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Abstract

In many applications the need for an accurate simplification of surface meshes is becoming more and more

urgent. This need is not only due to rendering speed reasons, but also to allow fast transmission of 3D models

in network-based applications. Many different approaches and algorithms for mesh simplification have been pro-

posed in the last few years. We present a survey and a characterization of the fundamental methods. Moreover,

the results of an empirical comparison of the simplification codes available in the public domain are discussed.

Five implementations, chosen to give a wide spectrum of different topology-preserving methods, were run on a

set of sample surfaces. We compared empirical computational complexities and the approximation accuracy of

the resulting output meshes.
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1 Introduction

Triangles are the most popular drawing primitive. They are managed by all graphics libraries and hardware subsys-

tems, and triangular meshes are thus very common in computer graphics. Very complex models, with hundreds of

thousands of faces, are easily produced by current CAD tools, automatic acquisition devices (e.g. range scanners),

or by fitting isosurfaces out of volume datasets. Unfortunately, the increase in data complexity still surpasses im-

provements in hardware performance. However, a highly complex data representation is not always required, either

because mesh complexity may depend on the characteristics of the acquisition or fitting process, or because a full

size model is not required for the generation of each frame of an interactive visualization. This has led to substantial

research into devising robust and efficient techniques for the controlled simplification of surface meshes. Reasons

for the use of both simplification and multiresolution representations of surfaces have been reviewed by Heckbert

and Garland [22]. Among other uses, simplification is the basis for the construction of level of detail (LOD) rep-

resentations [12]; the LOD approach is now widely used due to the support given in de-facto standard graphics

libraries [46, 45].

Research on surface simplification has been intense in the last few years. Many papers and different approaches

have appeared, and potential users are being overwelmed by diffuse, unstable or even contradictory knowledge.

Survey papers on surface simplification are still rare [11, 37, 23, 33].

This paper presents a brief introduction to surface mesh simplification methods, and proposes a new taxonomy.

Its main objective is to analyze and compare the different approaches adopted to measure the approximation error

introduced in the simplification process, rather than to review the proposed algorithms in depth. The scope of our

analysis is limited to simplification methods for manifold or non-manifold surfaces immersed in 3D space. Many

other approaches have been proposed for other types of data: to simplify images, height fields, range maps or tri-

angulated terrains, which is in some way a simpler instance of our problem; to simplify volume datasets; to reduce

the complexity of meshes fitted on volume dataset by adopting an adaptive fitting approach. Moreover, alternative

approaches which reduce storing or rendering complexity by adopting compressed representations [9] or triangle

strip representations [43] are also out of the scope of this paper.

In order to give the reader not only a theoretical evaluation, but also an “objective” comparison of some of the

methods reviewed, we adopted an empirical approach. Six implementations of representative simplification ap-

proaches which preserve topology were tested on three meshes, which are instances of different data sources/types.

The simplification codes were evaluated and compared empirically by taking into account the processing resources

consumed and the quality of the results produced. The results are reported in Section 4.

2 Simplification Approaches

Substantial results have been reported in the last few years on surface simplification. The data domain of the solu-

tions proposed generally covers all types of triangular meshes (e.g. laser range data, terrains, synthetic surfaces).
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Different error criteria have been devised to measure the fitness of the approximated surfaces; any level of reduction

can be obtained with most of the approaches listed below, on the condition that a sufficiently coarse approximation

threshold is set.

The following are some of the existing methods:

� coplanar facets merging:

coplanar or nearly coplanar facets are searched for in the mesh, merged into larger polygons, and then retrian-

gulated into fewer facets than those originally required [16, 28, 24]; face merging is driven by a co-planarity

test.

The superfaces method [27] extends this approach by providing bounded approximations and more robust

re-triangulations of the merged faces;

� controlled vertex/edge/face decimation:

these methods work by the iterative elimination of components (vertices, edges, triangles), chosen upon lo-

cal geometric optimality criteria. All decimation methods are restricted to manifold surfaces, and generally

preserve mesh topology.

– the original mesh decimation approach [40] applies multiple passes over the triangle mesh and progres-

sively removes those vertices that pass a distance or angle criterion (based on local geometry and topol-

ogy checks). The resulting holes are then patched using a local re-triangulation process. The candidate

vertex selection criterion is based on a local error evaluation;

– a decimation approach can also be adopted to simplify a mesh by iteratively collapsing edges into ver-

tices [15, 36, 1], or by collapsing faces [17];

– extensions to the decimation method which support global error1 control have been proposed. In par-

ticular, the simplification envelopes method [8] supports bounded error control by forcing the simplified

mesh to lie between two offset surfaces (but it works only on orientable manifold surfaces). Some other

methods adopt heuristics for the evaluation of the global error introduced by each vertex removal and

re-triangulation step, and work under an incremental simplification framework [42, 5, 3, 29, 36, 15];

– controlled local modifications of re-triangulated patches, based on edge flipping, have been proposed

to improve approximation accuracy in mesh decimation [3, 5];

– the decimation approach has also been generalized to the simplificationof 3D simplicial decompositions

(tetrahedral sets) [35, 6, 18];

� re–tiling:

new vertices are inserted at random on the original surface mesh, and then moved on the surface to be dis-

1Global error is defined here in opposition to local error, i.e. whether the approximation error introduced by the elimination of the current

vertex is operated by comparing the resulting new mesh patch with the initial mesh
���

or with the current, partially simplified mesh
���

; see

Section 3 on error evaluation for a more precise definition.
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placed over maximal curvature locations; the original vertices are then iteratively removed and a re–tiled

mesh, built on the new vertices, is given in output [44];

� energy function optimization:

the mesh optimization approach, originally proposed in [26], defines an energy function which measures the

“quality” of each reduced mesh. Mesh reduction is iteratively obtained by performing legal moves on mesh

edges: collapsing, swapping or splitting (in the latter case, a new vertex is inserted in the edge and two new

edges connect it to the front-most vertices). Legal moves selection is driven by an optimization process of

the energy function. At each step, the element whose elimination causes the lowest increase in the energy

function is deleted.

An enhanced version, progressive meshes, provides multiresolution management, mesh compression, selec-

tive refinements and enhanced computational efficiency [25, 32], and is based only on edge collapsing actions;

� vertex clustering:

based on geometric proximity, this approach groups vertices into clusters, and for each cluster it computes a

new representative vertex [38]. The method is efficient, but neither topology nor small-scale shape details are

preserved. The visual and geometric quality of the meshes simplified with a clustering approach have been

improved in [30].

Another extension to the clustering approach was proposed to cope with the perceptual effects of degradation

[34]; couples of edges internal to each cluster are merged if a test based on curvature and size is positively

verified.

A very recent approach [13] applies an efficient error evaluation, based on quadric error matrices, to a clus-

tering approach which performs only vertex pair contractions (a vertex pair is eligible for contraction if either

a connecting edge exists or the vertices satisfy a proximity criterion). The solution is characterized by its high

computational efficiency and the capability to simplify disconnected or non-manifold meshes;

� wavelet-based approaches:

the wavelet decomposition approach seems very promising for surface simplification (and, moreover, mul-

tiresolution comes for free). But a regular, hierarchical decomposition is required to support wavelet decom-

position, and computational efficiency is not at the best. Wavelet approaches have been proposed to manage

regularly gridded meshes [14, 21] or more generic meshes [10, 4].

In particular, the multiresolutionanalysis approach is based on a three-phase process (re–meshing, re-sampling

and wavelet parametrization) to builda multiresolutionrepresentation of the surface, from which any approxi-

mated representation can be extracted [10]. An extension to this approach manages the approximation of both

geometry and surface color [4];

� simplification via intermediate hierarchical representation:

an intermediate octree representation [2] may be adopted to automatically produce simplified representations,

4



because the octree may be purged at various levels and then converted into a (simplified) boundary represen-

tation;

alternatively, an intermediate voxel-based hierarchical representation (builtusing signal-processing techniques

for the controlled elimination of high-frequency details), together with adaptive surface fitting, was proposed

in [19, 20].

2.1 A characterization

A classification of the simplification approaches can be based on the characterization of the input/output data do-

main, on the simplification goal, on the strategy adopted to drive/evaluate mesh approximation, and, last but not

least, by considering if the simplification process follows an incremental approach.

I/O data domain

All of the methods briefly reviewed above accept in input simplicial meshes, but only a few of them can manage

non–manifold meshes (e.g. vertex clustering and intermediate hierarchical representation).

Most of them return in output manifold simplicial meshes (e.g. decimation, energy function optimization, re-tiling),

while others may produce not 2-manifold geometries (e.g. vertex clustering may produce dangling faces, edges,

or points). Moreover, taking into account the output produced, simplification methods may be characterized by

highlighting two main orthogonal classes [39]:

� approaches which preserve mesh topology (e.g. mesh decimation, mesh optimization), and those which don’t

(e.g. vertex clustering, intermediate hierarchical representation);

� approaches based on vertex subset selection (e.g. coplanar facets merging, mesh decimation) or re-sampling

(e.g. mesh optimization, re–tiling, multiresolution analysis, intermediate hierarchical representation).

The importance of preserving mesh topology depends directly on the application domain. It is not mandatory if the

goal is to speedup rendering, at least for the lower resolution representation of a LOD model (and topology simpli-

fication is generally a must to produce highly simplified models out of topology–rich objects). On the other hand,

topology has to be preserved if the simplification goal is to produce a representation which might be nearly indis-

tinguishable from the original, or which preserves shape features (e.g. medical application requirements).

The choice between using a subset of the original vertices or using re-sampled vertices again depends on the appli-

cation and this usually affects approximation precision. There are, in fact, many applications where re-sampling is

not allowed or feasible, e.g. in the case of datasets where the sampling of a scalar/vectorial field is associated with

the mesh vertices and we cannot safely recompute the field value in the re-sampled locations. On the other hand,

better approximation accuracy is obtained when vertices are resampled, e.g. by moving the vertices on the lines of

maximal curvature.
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Simplification goal

Another possible classification may be based on the simplification goal [8]:

� Min-#: when, given some error bound � , the objective is to build the approximated mesh of a minimal size

which satisfies precision � (size is generally measured in number of vertices);

� Min- �������	��
������� : when, given an expected size for the approximated mesh, the objective is to minimize the

error, or difference, between the original and the resulting mesh.

Heuristics for the evaluation of mesh approximation

In this framework, important aspects are:

� if a local or a global approach is adopted; in the first case, mesh modifications are operated upon a local

optimization criterion (e.g. simplification envelopes and other decimation approaches); in the second one,

a global optimization process is applied to the whole mesh (e.g. energy optimization approaches, re-tiling,

multiresolution decimation, and multiresolution analysis);

� the measurability and preservation under tight bounds of the approximation error introduced (e.g. simplifi-

cation envelopes and some other decimation approaches);

� the preservation of geometric or attribute discontinuities, for example feature edges and color or pictorial

information (e.g. mesh decimation, progressive meshes).

Incrementality of simplification

An approach is incremental if simplification proceeds through a sequence of local mesh updates which, at each step,

reduce the mesh size and monotonically decrease the approximation precision (e.g. mesh decimation, progressive

meshes, clustering via quadric matrices). Incrementality is a key aspect for supporting easily the production of a

multiresolution output. Although multiresolution output is explicitly produced by only a few approaches (multires-

olution analysis, progressive meshes, multiresolution decimation), it is possible to introduce it with simple exten-

sions in most other incremental methods.

An attempt to give an overall characterization of different simplification algorithms is presented in Table 1.

Columns 2-4 characterize the strategy adopted to manage mesh approximation: the goal which drives the simplifi-

cation process (Min-#, Min- � , or both); if the approach simplifies the mesh incrementally; and the topologic entity

taken into account during simplification (v: vertices, e: edges, f: faces, v-pair: vertex pairs).

Columns 5-8 characterize the approximation error management policy. The ������� column is marked if for each sim-

plification step the ��� error introduced is evaluated by a local shape comparison between the modified patch and

the corresponding patch just before the current step; ��� ����� is marked if a global shape comparison with the starting
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input mesh is performed (using an � � norm again); or column other is marked if another policy is adopted, e.g.

energy function optimization (which adopts an � � norm), or clustering evaluation. Moreover, we mark those meth-

ods which guarantee bounded accuracy on the whole mesh in column 8.

The multiresolution column highlights those methods which produce in a single run a real multiresolution output,

encoded with an ad hoc representation.

Preserving mesh characteristics is evaluated in columns 10-12 in terms of: the preservation of global mesh topol-

ogy (column meshTop); possible relocation of the vertices of the simplified mesh (column vertLoc), with value

unchanged or relocated; the preservation of feature/solid edges or angles (column featEdg).

The estimated simplification speed reported in column 13 (measured in KTr/sec, i.e. thousands of triangles simpli-

fied for CPU second) has been taken directly from the results presented in the original papers. Since these results

were obtained on different meshes and on different machines, they only give a rough and imprecise estimate of the

efficiency of the algorithms, but are presented in the table to give the order of magnitude of simplification times

(and also to emphasize proposals which did not report any evaluation of running times, indicated in the table with

the “??” tag).

Finally, column 14 lists whether the code is available in the public domain, as part of a commercial product, or is

not available at all.

The capability to preserve discontinuities of vertices/faces attributes is a very important feature, but it has been

not included in Table 1. This is because although this feature is only supported by a few proposals [34, 25, 4, 41],

most other approaches could simply be extended to support it (e.g. by providing an enhanced classification of ver-

tices for the vertex decimation approach).

An overall comparison of simplificationapproaches is not easy, because simplification accuracy largely depends

on the geometric and topological structure of the input mesh and on the required results. For example, the presence

of sharp edges or solid angles is managed better by coplanar facet merging and decimation approach, while on

smooth surfaces mesh optimization and re–tiling give better results. On the other hand, the good results in the pre-

cision and conciseness of the output mesh given by mesh optimizationand re–tiling techniques are counterbalanced

by substantial processing times. Although no time comparisons between different methods have been reported in

the literature, an informed guess would be that the mesh decimation and the recent quadric matrices clustering ap-

proaches are the most efficient methods.
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Method Char. Approximation Error Multi-res Preserve Mesh Charact. Speed Availability

optim. incre- top. ������� ��������	 other bound. output mesh vert. feature KTr/sec.

goal mental entity crit. topol. locat. edges

Coplanar Facet Merging Approaches

Geom. Opt. [24] Min-# f x no yes unch. yes 0.7-2.7 not avail.

Superfaces [27] Min-# f x yes yes unch. yes 0.3-0.8 not avail.

Decimation Approaches

Mesh Decimat. [40] Min- � x v x no yes unch. yes 2.-2.5 publ.dom.

Triangle Remov. [17] Min-# x f x no yes unch. yes ?? not avail.

Hierarch.Triang.[42] Min-# x v x yes yes unch. yes ?? comm.prod.

Err.Bound.TMR [3] Min-# x v x yes yes unch. yes ?? not avail.

Multires.Dec. [5] both x v x yes x yes unch. yes 0.15-0.2 publ.dom.

Hausd.Distance [29] Min-# x v x yes yes unch. yes ?? not avail.

Simpl.Envelop. [8] Min-# v x yes yes unch. yes 0.07-0.09 publ.dom.

Toler.Volumes [15] Min-# x e x yes yes reloc. yes 0.08-0.1 not avail.

Full-range Appr. [36] both x e x yes no unch. yes ?? not avail.

Mesh Simpl. [1] Min-# e x no yes reloc. yes 0.2 not avail.

Energy Optimization Approaches

Mesh Opt. [26] Min-# x v+e x no yes reloc. 
 0.008 publ.dom.

Progr.Meshes [25] Min-# x e x no x yes reloc. yes 0.04 not avail.

Clustering Approaches

Vert.Clust. [38] Min-# v+e+f x yes no reloc. no ?? comm.prod.

Percept.Clust. [34] Min-# e x yes no unch. yes 0.1-0.05 not avail.

Quadric Err.Matr. [13] both x v-pairs x no x no reloc. no 4.5 not avail.

Intermediate Hierarchical Representation Approaches

Octree-based [2] Min-# – x yes no reloc. no ?? not avail.

Voxel-based [20] Min-# – x yes no reloc. no ?? not avail.

Other Approaches

Re-Tiling [44] Min- � v x no yes reloc. no ?? not avail.

Multires.Anal. [10] Min-# – x yes x yes reloc. no 0.04 not avail.

Table 1: Characterization of different simplification algorithms.
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3 Simplification Error Evaluation

This section presents the various techniques for evaluating and bounding the approximation error introduced in the

mesh simplification process. A keen control of the approximation accuracy is critical, for example to prevent highly

perceivable discrepancies between different LODs or to produce simplified and hopefully nearly indistinguishable

representations of the highly complex meshes acquired via range scanners.

A definition of the approximation error between two meshes, based on the � � norm2, may be given as follows

[8, 29, 5].

Definition 1 Given two piecewise linear objects
���

and
���

,
���

and
���

are � -approximations of each other iff

every point on
���

is within a distance � of some point of
���

and every point on
�	�

is within a distance � of some

point of
���

.

The approximation error is managed in many different manners by the various simplification approaches. A

characterization may be based on the policy chosen to bound the approximation error:

1. approaches which support locally bounded errors, i.e. the approximation accuracy is known around each

surface entity (e.g. most of the mesh decimation methods [40, 42, 3, 5, 29, 36]);

2. approaches which only support globally bounded approximation errors, i.e. the accuracy is known only for

the entire simplified mesh (e.g. the simplification envelopes [8], superfaces [27] and clustering approaches

[38], methods based on the conversion into an intermediate hierarchical representation [2, 20]);

3. approaches which control accuracy with other criteria, which are not compatible with Definition 1; usually,

curvature is taken into account to define a global bound on the surface (e.g. geometric optimization [24],

triangle removal decimation [17], mesh simplification [1]);

4. approaches which do not evaluate the approximation accuracy (and are generally driven by the user-required

simplification rate).

(e.g. re-tiling [44]; methods based on the evaluation of an energy function [26, 25] may be included in this

class, if we do not consider the energy function as a valid measure of the approximation error, as defined in

Def.1);

Methods of class (1), locally bounded, are generally iterative methods based on a sequence of local updates to

the mesh geometry/topology. For each iteration, the current mesh
� �

is slightly modified to produce mesh
� ��
�

.

Modifications are limited to the two patches � � and ���� , which (a) surround the decimated/collapsed/flipped element

� � , and (b) share the border. In this case, different methods have been proposed to evaluate, at each step, the variation

in the local error bounds:

� local evaluation; we evaluate only the approximation introduced by replacing patch � � with ���� :

2A ��� norm has also been adopted in some simplification approaches [25, 26].
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– using a fast approximated approach, e.g. measuring the distance of the decimated vertex from the av-

erage plane to patch � � [40] (Figure 1.a);

– using a precise approach, which is based on the observation that the mutual projectionof the two patches

� � and � �� subdivides the associated hole into pieces within which both geometries vary linearly [3].

Thus, it suffices to compute errors at the intersections of the projected edges and at the internal vertex;

the maximal of these errors gives an upper bound of the local error (see Figure 1.b);

� accumulation of local errors; at each step, we assign to each new face/vertex in � �� the sum of (1) the current

local evaluation of the approximation error and (2) the maximal error associated with the faces/vertices in � �

[3, 5];

� global evaluation; we directly estimate the approximation introduced by representing with the simplified

patch � �� the corresponding section of the initial mesh
� � . Many approaches have been proposed; they can

be divided into two classes:

– approximate approaches;

� if all removed vertices are stored with the current simplified face
�

onto which they “project” (e.g.

which are at the shortest distance from
�

), a global error approximation is the maximal distance

from these vertices to
�

[42, 5] (see Figure 1.c). This criterion is efficient, but returns an underes-

timation because the � � mesh–to–mesh distance might not be located on one of the initial mesh

vertices; moreover, the criterion is very imprecise in the first simplification steps when few, or even

none, of the removed vertices are associated with each simplified face;

� another approach has been proposed for methods based on edge collapsing [36]. At initialization

time, for each vertex we store the list of planes where the faces incident in the vertex lie. Planes lists

have to be maintained and updated during simplification (after each edge collapse action, the two

lists associated with the extremes of the collapsed edge are merged). The error is then evaluated at

each step as the maximum distance between the new collapsed vertex position and all the planes

in the vertex list. The evaluation of distances is much more efficient in [13], where quadric error

matrices are used. This approach returns an upper-bound for the approximation error, but in some

cases the bound might be over-estimated with respect to the actual error.

– precise approaches; these compute the Hausdorff distance between the original and the simplified mesh

(mesh–to–mesh distance). This can be done either: by maintaining trace, during simplification, of all the

original faces that map to simplified faces, and then computing face–to–mesh distances by performing,

if needed, an adaptive decomposition of faces [29]; or, by extending Bajaj et al.’s local method [3], to

compare patch � �� with the corresponding section of the initialmesh
� � . In both cases, computing times

are now proportional to the complexity of meshes � �� with respect to the corresponding
� � subsection

(i.e. the more we proceed with simplification, the higher the complexity of each section of
� � which

10



Figure 1: Various methods to evaluate approximation error: (a) approximated local , (b) precise local, (c) approxi-

mated global.

is associated with the current patch, and the higher the processing cost for computing edge intersection

and distances);

In the case of incremental methods, the accuracy of the simplified mesh may be improved by adopting a greedy

approach based on edge flipping [5, 3], operated over each new patches. But in order to effectively improve the

approximation accuracy, edge flipping has to be driven by the evaluation of the global error variation caused by

each potential flipping, and not only by a simpler equiangularity test.

Most of the methods reviewed offer no immediate provision to accurately control the perceptual effect of the

degradation, because in most cases the approximation introduced intosimplification has no immediate interpretation

in terms of visual degradation [34]. Perceivable visual degradation may be caused either while visualizing a single

simplified representation (e.g. in the case of eccessively approximated representation, loss of topology features,

fuzziness of the simplified surface, etc.), or while changing the level of detail, the so called inter-frame flickering

which is common if meshes in a LOD representation present large visual differences.
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Defining a measure for visual degradation is no easy task and is being hotly debated. Driving simplification by

preserving curvature and sharp edges gives good control on the appearance of the shape, one reason being that

most renderers draw elementary components by shading colors according to surface normals [34]. But taking into

account the shape is not enough: pictorial information (color or texture) is an important factor in perception, and

therefore color discontinuities have to be managed carefully [34, 25, 4, 41].

3.1 The Metro tool

Due to the many approaches adopted to evaluate simplified mesh accuracy, a uniform and general tool for the eval-

uation of approximation precision is needed to compare the results of different simplification methods. For this

reason we developed an ad-hoc tool, called Metro.

The first release of Metro was described in [7]. The current version of the tool, rel. 2.0, has been completely

re-designed in order to increase precision in the evaluation of mesh accuracy, improve efficiency (it is now nearly

ten times faster), and reduce memory allocation.

Metro numerically compares two triangle meshes
� �

and
�

� , which describe the same surface at different levels

of detail. It requires no knowledge of the simplification approach adopted to build the reduced mesh. Metro evalu-

ates the difference between the two meshes on the basis of the approximation error previously stated in Definition 1.

It adopts an approximate approach based on surface sampling and the computation of point–to–surface distances.

The surface of the first mesh (hereafter pivot mesh) is sampled, and for each elementary surface parcel we compute

a point–to–surface distance with the not–pivot mesh. Point–to–surface distances are computed efficiently by using

a bucketed data structure for the representation of the non-pivot mesh.

The idea is therefore to adopt an integration process over the surface; the sampling resolution characterizes the pre-

cision of this integration (users may select the sampling step size). Sampling on the surface is achieved by adopting

a classical incremental scan conversion approach or a Montecarlo sampling approach.

At the end of the sampling process, we switch the pivot and not–pivot mesh and execute sampling again, to get a

symmetric evaluation of the error (but we observed that when a sufficiently thin sampling step is adopted, for ex-

ample 0.01% of the bounding box diagonal, nearly equal values were obtained whatever mesh was chosen as the

pivot).

Metro returns both numerical and visual evaluations of surface meshes “likeness” (Figure 5 shows a snapshot of

its GUI). Most of the numerical results (mesh surface area, feature edges total length, mean and maximum distances

between meshes, mesh volume) are reported in the tables in Section 4 . Error is also visualized by rendering the

higher resolution mesh with a color for each vertex which is proportional to the error. A histogram reporting the

error distribution is also visualized.

The error evaluated by Metro may be affected by finite numerical precision, although double precision is adopted

in numerical computations. An “ad hoc” management has been provided for a number of dangerous cases, such as

nearly coincident vertices, facets with small areas, and very elongated triangles.
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4 Empirical Evaluation of Simplification Codes

To test some representative (and available) simplification codes, listed below, we chose three datasets, which rep-

resent three main classes of data:

� meshes acquired with an automatic range scanner — bunny is a model of a plastic rabbit, scanned at Stanford

University. Mesh size: 34,834 vertices, 69,451 triangles. Available at

http://www-graphics.stanford.edu/data/

� meshes produced with a standard CAD system — fandisk is a valid representative of CAD models and it

is characterized by sharp edges and sophisticated surface curvature; it is enclosed in the Mesh Optimization

distribution package. Mesh size: 6,475 vertices, 12,946 triangles. Available at

http://research.microsoft.com/research/graphics/hoppe/

� meshes extracted from volume datasets — femur is an isosurface from a CT scan of a human femur, courtesy

of the Istituto Ortopedico Rizzoli (IOR) 3. Mesh size: 76,794 vertices, 153,322 triangles. Available at

http://miles.cnuce.cnr.it/cg/homepage.html

The simplification codes are compared in terms of the size of the meshes produced, the approximation quality,

and the running times. The simplified meshes were compared by using the Metro tool (see Subsection 3.1).

Simplification Codes

The following simplification codes were tested:

1. Mesh Decimation [40]; code provided in the Visualization Toolkit 1.3 (VTK) by Bill Lorensen, Ken Martin

and William Schroeder (http://www.cs.rpi.edu/ � martink/);

2. Simplification Envelopes rel 1.2 [8]; code developed at the Department of Computer Science of the Univer-

sity of North Carolina, code courtesy of Jonathan Cohen et al. (http://www.cs.unc.edu/ � cohenj);

3. Multiresolution Decimation [5]; code Jade rel. 2.04, implemented by the Visual Computer Group of CNUCE/IEI-

C.N.R. (http://miles.cnuce.cnr.it/cg/jade.html);

4. Mesh Optimization [26]; code developed by Hugues Hoppe et al., Univ. of Washington

(http://research.microsoft.com/research/graphics/hoppe/);

5. Progressive Meshes [25]; code developed by Hugues Hoppe, Microsoft inc.

(http://research.microsoft.com/research/graphics/hoppe/)

3IOR is an orthopaedic hospital located in Bologna (Italy).
4Jade rel. 2.0 has been slightly improved in terms of approximation error management with respect to the description and results reported

in [5].
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6. Quadric Error Metrics Simplification [13]; code developed by M.Garland and P.Heckbert, Carnegie Mel-

lon Univ. (http://www.cs.cmu.edu/afs/cs/user/garland/www/home.html )

We initially also planned to test a representative of commercial tools, i.e. the Polygon Reduction Editor avail-

able under SGI Cosmo Worlds5. This simplifier seems to be based on the clustering approach. It presents a simple

GUI which allows the user to set threshold values to delete points by curvature, edges by length and triangles by

area. The simplification process is driven by a trial and error approach. The quality of the mesh produced therefore

depends on the skill (and the luck) of the user, and results of a quality comparable to the simplified meshes produced

using the codes above appear to be nearly impossible (Figure 7). The new mesh simplification module provided in

the SGI OpenGL Optimizer6 was not available at the time of this test.

Hardware used

Simplification codes 1, 2, 3 and 4 were run on an SGI Indigo2, R4400 200MHz CPU, 16 KB data cache, 16 KB

instruction cache, 1MB secondary cache, 128 MB RAM.

The Mesh Optimization code is distributed only in executables for Digital workstations. We ran it on a Digital

3000/900, Alpha 275 MHz CPU, 128MB RAM; run times were then scaled back to SGI Indigo2 units (scaling was

done on the basis of an ad hoc comparative benchmark run on both Digital and SGI ws).

The Progressive Meshes code is not available in the public domain, and tests were done courtesy of Hugues Hoppe

on a SGI Indigo2 Extreme, R4400 150MHz CPU, 128MB RAM. Quadric Error Metric simplificator is also not

available in public domain, and our tests were done courtesy of Michael Garland on a SGI Indigo2, R4400 250MHz

CPU, 128MB RAM.

4.1 Numerical Evaluation

Tables 2, 3, 4 and 5 present the numerical results obtained with our tests.

In particular, Mesh Decimation and Simplification Envelopes were not able to reach a high simplification rate

on the Femur dataset (Table 4 and 5).

Volumes were evaluated on the Fandisk meshes only, because other meshes are open (and therefore the volume

is not defined). The Edge length was evaluated on all meshes; we set the dihedral angle threshold to 30 degrees

(i.e., each mesh edge with a dihedral angle lower than 30 degrees is classified as a feature edge and its length is

summed to the current Edge length).

In the case of the Progressive Meshes code, we report only the overall time needed to produce the full sim-

plification of the mesh. This is because the Progressive Meshes code first simplifies the dataset and then builds a

multiresolution output file (called PM file), at the speed of 0.03-0.05 KTr/sec. Simplification times are shorter than

those of the Mesh Optimization code, but they are still high due to the complex error evaluation and simplification

5http://www.sgi.com/Products/cosmo/worlds/CosmoWorlds UG/Reference/polyed.htm
6http://www.sgi.com/Technology/OpenGL/optimizer/presentation.html
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criteria adopted. Different and simplified error metrics could be used in Progressive Meshes, but that would prob-

ably imply a degradation in simplification accuracy.

Once an off-line simplification has been run, Progressive Meshes can reconstruct any level of approximation from

the PM file, with a reconstruction rate of 83 KTr/sec and an offline simplification rate of 104KTr/sec on an R4400

Indigo2 Extreme.

The MultiresolutionDecimation code also allows individual approximations to be reconstructed out of the mul-

tiresolution history file, with performances similar to those of the Progressive Meshes code ( � 100 KTr/sec).

The results relative to the evaluation of the approximation error are also summarized in the graphs in Figure 2-4.

In the graphs on the left we plot the maximal error (
�������

) evaluated by Metro on simplified meshes of different

sizes. The average error (
����� � ) is reported in the graphs on the right. For all graphs, the simplified mesh size is

mapped on the X axis, and the error is mapped on the Y axis.

As we expected, the best results in terms of average error are often given by the Progressive meshes and mesh

Optimization codes (which are based on an � � metric over the object surface, meaning that they try to minimize

the root mean square error). On the other hand, methods based on the � � metric produce better results when we

consider the maximal error.

It is noticeable that Simplification Envelopes and Multiresolution Decimation produce the best results when high

accuracy is needed (i.e. for reduction factors not higher than 75%).

Moreover, both the speed of the Quadric Error Metric and its precision are really impressive. In the case of the

Fandisk mesh, precision of this approach is comparable to the best. This is not the case with meshes with open

boundaries (Femur and Bunny), where large errors are generated in correspondence of the mesh boundary by the

current implementation of this method. But authors comment that error on open boundaries may be bounded by

inserting perpendicular planes to each boundary edge, and assigning to such edge a large penalty factor [13].

Mesh Decimation and Simplification Envelopes showed a particular behaviour on the Femur dataset: simplifi-

cation rates higher than 95% and 99%, respectively, were not possible. This might depend on the policy adopted

to remove vertices. Both approaches remove vertices in random order (both methods do not take into account the

effective global error introduced by each decimation action, and do not sort candidate vertices in order of increasing

approximation). Therefore if high removal percentages are requested, the first decimation steps modify the mesh

so crudely that further decimation becomes not feasible. A partial solution to this problem can be to iterate multiple

times these codes on the results of the previous simplification, reducing the decimation factor progressively at each

step.

4.2 Visual Evaluation

Metro also enables the error magnitude to be plotted directly on the mesh, by setting the color of the vertices pro-

portional to the evaluated error. For reasons of space, we only present error-mapped images of the Fandisk mesh

(Figure 5 and 6); they refer to the comparison of the original mesh with a 25:1 reduced mesh ( � 250 faces). Images
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Figure 2: The graphs show the performance of the various simplification codes on the Bunny mesh.
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Figure 3: The graphs show the performance of the various simplification codes on the Fandisk mesh.
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Figure 4: The graphs show the performance of the various simplification codes on the Femur mesh.
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of the other meshes will be included in a longer version of this paper.
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Bunny (34,834 vertices, 69,451 triangles, bounding box 15.6x15.4x12.1)

Edge Length 189.099, Area 571.288 (Volume is not defined: the surface is open)

Mesh Decimation
��������� �
	���� �� � �
� �� � �� � Time EdgeLength Area Mem. Kb

17,566(50%) 34,965 0.1614 0.00735 43.97 194.189 571.457 14,600

8,705 (25%) 17,267 0.2586 0.01947 37.55 262.279 570.801 14,600

3,505 (10%) 6,900 0.5212 0.05791 46.22 382.084 568.489 14,600

1,775 (5%) 3,451 1.2000 0.16120 25.68 554.331 563.537 14,600

701 (2%) 1,389 2.0721 0.34230 32.22 572.173 555.250 14,600

344 (1%) 678 3.3117 0.64630 26.96 481.120 542.551 14,600

272 (0.5%) 534 6.9596 1.23980 30.08 507.002 520.262 14,600

Simplification Envelopes

17,418(50%) 34,643 0.02089 0.00414 932.17 322.801 571.316 62,800

8,709 (25%) 17,252 0.04154 0.01174 942.93 299.725 570.910 63,300

3,472 (10%) 6,801 0.08813 0.03117 944.66 396.175 570.962 63,800

1,763 (5%) 3,395 0.16290 0.06066 964.03 478.302 569.133 64,600

678 (2%) 1,301 0.38020 0.14230 1003.01 468.944 562.575 65,200

355 (1%) 672 0.75990 0.28380 988.44 491.263 556.315 65,800

217 (0.5%) 401 1.94720 0.61530 1584.64 496.031 547.501 66,400

Multiresolution Decimation (Jade 2.0)

17,417(50%) 34,679 0.0224 0.0036 208.95 207.260 571.591 9,300

8,708 (25%) 17,289 0.0438 0.0097 371.03 218.088 571.537 9,900

3,483 (10%) 6,874 0.0948 0.0242 388.68 272.793 571.145 10,200

1,741 (5%) 3,408 0.1697 0.0459 438.62 361.983 570.392 10,350

696 (2%) 1,358 0.3519 0.0997 475.73 416.856 567.973 10,400

348 (1%) 674 0.6141 0.1810 502.09 406.549 564.115 10,600

174 (0.5%) 336 1.2147 0.3697 529.65 426.135 557.285 10,800

Mesh Optimization

17,410(50%) 34,643 0.29680 0.00996 7,100 1346.74 579.836 44,300

8,699 (25%) 17,279 0.03668 0.01064 7,400 488.486 576.048 44,300

3,501 (10%) 6,956 0.29640 0.01554 7,600 358.650 577.560 44,300

1,758 (5%) 3,491 0.36660 0.02415 7,400 364.890 581.119 44,300

686 (2%) 1,347 0.42620 0.04846 8,000 392.326 585.416 44,300

349 (1%) 676 0.84070 0.08265 8,500 404.878 588.034 44,300

173 (0.5%) 331 0.93970 0.14970 9,000 429.610 596.371 44,300

Progressive Meshes

17,417(50%) 34,667 0.1339 0.00781 – 255.977 571.704 N.A.

8,708 (25%) 17,252 0.1585 0.01100 – 283.746 572.252 //

3,483 (10%) 6,821 0.2065 0.01851 – 327.247 573.149 //

1,741 (5%) 3,367 0.2817 0.03273 – 391.144 573.949 //

696 (2%) 1,359 0.5290 0.06897 – 451.311 574.997 //

348 (1%) 673 0.8122 0.12460 – 442.708 575.426 //

171 (0.5%) 328 1.4409 0.24140 1,450 439.415 573.827 //

Quadric Error Metrics

17,417(50%) 34,666 1.0240 0.00486 20.50 203.919 568.542 N.A.

8,708 (25%) 17,293 1.6769 0.01135 24.70 223.754 567.082 //

3,483 (10%) 6,888 1.7070 0.02363 26.42 259.867 565.728 //

1,741 (5%) 3,434 2.4256 0.04279 26.93 360.545 563.636 //

696 (2%) 1,360 4.2700 0.10310 27.36 429.640 558.917 //

348 (1%) 675 4.6614 0.16720 27.41 449.767 556.754 //

171 (0.5%) 327 5.9382 0.32140 27.40 432.310 545.680 //

Table 2: Comparison of various simplification algorithms on the Bunny mesh (errors are measured as percentages

of the datasets bounding box diagonal; times are in seconds).
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Fandisk (36,475 vertices, 12,946 triangles, bounding box 4.8x5.6x2.7)

Edge Length 69.9526, Area 60.6691, Volume 20.2433

Mesh Decimation
� � ����� � 	���� �� � � � �� � �� � Time EdgeLength Area Vol. Mem. Kb

3,224 (50%) 6,444 0.00412 4.502e-05 4.50 69.9526 60.6691 20.2432 11,400

1,616 (25%) 3,228 0.07452 0.00398 7.38 69.9500 60.6667 20.2557 11,400

639 (10%) 1,274 0.24710 0.01539 10.00 73.8872 60.6585 20.2650 11,400

325 (5%) 646 1.17080 0.05800 7.62 79.8004 60.6400 20.3816 11,400

131 (2%) 258 2.15660 0.15230 5.97 84.1135 60.3522 20.6055 11,400

66 (1%) 128 3.51280 0.35270 5.71 86.5037 59.9931 21.0034 11,400

Simplification Envelopes

3,216 (50%) 6,428 0.00317 0.000158 203.49 87.0931 60.6691 20.2432 15,600

1,633 (25%) 3,262 0.02227 0.002505 228.14 78.6976 60.6732 20.2466 15,400

654 (10%) 1,304 0.05958 0.009646 185.22 70.3327 60.6747 20.2731 15,400

317 (5%) 630 0.14680 0.024520 170.93 72.7624 60.6733 20.3143 15,200

129 (2%) 244 0.97260 0.182700 159.42 113.677 60.0575 20.7452 15,200

77 (1%) 150 8.73700 0.940600 476.46 108.785 63.7828 24.7631 17,200

Multiresolution Decimation (Jade 2.0)

3,149 (50%) 6,294 0.00248 4.847e-05 28.26 69.9526 60.6691 20.2433 4,000

1,615 (25%) 3,226 0.00427 0.00021 37.72 69.9526 60.6694 20.2433 4,000

645 (10%) 1,286 0.02657 0.00280 52.26 70.5093 60.6716 20.2497 4,000

323 (5%) 642 0.06778 0.00944 64.79 70.2319 60.6814 20.2686 4,000

129 (2%) 254 0.34370 0.04767 70.55 80.4990 60.6798 20.3724 4,000

64 (1%) 124 1.25980 0.18060 75.78 75.9090 60.4357 20.7143 4,000

Mesh Optimization

3,287 (50%) 6,570 0.5297 0.002776 2,000 112.0870 60.8125 20.2395 10,500

1,611 (25%) 3,218 0.5021 0.002901 2,100 89.7844 60.8107 20.2429 10,500

655 (10%) 1,306 0.2452 0.003614 2,300 73.9007 60.7556 20.2412 10,500

333 (5%) 662 0.2910 0.005877 2,500 72.4195 60.7721 20.2435 10,500

123 (2%) 242 0.3759 0.021800 2,200 78.5812 60.8709 20.2475 10,500

62 (1%) 120 0.8734 0.066800 2,200 77.9844 61.3126 20.2775 10,500

Progressive Meshes

3,237 (50%) 6,470 0.13660 0.003451 – 70.6122 60.6412 20.2410 N.A.

1,618 (25%) 3,232 0.16740 0.004139 – 71.1858 60.6515 20.2401 //

647 (10%) 1,290 0.23770 0.006077 – 72.7364 60.6812 20.2420 //

323 (5%) 642 0.24700 0.011860 – 79.7237 60.7464 20.2522 //

129 (2%) 254 1.27770 0.065760 – 80.0257 60.6341 20.2769 //

64 (1%) 124 3.26100 0.225900 285 93.7107 60.3985 20.2175 //

Quadric Error Metrics

3,237 (50%) 6,470 0.00067 8.622e-05 42.74 87.6357 61.3195 20.2433 N.A.

1,618 (25%) 3,232 0.00442 0.00021 44.41 79.0333 61.1082 20.2434 //

647 (10%) 1,290 0.03746 0.00183 45.11 76.4246 61.1372 20.2456 //

323 (5%) 642 0.09253 0.00581 47.63 74.6483 61.0833 20.2537 //

129 (2%) 254 0.33210 0.02552 45.61 76.3882 60.6684 20.2927 //

64 (1%) 124 1.23730 0.09879 47.58 90.9378 60.7801 20.4183 //

Table 3: Comparison of various simplification algorithms on the Fandisk mesh (errors are measured as percentages

of the datasets bounding box diagonal; times are in seconds).
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Femur (76,794 vertices, 153,322 triangles, bounding box 9,153x4,539x25,300 )

Edge Length 2,018.96, Area 2.89109e+08 (Volume is not defined: the surface is open)

Mesh Decimation
� � ����� � 	 ��� �� � � � �� � �� � Time EdgeLength. Area Mem. Kb

26,707 (50%) 53,321 0.1015 0.0051 59.50 13,901.3 2.89192e+08 20,400

19,432 (25%) 38,779 0.0838 0.0067 70.27 13,318.3 2.89180e+08 20,400

7,963 (10%) 15,879 0.1479 0.0164 90.70 27,122.1 2.88517e+08 20,400

4,070 (5%) 8,126 1.8803 0.2353 145.70 224,766.0 2.84554e+08 20,400

1,535 (2%) N/A N/A N/A N/A N/A N/A N/A

767 (1%) N/A N/A N/A N/A N/A N/A N/A

383 (0.5%) N/A N/A N/A N/A N/A N/A N/A

76 (0.1%) N/A N/A N/A N/A N/A N/A N/A

Simplifcation Envelopes

38,365 (50%) 76,579 0.00505 0.00089 2,370.82 114,579.0 2.89111e+08 134,000

19,331 (25%) 38,556 0.01122 0.00309 2,413.18 68,985.3 2.89068e+08 135,000

7,717 (10%) 15,361 0.02760 0.00932 2,461.68 88,639.9 2.89089e+08 136,000

3,891 (5%) 7,720 0.04043 0.01310 2,828.98 109,368.0 2.89068e+08 137,000

1,565 (2%) 3,081 0.06924 0.02104 2,840.66 60,768.0 2.88223e+08 138,000

853 (1%) 1,675 0.19560 0.04780 3,317.23 102,810.0 2.88191e+08 139,000

383 (0.5%) N/A N/A N/A N/A N/A N/A N/A

76 (0.1%) N/A N/A N/A N/A N/A N/A N/A

Multiresolution Decimation (Jade 2.0)

38,397 (50%) 76,650 0.00528 0.00075 443.24 72,621.5 2.89111e+08 18,900

19,198 (25%) 38,305 0.01258 0.00262 655.27 52,913.2 2.89091e+08 20,000

7,679 (10%) 15,293 0.03080 0.00767 833.54 46,286.6 2.89036e+08 20,600

3,839 (5%) 7,624 0.04574 0.01217 928.86 79,860.1 2.89012e+08 20,800

1,535 (2%) 3,027 0.07177 0.01795 1,056.48 75,289.2 2.88739e+08 21,300

767 (1%) 1,501 0.10960 0.02741 1,099.67 52,753.9 2.88465e+08 21,600

383 (0.5%) 742 0.18710 0.04688 1,167.77 46,586.6 2.88291e+08 21,800

76 (0.1%) 140 0.87270 0.25900 1,329.72 221,591.0 2.84388e+08 22,400

Table 4: Comparison of various simplification algorithms on the Femur mesh (errors are measured as percentages

of the datasets bounding box diagonal; times are in seconds).
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Femur (76,794 vertices, 153,322 triangles, bounding box 9,153x4,539x25,300 )

Edge Length 2,018.96, Area 2.89109e+08 (Volume is not defined: the surface is open)

Mesh Optimization

38,299 (50%) 76,467 0.1390 0.003677 17,600 904,774.0 2.91810e+08 89,900

19,255 (25%) 38,416 0.1192 0.003607 17,800 204,190.0 2.90270e+08 89,900

7,621 (10%) 15,194 0.0612 0.006027 17,800 78,208.7 2.90141e+08 89,900

3,851 (5%) 7,663 0.0892 0.009159 18,600 93,085.0 2.89682e+08 89,900

1,558 (2%) 3,088 0.1001 0.013660 20,500 62,242.7 2.89021e+08 89,900

798 (1%) 1,569 0.1196 0.018810 21,600 56,873.5 2.89145e+08 89,900

383 (0.5%) 743 0.2192 0.029670 22,600 28,172.6 2.89388e+08 89,900

65 (0.1%) 121 0.7590 0.131700 25,200 227,970.0 3.00278e+08 89,900

Progressive Meshes

38,397 (50%) 76,667 0.04385 0.00249 – 46,731.9 2.89222e+08 N.A.

19,198 (25%) 38,291 0.05645 0.00366 – 40,162.9 2.89343e+08 //

7,679 (10%) 15,286 0.05603 0.00673 – 45,424.0 2.89510e+08 //

3,839 (5%) 7,621 0.07896 0.01111 – 83,468.1 2.89411e+08 //

1,535 (2%) 3,027 0.12570 0.01648 – 74,620.8 2.89024e+08 //

767 (1%) 1,499 0.16630 0.02269 – 50,663.5 2.88807e+08 //

383 (0.5% 741 0.24310 0.03370 – 47,303.7 2.89016e+08 //

76 (0.1%) 140 0.85610 0.12940 2,860 170,563.0 2.92318e+08 //

Quadric Error Metrics

38,397 (50%) 76,620 0.5118 0.00125 81.58 8447.2 2.88199e+08 N.A.

19,198 (25%) 38,264 0.6979 0.00337 101.90 9531.4 2.87968e+08 //

7,679 (10%) 15,263 0.7525 0.00845 115.09 26771.6 2.87756e+08 //

3,839 (5%) 7,604 1.0475 0.01591 119.81 55753.2 2.87085e+08 //

1,535 (2%) 3,022 1.4530 0.02809 121.51 58198.9 2.85770e+08 //

767 (1%) 1,501 2.2104 0.04889 123.46 48837.9 2.83578e+08 //

383 (0.5%) 742 3.3207 0.08336 122.89 86139.0 2.81512e+08 //

76 (0.1%) 141 8.1436 0.37860 123.49 225425.0 2.70867e+08 //

Table 5: Comparison of various simplification algorithms on the Femur mesh (errors are measured as percentages

of the datasets bounding box diagonal; times are in seconds).
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5 Concluding remarks

The paper presented a brief survey of the different mesh simplification methods proposed in the last few years. A

characterization of the fundamental methods has been given, based on the simplification strategy, the error man-

agement policy and the capability to preserve mesh characteristics (e.g. topology, feature edges). Different error

management strategies have been discussed and classified, with particular emphasis to the methods which support

bounded error evaluation.

Moreover, the results of an empirical comparison of the simplification codes available in the public domain were

presented. Six academic implementations, chosen to give a wide spectrum of different methods, were run on a set

of sample surfaces. We compared empyrical computational cost and the approximation accuracy of the resulting

output meshes.

From the accuracy point of view, the results obtained showed that decimation approaches based on global error

evaluation produce the best results in terms of maximal error (under � � norm), while their average error remains

competitive to that produced by more computationally complex codes based on an energy optimization approach.

Finally, all of the solutions tested but the Quadric Error Metrics share a common weakness: they are defined

to work on a single, topologically–sound mesh. This is not the general case in rendering CAD models or in virtual

reality sessions, where we may need to simplify scenes or objects composed by multiple components, with a not

topological–clean composition between components. New solutions are required for these applications to provide

increased generality and robustness. First attempts in this direction have been recently proposed [31, 13].

6 Acknowledgements

We acknowledge the kind and timely cooperation of Hugues Hoppe and Micheal Garland, who ran their codes on

the benchmark datasets. We would also like to thank our collaborators Andrea Ciampalini, who was responsable for

the implementation of the Jade code and executed the simplification tests, and Claudio Rocchini, who implemented

the Metro tool. Finally, we would also like to thank Marco Viceconti of IOR (Istituto Ortopedico Rizzoli) for the

medical dataset he provided.

This work was partially financed by the Progetto Finalizzato “Beni Culturali” of the Italian National Research

Council (CNR).

24



References

[1] M.E. Algorri and F. Schmitt. Mesh simplification. Computer Graphics Forum (Eurographics’96 Proc.),

15(3):78–86, 1996.

[2] C. Andujar, D. Ayala, P. Brunet, R. Joan-Arinyo, and J. Sole’. Automatic generation of multiresolutionbound-

ary representations. Computer Graphics Forum (Eurographics’96 Proc.), 15(3):87–96, 1996.

[3] C. L. Bajaj and D.R. Schikore. Error bounded reduction of triangle meshes with multivariate data. SPIE,

2656:34–45, 1996.

[4] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive multiresolution sur-

face viewing. In Comp. Graph. Proc., Annual Conf. Series (Siggraph ’96), ACM Press, pages 91–98, Aug.

6-8 1996.

[5] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution decimation based on global error.

The Visual Computer, 13(5):228–246, June 1997.

[6] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Multiresolution Representation and Visualization of

Volume Data. Technical Report C97-05, Istituto CNUCE – C.N.R., Pisa, Italy, January 1997.

[7] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on simplified surfaces. Technical Report

B4-01-01-96, I.E.I. – C.N.R., Pisa, Italy, January 1996.

[8] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and W. Wright. Simplification

envelopes. In Computer Graphics Proc., Annual Conf. Series (Siggraph ’96), ACM Press, pages 119–128,

Aug. 6-8 1996.

[9] M. Deering. Geometry compression. In Comp. Graph. Proc., Annual Conf. Series (Siggraph ’95), ACM Press,

pages 13–20, 1995.

[10] M. Eck, T. De Rose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of

arbitrary meshes. In Computer Graphics Proc., Annual Conf. Series (Siggraph ’95), ACM Press, pages 173–

181, Aug. 6-12 1995.

[11] Carl Erikson. Polygonal simplification: An overview. Technical Report TR96-016, Department of Computer

Science, University of North Carolina - Chapel Hill, February 16, 1996.

[12] T.A. Funkhouser and C.H. Sequin. Adaptive display algorithm for interactive frame rates during visualization

of complex environment. In Computer Graphics Proc., Annual Conf. Series (SIGGRAPH 93), pages 247–254.

ACM Press, 1993.

25



[13] M Garland and P.S. Heckbert. Surface simplification using quadric error metrics. In Comp. Graph. Proc.,

Annual Conf. Series (Siggraph ’97), ACM Press, 1997. (to appear).

[14] M.H. Gross, O.G. Staadt, and R. Gatti. Efficient triangular surface approximations using wavelets and

quadtree data structures. IEEE Trans. on Visual. and Comp. Graph., 2(2):130–144, June 1996.
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Figure 5: Simplified fandisk mesh ( � 250 faces).

Figure 6: Simplified fandisk meshes ( � 250 faces).

Figure 7: Fandisk mesh simplified with the Cosmo Poligon Reduction Editor (6,300 faces on the left, 1,278 faces

on the right.
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