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ABSTRACT

In this paper, we introduce the progressive simplicial complex (PSC)
representation, a new format for storing and transmitting triangu-
lated geometric models. Like the earlier progressive mesh (PM)
representation, it captures a given model as a coarse base model
together with a sequence of refinement transformations that pro-
gressively recover detail. The PSC representation makes use of a
more general refinement transformation, allowing the given model
to be an arbitrary triangulation (e.g. any dimension, non-orientable,
non-manifold, non-regular), and the base model to always consist
of a single vertex. Indeed, the sequence of refinement transforma-
tions encodes both the geometry and the topology of the model in a
unified multiresolution framework. The PSC representation retains
the advantages of PM’s. It defines a continuous sequence of approx-
imating models for runtime level-of-detail control, allows smooth
transitions between any pair of models in the sequence, supports
progressive transmission, and offers a space-efficient representa-
tion. Moreover, by allowing changes to topology, the PSC sequence
of approximations achieves better fidelity than the corresponding
PM sequence.

We develop an optimization algorithm for constructing PSC
representations for graphics surface models, and demonstrate the
framework on models that are both geometrically and topologically
complex.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling - surfaces and object representations.

Additional Keywords: model simplification, level-of-detail representa-
tions, multiresolution, progressive transmission, geometry compression.

1 INTRODUCTION

Modeling and 3D scanning systems commonly give rise to triangle
meshes of high complexity. Such meshes are notoriously difficult
to render, store, and transmit. One approach to speed up rendering
is to replace a complex mesh by a set of level-of-detail (LOD)
approximations; a detailed mesh is used when the object is close to
the viewer, and coarser approximations are substituted as the object
recedes [6, 8]. These LOD approximations can be precomputed
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automatically using mesh simplification methods (e.g. [2, 10, 14,
20, 21, 22, 24, 27]). For efficient storage and transmission, mesh
compression schemes [7, 26] have also been developed.

The recently introduced progressive mesh (PM) representa-
tion [13] provides a unified solution to these problems. In PM form,
an arbitrary mesh M̂ is stored as a coarse base mesh M0 together with
a sequence of n detail records that indicate how to incrementally re-
fine M0 into Mn = M̂ (see Figure 7). Each detail record encodes the
information associated with a vertex split, an elementary transfor-
mation that adds one vertex to the mesh. In addition to defining
a continuous sequence of approximations M0

: : :Mn, the PM rep-
resentation supports smooth visual transitions (geomorphs), allows
progressive transmission, and makes an effective mesh compression
scheme.

The PM representation has two restrictions, however. First, it can
only represent meshes: triangulations that correspond to orientable1

2-dimensional manifolds. Triangulated2 models that cannot be rep-
resented include 1-d manifolds (open and closed curves), higher
dimensional polyhedra (e.g. triangulated volumes), non-orientable
surfaces (e.g. Möbius strips), non-manifolds (e.g. two cubes joined
along an edge), and non-regular models (i.e. models of mixed di-
mensionality). Second, the expressiveness of the PM vertex split
transformations constrains all meshes M0

: : :Mn to have the same
topological type. Therefore, when M̂ is topologically complex, the
simplified base mesh M0 may still have numerous triangles (Fig-
ure 7).

In contrast, a number of existing simplification methods allow
topological changes as the model is simplified (Section 6). Our
work is inspired by vertex unification schemes [21, 22], which
merge vertices of the model based on geometric proximity, thereby
allowing genus modification and component merging.

In this paper, we introduce the progressive simplicial complex
(PSC) representation, a generalization of the PM representation that
permits topological changes. The key element of our approach is
the introduction of a more general refinement transformation, the
generalized vertex split, that encodes changes to both the geometry
and topology of the model. The PSC representation expresses an
arbitrary triangulated model M (e.g. any dimension, non-orientable,
non-manifold, non-regular) as the result of successive refinements
applied to a base model M1 that always consists of a single vertex
(Figure 8). Thus both geometric and topological complexity are
recovered progressively. Moreover, the PSC representation retains
the advantages of PM’s, including continuous LOD, geomorphs,
progressive transmission, and model compression.

In addition, we develop an optimization algorithm for construct-
ing a PSC representation from a given model, as described in Sec-
tion 4.

1The particular parametrization of vertex splits in [13] assumes that mesh
triangles are consistently oriented.

2Throughout this paper, we use the words “triangulated” and “triangula-
tion” in the general dimension-independent sense.
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Figure 1: Illustration of a simplicial complex K and some of its
subsets.

2 BACKGROUND

2.1 Concepts from algebraic topology
To precisely define both triangulated models and their PSC repre-
sentations, we find it useful to introduce some elegant abstractions
from algebraic topology (e.g. [15, 25]).

The geometry of a triangulated model is denoted as a tuple (K;V)
where the abstract simplicial complex K is a combinatorial structure
specifying the adjacency of vertices, edges, triangles, etc., and V is
a set of vertex positions specifying the shape of the model in R3.

More precisely, an abstract simplicial complex K consists of a set
of vertices f1; : : : ;mg together with a set of non-empty subsets of
the vertices, called the simplices of K, such that any set consisting
of exactly one vertex is a simplex in K, and every non-empty subset
of a simplex in K is also a simplex in K.

A simplex containing exactly d+1 vertices has dimension d and is
called a d-simplex. As illustrated pictorially in Figure 1, the faces
of a simplex s, denoted s, is the set of non-empty subsets of s. The
star of s, denoted star(s), is the set of simplices of which s is a face.
The children of a d-simplex s are the (d�1)-simplices of s, and its
parents are the (d+1)-simplices of star(s). A simplex with exactly
one parent is said to be a boundary simplex, and one with no parents
a principal simplex. The dimension of K is the maximum dimension
of its simplices; K is said to be regular if all its principal simplices
have the same dimension.

To form a triangulation from K, identify its vertices f1; : : : ;mg
with the standard basis vectors fe1; : : : ; emg of Rm. For each
simplex s, let the open simplex hsi � Rm denote the interior of the
convex hull of its vertices:

hsi = fb 2 Rm : bj � 0 ;

mX
j=1

bj = 1 ; bj > 0, fjg � sg:

The topological realization jKj is defined as jKj = hKi = [s2Khsi.
The geometric realization of K is the image �V (jKj) where �V :
Rm ! R3 is the linear map that sends the j-th standard basis vector
ej 2 Rm to vj 2 R3. Only a restricted set of vertex positions
V = fv1; : : : ;vmg lead to an embedding of �V(jKj) � R3, that
is, prevent self-intersections. The geometric realization �V (jKj) is
often called a simplicial complex or polyhedron; it is formed by an
arbitrary union of points, segments, triangles, tetrahedra, etc. Note
that there generally exist many triangulations (K;V) for a given
polyhedron. (Some of the vertices V may lie in the polyhedron’s
interior.)

Two sets are said to be homeomorphic (denoted �=) if there ex-
ists a continuous one-to-one mapping between them. Equivalently,
they are said to have the same topological type. The topological
realization jKj is a d-dimensional manifold without boundary if for
each vertex fjg, hstar(fjg)i �= Rd . It is a d-dimensional manifold
if each hstar(fvg)i is homeomorphic to either Rd or Rd

+, where
Rd

+ = fx 2 Rd : x1 � 0g. Two simplices s1 and s2 are d-adjacent
if they have a common d-dimensional face. Two d-adjacent (d + 1)-
simplices s1 and s2 are manifold-adjacent if hstar(s1 \ s2)i �= Rd+1.
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Figure 2: Illustration of the edge collapse transformation and its
inverse, the vertex split.

Transitive closure of 0-adjacency partitions K into connected com-
ponents. Similarly, transitive closure of manifold-adjacency parti-
tions K into manifold components.

2.2 Review of progressive meshes
In the PM representation [13], a mesh with appearance attributes is
represented as a tuple M = (K;V;D; S), where the abstract simpli-
cial complex K is restricted to define an orientable 2-dimensional
manifold, the vertex positions V = fv1; : : : ;vmg determine its ge-
ometric realization �V(jKj) in R3, D is the set of discrete material
attributes df associated with 2-simplices f 2K, and S is the set of
scalar attributes s(v;f ) (e.g. normals, texture coordinates) associated
with corners (vertex-face tuples) of K.

An initial mesh M̂ =Mn is simplified into a coarser base mesh M0

by applying a sequence of n successive edge collapse transforma-
tions:

(M̂ =Mn)
ecoln�1
�! : : :

ecol1�! M1 ecol0
�! M0

:

As shown in Figure 2, each ecol unifies the two vertices of an edge
fa; bg, thereby removing one or two triangles. The position of the
resulting unified vertex can be arbitrary. Because the edge collapse
transformation has an inverse, called the vertex split transformation
(Figure 2), the process can be reversed, so that an arbitrary mesh M̂
may be represented as a simple mesh M0 together with a sequence
of n vsplit records:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂)

The tuple (M0
; fvsplit0; : : : ; vsplitn�1g) forms a progressive mesh

(PM) representation of M̂.

The PM representation thus captures a continuous sequence of
approximations M0

: : :Mn that can be quickly traversed for interac-
tive level-of-detail control. Moreover, there exists a correspondence
between the vertices of any two meshes Mc and Mf (0� c< f �n)
within this sequence, allowing for the construction of smooth vi-
sual transitions (geomorphs) between them. A sequence of such
geomorphs can be precomputed for smooth runtime LOD. In addi-
tion, PM’s support progressive transmission, since the base mesh
M0 can be quickly transmitted first, followed the vsplit sequence.
Finally, the vsplit records can be encoded concisely, making the PM
representation an effective scheme for mesh compression.

Topological constraints Because the definitions of ecol and
vsplit are such that they preserve the topological type of the mesh
(i.e. all jKij are homeomorphic), there is a constraint on the min-
imum complexity that K0 may achieve. For instance, it is known
that the minimal number of vertices for a closed genus g mesh (ori-
entable 2-manifold) is d(7+(48g+1)

1
2 )=2e if g 6= 2 (10 if g = 2) [16].

Also, the presence of boundary components may further constrain
the complexity of K0. Most importantly, K̂ may consist of a number
of components, and each is required to appear in the base mesh. For
example, the meshes in Figure 7 each have 117 components. As
evident from the figure, the geometry of PM meshes may deteriorate
severely as they approach topological lower bound.



M1; f1; 0; 0g; (1) M10; f5; 1; 1g; (7) M50; f4; 6; 56g; (12) M200; f15; 52; 277g; (28)

M500; f39; 68; 690g; (58) M2000; f14; 25; 3219g; (108) M5000; f0; 2; 9010g; (176) Mn=34794;f0;0;68776g; (207)
Figure 3: Example of a PSC representation. The image captions indicate the number of principal f0; 1; 2g-simplices respectively and the
number of connected components (in parenthesis).

3 PSC REPRESENTATION

3.1 Triangulated models
The first step towards generalizing PM’s is to let the PSC repre-
sentation encode more general triangulated models, instead of just
meshes.

We denote a triangulated model as a tuple M = (K;V;D;A). The
abstract simplicial complex K is not restricted to 2-manifolds, but
may in fact be arbitrary. To represent K in memory, we encode
the incidence graph of the simplices using the following linked
structures (in C++ notation):

struct Simplex f
int dim; // 0=vertex, 1=edge, 2=triangle, ...
int id;
Simplex* children[MAXDIM+1]; // [0..dim]
List<Simplex*> parents;

g;

To render the model, we draw only the principal simplices of
K, denoted P(K) (i.e. vertices not adjacent to edges, edges not
adjacent to triangles, etc.). The discrete attributes D associate a
material identifier ds with each simplex s 2 P(K). For the sake of
simplicity, we avoid explicitly storing surface normals at “corners”
(using a set S) as done in [13]. Instead we let the material identifier ds

contain a smoothing group field [28], and let a normal discontinuity
(crease) form between any pair of adjacent triangles with different
smoothing groups.

Previous vertex unification schemes [21, 22] render principal
simplices of dimension 0 and 1 (denoted P01(K)) as points and lines
respectively with fixed, device-dependent screen widths. To better
approximate the model, we instead define a set A that associates an
area as 2 A with each simplex s 2 P01(K). We think of a 0-simplex
s0 2 P0(K) as approximating a sphere with area as0 , and a 1-simplex
s1 =fj; kg 2 P1(K) as approximating a cylinder (with axis (vj;vk))

of area as1 . To render a simplex s 2 P01(K), we determine the radius
rmodel of the corresponding sphere or cylinder in modeling space, and
project the length rmodel to obtain the radius rscreen in screen pixels.
Depending on rscreen, we render the simplex as a polygonal sphere or
cylinder with radius rmodel, a 2D point or line with thickness 2rscreen,
or do not render it at all. This choice based on rscreen can be adjusted
to mitigate the overhead of introducing polygonal representations
of spheres and cylinders.

As an example, Figure 3 shows an initial model M̂ of 68,776
triangles. One of its approximations M500 is a triangulated model
with f39; 68; 690g principal f0; 1; 2g-simplices respectively.

3.2 Level-of-detail sequence
As in progressive meshes, from a given triangulated model M̂ =Mn,
we define a sequence of approximations Mi:

M1 op1
 ! M2 op2

 ! : : : Mn�1 opn�1
 ! Mn

:

Here each model Mi has exactly i vertices. The simplification op-

erator Mi vunifyi
 � Mi+1 is the vertex unification transformation, which

merges two vertices (Section 3.3), and its inverse Mi gvspli
�! Mi+1

is the generalized vertex split transformation (Section 3.4). The
tuple (M1

; fgvspl1; : : : ; gvspln�1g) forms a progressive simplicial
complex (PSC) representation of M̂.

To construct a PSC representation, we first determine a sequence
of vunify transformations simplifying M̂ down to a single vertex, as
described in Section 4. After reversing these transformations, we
renumber the simplices in the order that they are created, so that
each gvspli(faig; : : :) splits the vertex faig 2 Ki into two vertices
faig; fi+1g 2 Ki+1. As vertices may have different positions in the
different models, we denote the position of fjg in Mi as vi

j.

To better approximate a surface model M̂ at lower complexity
levels, we initially associate with each (principal) 2-simplex s an area
as equal to its triangle area in M̂ . Then, as the model is simplified, we



keep constant the sum of areas as associated with principal simplices
within each manifold component. When 2-simplices are eventually
reduced to principal 1-simplices and 0-simplices, their associated
areas will provide good estimates of the original component areas.

3.3 Vertex unification transformation
The transformation vunify(faig; fbig;midpi) : Mi  Mi+1 takes an
arbitrary pair of vertices faig; fbig 2 Ki+1 (simplex fai; big need not
be present in Ki+1) and merges them into a single vertex faig 2 Ki.

Model Mi is created from Mi+1 by updating each member of the
tuple (K;V;D;A) as follows:

K: References to fbig in all simplices of K are replaced by refer-
ences to faig. More precisely, each simplex s in star(fbig) �
Ki+1 is replaced by simplex (s nfbig) [faig, which we call the
ancestor simplex of s. If this ancestor simplex already exists, s
is deleted.

V: Vertex vb is deleted. For simplicity, the position of the re-
maining (unified) vertex is set to either the midpoint or is left
unchanged. That is, vi

a = (vi+1
a +vi+1

b )=2 if the boolean parameter
midpi is true, or vi

a = vi+1
a otherwise.

D: Materials are carried through as expected. So, if after the vertex
unification an ancestor simplex (s nfbig) [faig 2 Ki is a new
principal simplex, it receives its material from s 2 Ki+1 if s is a
principal simplex, or else from the single parent s [faig 2 Ki+1

of s.
A: To maintain the initial areas of manifold components, the areas

as of deleted principal simplices are redistributed to manifold-
adjacent neighbors. More concretely, the area of each princi-
pal d-simplex s deleted during the K update is distributed to
a manifold-adjacent d-simplex not in star(fai; big). If no such
neighbor exists and the ancestor of s is a principal simplex, the
area as is distributed to that ancestor simplex. Otherwise, the
manifold component (star(fai; big)) of s is being squashed be-
tween two other manifold components, and as is discarded.

3.4 Generalized vertex split transformation
Constructing the PSC representation involves recording the infor-
mation necessary to perform the inverse of each vunifyi. This inverse
is the generalized vertex split gvspli, which splits a 0-simplex faig to
introduce an additional 0-simplex fbig. (As mentioned previously,
renumbering of simplices implies bi � i+1, so index bi need not be
stored explicitly.) Each gvspli record has the form

gvspli(faig;C�K
i ;midpi; (�v)i;C�D

i ;C�A
i ) ;

and constructs model Mi+1 from Mi by updating the tuple
(K;V;D; A) as follows:

K: As illustrated in Figure 4, any simplex adjacent to faig in Ki

can be the vunify result of one of four configurations in Ki+1.
To construct Ki+1, we therefore replace each ancestor simplex
s 2 star(faig) in Ki by either (1) s, (2) (s nfaig) [fi+1g, (3) s
and (s nfaig)[fi+1g, or (4) s, (s nfaig)[fi+1g and s[fi+1g.
The choice is determined by a split code associated with s. These
split codes are stored as a code string C�K

i , in which the simplices
star(faig) are sorted first in order of increasing dimension, and
then in order of increasing simplex id, as shown in Figure 5.

V: The new vertex is assigned position vi+1
i+1 = vi

ai + (�v)i. The
other vertex is given positionvi+1

ai = vi
ai�(�v)i if the boolean pa-

rameter midpi is true; otherwise its position remains unchanged.
D: The string C�D

i is used to assign materials ds for each new
principal simplex. Simplices in C�D

i , as well as in C�A
i below,

are sorted by simplex dimension and simplex id as in C�K
i .

A: During reconstruction, we are only interested in the areas as for
s 2 P01(K). The string C�A

i tracks changes in these areas.

undefined undefined

code (1) code (2) code (3) code (4)

{i+1}
0-dim

1-dim

2-dim

{a i}

{a
i
}

corresponding simplices inoriginal
simplex in Ki

Ki+1

Figure 4: Effects of split codes on simplices of various dimensions.
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Figure 5: Example of split code encoding.

3.5 Properties
Levels of detail A graphics application can efficiently transition
between models M1

: : :Mn at runtime by performing a sequence of
vunify or gvspl transformations. Our current research prototype was
not designed for efficiency; it attains simplification rates of about
6000 vunify/sec and refinement rates of about 5000 gvspl/sec. We
expect that a careful redesign using more efficient data structures
would significantly improve these rates.

Geomorphs As in the PM representation, there exists a corre-
spondence between the vertices of the models M1

: : :Mn. Given a
coarser model Mc and a finer model Mf , 1� c< f �n, each vertex
fjg 2 Kf corresponds to a unique ancestor vertex f� f!c(j)g 2 Kc

found by recursively traversing the ancestor simplex relations:

�
f!c(j) =

�
j ; j � c

�
f!c(aj�1) ; j > c :

This correspondence allows the creation of a smooth visual transi-
tion (geomorph) MG(�) such that MG(1) equals Mf and MG(0) looks
identical to Mc. The geomorph is defined as the model

MG(�) = (Kf
;VG(�);Df

;AG(�))

in which each vertex position is interpolated between its original
position in Vf and the position of its ancestor in Vc:

v
G
j (�) = (�)vf

j + (1��)vc
� f!c(j) :

However, we must account for the special rendering of principal
simplices of dimension 0 and 1 (Section 3.1). For each simplex
s 2 P01(Kf ), we interpolate its area using

aG
s (�) = (�)af

s + (1��)ac
s ;

where ac
s = 0 if s 62 P01(Kc). In addition, we render each simplex

s 2 P01(Kc) n P01(Kf ) using area aG
s (�) = (1��)ac

s . The resulting



geomorph is visually smooth even as principal simplices are intro-
duced, removed, or change dimension. The accompanying video
demonstrates a sequence of such geomorphs.

Progressive transmission As with PM’s, the PSC representa-
tion can be progressively transmitted by first sending M1, followed
by the gvspl records. Unlike the base mesh of the PM, M1 always
consists of a single vertex, and can therefore be sent in a fixed-size
record. The rendering of lower-dimensional simplices as spheres
and cylinders helps to quickly convey the overall shape of the model
in the early stages of transmission.

Model compression Although PSC gvspl are more general
than PM vsplit transformations, they offer a surprisingly concise
representation of M̂. Table 1 lists the average number of bits re-
quired to encode each field of the gvspl records.

Using arithmetic coding [30], the vertex id field faig requires
log2i bits, and the boolean parameter midpi requires 0.6–0.9 bits
for our models. The (�v)i delta vector is quantized to 16 bits
per coordinate (48 bits per �v), and stored as a variable-length
field [7, 13], requiring about 31 bits on average.

At first glance, each split code in the code string C�K
i seems to

have 4 possible outcomes (except for the split code for 0-simplex
faig which has only 2 possible outcomes). However, there exist
constraints between these split codes. For example, in Figure 5,
the code 1 for 1-simplex id 1 implies that 2-simplex id 1 also has
code 1. This in turn implies that 1-simplex id 2 cannot have code 2.
Similarly, code 2 for 1-simplex id 3 implies a code 2 for 2-simplex
id 2, which in turn implies that 1-simplex id 4 cannot have code 1.
These constraints, illustrated in the “scoreboard” of Figure 6, can
be summarized using the following two rules:

(1) If a simplex has split code c 2 f1; 2g, all of its parents have
split code c.

(2) If a simplex has split code 3, none of its parents have split
code 4.

As we encode split codes in C�K
i left to right, we apply these two

rules (and their contrapositives) transitively to constrain the possible
outcomes for split codes yet to be encoded. Using arithmetic coding
with uniform outcome probabilities, these constraints reduce the
code string length in Figure 6 from 15 bits to 10:2 bits. In our
models, the constraints reduce the code string from 30 bits to 14 bits
on average.

The code string is further reduced using a non-uniform probability
model. We create an array T[0::dim][0::15] of encoding tables,
indexed by simplex dimension (0..dim) and by the set of possible
(constrained) split codes (a 4-bit mask). For each simplex s, we
encode its split code c using the probability distribution found in
T[s:dim][s:codes mask]. For 2-dimensional models, only 10 of
the 48 tables are non-trivial, and each table contains at most 4
probabilities, so the total size of the probability model is small.
These encoding tables reduce the code strings to approximately 8
bits as shown in Table 1. By comparison, the PM representation
requires approximately 5 bits for the same information, but of course
it disallows topological changes.

To provide more intuition for the efficiency of the PSC repre-
sentation, we note that capturing the connectivity of an average
2-manifold simplicial complex (n vertices, 3n edges, and 2n trian-
gles) requires

Pn
i=1(log2i+8) ' n(log2n+7) bits with PSC encoding,

versus n(12 log2n + 9:5) bits with a traditional one-way incidence
graph representation.

For improved compression, it would be best to use a hybrid
PM + PSC representation, in which the more concise PM vertex
split encoding is used when the local neighborhood is an orientable
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Figure 6: Constraints on the split codes for the simplices in the
example of Figure 5.

Table 1: Compression results and construction times.

Object #verts Space required (bits/n) Trad. Con.
n K V D A � repr. time

faig C�K
i midpi (�v)i C�D

i C�A
i bits/n hrs.

drumset 34,794 12.2 8.2 0.9 28.1 4.1 0.4 53.9 146.1 4.3
destroyer 83,799 13.3 8.3 0.7 23.1 2.1 0.3 47.8 154.1 14.1
chandelier 36,627 12.4 7.6 0.8 28.6 3.4 0.8 53.6 143.6 3.6
schooner 119,734 13.4 8.6 0.7 27.2 2.5 1.3 53.7 148.7 22.2
sandal 4,628 9.2 8.0 0.7 33.4 1.5 0.0 52.8 123.2 0.4
castle 15,082 11.0 1.2 0.6 30.7 0.0 - 43.5 - 0.5
cessna 6,795 9.6 7.6 0.6 32.2 2.5 0.1 52.6 132.1 0.5
harley 28,847 11.9 7.9 0.9 30.5 1.4 0.4 53.0 135.7 3.5

2-dimensional manifold (this occurs on average 93% of the time in
our examples).

To compress C�D
i , we predict the material for each new principal

simplex s 2 star(faig) [ star(fbig) � Ki+1 by constructing an
ordered set Ds of materials found in star(faig) � Ki. To improve
the coding model, the first materials in Ds are those of principal
simplices in star(s0) � Ki where s0 is the ancestor of s; the remaining
materials in star(faig) � Ki are appended to Ds. The entry in
C�D

i associated with s is the index of its material in Ds, encoded
arithmetically. If the material of s is not present in Ds, it is specified
explicitly as a global index in D.

We encode C�A
i by specifying the area as for each new principal

simplex s 2 P01(star(faig)[ star(fbig)) � Ki+1. To account for this
redistribution of area, we identify the principal simplex from which
s receives its area by specifying its index in P01(star(faig)) � Ki.

The column labeled � in Table 1 sums the bits of each field
of the gvspl records. Multiplying � by the number n of vertices
in M̂ gives the total number of bits for the PSC representation of
the model (e.g. 500 KB for the destroyer). By way of compari-
son, the next column shows the number of bits per vertex required
in a traditional “IndexedFaceSet” representation, with quantization
of 16 bits per coordinate and arithmetic coding of face materials
(' 3n�16 + 2n�3�log2n + materials).

4 PSC CONSTRUCTION

In this section, we describe a scheme for iteratively choosing pairs
of vertices to unify, in order to construct a PSC representation. Our
algorithm, a generalization of [13], is time-intensive, seeking high
quality approximations. It should be emphasized that many quality
metrics are possible. For instance, the quadric error metric recently
introduced by Garland and Heckbert [9] provides a different trade-
off of execution speed and visual quality.

As in [13, 20], we first compute a cost �E for each candidate
vunify transformation, and enter the candidates into a priority queue
ordered by ascending cost. Then, in each iteration i = n�1 : : : 1,
we perform the vunify at the front of the queue and update the costs
of affected candidates.



4.1 Forming set C of candidate vertex pairs
In principle, we could enter all possible pairs of vertices from M̂ into
the priority queue, but this would be prohibitively expensive since
simplification would then require at least O(n2 log n) time. Instead,
we would like to consider only a smaller set C of candidate vertex
pairs. Naturally, C should include the 1-simplices of K. Additional
pairs should also be included in C to allow distinct connected com-
ponents of M to merge and to facilitate topological changes. We
considered several schemes for forming these additional pairs, in-
cluding binning, octrees, and k-closest neighbor graphs, but opted
for the Delaunay triangulation because of its adaptability on models
containing components at different scales.

We compute the Delaunay triangulation of the vertices of M̂,
represented as a 3-dimensional simplicial complex K̂DT . We define
the initial set C to contain both the 1-simplices of K̂ and the subset
of 1-simplices of K̂DT that connect vertices in different connected
components of K̂. During the simplification process, we apply each
vertex unification performed on M to C as well in order to keep
consistent the set of candidate pairs.

For models inR3, C \ star(faig) has constant size in the average
case, and the overall simplification algorithm requires O(n log n)
time. (In the worst case, it could require O(n2 log n) time.)

4.2 Selecting vertex unifications from C

For each candidate vertex pair (a; b) 2 C, the associated
vunify(fag; fbg) : Mi  Mi+1 is assigned the cost

�E = �Edist +�Edisc + E�area + Efold :

As in [13], the first term is�Edist = Edist(Mi)�Edist(Mi+1), where
Edist(M) measures the geometric accuracy of the approximate model
M. Conceptually, Edist(M) approximates the continuous integralZ

p2M̂
d2(p;M) ;

where d(p;M) is the Euclidean distance of the point p to the closest
point on M. We discretize this integral by defining Edist(M) as the
sum of squared distances to M from a dense set of points X sampled
from the original model M̂. We sample X from the set of principal
simplices in K — a strategy that generalizes to arbitrary triangulated
models.

In [13], Edisc(M) measures the geometric accuracy of disconti-
nuity curves formed by a set of sharp edges in the mesh. For the
PSC representation, we generalize the concept of sharp edges to
that of sharp simplices in K — a simplex is sharp either if it is a
boundary simplex or if two of its parents are principal simplices
with different material identifiers. The energy Edisc is defined as the
sum of squared distances from a set Xdisc of points sampled from
sharp simplices to the discontinuity components from which they
were sampled. Minimization of Edisc therefore preserves the geom-
etry of material boundaries, normal discontinuities (creases), and
triangulation boundaries (including boundary curves of a surface
and endpoints of a curve).

We have found it useful to introduce a term E�area that penalizes
surface stretching (a more sophisticated version of the regularizing
Espring term of [13]). Let Ai+1

N be the sum of triangle areas in the
neighborhood star(faig) [ star(fbig) � Ki+1, and Ai

N the sum of
triangle areas in star(faig) � Ki. The mean squared displacement
over the neighborhood N due to the change in area can be approx-

imated as disp2 = 1
2 (
p

Ai+1
N �

p
Ai

N)2. We let E�area = jXN j disp2,
where jXN j is the number of points X projecting in the neighborhood.

To prevent model self-intersections, the last term Efold penalizes
surface folding. We compute the rotation of each oriented triangle
in the neighborhood due to the vertex unification (as in [10, 20]). If

any rotation exceeds a threshold angle value, we set Efold to a large
constant.

Unlike [13], we do not optimize over the vertex position vi
a,

but simply evaluate �E for vi
a 2 fv

i+1
a ;vi+1

b ; (vi+1
a + vi+1

b )=2g and
choose the best one. This speeds up the optimization, improves
model compression, and allows us to introduce non-quadratic energy
terms like E�area.

5 RESULTS

Table 1 gives quantitative results for the examples in the figures and
in the video. Simplification times for our prototype are measured on
an SGI Indigo2 Extreme (150MHz R4400). Although these times
may appear prohibitive, PSC construction is an off-line task that
only needs to be performed once per model.

Figure 9 highlights some of the benefits of the PSC representa-
tion. The pearls in the chandelier model are initially disconnected
tetrahedra; these tetrahedra merge and collapse into 1-d curves in
lower-complexity approximations. Similarly, the numerous polyg-
onal ropes in the schooner model are simplified into curves which
can be rendered as line segments. The straps of the sandal model
initially have some thickness; the top and bottom sides of these
straps merge in the simplification. Also note the disappearance of
the holes on the sandal straps. The castle example demonstrates that
the original model need not be a mesh; here M̂ is a 1-dimensional
non-manifold obtained by extracting edges from an image.

6 RELATED WORK

There are numerous schemes for representing and simplifying tri-
angulations in computer graphics. A common special case is that
of subdivided 2-manifolds (meshes). Garland and Heckbert [12]
provide a recent survey of mesh simplification techniques. Several
methods simplify a given model through a sequence of edge col-
lapse transformations [10, 13, 14, 20]. With the exception of [20],
these methods constrain edge collapses to preserve the topological
type of the model (e.g. disallow the collapse of a tetrahedron into a
triangle).

Our work is closely related to several schemes that generalize
the notion of edge collapse to that of vertex unification, whereby
separate connected components of the model are allowed to merge
and triangles may be collapsed into lower dimensional simplices.
Rossignac and Borrel [21] overlay a uniform cubical lattice on
the object, and merge together vertices that lie in the same cubes.
Schaufler and Stürzlinger [22] develop a similar scheme in which
vertices are merged using a hierarchical clustering algorithm. Lue-
bke [18] introduces a scheme for locally adapting the complexity
of a scene at runtime using a clustering octree. In these schemes,
the approximating models correspond to simplicial complexes that
would result from a set of vunify transformations (Section 3.3). Our
approach differs in that we order the vunify in a carefully optimized
sequence. More importantly, we define not only a simplification
process, but also a new representation for the model using an en-
coding of gvspl = vunify�1 transformations.

Recent, independent work by Schmalstieg and Schaufler [23] de-
velops a similar strategy of encoding a model using a sequence of
vertex split transformations. Their scheme differs in that it tracks
only triangles, and therefore requires regular, 2-dimensional trian-
gulations. Hence, it does not allow lower-dimensional simplices
in the model approximations, and does not generalize to higher
dimensions.

Some simplification schemes make use of an intermediate vol-
umetric representation to allow topological changes to the model.
He et al. [11] convert a mesh into a binary inside/outside function
discretized on a three-dimensional grid, low-pass filter this function,



and convert it back to a simpler surface using an adaptive “march-
ing cubes” algorithm. They demonstrate that aliasing is reduced by
rendering the filtered volume as a set of nested translucent surfaces.
Similarly, Andújar et al. [1] make use of an inside/outside octree
representation.

Triangulations of subdivided manifolds (and non-manifolds) of
higher dimension are used extensively in solid modeling. Paoluzzi
et al. [19] provide an overview of related work and analyze the ben-
efits of representing such triangulations using (regular) simplicial
complexes. Bertolotto et al. [3, 4] present hierarchical simplicial
representations for subdivided manifolds, but these do not support
changes of topological type.

Polyhedra can also be represented using more general representa-
tions. The simplicial set representation of Lang and Lienhardt [17]
generalizes simplicial complexes to allow incomplete and degener-
ate simplices. Cell complexes, formed by subdividing manifolds
into non-simplicial cells, can be represented using the radial edge
structure of Weiler [29] or the cell tuple structure of Brisson [5].

7 SUMMARY AND FUTURE WORK

We have introduced the progressive simplicial complex representa-
tion, a new format for arbitrary triangulated models that captures
both geometry and topology in a unified multiresolution framework.
It defines a continuous-resolution sequence of approximating mod-
els, from the original model down to a single vertex. In addition,
it allows geomorphs between any pair of models in this sequence,
supports progressive transmission, and offers a concise storage for-
mat. We presented an optimization algorithm for constructing PSC
representations for computer graphics surface models.

Although we restricted our examples in this paper to models of
dimension at most 2, the PSC representation is defined for arbitrary
dimensions, and we expect that it will find useful applications in
the representation of higher dimensional models such as volumes,
light fields, and bidirectional reflection distribution functions. In
particular, it offers an avenue for level-of-detail control in volume
rendering applications.
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M0; 1,154 verts; 2,522 tris M1739; 2,893 verts; 6,000 tris M2739; 3,893 verts; 8,000 tris Mn=82645; 83,799 verts; 167,744 tris
Figure 7: From a given mesh M̂, the PM representation [13] captures a sequence of meshes M0

: : :Mn =M̂. Because all approximations Mi

must have the same topological type, the base mesh M0 may still be complex.

M1; f1; 0; 0g; (1) M50; f14; 3; 66g; (18) M1000; f5; 89; 1517g; (56) Mn=83799; f0; 0; 167744g; (117)
Figure 8: In contrast, the PSC representation captures a sequence of models M1

: : :Mn =M̂ in which the base model M1 always consists of a
single vertex. All geometric and topological information is encoded progressively by a sequence of generalized vertex split transformations.
The image captions indicate the number of principalf0; 1; 2g-simplices respectively and the number of connected components (in parenthesis).
Note that even M1000 looks markedly better than the 8000-triangle PM approximation.

M̂; 72,346 triangles (276) M̂; 232,974 triangles (2154) M̂; 8,936 triangles (9) M̂; 15,601 segments (39)

M500; f3; 52; 674g; (50) M3000;f239; 495; 3189g (587) M100; f0; 0; 170g; (2) M1000; f20; 1265; 0g; (33)
Figure 9: For each column, the top row shows the original model and the bottom row shows one approximation in the PSC sequence. The
image captions indicate the number of principal f0; 1; 2g-simplices respectively and the number of connected components (in parenthesis).


