erentiable MOT

pipeline. Associating video-objects in this way would make it necessary for us to

inject some information from previous forward passes of the network into future

forward passes. One way to achieve this might be to construct a hierarchical

autoregressive framework where the entire L × V output of the base-level

autoregression (that currently exists) is used to construct a kind of composite token

representing a single temporal window. A sequence of these composite tokens from

multiple temporal windows then becomes the input for a higher level autoregressive

layer that can combine information from multiple forward passes of the base-level to

produce a single consolidated sequence of tokens that can represent entire object

trajectories spanning tens or even hundreds of forward passes of the base-level. I

would imagine that training such a hierarchical architecture that combines gradient

information from multiple forward passes would require very large batch sizes and
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probably vast amounts of data. We might, however, be able to get away with

training the base and high-level autoregressive layers separately by �rst training the

base-level by itself and then freezing it and training only the high-level

autoregressive network. We could then alternate between the two stages.

With respect to the Pix2Seq framework itself, there are several implementation

tasks that I was unable to complete due to time constraints. One of these is to

adapt the VIT backbone for video processing and possibly extend it with a version

suited for the newer Swin transformer. VIT requires around 12 times more memory

than ResNet-50 so this had perhaps best be done once su�cient GPU memory is

available to train such an architecture with large enough batch sizes. Another and

simpler task is to implement the mask-to-RLE conversion process in Tensor�ow so it

can be integrated into the training pipeline to generate the RLE tokens online

during training. This conversion is currently implemented in Numpy which requires

that the RLE sequences be generated o�ine and this in turn means that all the

augmented images also have to be generated before the training starts. This works

for small datasets like IPSC and ARIS but would be impracticable for larger

benchmark datasets like COCO. Online RLE generation would provide several

additional bene�ts including deploying more sophisticated data augmentation

techniques, extending class-token weight equalization to segmentation, and

randomizing the order of runs in the RLE sequence similar to the randomized order

of objects in the object detector. All of these should allow us to train more robust

segmentation models. A related extension would be to modify instance

segmentation component of the the multi-task version of Pix2Seq [49] to represent

the segmentation masks using RLE tokens instead of polygons. Similarly, we could

design a new multi-task model to perform both video detection and video

segmentation in response to di�erent prompts.
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Appendix A

River Ice Segmentation

This appendix provides results on additional unlabeled images (Figure A.3, A.4),

details of tested video sequences (Table A.3) and categorized links for Google

photos albums showing results on labeled images (Table A.1) and Google Drive

folders containing video results (Table A.4). Each row in the albums shows (from

left to right) the original image, its ground truth label and its segmentation result.

All these results are also available in the accompanying data [137].

Results comparing di�erent backbone networks with DeepLab are also included

in Section A.1.

Table A.1: Google Photos albums showing labeled qualitative results for ablation
testing

Model n_training_images n_pixels_per_class
SVM 32 24 16 8 4 -
Deeplab 32 24 16 8 4 1000 100 10 2
UNet 32 24 16 8 4 1000 100 10 2
SegNet 32 24 16 8 4 1000 100 10 2
DenseNet 32 24 16 8 4 1000 100 10 2

A.1 Comparing DeepLab Backbone Networks

This section provides results comparing three backbone networks for DeepLab -

Xception65 (used in the main paper) [6], Auto-DeepLab [134] and a modi�ed

version of ResNet101 [12] where the �rst 7 × 7 convolution has been replaced by

three 3× 3 convolutions similar to PSPNet [135].
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Table A.2: Dimensions of the 50 labeled images

Image ID Height Wdth
1 1463 1462
2 973 1724
3 1228 1228
4, 5 1081 1281
6 1191 1192
7 1234 1234
8 1009 1134
9 1307 1539
10-12 1081 1281
13 1343 1357
14-50 1081 1281

Table A.3: Details of the 5 video sequences used for testing

ID Name Frame
Count

Start
Frame

End
Frame

1 20160121 / YUN00001 3600 1 3600
2 20160122 / YUN00002 1800 701 2500
3 20160122 / YUN00020 1800 2001 3800
4 20161203 / Deployment 1 YUN00001 1800 901 2700
5 20161203 / Deployment 1 YUN00002 1800 1 1800

Table A.4: Google Drive links for video results

Type Video ID Type Video ID
deeplab_densenet_unet selective_pixel_ablation
combined 1 2 3 4 5 densenet 1 3
frazil 1 2 3 4 5 deeplab 1 3
anchor 1 2 3 4 5 unet 1 3
svm_densenet_unet compare 1

combined 1 3 4 training_images_ablation
frazil 1 3 4 densenet 1 2 3 4 5
anchor 1 3 4 deeplab 1 2 3 4 5
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A.1.1 Overview

Table A.5 shows the results for both segmentation recall and precision as well as ice

concentration median mean absolute error (MAE). It can be seen that Xception65

has similar performance as the other newer backbones and is even slightly better in

most metrics except segmentation recall where Auto-DeepLab and ResNet101 (PSP)

dominate for anchor and frazil ice respectively.

Backbone anchor ice frazil ice ice+water ice+water(fw) Median MAE (%)
Recall (%) Anchor Ice

Xception65 74.46 87.51 86.38 90.87 4.71
Auto-Deeplab 78.69 81.28 85.70 90.21 5.06

ResNet101 (PSP) 67.07 93.24 85.16 90.81 4.78
Precision (%) Frazil Ice

Xception65 62.39 77.14 77.25 84.32 4.52
Auto-Deeplab 59.44 73.43 75.57 83.66 5.24

ResNet101 (PSP) 59.79 76.47 76.34 84.01 5.49

1

Table A.5: Segmentation recall and precision along with ice concentration median
MAE for DeepLab with three di�erent backbone architectures trained and tested on
the 32 and 18 image sets respectively.

A.1.2 Ablation Tests

Figure A.1 and A.2 respectively show the results of training images and selective pixel

ablation tests. As in the previous section, Xception65 remains competitive with the

other backbones though it seems to be slightly more outperformed here especially

with fewer training images in Figure A.1 and frazil ice selective pixel tests in Figure

A.2.
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Figure A.1: Results of ablation tests with training images for (a-b) anchor ice and
(c-d) frazil ice. Note the variable Y-axis limits.
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Figure A.2: Results of ablation tests with selective pixels for (a-b) anchor ice and
(c-d) frazil ice. Note the variable Y-axis limits.
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Figure A.3: Results of applying the best con�gurations of the four models on
unlabeled images: left to right: Raw image, UNet, SegNet, Deeplab, DenseNet
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Figure A.4: Results of applying the best con�gurations of the four models on
unlabeled images: left to right: raw image, UNet, SegNet, Deeplab, DenseNet
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Appendix B

Animal Detection

B.1 Introduction

This appendix provides details of the tracking (Section B.2) and multi-model

pooling experiments (Section B.3) along with the corresponding results.

Class-agnostic Recall-Precision (cRP) for training con�gurations #1 - #5 (Table

B.2) along with class-speci�c results for #1 and #2 (Tables B.3 - B.6) are also

included. Finally, links are provided for more synthetic data samples generated

using the four mask generation methods detailed in the paper (Table B.1).

A video demonstrating the end-to-end real and synthetic data generation

pipeline created using the labeling tool accompanies this document. A higher

resolution version of the same is also available on YouTube [316] along with mask

generation results produced by several instance and semantic segmentation methods

[317].

B.2 YOLO+DASiamRPN

Algorithm 1 details the process used for combining YOLO with DASiamRPN tracker
to reduce false negatives using temporal information in videos. The cumulative_score
in line 48 is a composite measure of overall tracker �tness de�ned as:

cumulative_score = cumulative_con�dence× assoc_count+ 1

unassoc_count+ 1
(B.1)

where assoc_count is the number of frames that the tracker has been successfully

associated in since its initialization, unassoc_count is the number of frames since it

was last associated and cumulative_con�dence is the product of tracker con�dence
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Figure B.1: Mean Recall vs Precision for DASiamRPN + YOLO in con�gurations #1
(solid) and #3 (dashed) using unassociated tracker removal with max_unassoc = 2

background animal
airport bear coyote deer moose
highway bear coyote deer moose

Table B.1: Google Photos albums showing samples of synthetic data generated using
all 4 types of mask generation methods - (left to right in each row) manual masks,
Mask RCNN, SiamMask and no mask/Gaussian blending,

in all tracked frames so far as well as the con�dence of the detection on which it was

initialized.

Removing trackers that have remained unassociated for too long (lines 30-34) can

help to increase precision by reducing tracked boxes corresponding to false positive

detections. However, this also leads to a signi�cant drop in recall since false negatives

often occur in several consecutive frames which causes trackers corresponding to real

objects to be removed. Thus, the overall performance, shown in Figure B.1, is nearly

identical to not using tracking at all. Experiments were done with max_unassoc ∈
{2, 3, 4, 5} and best results were obtained with max_unassoc = 2, which is the only

one included here.
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Algorithm 1 YOLO+DASiamRPN
1: min conf, min iou, max unassoc, max trackers, min init gap ← params
2: trackers ← ∅
3: for frame in video sequence do
4: detections ← YOLO (frame)
5: associated detections ← ∅
6: associated trackers ← ∅
7: for t in trackers do
8: t.update(frame)
9: if t.confidence ¡ min conf then
10: trackers ← trackers \ t
11: continue
12: end if
13: if t in associated trackers then
14: continue
15: end if
16: for d in detections do
17: if d in associated detections then
18: continue
19: end if
20: if d.class = t.class and iou(d, t) ¿ min iou then
21: associated detections ← associated detections ∪ d
22: associated trackers ← associated trackers ∪ t
23: t.unassoc count ← 0
24: t.assoc count ← t.assoc count + 1
25: continue
26: end if
27: end for
28: end for
29: unassociated trackers ← trackers \ associated trackers
30: for t in unassociated trackers do
31: t.unassoc count ← t.unassoc count + 1
32: if t.unassoc count > max unassoc then
33: trackers ← trackers \ t
34: end if
35: end for
36: unassociated detections ← detections \ associated detections
37: tracker init gap ← tracker init gap + 1
38: if tracker init gap > min init gap then
39: tracker init gap ← 0
40: for d in unassociated detections do
41: t ← initialize new tracker(frame, d)
42: t.unassoc count ← 0
43: t.assoc count ← 1
44: trackers ← trackers ∪ t
45: end for
46: end if
47: if |trackers| > max trackers then
48: trackers ← sort trackers by cumulative score
49: trackers ← {ti|ti ∈ trackers, 1 ≤ i ≤ max trackers}
50: end if
51: end for
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Figure B.2: Mean Recall and Precision for RETINA and YOLO pooling in #5 with
and without con�dence normalization

Detection cRP (%) for configuration #1 - #5
Model 1: 1K/Seq/8 2: 1K/Even/8 3: 10K/Seq/6 4: 5%/Start/6 5: 500/Static/3
NAS 87.17 96.42 93.8 92.98 95.83
INRES 84.64 96.13 95.08 94.32 92.73
RES101 89.71 99.65 95.16 97.15 95.93
RFCN 88.93 99.54 94.64 97.27 93.88
RETINA 74.62 99.62 90.18 95.27 92.01
SSDIN 69.56 98.62 84.75 92 89.56
SSDMO 64.89 98.42 86.28 92.84 90.62
YOLO 80.76 96.67 91.7 94.16 90.36

1

Table B.2: Class agnostic Recall-Precision (cRP) for training con�gurations #1 - #5
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B.3 Muti-Model Pooling

Muti-model pooling can be an e�ective way to reduce false negatives only if the pooled

models exhibit distinct patterns of missing objects. As shown in Section 4.2 of the

main paper, model recall depends strongly on the range of backgrounds in the training

set. It would thus seem that model separation can best be achieved by training

them on images with signi�cantly di�erent backgrounds, e.g. with snowy winter

and green summer scenes or under sunny and cloudy / rainy weather conditions.

However, the existing labeled data does not contain su�cient variety to divide it into

class-balanced subsets that each have relatively homogeneous backgrounds di�ering

signi�cantly from those in other subsets. Model separation was instead achieved by

training di�erent architectures on the same data.

Two pooling strategies were employed:

1. Model Switching: All detections from the model with the highest con�dence

detection are retained in each frame while all others models' detections are

discarded.

2. Model Aggregation: Detections from all models are pooled followed by class-

agnostic non-maximum suppression applied to boxes from di�erent models.

Both strategies require inter-model con�dence comparison which is not

straightforward to do since, as shown in Figure 3 of the main paper (and Tables B.3

- B.6 here), the meaning of con�dence magnitude in terms of detection accuracy

varies signi�cantly between models. As a result, raw con�dence values from di�erent

models need to be normalized before they can be compared. Several ways of doing

this were explored but the one that worked best was to scale the con�dence values

of each model so that its mRP threshold becomes 0.5 while the range of values

remains [0, 1].

Experiments were done by pooling YOLO and RETINA as well as YOLO, SSDIN

and SSDMO but the former combination gave much better results so only these are

included here. Similarly, con�gurations #1, #3 and #5 were all tested but only #5

is included as it produced the best pooling results relative to the individual detectors.

Figure B.2 gives results for the two strategies in #5, both with and without con�dence

normalization. Somewhat surprisingly, none of the normalization techniques managed

to outperform unnormalized con�dence based pooling. Also, none of the pooling

strategies managed to the increase recall over the better of the pooled detectors while
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always leading to a signi�cant drop in precision. This shows that pooling is not

a practicle way to improve recall, at least not with the relatively simple methods

employed here so as not to compromise speed.

B.4 Class-agnostic Recall-Precision (cRP)

Table B.2 shows the cRPs for all models in con�gurations #1 - #5. It is interesting to

note that the large relative increase in cRP exhibited by YOLO in #1 and #3 is not

present in the other easier con�gurations. This might indicate that YOLO manifests

its tendency to over�t to speci�c background-foreground combinations most strongly

with very limited training data.

B.5 Class-Speci�c Results

Results for con�guration #1 are in tables B.3 and B.4 while those for #2 are in tables

B.5 and B.6. The second column gives the recall � precision (RP) value corresponding

to the score threshold where the two are equal while the threshold itself is given in the

third column. The next three columns provide the recall, precision and their average

for the score threshold corresponding to the overall mRP, i.e. where the mean recall

and mean precision are equal. The last column gives the total number of ground

truth boxes available for each class. Note that many images had multiple objects so

that this count is more than the number of images in the corresponding test set.

It can be seen that the large inter-class variation of RP thresholds holds for all

the models as well as for both low and high performance scenarios, represented by

#1 and #2 respectively. AP and RP show considerable variation too, though only

in #1. This is probably because animals with the larger ranges of backgrounds in

the training set are often falsely detected in test images of remaining animals, thus

leading to signi�cant biases in their recall and precision.

B.6 Synthetic data samples

Table B.1 provides links to Google Photos albums showing synthetic data samples

generated using all 4 methods - (left to right in each row) manual masks, Mask RCNN,

SiamMask and no masks.
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Training Configuration #1: 1K/Seq/8
NAS

Class Specific mRP threshold 62.00 %
class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT
bear 79.01 72.81 86.84 78.55 60.97 69.76 25320
bison 72.07 65.47 31.08 55.69 80.55 68.12 31612
cow 42.89 42.99 98.6 60.16 10.73 35.45 4222
coyote 75.33 67.87 16.66 52.53 94.45 73.49 22337
deer 63.89 59.88 30.88 49.29 67.3 58.3 24465
elk 65.77 57.19 3.45 36.53 89.99 63.26 25353
horse 71.33 65.58 94.89 80.64 41.41 61.03 4840
moose 50.31 47.36 97.2 65.56 33.14 49.35 25033
average 65.07 59.89 57.45 59.87 59.82 59.84 163182

INRES
Class Specific mRP threshold 38.70 %

class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT
bear 68.02 67.09 16 59.49 75.72 67.61 25320
bison 61.51 57.97 15.8 52.58 66.44 59.51 31612
cow 26.19 29.58 98.77 48.48 6.24 27.36 4222
coyote 67.31 61.38 3.49 50.83 90.74 70.79 22337
deer 67.34 64.49 58.18 68.49 61.02 64.75 24465
elk 59.12 54.26 4.5 42.42 65.98 54.2 25353
horse 50.11 49.13 96.45 62.95 22.22 42.59 4840
moose 49.53 49.04 47.33 50.46 47.36 48.91 25033
average 56.14 54.12 42.57 54.47 54.46 54.46 163182

RES101
Class Specific mRP threshold 65.80 %

class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT
bear 70.95 67.76 98.52 84.5 42.27 63.38 25320
bison 56.19 55.56 49.13 48.64 58.46 53.55 31612
cow 44.79 45.33 99.54 63.26 14.59 38.93 4222
coyote 69.19 63.72 35.17 55.63 75.72 65.68 22337
deer 74.95 69.86 64.2 69.45 70.32 69.88 24465
elk 63.21 53.34 6.36 42.46 76.87 59.67 25353
horse 52.22 47.54 33.88 42.02 62.34 52.18 4840
moose 57.1 52.86 57.77 50.45 55.46 52.96 25033
average 61.07 57 55.57 57.05 57 57.03 163182

RFCN
Class Specific mRP threshold 60.10 %

class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT
bear 66.95 67.8 73.86 73.36 62.64 68 25320
bison 59.79 57.16 42.37 50.14 62.48 56.31 31612
cow 39.19 43.98 99.91 50.09 7.04 28.57 4222
coyote 57.38 52.65 16.13 35.78 86.97 61.38 22337
deer 68.22 65.28 72.45 69.97 59.87 64.92 24465
elk 56.99 52.48 21.35 42.43 72.3 57.36 25353
horse 48.14 43.39 94.48 59.15 24.95 42.05 4840
moose 48.24 47.53 54.37 45.48 49.81 47.64 25033
average 55.61 53.78 59.36 53.3 53.26 53.28 163182

Table B.3: Training con�guration #1 class-speci�c results for NAS, INRES, RES101
and RFCN
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Training Configuration #1: 1K/Seq/8
RETINA

Class Specific mRP threshold 41.20 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 50.16 50.86 36.15 47.53 52.61 50.07 25320
bison 53.61 51.01 28.55 45.93 59.69 52.81 31612
cow 14.22 18.95 97.88 46.31 6.66 26.48 4222

coyote 43.94 42.57 15.13 32.99 71.96 52.47 22337
deer 47.7 47.82 53.13 53.83 42.61 48.22 24465
elk 47.46 46.71 17.82 36.56 63.72 50.14 25353

horse 36.16 38.24 84.68 51.01 14.08 32.55 4840
moose 25.73 27 36.93 24.89 27.53 26.21 25033

average 39.87 40.4 46.28 42.38 42.36 42.37 163182
SSDIN

Class Specific mRP threshold 11.30 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 48.2 49.42 3.06 38.59 58.53 48.56 25320
bison 39.95 46.49 10.54 45.95 46.85 46.4 31612
cow 28.56 32.64 99.6 69.23 7.09 38.16 4222

coyote 40.68 44.75 1.73 35.81 66.03 50.92 22337
deer 37.36 41.02 2.63 34.08 54.78 44.43 24465
elk 38.71 42.8 1.13 30.12 65.25 47.69 25353

horse 46.31 46.28 85.14 59.52 16.62 38.07 4840
moose 23.46 27.77 15.25 28.87 26.63 27.75 25033

average 37.9 41.4 27.39 42.77 42.72 42.75 163182
SSDMO

Class Specific mRP threshold 27.30 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 54.58 54.29 22.15 52.66 56.2 54.43 25320
bison 39.8 43.17 30.05 43.85 42.56 43.2 31612
cow 28.22 33.73 98.99 52.7 12.92 32.81 4222

coyote 42.28 43.4 3.9 35.56 57.13 46.35 22337
deer 38.14 41.86 65.72 49.43 36.83 43.13 24465
elk 40.22 41.73 1.18 27.58 73.55 50.56 25353

horse 38.47 38.04 96.24 49.09 20.16 34.62 4840
moose 26.45 29.56 7.31 24.41 35.58 29.99 25033

average 38.52 40.72 40.69 41.91 41.87 41.89 163182
YOLO

Class Specific mRP threshold 0.50 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 19.3 31.12 1.93 34.36 29.69 32.02 25320
bison 18.07 39.39 0.1 27.62 52.2 39.91 31612
cow 13.39 16.32 87.34 45.1 5.01 25.05 4222

coyote 17.57 37.74 0.1 22 58.65 40.33 22337
deer 28.71 44.69 2.69 50.23 40.31 45.27 24465
elk 27.98 38.62 0.1 33.72 45.72 39.72 25353

horse 17.16 22.71 91.92 50.87 7.89 29.38 4840
moose 13.65 30.63 0.1 20.56 41.89 31.22 25033

average 19.48 32.65 23.03 35.56 35.17 35.36 163182

Table B.4: Training con�guration #1 class-speci�c results for RETINA, SSDIN,
SSDMO and YOLO
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Training Configuration #2: 1K/Even/8
NAS

Class Specific mRP threshold 83.10 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 97.78 93.94 93.93 95.12 90.44 92.78 25268
bison 97.53 94.44 59.38 92.85 97.57 95.21 31294
cow 97.03 94.93 45.74 92.76 98.7 95.73 4340

coyote 96.96 91.61 90.7 93.11 87.62 90.36 22300
deer 97.89 93.54 66.8 91.72 95.9 93.81 24374
elk 98.5 95.17 86.24 95.51 94.66 95.08 25292

horse 97.82 95.71 91.63 96.45 92.95 94.7 4759
moose 98.36 95.15 84.48 95.25 94.91 95.08 24943

average 97.73 94.31 77.36 94.1 94.09 94.09 162570
INRES

Class Specific mRP threshold 12.20 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 97.37 96.37 3.03 95.7 99.05 97.37 25268
bison 92.13 90.73 3.37 90.31 96.07 93.19 31294
cow 98.62 98.23 20.62 98.32 96.3 97.31 4340

coyote 98.67 96.75 24.83 97.47 94.66 96.07 22300
deer 98.53 97.03 38.24 97.92 93.09 95.5 24374
elk 98.13 97.2 10.21 97.13 97.69 97.41 25292

horse 90.18 90.1 3.77 90 97.45 93.72 4759
moose 99.5 98.27 69.91 99.21 91.52 95.36 24943

average 96.64 95.59 21.75 95.76 95.73 95.74 162570
RES101

Class Specific mRP threshold 90.80 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 99.72 99.53 88.64 99.52 99.59 99.55 25268
bison 99.79 99.42 86.91 99.35 99.53 99.44 31294
cow 99.86 99.65 89.18 99.65 99.72 99.69 4340

coyote 99.92 99.34 92.52 99.39 99.31 99.35 22300
deer 99.87 99.5 96.2 99.57 99.39 99.48 24374
elk 99.94 99.84 75.47 99.81 99.92 99.86 25292

horse 99.77 99.62 98.57 99.66 99.23 99.44 4759
moose 99.91 99.6 75.28 99.49 99.75 99.62 24943

average 99.85 99.56 87.85 99.56 99.55 99.56 162570
RFCN

Class Specific mRP threshold 84.30 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 99.65 99.44 79.47 99.39 99.58 99.49 25268
bison 99.63 99.09 79.33 98.99 99.23 99.11 31294
cow 99.88 99.72 49.54 99.65 99.86 99.76 4340

coyote 99.95 99.48 89.86 99.57 99.31 99.44 22300
deer 99.86 99.61 73.09 99.48 99.71 99.6 24374
elk 99.86 99.75 91.57 99.79 99.53 99.66 25292

horse 99.74 99.58 95.96 99.66 99.23 99.44 4759
moose 99.86 99.56 81.89 99.52 99.59 99.56 24943

average 99.8 99.53 80.09 99.51 99.5 99.51 162570

Table B.5: Training con�guration #2 class-speci�c results for NAS, INRES, RES101
and RFCN
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Training Configuration #2: 1K/Even/8
RETINA

Class Specific mRP threshold 28.30 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 99.88 99.66 29.67 99.68 99.64 99.66 25268
bison 99.91 99.34 25.21 99.13 99.44 99.28 31294
cow 100 99.82 52.52 99.95 99.54 99.75 4340

coyote 99.99 99.64 42.03 99.96 99.39 99.67 22300
deer 99.98 99.67 30.56 99.72 99.64 99.68 24374
elk 99.99 99.8 38.48 99.89 99.75 99.82 25292

horse 99.89 99.41 26.15 98.76 99.6 99.18 4759
moose 99.96 99.72 27.8 99.7 99.74 99.72 24943

average 99.95 99.63 34.05 99.6 99.59 99.6 162570
SSDIN

Class Specific mRP threshold 22.30 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 99.63 98.36 34.83 98.97 97.3 98.14 25268
bison 99.79 99.18 13.43 98.87 99.6 99.23 31294
cow 99.82 98.43 27.94 98.71 97.92 98.31 4340

coyote 99.65 97.54 32.92 98.37 96.24 97.3 22300
deer 99.88 98.89 13.25 98.23 99.46 98.84 24374
elk 99.96 99.36 13.82 99.1 99.79 99.45 25292

horse 99.78 98.72 19.4 98.59 99.09 98.84 4759
moose 99.76 98.55 13.25 97.67 99.03 98.35 24943

average 99.78 98.63 21.1 98.56 98.55 98.56 162570
SSDMO

Class Specific mRP threshold 34.10 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 99.64 98.56 19.39 97.7 99.26 98.48 25268
bison 99.72 98.37 49.9 98.83 97.1 97.96 31294
cow 99.88 98.55 46.9 99.24 96.55 97.89 4340

coyote 99.87 98.52 35.81 98.67 98.41 98.54 22300
deer 99.9 98.81 27.96 98.35 99.11 98.73 24374
elk 99.93 99.09 19.37 98.49 99.66 99.07 25292

horse 99.69 99.01 23.16 97.48 99.34 98.41 4759
moose 99.73 97.47 37.34 97.85 97.18 97.52 24943

average 99.79 98.55 32.48 98.33 98.32 98.33 162570
YOLO

Class Specific mRP threshold 6.80 %class AP(%) RP(%) Score(%) Recall(%) Precision(%) Average(%) GT

bear 98.92 96.74 11.85 97.33 94.12 95.72 25268
bison 98.18 96.17 5.81 95.98 96.56 96.27 31294
cow 98.56 95.18 7.31 95.35 94.84 95.09 4340

coyote 96.97 94.57 5.5 94.24 95.37 94.8 22300
deer 99.04 96.04 14.66 96.94 94.09 95.52 24374
elk 97.97 97.75 0.38 97.22 99.97 98.59 25292

horse 97.5 95.15 5.73 94.94 96.39 95.67 4759
moose 99.85 99.22 3.63 98.96 99.58 99.27 24943

average 98.37 96.35 6.86 96.37 96.37 96.37 162570

Table B.6: Training con�guration #2 class-speci�c results for RETINA, SSDIN,
SSDMO and YOLO
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Appendix C

Human iPSC Segmentation

C.1 Datasets

Numerical details of the annotated data generated by the �rst and last stages of the

annotation process are given in Tables C.1 and C.2 respectively.

Table C.1: Numerical details of the selective uncategorized labeled data generated by
the �rst stage of the annotation process.

Frame Range Sequences Frames Cells
146� 200 3 130 948
201 - 250 8 377 2952
251 - 275 6 149 868
146 - 275 17 656 4768

Table C.2: Numerical details of the categorized retrospective labeled data generated
by the last stage of the annotation process.

Train Test All
Frames Start End Total Start End Total Start End Total
Early Train 163 202 1178

146 162 496 146 275 3937
Late Train 203 275 2263
Cells iPSC Diff Total iPSC Diff Total iPSC Diff Total
Early Train 1879 5380 7259

790 2467 3257 6056 16542 22598
Late Train 3387 8695 12082
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Table C.3: Quantitative details of image sizes and number of objects per image in
the 31 ROI sequences

objects per image
sequence height width

mean min max
overall 5.7 1 20

10127_9782_12527_11782 2000 2400 6.4 5 9
10161_9883_13561_12050 2167 3400 7.9 6 11
11927_12517_15394_15550 3033 3467 14.6 11 19
12094_17082_16427_20915 3833 4333 13.1 6 19
12527_11015_14493_12615 1600 1966 6.1 4 8
12794_8282_14661_10116 1834 1867 6.4 5 8
12994_10915_15494_12548 1633 2500 5.3 4 6
16627_11116_18727_12582 1466 2100 5.0 5 6
7777_10249_10111_13349 3100 2334 5.9 3 7
8094_13016_11228_15282 2266 3134 6.1 4 7
9861_9849_12861_11516 1667 3000 7.1 6 9
10228_10182_12394_11915 1733 2166 3.8 3 6
10494_8849_12494_9849 1000 2000 3.8 2 5
11661_13082_13594_14849 1767 1933 8.3 5 11
12394_17282_14327_20782 3500 1933 7.5 4 13
12761_10682_14894_11782 1100 2133 4.5 3 7
12861_8815_15027_10115 1300 2166 6.4 5 8
12961_11916_14661_12816 900 1700 1.2 1 2
13894_13749_16527_15316 1567 2633 6.1 5 8
14094_17682_15894_19749 2067 1800 9.7 4 20
15827_11316_17627_12749 1433 1800 5.5 5 7
15927_17249_17627_19582 2333 1700 4.5 1 9
17094_13782_19127_16348 2566 2033 8.5 6 11
17861_11316_19661_12616 1300 1800 2.7 2 4
4961_15682_7127_16949 1267 2166 4.3 3 7
6661_13749_9061_14816 1067 2400 4.6 3 6
7594_11916_9927_13149 1233 2333 2.0 2 2
7694_8682_10194_9682 1000 2500 1.7 1 2
7727_10749_9961_11749 1000 2234 4.0 2 5
8461_17782_10194_19016 1234 1733 1.7 1 2
9261_13449_11494_14382 933 2233 3.0 1 4
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C.2 XGBoost Features

XGBoost classi�er was trained with the following features:

� area: number of pixels enclosed by the cell

� pixel-min: maximum of the pixel values enclosed by the cell

� pixel-max: minimum of the pixel values enclosed by the cell

� pixel-std: standard deviation of the pixel values enclosed by the cell

� circlicity: ratio of the number of pixels in the circumcircle of the cell to that in

the cell itself.

� speed:
√

dx2 + dy2 where (dx, dy) is the change in location of the cell centroid

from the previous frame

� displacement:
√

init_dx2 + init_dy2 where (init_dx, init_dy) is the change

in the location of the cell centroid from the �rst frame

C.3 Tracking Algorithm

A simpli�ed high-level algorithm describing the interactive semi-automated tracking

process used for retrospective labelling is given in Algorithm 2.

C.4 Temporal Detection Metrics Results

Figure C.1 shows the impact of subsequence length on the detection metrics of

RP-AUC and AP. Similar to ROC-AUC, there is a general trend of performance

improvement with increase in subsequence length though not as strong as

ROC-AUC and even an inverse trend being apparent in several cases.

C.5 Visualization Videos

All visualization videos are available in this Google Drive folder:

https:

//drive.google.com/drive/folders/1L1NXhSQvLpRSN4WBmbiv9lZYYP3zYgVS.

There are four types of videos, each in its own subfolder:
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Algorithm 2 Human-Assisted Tracking for Retrospective Labeling
1: prev_tracks ← ∅
2: for frame in ROI sequence from last to �rst do

3: curr_dets ← cells detected in current frame by the instance segmentation model

4: prev_tracks ← tracked cells from previous frame if any else ∅
5: curr_tracks ← ∅
6: for each pair of cells in curr_dets with IOU > 0.5 do

7: Ask user to choose the duplicate cell from the pair if any and discard all such cells

8: end for

9: Perform IOU-based pairwise association between prev_tracks and curr_dets
10:
11: for each unassociated cell in curr_dets do

12: Ask user to decide if it is a false positive and discard it if so

13: end for

14: for each unassociated track in prev_tracks do

15: Ask user to associate it with a cell in curr_dets or discard it as having ended

16: end for

17: for each pair of associated cells with a relative change in height, width or area > 0.5 do

18: Ask user to choose if this ambiguous association represents cell division, fusion or misassociation and

update tracks accordingly

19: end for

20: Extend each associated track in prev_tracks with the corresponding cell from curr_dets and add the extended

track to curr_tracks
21: Add a new track to curr_tracks for each remaining unassociated cell in curr_dets
22: prev_tracks ← curr_tracks
23: end for
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Figure C.1: Subsequential results for (top) RP-AUC and (bottom) AP. Left and center
plots show early and late-stage models tested on the standard test set of frames 146
- 162 while the right one shows the latter tested on an extended test set with frames
146 - 201. Note the curtailed and variable Y-axis ranges.

190



Figure C.2: A sample 714 MP raw image with the 31 ROIs shown in green bounding
boxes.

� detection failures: 2 FPS videos showing all 6 types of detection failures for

each detector in both early and late-stage training con�gurations

� FP videos contain one frame for each detection failure so that each source

frame is present multiple times if it contains multiple FPs

� FN videos show all the missing detections for each source frame together so

each source frame is present only once

� each frame contains three images showing, from left to right, GT annotations,

all detections in the frame and a single FP detection or GT cells corresponding

to all the FNs

� in case of FP-NEX-PART, the third frame shows both the FP detection and

the GT cell with which it partially overlaps

� �rst two images show iPSCs and DfCs in green and red respectively while

the third image shows FPs in magenta and GTs in cyan
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� black bar at the bottom of each frame shows the ROI and frame info in the

�rst line while the second line shows some stats that can be ignored

� detection results: 2 FPS videos showing the GT and detected cells for all source

frames in each of the 31 ROIs

� iPSCs and DfCs are shown in green and red respectively

� retrospective labeling: 2 FPS videos showing the result of retrospective labelling

for each of the 31 ROIs

� frames are ordered backwards in time since that is how the tracking was done

� the mask colour of each cell indicates its unique identity while the bounding

box colour indicates its class � green for iPSC and red for DfC

� cell lines: a single 5 FPS video showing the 8 cell lines generated by backwards

tracking of a single target in one of the ROIs

� cell lines are arranged in a 2× 4 grid

� frames are ordered backwards in time

� a cell line is considered to have diverged into two by a cell division event

while a fusion event terminates both parent cell lines and creates a new one

� multiple cell lines have many frames in common but each has at least one

frame with a unique cell-identity that makes this line distinct from others

All videos are formatted as MPEG-4 with mp4v codec and should be playable on

any video player on Linux, Windows or Mac.

C.6 3D Interactive Plots

Frame-wise partial AUC plots are available as interactive HTML �les in this Google

Drive folder. These can be opened in any web browser.
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Appendix D

Language Modeling for Video

Detection

D.1 Hierarchical Video Cross-MHA
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Figure D.1: Flow diagram for the hierarchical variant of the cross-MHA module in
the middle-fusion video encoder.

This appendix provides an alternative way to perform the video cross-MHA

operation in the middle-fusion video encoder. As shown in �g. D.1, we �rst apply
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cross-MHA between pairs of consecutive frames, i.e. (F1, F2), (F2, F3), (F3, F4) and

so on to obtain N − 1 feature maps, each of size 400 × 256, corresponding to the

N − 1 frame-pairs. Consecutive pairs from these N − 1 feature maps are then

cross-attended in a second level cross-MHA operation to yield N − 2 feature maps,

again with the same 400 × 256 size. This process is repeated for a total of N − 1

levels of cross-MHA operations to �nally yield a single 400× 256 feature map that is

passed to the decoder.
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Appendix E

Language Modeling for

Semantic Segmentation

E.1 RLE length Statistics

This section provides statistics about the RLE length (L) required to represent masks

from the complete IPSC dataset for various combinations of image size I, patch size

P and mask size S for both static (Tables E.1 - E.2) and video (Tables E.3 - E.4)

segmentation. The �rst two rows in each case show the mean and maximum RLE

lengths while the remaining rows show the percentage of images for which the lengths

exceed the threshold in the �rst column. The smallest threshold that can be used as

L in each case is highlighted in yellow. I have found empirically that small fraction of

lengths (< 2%) exceeding L does not have a signi�cant impact on the segmentation

results so that L does not necessarily need to be ≥ maximum length. Binary and

multi-class LAC both use 2 tokens per run so ended up having identical lengths for all

images over this dataset. Note that this does not always have to be true in principle.

For example, if two runs with di�erent classes are next to each other in the same row,

they will be represented by a single run in the binary case but two di�erent runs in

the multi-class case, but such scenarios do not occur in the IPSC dataset. Multi-class

masks with separate class tokens use 3 tokens per run so have 1.5 times the lengths

of the other two cases.
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Table E.1: Statistics of static mask RLE lengths over the IPSC dataset with images
resized from I = 1280 to I = 80, without patches and mask subsampling (so that
S = P = I). Please refer Section E.1 for more details.

Image size (I ) 1280 640 320 160 80

Mean 2363.3 1185.9 597.2 302.6 154.8

Max 5426 2716 1362 684 348

> 512 96.85% 89.71% 58.75% 8.46% 0.00%

> 1024 89.61% 58.24% 8.15% 0.00% 0.00%

> 1536 77.32% 24.64% 0.00% 0.00% 0.00%

> 2048 57.94% 7.87% 0.00% 0.00% 0.00%

> 3072 24.28% 0.00% 0.00% 0.00% 0.00%

> 4096 7.85% 0.00% 0.00% 0.00% 0.00%

> 5120 0.43% 0.00% 0.00% 0.00% 0.00%

Mean 3545.2 1778.9 896 454 232.4

Max 8139 4074 2043 1026 522

> 512 99.03% 94.74% 82.83% 36.50% 0.10%

> 1024 94.74% 82.45% 35.38% 0.03% 0.00%

> 1536 89.61% 58.24% 8.15% 0.00% 0.00%

> 2048 82.30% 34.90% 0.00% 0.00% 0.00%

> 3072 57.94% 7.87% 0.00% 0.00% 0.00%

> 4096 34.65% 0.00% 0.00% 0.00% 0.00%

> 5120 16.38% 0.00% 0.00% 0.00% 0.00%

> 6144 7.85% 0.00% 0.00% 0.00% 0.00%

> 7168 1.50% 0.00% 0.00% 0.00% 0.00%

Binary and Multi-Class LAC

Multi-Class with separate class tokens

E.2 Vocabulary Sizes

This section provides tables of vocabulary sizes for S = 40 (Table E.5), S = 80

(Table E.6), and S = 160 (Table E.8) for video segmentation with varying N and

all the encoding strategies proposed in Section 7.3. These tables demonstrate the

exponential increase in the number of TAC tokens with N . We can also see that, for

smaller mask sizes (e.g. S = 40), straightforward 3D mask �attening remains more

practicable for higher values of N due to its linear increase in V with N . Note that

these tables only account for limits on V and not those on L, which would likely limit

N to lower values depending on the complexity of the dataset.
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Table E.2: Statistics of static mask RLE lengths over the entire IPSC dataset with
(top left) I = P = 640, (top right) I = P = 1024, (bottom left) I = 2560, P = 640,
and (bottom right) I = 2560, P = 1024. Please refer Section E.1 for more details.

Image size (I ) 640 640 640 640 Image size (I ) 1024 1024 1024 1024

Subsampling 1 2 4 8 Subsampling 1 2 4 8

Mask Size (S ) 640 320 160 80 Mask Size (S ) 1024 512 256 128

MEAN 1185.9 597.2 302.6 154.8 MEAN 1892.4 950.4 479.4 243.5

MAX 2716 1362 684 348 MAX 4342 2176 1092 548

> 512 89.71% 58.75% 8.46% 0.00% > 512 95.22% 84.68% 42.06% 0.71%

> 1024 58.24% 8.15% 0.00% 0.00% > 1024 84.56% 41.30% 0.53% 0.00%

> 1536 24.64% 0.00% 0.00% 0.00% > 1536 62.05% 10.08% 0.00% 0.00%

> 2048 7.87% 0.00% 0.00% 0.00% > 2048 40.94% 0.48% 0.00% 0.00%

> 3072 0.00% 0.00% 0.00% 0.00% > 3072 9.93% 0.00% 0.00% 0.00%

> 4096 0.46% 0.00% 0.00% 0.00%

MEAN 1778.5 895.8 453.9 232.3 MEAN 2836.4 1424.7 718.7 365.2

MAX 4074 2043 1026 522 MAX 6513 3264 1638 822

> 512 94.72% 82.81% 36.49% 0.10% > 512 98.20% 92.39% 70.58% 18.48%

> 1024 82.43% 35.37% 0.03% 0.00% > 1024 92.28% 69.34% 17.28% 0.00%

> 1536 58.23% 8.15% 0.00% 0.00% > 1536 84.49% 41.27% 0.56% 0.00%

> 2048 34.89% 0.00% 0.00% 0.00% > 2048 68.93% 16.75% 0.00% 0.00%

> 3072 7.87% 0.00% 0.00% 0.00% > 3072 40.94% 0.48% 0.00% 0.00%

> 4096 0.00% 0.00% 0.00% 0.00% > 4096 16.38% 0.00% 0.00% 0.00%

> 5120 5.92% 0.00% 0.00% 0.00%

> 6144 0.46% 0.00% 0.00% 0.00%

Image size (I ) 2560 2560 2560 2560 Image size (I ) 2560 2560 2560 2560

Patch size (P ) 640 640 640 640 Patch size (P ) 1024 1024 1024 1024

Subsampling 1 2 4 8 Subsampling 1 2 4 8

Mask Size (S ) 640 320 160 80 Mask Size (S ) 1024 512 256 128

MEAN 714.4 357.6 179.1 89.9 MEAN 1177.9 593.2 295.4 148.5

MAX 2666 1332 642 318 MAX 5392 2694 1348 676

> 512 60.62% 27.05% 0.57% 0.00% > 512 82.57% 53.31% 9.95% 0.16%

> 1024 27.05% 0.66% 0.00% 0.00% > 1024 52.96% 10.54% 0.16% 0.00%

> 1536 3.20% 0.00% 0.00% 0.00% > 1536 29.17% 1.10% 0.00% 0.00%

> 2048 0.66% 0.00% 0.00% 0.00% > 2048 10.02% 0.15% 0.00% 0.00%

> 3072 0.97% 0.00% 0.00% 0.00%

MEAN 1075.4 538.5 269.9 135.8 MEAN 1776.9 889.7 446.1 224.4

MAX 3999 1998 963 477 MAX 8088 4041 2022 1014

> 512 74.93% 47.96% 5.43% 0.00% > 512 90.72% 72.81% 36.82% 2.22%

> 1024 47.77% 5.49% 0.00% 0.00% > 1024 72.66% 36.46% 2.21% 0.00%

> 1536 27.17% 0.68% 0.00% 0.00% > 1536 53.17% 10.54% 0.16% 0.00%

> 2048 5.53% 0.00% 0.00% 0.00% > 2048 36.37% 2.30% 0.00% 0.00%

> 3072 0.67% 0.00% 0.00% 0.00% > 3072 10.51% 0.15% 0.00% 0.00%

> 4096 2.34% 0.00% 0.00% 0.00%

> 5120 0.62% 0.00% 0.00% 0.00%

Binary and Multi-Class LAC Binary and Multi-Class LAC

Multi-Class with separate class tokens Multi-Class with separate class tokens

Binary and Multi-Class LAC

Multi-Class with separate class tokens

Binary and Multi-Class LAC

Multi-Class with separate class tokens
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Table E.3: Statistics of video mask RLE lengths over the IPSC dataset with N = 2,
I = 2560, P = 640 and S = 80, 160. Please refer Section E.1 for more details.

3D-C 3D-F TAC LTAC 3D-C LAC TAC LTAC

AVG 154.9 189.2 231.8 154.5 233.9 155.4 232.5 154.7

MAX 564 1310 954 636 846 564 954 636

> 512 0.12% 2.82% 5.55% 0.24% 5.08% 0.26% 5.63% 0.25%

> 1024 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

AVG 307.3 670 511 341.2 461.9 309 511.4 341.4

MAX 1116 5028 1971 1314 1674 1116 1971 1314

> 512 17.76% 52.65% 42.89% 22.12% 37.19% 18.40% 42.89% 22.17%

> 1024 0.18% 20.07% 8.53% 1.07% 4.97% 0.26% 8.55% 1.13%

> 1536 0.00% 6.56% 1.07% 0.00% 0.26% 0.00% 1.13% 0.00%

> 2048 0.00% 2.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

S=160

I=2560

P=640
N=2

 Binary Multi-Class

S=80

Table E.4: Statistics of video mask RLE lengths over the IPSC dataset with I = 2560,
P = 640, S = 80 and N = 3, 4, 6, 8, 9. Please refer Section E.1 for more details.

3D-C TAC LTAC LAC TAC LTAC

AVG 231.5 329.3 219.6 231.2 329.6 219.4

MAX 816 1419 946 836 1419 946

> 512 4.84% 20.54% 4.43% 4.93% 20.60% 4.51%

> 1024 0.00% 0.61% 0.00% 0 0.61% 0

AVG 306.8 417.1 278.0 307.8 417.3 278.2

MAX 1066 1779 1186 1114 1779 1186

> 512 18.35% 33.43% 12.55% 18.49% 33.47% 12.55%

> 1024 0.08% 3.71% 0.03% 0.21% 3.73% 0.03%

>1536 0.00% 0.03% 0.00% 0.00% 0.03% 0.00%

AVG 455.0 575.1 383.4 456.5 575.3 383.5

MAX 1566 2262 1508 1662 2262 1508

> 512 36.78% 48.77% 28.60% 36.78% 48.77% 28.64%

> 1024 4.59% 14.23% 2.23% 4.73% 14.27% 2.23%

> 1536 0.05% 2.23% 0.00% 0.20% 2.23% 0.00%

> 2048 0.00% 0.10% 0.00% 0.00% 0.10% 0.00%

AVG 599.5 718.2 478.8 601.4 718.3 478.9

MAX 2064 2826 1884 2204 2826 1884

> 512 49.62% 58.49% 40.25% 49.62% 58.49% 40.26%

> 1024 17.77% 25.68% 7.80% 17.92% 25.69% 7.82%

> 1536 2.83% 7.80% 0.61% 2.88% 7.82% 0.61%

> 2048 0.05% 1.55% 0.00% 0.17% 1.55% 0.00%

AVG 670.5 784.3 522.9 672.5 784.5 523.0

MAX 2310 3087 2058 2470 3087 2058

> 512 53.86% 62.09% 44.67% 53.86% 62.09% 44.67%

> 1024 23.52% 29.68% 11.04% 23.52% 29.72% 11.04%

> 1536 4.44% 11.04% 1.30% 4.57% 11.04% 1.30%

> 2048 1.03% 2.64% 0.02% 1.18% 2.64% 0.02%

> 3072 0.00% 0.02% 0.00% 0.00% 0.02% 0.00%

Multi-Class
S = 80

I=2560

P=640

Binary

N=8

N=6

N=9

N=3

N=4
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Table E.5: Vocabulary sizes (V ) for video segmentation with S = 40, varying values
of N from N = 2 to N = 20 and both binary and multiclass cases. The maximum
possible N for each case such that V < 32K is highligted in yellow. V is shown in
units of thousands.

N S C+1 encoding
starts 

tokens

lengths 

tokens

class 

tokens
V (K) N S C+1 encoding

starts 

tokens

lengths 

tokens

class 

tokens
V (K)

2 40 2 3D-C 3200 40 3.24 2 40 3 3D-C 3200 40 2 3.24

2 40 2 3D-F 3200 80 3.28 2 40 3 LAC 3200 80 3.28

2 40 2 TAC 1600 40 3 1.64 2 40 3 TAC 1600 40 8 1.65

2 40 2 LTAC 1600 120 1.72 2 40 3 LTAC 1600 320 1.92

3 40 2 3D-C 4800 40 4.84 3 40 3 3D-C 4800 40 2 4.84

3 40 2 3D-F 4800 120 4.92 3 40 3 LAC 4800 80 4.88

3 40 2 TAC 1600 40 7 1.65 3 40 3 TAC 1600 40 26 1.67

3 40 2 LTAC 1600 280 1.88 3 40 3 LTAC 1600 1040 2.64

4 40 2 3D-C 6400 40 6.44 4 40 3 3D-C 6400 40 2 6.44

4 40 2 3D-F 6400 160 6.56 4 40 3 LAC 6400 80 6.48

4 40 2 TAC 1600 40 15 1.66 4 40 3 TAC 1600 40 80 1.72

4 40 2 LTAC 1600 600 2.2 4 40 3 LTAC 1600 3200 4.8

6 40 2 3D-C 9600 40 9.64 6 40 3 3D-C 9600 40 2 9.64

6 40 2 3D-F 9600 240 9.84 6 40 3 LAC 9600 80 9.68

6 40 2 TAC 1600 40 63 1.7 6 40 3 TAC 1600 40 728 2.37

6 40 2 LTAC 1600 2520 4.12 6 40 3 LTAC 1600 29120 30.72

8 40 2 3D-C 12800 40 12.84 8 40 3 3D-C 12800 40 2 12.84

8 40 2 3D-F 12800 320 13.12 8 40 3 LAC 12800 80 12.88

8 40 2 TAC 1600 40 255 1.9 8 40 3 TAC 1600 40 6560 8.2

8 40 2 LTAC 1600 10200 11.8 8 40 3 LTAC 1600 262400 264

9 40 2 3D-C 14400 40 14.44 9 40 3 3D-C 14400 40 2 14.44

9 40 2 3D-F 14400 360 14.76 9 40 3 LAC 14400 80 14.48

9 40 2 TAC 1600 40 511 2.15 9 40 3 TAC 1600 40 19682 21.32

9 40 2 LTAC 1600 20440 22.04 9 40 3 LTAC 1600 787280 788.88

12 40 2 3D-C 19200 40 19.24 12 40 3 3D-C 19200 40 2 19.24

12 40 2 3D-F 19200 480 19.68 12 40 3 LAC 19200 80 19.28

12 40 2 TAC 1600 40 4095 5.74 12 40 3 TAC 1600 40 531440 533.08

12 40 2 LTAC 1600 163800 165.4 12 40 3 LTAC 1600 2.1E+07 21259

14 40 2 3D-C 22400 40 22.44 14 40 3 3D-C 22400 40 2 22.44

14 40 2 3D-F 22400 560 22.96 14 40 3 LAC 22400 80 22.48

14 40 2 TAC 1600 40 16383 18.02 14 40 3 TAC 1600 40 4782968 4784.6

14 40 2 LTAC 1600 655320 656.92 14 40 3 LTAC 1600 1.9E+08 191320

16 40 2 3D-C 25600 40 25.64 16 40 3 3D-C 25600 40 2 25.64

16 40 2 3D-F 25600 640 26.24 16 40 3 LAC 25600 80 25.68

16 40 2 TAC 1600 40 65535 67.18 16 40 3 TAC 1600 40 4.3E+07 43048

16 40 2 LTAC 1600 2621400 2623 16 40 3 LTAC 1600 1.7E+09 2E+06

18 40 2 3D-C 28800 40 28.84 18 40 3 3D-C 28800 40 2 28.84

18 40 2 3D-F 28800 720 29.52 18 40 3 LAC 28800 80 28.88

18 40 2 TAC 1600 40 262143 263.78 18 40 3 TAC 1600 40 3.9E+08 387422

18 40 2 LTAC 1600 1E+07 10487 18 40 3 LTAC 1600 1.5E+10 2E+07

20 40 2 3D-C 32000 40 32.04 20 40 3 3D-C 32000 40 2 32.04

20 40 2 3D-F 32000 800 32.8 20 40 3 LAC 32000 80 32.08

20 40 2 TAC 1600 40 1048575 1050.2 20 40 3 TAC 1600 40 3.5E+09 3E+06

20 40 2 LTAC 1600 4.2E+07 41945 20 40 3 LTAC 1600 1.4E+11 1E+08

N=4

Binary
S=40

 Multi-Class

N=2

N=3

N=20

N=18

N=6

N=8

N=9

N=12

N=14

N=16
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Table E.6: Vocabulary sizes (V ) for video segmentation with S = 80, varying values
of N from N = 2 to N = 16 and both binary and multiclass cases. The maximum
possible N for each case such that V < 32K is highligted in yellow. V is shown in
units of thousands.

N S C+1 encoding
starts 

tokens

lengths 

tokens

class 

tokens
V (K) N S C+1 encoding

starts 

tokens

lengths 

tokens

class 

tokens
V (K)

2 80 2 3D-C 12800 80 12.88 2 80 3 3D-C 12800 80 2 12.88

2 80 2 3D-F 12800 160 12.96 2 80 3 LAC 12800 160 12.96

2 80 2 TAC 6400 80 3 6.48 2 80 3 TAC 6400 80 8 6.49

2 80 2 LTAC 6400 240 6.64 2 80 3 LTAC 6400 640 7.04

3 80 2 3D-C 19200 80 19.28 3 80 3 3D-C 19200 80 2 19.28

3 80 2 3D-F 19200 240 19.44 3 80 3 LAC 19200 160 19.36

3 80 2 TAC 6400 80 7 6.49 3 80 3 TAC 6400 80 26 6.51

3 80 2 LTAC 6400 560 6.96 3 80 3 LTAC 6400 2080 8.48

4 80 2 3D-C 25600 80 25.68 4 80 3 3D-C 25600 80 2 25.68

4 80 2 3D-F 25600 320 25.92 4 80 3 LAC 25600 160 25.76

4 80 2 TAC 6400 80 15 6.5 4 80 3 TAC 6400 80 80 6.56

4 80 2 LTAC 6400 1200 7.6 4 80 3 LTAC 6400 6400 12.8

6 80 2 3D-C 38400 80 38.48 6 80 3 3D-C 38400 80 2 38.48

6 80 2 3D-F 38400 480 38.88 6 80 3 LAC 38400 160 38.56

6 80 2 TAC 6400 80 63 6.54 6 80 3 TAC 6400 80 728 7.21

6 80 2 LTAC 6400 5040 11.44 6 80 3 LTAC 6400 58240 64.64

8 80 2 3D-C 51200 80 51.28 8 80 3 3D-C 51200 80 2 51.28

8 80 2 3D-F 51200 640 51.84 8 80 3 LAC 51200 160 51.36

8 80 2 TAC 6400 80 255 6.74 8 80 3 TAC 6400 80 6560 13.04

8 80 2 LTAC 6400 20400 26.8 8 80 3 LTAC 6400 524800 531.2

9 80 2 3D-C 57600 80 57.68 9 80 3 3D-C 57600 80 2 57.68

9 80 2 3D-F 57600 720 58.32 9 80 3 LAC 57600 160 57.76

9 80 2 TAC 6400 80 511 6.99 9 80 3 TAC 6400 80 19682 26.16

9 80 2 LTAC 6400 40880 47.28 9 80 3 LTAC 6400 1574560 1581

10 80 2 3D-C 64000 80 64.08 10 80 3 3D-C 64000 80 2 64.08

10 80 2 3D-F 64000 800 64.8 10 80 3 LAC 64000 160 64.16

10 80 2 TAC 6400 80 1023 7.5 10 80 3 TAC 6400 80 59048 65.53

10 80 2 LTAC 6400 81840 88.24 10 80 3 LTAC 6400 4723840 4730.2

12 80 2 3D-C 76800 80 76.88 12 80 3 3D-C 76800 80 2 76.88

12 80 2 3D-F 76800 960 77.76 12 80 3 LAC 76800 160 76.96

12 80 2 TAC 6400 80 4095 10.58 12 80 3 TAC 6400 80 531440 537.92

12 80 2 LTAC 6400 327600 334 12 80 3 LTAC 6400 4.3E+07 42522

14 80 2 3D-C 89600 80 89.68 14 80 3 3D-C 89600 80 2 89.68

14 80 2 3D-F 89600 1120 90.72 14 80 3 LAC 89600 160 89.76

14 80 2 TAC 6400 80 16383 22.86 14 80 3 TAC 6400 80 4782968 4789.5

14 80 2 LTAC 6400 1310640 1317 14 80 3 LTAC 6400 3.8E+08 382644

16 80 2 3D-C 102400 80 102.48 16 80 3 3D-C 102400 80 2 102.48

16 80 2 3D-F 102400 1280 103.68 16 80 3 LAC 102400 160 102.56

16 80 2 TAC 6400 80 65535 72.02 16 80 3 TAC 6400 80 4.3E+07 43053

16 80 2 LTAC 6400 5242800 5249.2 16 80 3 LTAC 6400 3.4E+09 3E+06

 Multi-Class

N=2

N=3

N=4

Binary

N=6

N=12

N=16

N=9

S=80

N=14

N=8

N=10
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Table E.7: Vocabulary sizes (V ) for video segmentation with S = 128, varying values
of N from N = 2 to N = 16 and both binary and multiclass cases. The maximum
possible N for each case such that V < 32K is highligted in yellow. V is shown in
units of thousands.

N S C+1 encoding
starts 

tokens

lengths 

tokens

class 

tokens
V (K) N S C+1 encoding

starts 

tokens

lengths 

tokens

class 

tokens
V (K)

2 128 2 3D-C 32768 128 32.9 2 128 3 3D-C 32768 128 2 32.9

2 128 2 3D-F 32768 256 33.02 2 128 3 LAC 32768 256 33.02

2 128 2 TAC 16384 128 3 16.52 2 128 3 TAC 16384 128 8 16.52

2 128 2 LTAC 16384 384 16.77 2 128 3 LTAC 16384 1024 17.41

3 128 2 3D-C 49152 128 49.28 3 128 3 3D-C 49152 128 2 49.28

3 128 2 3D-F 49152 384 49.54 3 128 3 LAC 49152 256 49.41

3 128 2 TAC 16384 128 7 16.52 3 128 3 TAC 16384 128 26 16.54

3 128 2 LTAC 16384 896 17.28 3 128 3 LTAC 16384 3328 19.71

4 128 2 3D-C 65536 128 65.66 4 128 3 3D-C 65536 128 2 65.67

4 128 2 3D-F 65536 512 66.05 4 128 3 LAC 65536 256 65.79

4 128 2 TAC 16384 128 15 16.53 4 128 3 TAC 16384 128 80 16.59

4 128 2 LTAC 16384 1920 18.3 4 128 3 LTAC 16384 10240 26.62

6 128 2 3D-C 98304 128 98.43 6 128 3 3D-C 98304 128 2 98.43

6 128 2 3D-F 98304 768 99.07 6 128 3 LAC 98304 256 98.56

6 128 2 TAC 16384 128 63 16.58 6 128 3 TAC 16384 128 728 17.24

6 128 2 LTAC 16384 8064 24.45 6 128 3 LTAC 16384 93184 109.57

8 128 2 3D-C 131072 128 131.2 8 128 3 3D-C 131072 128 2 131.2

8 128 2 3D-F 131072 1024 132.1 8 128 3 LAC 131072 256 131.33

8 128 2 TAC 16384 128 255 16.77 8 128 3 TAC 16384 128 6560 23.07

8 128 2 LTAC 16384 32640 49.02 8 128 3 LTAC 16384 839680 856.06

9 128 2 3D-C 147456 128 147.58 9 128 3 3D-C 147456 128 2 147.59

9 128 2 3D-F 147456 1152 148.61 9 128 3 LAC 147456 256 147.71

9 128 2 TAC 16384 128 511 17.02 9 128 3 TAC 16384 128 19682 36.19

9 128 2 LTAC 16384 65408 81.79 9 128 3 LTAC 16384 3E+06 2535.7

12 128 2 3D-C 196608 128 196.74 12 128 3 3D-C 196608 128 2 196.74

12 128 2 3D-F 196608 1536 198.14 12 128 3 LAC 196608 256 196.86

12 128 2 TAC 16384 128 4095 20.61 12 128 3 TAC 16384 128 531440 547.95

12 128 2 LTAC 16384 524160 540.54 12 128 3 LTAC 16384 7E+07 68041

14 128 2 3D-C 229376 128 229.5 14 128 3 3D-C 229376 128 2 229.51

14 128 2 3D-F 229376 1792 231.17 14 128 3 LAC 229376 256 229.63

14 128 2 TAC 16384 128 16383 32.9 14 128 3 TAC 16384 128 5E+06 4799.5

14 128 2 LTAC 16384 2097024 2113.41 14 128 3 LTAC 16384 6E+08 612236

16 128 2 3D-C 262144 128 262.27 16 128 3 3D-C 262144 128 2 262.27

16 128 2 3D-F 262144 2048 264.19 16 128 3 LAC 262144 256 262.4

16 128 2 TAC 16384 128 65535 82.05 16 128 3 TAC 16384 128 4E+07 43063

16 128 2 LTAC 16384 8388480 8404.86 16 128 3 LTAC 16384 6E+09 6E+06

N=6

N=9

N=12

N=14

N=16

N=8

Binary
S=128

 Multi-Class

N=2

N=3

N=4

E.3 Segmentation Metrics for Subsampled Masks

This section provides statistics about the degradation in mask quality produced by

subsampling (Table E.9). This is quantitatively represented by the three main

segmentation metrics used in this thesis � dice score (Section 8.2.2), recall and

precision (Section 3.4.1.1) � averaged over the entire ARIS and IPSC datasets.

Qualitatively, most subsampled masks are visually almost indistinguishable from the

original when these metrics are > 90% and sometimes even when they are > 80%.
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Table E.8: Vocabulary sizes (V ) for video segmentation with S = 160, varying values
of N from N = 2 to N = 16 and both binary and multiclass cases. The maximum
possible N for each case such that V < 32K is highligted in yellow. V is shown in
units of thousands.

N S C+1 encoding
starts 

tokens

lengths 

tokens

class 

tokens
V (K) N S C+1 encoding

starts 

tokens

lengths 

tokens

class 

tokens
V (K)

2 160 2 3D-C 51200 160 51.36 2 160 3 3D-C 51200 160 2 51.36

2 160 2 3D-F 51200 320 51.52 2 160 3 LAC 51200 320 51.52

2 160 2 TAC 25600 160 3 25.76 2 160 3 TAC 25600 160 8 25.77

2 160 2 LTAC 25600 480 26.08 2 160 3 LTAC 25600 1280 26.88

3 160 2 3D-C 76800 160 76.96 3 160 3 3D-C 76800 160 2 76.96

3 160 2 3D-F 76800 480 77.28 3 160 3 LAC 76800 320 77.12

3 160 2 TAC 25600 160 7 25.77 3 160 3 TAC 25600 160 26 25.79

3 160 2 LTAC 25600 1120 26.72 3 160 3 LTAC 25600 4160 29.76

4 160 2 3D-C 102400 160 102.56 4 160 3 3D-C 102400 160 2 102.56

4 160 2 3D-F 102400 640 103.04 4 160 3 LAC 102400 320 102.72

4 160 2 TAC 25600 160 15 25.78 4 160 3 TAC 25600 160 80 25.84

4 160 2 LTAC 25600 2400 28 4 160 3 LTAC 25600 12800 38.4

6 160 2 3D-C 153600 160 153.76 6 160 3 3D-C 153600 160 2 153.76

6 160 2 3D-F 153600 960 154.56 6 160 3 LAC 153600 320 153.92

6 160 2 TAC 25600 160 63 25.82 6 160 3 TAC 25600 160 728 26.49

6 160 2 LTAC 25600 10080 35.68 6 160 3 LTAC 25600 116480 142.08

8 160 2 3D-C 204800 160 204.96 8 160 3 3D-C 204800 160 2 204.96

8 160 2 3D-F 204800 1280 206.08 8 160 3 LAC 204800 320 205.12

8 160 2 TAC 25600 160 255 26.02 8 160 3 TAC 25600 160 6560 32.32

8 160 2 LTAC 25600 40800 66.4 8 160 3 LTAC 25600 1E+06 1075.2

9 160 2 3D-C 230400 160 230.56 9 160 3 3D-C 230400 160 2 230.56

9 160 2 3D-F 230400 1440 231.84 9 160 3 LAC 230400 320 230.72

9 160 2 TAC 25600 160 511 26.27 9 160 3 TAC 25600 160 19682 45.44

9 160 2 LTAC 25600 81760 107.36 9 160 3 LTAC 25600 3E+06 3174.7

12 160 2 3D-C 307200 160 307.36 12 160 3 3D-C 307200 160 2 307.36

12 160 2 3D-F 307200 1920 309.12 12 160 3 LAC 307200 320 307.52

12 160 2 TAC 25600 160 4095 29.86 12 160 3 TAC 25600 160 531440 557.2

12 160 2 LTAC 25600 655200 680.8 12 160 3 LTAC 25600 9E+07 85056

14 160 2 3D-C 358400 160 358.56 14 160 3 3D-C 358400 160 2 358.56

14 160 2 3D-F 358400 2240 360.64 14 160 3 LAC 358400 320 358.72

14 160 2 TAC 25600 160 16383 42.14 14 160 3 TAC 25600 160 5E+06 4808.7

14 160 2 LTAC 25600 2621280 2646.88 14 160 3 LTAC 25600 8E+08 765300

16 160 2 3D-C 409600 160 409.76 16 160 3 3D-C 409600 160 2 409.76

16 160 2 3D-F 409600 2560 412.16 16 160 3 LAC 409600 320 409.92

16 160 2 TAC 25600 160 65535 91.3 16 160 3 TAC 25600 160 4E+07 43072

16 160 2 LTAC 25600 10485600 10511.2 16 160 3 LTAC 25600 7E+09 7E+06

N=4

Binary
S=160

 Multi-Class

N=2

N=3

N=6

N=9

N=12

N=14

N=16

N=8

E.4 Visualization

This section presents visualization images for the various RLE tokenization schemes

for video segmentation. Figures E.1 and E.2 respectively show 3D-C and 3D-F

tokenization schemes for binary masks. Figures E.3 and E.4 show TAC tokenization

for N = 2 and N = 3 respectively. Figure E.5 shows LTAC tokenization for N = 2.

Please refer Figure 7.5 for details of the layout Figures E.3 - E.5. Each �gure has an

animated version on the project website [295] whose link is provided in its caption.
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Figure E.1: Visualization of 3D-C RLE tokenization of binary video segmentation
masks with N = 2, showing runs corresponding to the same part of the same object
in F1 (top) and F2 (bottom). We can see that their tokens are completely unrelated
in the sequence. Animated version of this �gure is available here.
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Figure E.2: Visualization of 3D-F RLE tokenization of binary video segmentation
masks with N = 2. The top half shows the same part of the same object in F1 and
F2 represented by the same run and the bottom half shows one of the unit sized runs
created by a tiny change in the shape of the cell between the two frames. Animated
version of this �gure is available here.
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Table E.9: Segmentation metrics representing mask quality degradation by
subsampling, averaged over the entire ARIS and IPSC datasets.

Dice Score Precision Recall Dice Score Precision Recall

2560 640 320 97.79 100.00 100.00 99.31 100.00 100.00

2560 640 160 95.49 90.00 100.00 98.07 100.00 100.00

2560 640 80 91.88 90.00 100.00 95.68 90.00 100.00

1280 640 320 98.31 96.71 99.50 98.87 97.78 100.00

1280 640 160 95.20 90.99 98.50 96.73 93.77 100.00

1280 640 80 89.64 81.69 96.50 92.88 87.01 100.00

640 640 320 97.42 94.98 99.09 98.24 96.54 100.00

640 640 160 92.79 86.62 97.29 94.96 90.47 100.00

640 640 80 84.94 74.06 93.45 89.17 80.70 100.00

Dice Score Precision Recall Dice Score Precision Recall

2560 640 320 99.71 99.46 100.00 99.30 98.66 100.00

2560 640 160 99.21 98.56 100.00 97.99 96.32 100.00

2560 640 80 98.32 97.08 100.00 95.71 92.49 100.00

2560 1024 256 99.19 98.49 100.00 98.36 96.92 100.00

2560 1024 128 98.25 96.86 100.00 96.39 93.49 100.00

2560 1024 64 96.63 94.28 100.00 92.96 87.92 100.00

640 640 320 98.33 96.78 100.00 98.31 96.70 100.00

640 640 160 95.30 91.47 100.00 95.12 90.85 100.00

640 640 80 90.11 83.55 100.00 89.35 81.32 100.00

1024 1024 256 96.86 94.14 100.00 96.83 93.94 100.00

1024 1024 128 93.25 88.20 100.00 92.95 87.14 100.00

1024 1024 64 87.34 79.77 100.00 86.11 76.45 100.00
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IPSC Metrics (%)

Figure E.3: Visualization of TAC tokenization for binary video segmentation masks
with N = 2. Animated version of this �gure is available here.
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Figure E.4: Visualization of TAC tokenization with N = 3 for (top) binary and
(bottom) multi-class masks. Animated versions of these �gures are available here
and here respectively.
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Figure E.5: Visualization of LTAC tokenization for video segmentation masks with
N = 2 for (top) binary and (bottom) multi-class cases. Animated versions of these
�gures are available here and here respectively.
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Figure E.6: Visualization of IW tokenization for multi-class static segmentation mask.
The �rst image in the top row shows the class mask where IPSC and DfC cells are
shown in green and red respectively. The second image shows the instance mask where
each individual cell is shown in a di�erent color. The last image shows the cell whose
binary RLE tokens are currently being generated. The corresponding subsampled
binary mask is shown in the �rst image in the second row. The tokens for the other
two cells have already been generated (shown in corresponding colors) and terminated
by the respective class tokens. An animated version of this �gure is available here.

208

https://webdocs.cs.ualberta.ca/~asingh1/p2s#seg_iw


Appendix F

Results

This appendix provides some supplementary data and con�guration details that have

been used in chapter 8.

Table F.1: Details of the GPU servers used for model training and inference.

Model Speed  Cores / Threads

Intel Core i7-6800K 3.4 GHz 6 / 12 64 GB 2 x Geforce RTX 3090 48 GB

Intel Xeon E5-2620v4 2.1 GHz 8 / 16 32 GB 2 x Geforce RTX 3090 48 GB

Intel Core i7-6700K 4.0 GHz 4 / 8 32 GB 2 x Geforce RTX 3090 48 GB

Intel Core i7-6800K 3.4 GHz 6 / 12 64 GB 2 x Geforce RTX 3090 48 GB

Rented 

Training 

Server

 AMD EPYC-Milan 2.45 GHz 16 / 16 64 GB 2 x Tesla A100 80 GB 160 GB

Secondary 

Training / 

Inference 

Server

Intel Core i7-3820 3.6 GHz 4 / 8 32 GB 3 x Geforce GTX 1080 Ti 33 GB

Inference 

Server
Intel Core i5-10400 2.9 GHz 6 / 12 48 GB

Geforce RTX 3090

Geforce RTX 3060
36 GB

GPU 

RAM

Primary 

Training 

Servers

CPU
Type RAM GPUs
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Figure F.1: Visualization of system resource usage during a distributed training run
across 3 GPU servers with 2 × RTX 3090 GPUs each. The top half shows the GPU
usage on the nvtop tool while the bottom half shows the CPU usage on the htop tool.
The blue and orange lines in the nvtop plots show the GPU processor and memory
utilization respectively. In an ideal training scenario without networking and storage
overheads, the two lines would be virtually overlapping. Animated version of this
�gure is available here.

Table F.2: Performance on UA-DETRAC dataset of P2S and P2S-VID models trained
with more GPU RAM to partially alleviate batch size bottleneck. Please refer Section
8.4.2.3 and Table 8.2 for more details.

N mAP (%) B GPUs GPU RAM

Early 

Fusion
2 75.129 80 2 x Tesla A100 160 GB

2 89.55 320 2 x Tesla A100 160 GB

3 87.97 216 2 x Tesla A100 160 GB

4 88.17 160 8 x RTX 3090 192 GB

2 91.14 256 2 x Tesla A100 160 GB

3 89.76 168 2 x Tesla A100 160 GB

4 89.47 96 8 x RTX 3090 192 GB

1 88.62 288 6 x RTX 3090 144 GB

P2S-VID

Middle 

Fusion

Late 

Fusion

Model

P2S
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Table F.3: Details of the models whose results are reported in Section 8.4.

Backbone Input Size
Frozen 

Backbone

Class 

Equalization

Coord 

Tokens
H V L GPUs B

#1 ResNet-50 640 Yes No 2D 2K 3K 512 1 x RTX 3090 48

#3 ResNet-50 640 Yes Yes 2D 2K 3K 512 2 x RTX 3090 96

#4 ResNet-50 640 Yes No 2D 2K 3K 512 1 x RTX 3090 48

Early-Stage VIT-B 640 Yes No 2D 2K 3K 512 1 x RTX 3090 4

Late-Stage VIT-B 640 Yes No 2D 2K 3K 512 1 x RTX 3090 4

ResNet-50 640 Yes No 2D 2K 3K 512 3 x GTX 1080 Ti 60

Dataset

UA-DETRAC

IPSC

P2S

ACAD

N
Video 

Architecture
Backbone

Input 

Size

Frozen 

Backbone

Class 

Equalization

Coord 

Tokens
H V L GPUs B

#1 2 Middle Fusion ResNet-50 640 Yes Yes 2D 2K 3K 512 2 x RTX 3090 64

#3 2 Middle Fusion ResNet-50 640 Yes Yes 2D 2K 3K 512 2 x RTX 3090 64

#4 2 Middle Fusion ResNet-50 640 Yes No 2D 2K 3K 512 2 x RTX 3090 72

Early-Stage 6 Late Fusion ResNet-50 640 Yes No 2D 2K 3K 512 2 x RTX 3090 16

Late-Stage 8 Middle Fusion ResNet-50 640 Yes Yes 2D 2K 3K 512 3 x GTX 1080 Ti 12

2 Middle Fusion ResNet-50 640 Yes No 2D 2K 3K 512 2 x RTX 3090 80

4 Middle Fusion ResNet-50 640 Yes No 2D 2K 3K 512 2 x RTX 3090 40

8 Middle Fusion ResNet-50 640 Yes No 2D 2K 3K 2048 4 x RTX 3090 28

16 Middle Fusion ResNet-50 640 Yes No 2D 2K 3K 3072 2 x Tesla A100 24

32 Middle Fusion ResNet-50 640 Yes No 2D 2K 3K 5120 6 x RTX 3090 6

ACAD

P2S-VID

IPSC

Dataset

UA-DETRAC

Backbone
Input 

Size

Frozen 

Backbone
Encoding

Start 

Tokens
I P S V L GPUs B

ResNet-50 1024 No LAC 1D 1280 1024 128 18K 3072 2 x RTX 3090 4

Early-Stage ResNet-50 640 Yes LAC 2D 640 640 320 8K 3072 2 x RTX 3090 8

Late-Stage ResNet-50 640 Yes LAC 2D 2560 640 80 8K 512 1 x RTX 3090 48

Dataset

P2S-SEG

IPSC

ARIS

N Backbone
Input 

Size

Frozen 

Backbone
Encoding

Start 

Tokens
I P S V L GPUs B

Early-Stage 8 ResNet-50 640 No TAC 1D 2560 640 80 15K 3072 2 x RTX 3090 8

Late-Stage 8 ResNet-50 640 Yes TAC 1D 2560 640 80 15K 3072 2 x RTX 3090 8

P2S-VIDSEG

IPSC

Dataset
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Figure F.2: Bar plot version of Figure 8.1
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213



Table F.4: Segmentation metrics (%) on validation set while training P2S-SEG on
IPSC early-stage dataset.

ipsc dfc cell ipsc dfc cell ipsc dfc cell

4418 8.26 3.44 7.14 6.75 12.88 1.5 6.64 5.67 2.78 6.8 10.43

280543 74.23 61.51 55.09 65.18 84.28 40.44 55.49 69.83 46 66.53 81.63

296006 79.07 66.41 64.41 77.46 84.1 55.39 64.73 70.64 60.98 75.5 82.21

311469 76.02 63.2 58.03 70.06 84.43 45.22 58.86 70.1 50.93 69.81 81.83

326932 76.64 64.2 59.66 69.75 84.4 46.3 59.8 70.47 52.4 70.37 82.08

342395 77.72 65.62 62.85 74.16 83.74 51.75 63.21 70.64 57.53 74 82.21

357858 76.03 65.32 59.9 71.24 83.11 47.68 62.34 71.35 53.57 73.12 82.71

373321 77.47 65.69 60.1 74.49 83.61 50.34 63.37 70.91 55.7 74.22 82.38

388784 78.18 66.63 63.74 75.21 83.75 53.2 64.19 71.32 58.73 75.05 82.71

402038 77.43 65.3 63.41 71.93 84.98 49.98 61.61 71.6 55.47 72.22 82.88

417501 80.05 68.04 65.7 78.71 84.55 56.68 66.59 72.03 62.26 77.31 83.21

432964 78.33 67.38 63.23 76.12 83.66 52.78 65.75 72.02 58.78 76.35 83.22

448427 79.11 67.93 65.46 78.98 82.93 57.74 67.11 71.22 63.64 77.76 82.61

463890 79.08 66.37 61.45 74.63 86.09 49.23 63.17 72.13 54.83 73.83 83.3

479353 78.29 66.52 63.06 75.8 84.19 51.92 64.86 71.57 57.27 75.6 82.89

494816 80.88 67.97 65.07 79.55 85.81 54.88 67.36 72.04 60.58 77.62 83.21

510279 80.83 68.12 63.43 79.69 85.63 53.93 67 72.2 59.3 77.63 83.31

523533 80.47 67.36 62.82 77.25 86.54 50.75 65.99 72.31 56.28 76.45 83.39

538996 80.65 68.1 64.73 79.08 85.81 54.62 66.51 72.56 59.71 77.17 83.57

554459 80.88 68.43 65.9 79.63 85.86 55.24 67.42 72.78 61.13 77.74 83.75

569922 81.49 68.25 64.52 79.67 86.4 55.01 66.71 72.36 60.61 77.12 83.44

585385 81.85 68.92 66.1 82.28 86.19 56.65 68.08 72.88 62.06 78.57 83.81

600848 81.91 69.35 66.14 82.08 86.19 57.42 68.54 73.14 62.74 78.96 83.97

616311 80.26 67.43 61.52 77.65 86.13 49.4 65.71 72.23 55.06 76.24 83.33

629565 81.66 69.06 65.01 80.82 86.4 54.14 68.27 73.03 59.78 78.71 83.89

645028 80.87 68.23 66.06 79.4 86.32 54.24 66.76 72.86 59.75 77.26 83.79

660491 81.81 69.15 65.84 80.97 86.37 56.08 68.44 73.02 61.55 78.68 83.9

675954 83.19 69.88 67.93 85 86.42 60.16 70.17 72.76 65.61 80.6 83.72

691417 81.46 68.69 66.33 80.44 86.23 55.23 67.72 72.73 61 78.09 83.71

706880 80.71 68.09 64.29 77.96 86.23 51.98 66.58 72.76 57.82 77.11 83.72

722343 82.1 69.54 66.43 82.88 85.8 57.02 69.23 72.87 62.65 79.68 83.79

735597 82.41 69.25 67.77 82.57 86.69 57.36 68.7 72.95 62.77 79.14 83.86

751060 82.31 69.6 65.87 82.51 86.21 56.74 68.93 72.99 62.26 79.3 83.87

766523 83.56 69.25 67.64 82.68 87.8 56.29 68.61 72.76 62.19 79.03 83.68

781986 81.68 68.13 67.94 78.39 87.29 54.57 66.08 72.67 60.38 76.38 83.68

797449 81.31 69.31 66.91 80.88 85.65 57.37 68.1 73.13 62.68 78.61 83.97

812912 81.49 68.48 64.25 79.86 86.77 53.47 66.77 72.79 59.02 77.25 83.75

828375 82.68 69.38 66.26 83.84 86.57 57.5 68.77 72.97 62.85 79.22 83.88

841629 83.04 69.42 66.18 83 86.81 57.4 68.34 72.73 62.77 78.67 83.68

857092 82.65 68.51 67.32 82.19 87.22 55.87 68.14 72.33 61.5 78.76 83.39

872555 82.36 69.42 68.09 81.77 86.53 57.14 68.07 72.97 62.9 78.41 83.83

888018 82.8 69.41 66.47 82.93 86.75 57.4 68.75 72.84 62.73 79.14 83.74

903481 83.75 69.38 65.78 84.5 87.5 55.47 69.3 72.59 60.82 79.87 83.6

918944 81.75 69.16 65.87 80.94 86.07 55.54 68.62 72.78 61.07 78.98 83.69

934407 82.11 69.32 67.57 81.46 86.35 56.63 68.33 72.94 62.16 78.83 83.82

949870 83.82 69.96 67.09 85.08 86.93 58.87 69.69 72.69 64.13 80.11 83.64

963124 82.82 69.38 64.48 82.11 87.28 56.27 67.79 73.23 61.13 78.3 84.03

978587 81.73 68.28 65.66 79.49 87.09 53.46 66.95 72.64 59.15 77.15 83.6

994050 82.16 68.75 65.41 81.07 86.89 55.14 67.14 72.8 60.43 77.72 83.73

1009513 82.5 69.61 66.9 82.5 86.51 58.42 68.45 73.16 63.65 78.82 83.97

Recall Precision Dice Score
pix_acc fw_iu

training 

iteration
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Table F.5: Segmentation metrics (%) on validation set while training P2S-VIDSEG
on IPSC late-stage dataset.

ipsc dfc cell ipsc dfc cell ipsc dfc cell

4092 11.04 1.21 11.85 11.7 12.66 11.59 1.06 1.38 11.68 2.08 2.71

8184 2.22 1 42.94 2.4 2.69 42.94 1.04 1.27 42.94 1.94 2.45

16368 2.92 2.18 40.21 2.64 3.62 40.19 1.77 2.77 40.24 3.35 5.06

24552 6.1 4.8 40.73 6.29 7.03 40.73 4.52 5.6 40.73 8.05 9.96

32736 10.01 7.1 31.95 10.29 11.65 31.92 6.52 8.4 32.12 11.57 14.67

40920 14.79 11.61 29.57 15.74 17.33 28.69 11.13 13.68 29.18 18.78 22.78

45012 18.99 13.78 41.53 20.22 21.54 41.53 13.13 15.91 41.53 21.88 26.41

53196 24.26 18.41 42.94 25.86 27.03 42.94 17.65 20.88 42.94 28.22 33.16

61380 29.42 22.15 42.97 32.49 32.99 42.97 21.58 25.16 42.99 33.71 38.93

69564 22.43 18.45 21.69 16.7 28.2 17.92 13 23.12 20.72 21.27 35.71

77748 29.27 22.84 16.58 16.52 39.17 8.1 15.02 30.3 12.46 21.51 45.05

81840 36.53 28.14 26.77 31.15 43.19 24.11 22.78 33.08 26.63 34.24 47.97

85932 39.1 29.21 22.94 30.56 48.56 14.81 22.28 35.52 17.91 33.7 50.83

94116 46.4 33.37 35.83 47.84 52.7 35.61 30.46 38.31 36.69 43.8 54.18

110484 49.53 36.58 33.51 50.92 55.23 32.4 33.89 41.11 33.94 47.42 56.77

114576 51.4 37.46 32.31 52.93 58.49 32.09 34.37 42.91 33.31 47.96 58.63

122760 44.51 32.67 23.81 25.08 59.09 11.94 19.64 42.73 16.73 29.27 58.29

130944 55.82 38.95 42.81 58.98 62.65 42.79 36.31 44.51 43.01 49.95 60.45

139128 52.57 38.58 32 54.7 59.33 31.61 35.42 44.2 32.52 49.14 59.83

143220 49.65 35.16 25.21 34.6 62.67 14.5 25.49 43.5 18.68 36.91 59.28

151404 53.92 40.48 37.38 55.2 61.26 37.28 36.89 46.58 38.25 50.38 62.44

159588 57.43 43.42 26.67 54.86 65.77 24.84 37.13 50.02 27.89 50.78 65.86

167772 56.93 40.62 29.35 52.84 66.84 25.23 34.14 47.53 28.32 47.61 63.1

175956 59.04 42.32 23.82 55.08 70.02 22 35.16 50.12 24.57 48.64 65.6

180048 61.38 44.62 26.56 58.52 70.01 24.67 38.78 50.92 27.42 52.09 66.49

188232 60.04 43.54 43.35 64.16 67.55 43.18 40.59 49.9 43.53 54.3 65.35

196416 55.09 41.46 25.33 44.28 67.19 19.26 31.48 50.2 22.75 44.04 65.64

204600 61.8 45.71 38.39 64.61 69.46 38.38 42.38 52.24 38.61 55.53 67.45

212784 61.57 44.61 32.7 63.15 70.67 32.1 39.79 51.99 33.53 53.4 67.52

216876 55.69 39.46 31.36 32.4 72.63 13.73 23.9 50.72 19.26 34.6 66.11

225060 61.87 46.51 31.4 63.39 70.3 30.67 41.81 53.57 32.03 55.36 68.71

233244 57.9 45.76 21.46 51.31 67.15 18.21 37.36 53.19 21.85 50.43 68.39

241428 60.41 44.99 36.19 61.77 68.99 36 40.42 52.25 36.93 53.92 67.57

249612 58.93 44.96 31.27 50.05 69.48 25.91 35.3 52.49 30.43 47.96 67.35

253704 59.05 45.18 24.98 44.75 70.29 16.44 32.81 53.28 21.4 44.99 68.31

261888 64.25 46.93 30.64 61.93 74.26 26.67 40.4 54.38 29.85 53.94 69.41

270072 60.77 44.65 29.8 48.12 73.38 22.84 33.22 53.14 27.61 45.86 68.12

278256 64.24 47.08 33.5 65.81 73.29 33.06 41.9 54.46 35.18 55.32 69.35

286440 63.47 46.91 26.73 57.14 74.67 22.41 38.25 55.03 26.36 51.75 69.92

290532 63.63 45.32 29.03 49.25 77.3 20.46 33.18 54.22 25.35 45.85 69.35

298716 65.57 48.46 39.04 69.99 73.97 39.04 44.66 56.03 39.32 58.14 70.95

fw_iu
Recall Precision Dice Scoretraining 

iteration
pix_acc

215



IPSC Early-Stage
Video vs Static Input

51.0

82.2

90.8

51.6

72.8

81.9

61.0

69.8

75.9

48.3 48.6

56.3

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

R
ec

al
l (

%
)

V (N=2)
S (N=2)
V (N=8)
S (N=8)

IPSC Late-Stage
Video vs Static Input

42.1

81.0
84.7

37.2

72.0
76.0

43.4

64.2
67.5

43.3
47.6

49.5

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

R
ec

al
l (

%
)

V (N=2)
S (N=2)
V (N=8)
S (N=8)

IPSC Early-Stage     
Video vs Static Input

49.8

67.5

81.4

43.9

50.6

61.8

55.6

49.0

59.2

40.8

31.5

38.9

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

Pr
ec

is
io

n 
(%

)

V (N=2)
S (N=2)
V (N=8)
S (N=8)

IPSC Late-Stage     
Video vs Static Input

42.1
45.1

57.1

37.0
41.7

52.3

43.2
40.6

49.9

43.3

27.8

33.8

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

Pr
ec

is
io

n 
(%

)

V (N=2)
S (N=2)
V (N=8)
S (N=8)

IPSC Early-Stage Video Length and Stride

49.1

68.8

82.6

49.8

67.5

81.4

58.4

64.1

75.5

61.3 62.8

74.6

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

D
ic

e 
Sc

or
e 

(%
)

T=1 (N=2)
T=N (N=2)
T=1 (N=8)
T=N (N=8)

IPSC Late-Stage Video Length and Stride

42.0

59.6

72.6

43.0

58.9

72.0

41.9

56.6

67.1

43.5

54.3

65.3

IPSC DfC Cell
0

10

20

30

40

50

60

70

80

90

D
ic

e 
Sc

or
e 

(%
)

T=1 (N=2)
T=N (N=2)
T=1 (N=8)
T=N (N=8)

Figure F.4: Impact of (top and middle) replacing N video frames with the �rst frame
and (bottom) video length N and stride T on P2S-VIDSEG performance over (left)
early and (right) late-stage con�gurations of the IPSC dataset.
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