
Decimation of Triangle Meshes

William J. Schroeder
Jonathan A. Zarge

William E. Lorensen

General Electric Company
Schenectady, NY

1.0 INTRODUCTION

The polygon remains a popular graphics primitive for
computer graphics application. Besides having a simple
representation, computer rendering of polygons is widely
supported by commercial graphics hardware and software.
However, because the polygon is linear, often thousands
or millions of primitives are required to capture the details
of complex geometry. Models of this size are generally
not practical since rendering speeds and memory require-
ments are proportional to the number of polygons. Conse-
quently applications that generate large polygonal meshes
often use domain-specific knowledge to reduce model
size. There remain algorithms, however, where domain-
specific reduction techniques are not generally available
or appropriate.

One algorithm that generates many polygons ismarch-
ing cubes. Marching cubesis a brute force surface con-
struction algorithm that extracts isodensity surfaces from
volume data, producing from one to five triangles within
voxels that contain the surface. Although originally devel-
oped for medical applications,marching cubeshas found
more frequent use in scientific visualization where the size
of the volume data sets are much smaller than those found
in medical applications. A large computational fluid
dynamics volume could have a finite difference grid size
of order 100 by 100 by 100, while a typical medical com-
puted tomography or magnetic resonance scanner pro-
duces over 100 slices at a resolution of 256 by 256 or 512
by 512 pixels each. Industrial computed tomography, used
for inspection and analysis, has even greater resolution,
varying from 512 by 512 to 1024 by 1024 pixels. For these
sampled data sets, isosurface extraction usingmarching
cubescan produce from 500k to 2,000k triangles. Even
today’s graphics workstations have trouble storing and
rendering models of this size.

Other sampling devices can produce large polygonal
models: range cameras, digital elevation data, and satellite
data. The sampling resolution of these devices is also
improving, resulting in model sizes that rival those
obtained from medical scanners.

This paper describes an application independent algo-
rithm that uses local operations on geometry and topology
to reduce the number of triangles in a triangle mesh.
Although our implementation is for the triangle mesh, it
can be directly applied to the more general polygon mesh.
After describing other work related to model creation
from sampled data, we describe the triangle decimation

process and its implementation. Results from two differ-
ent geometric modeling applications illustrate the
strengths of the algorithm.

2.0 THE DECIMATION ALGORITHM

The goal of the decimation algorithm is to reduce the
total number of triangles in a triangle mesh, preserving
the original topology and a good approximation to the
original geometry.

2.1 OVERVIEW

The decimation algorithm is simple. Multiple passes are
made over all vertices in the mesh. During a pass, each
vertex is a candidate for removal and, if it meets the spec-
ified decimation criteria, the vertex and all triangles that
use the vertex are deleted. The resulting hole in the mesh
is patched by forming a local triangulation. The vertex
removal process repeats, with possible adjustment of the
decimation criteria, until some termination condition is
met. Usually the termination criterion is specified as a
percent reduction of the original mesh (or equivalent), or
as some maximum decimation value. The three steps of
the algorithm are:

1. characterize the local vertex geometry and topology,

2. evaluate the decimation criteria, and

3. triangulate the resulting hole.

2.2 CHARACTERIZING LOCAL
GEOMETRY / TOPOLOGY

The first step of the decimation algorithm characterizes
the local geometry and topology for a given vertex. The
outcome of this process determines whether the vertex is
a potential candidate for deletion, and if it is, which crite-
ria to use.

Each vertex may be assigned one of five possible clas-
sifications: simple, complex, boundary, interior edge, or
corner vertex. Examples of each type are shown in the
figure below.

A simple vertex is surrounded by a complete cycle of

Simple Complex Boundary Interior
Edge

Corner

triangles, and each edge that uses the vertex is used by
exactly two triangles. If the edge is not used by two trian-
gles, or if the vertex is used by a triangle not in the cycle of
triangles, then the vertex is complex. These are non-mani-
fold cases.

A vertex that is on the boundary of a mesh, i.e., within a
semi-cycle of triangles, is a boundary vertex.

A simple vertex can be further classified as an interior
edge or corner vertex. These classifications are based on the
local mesh geometry. If the dihedral angle between two
adjacent triangles is greater than a specifiedfeature angle,
then afeature edge exists. When a vertex is used by two fea-
ture edges, the vertex is an interior edge vertex. If one or
three or more feature edges use the vertex, the vertex is clas-
sified a corner vertex.

Complex vertices are not deleted from the mesh. All other
vertices become candidates for deletion.

2.3 EVALUATING THE DECIMATION
CRITERIA

The characterization step produces an ordered loop of verti-
ces and triangles that use the candidate vertex. The evalua-
tion step determines whether the triangles forming the loop
can be deleted and replaced by another triangulation exclu-
sive of the original vertex. Although the fundamental deci-
mation criterion we use is based on vertex distance to plane
or vertex distance to edge, others can be applied.

Simple vertices use the distance to plane criterion (see
figure below). If the vertex is within the specified distance to
the average plane it may be deleted. Otherwise it is retained.

Boundary and interior edge vertices use the distance to
edge criterion (figure below). In this case, the algorithm
determines the distance to the line defined by the two verti-
ces creating the boundary or feature edge. If the distance to
the line is less thand, the vertex can be deleted.

It is not always desirable to retain feature edges. For
example, meshes may contain areas of relatively small trian-
gles with large feature angles, contributing relatively little to
the geometric approximation. Or, the small triangles may be
the result of “noise” in the original mesh. In these situations,
corner vertices, which are usually not deleted, and interior
edge vertices, which are evaluated using the distance to
edge criterion, may be evaluated using the distance to plane
criterion. We call this edge preservation, a user specifiable
parameter.

If a vertex can be eliminated, the loop created by remov-
ing the triangles using the vertex must be triangulated. For
interior edge vertices, the original loop must be split into

two halves, with the split line connecting the vertices form-
ing the feature edge. If the loop can be split in this way, i.e.,
so that resulting two loops do not overlap, then the loop is
split and each piece is triangulated separately.

2.4 TRIANGULATION

Deleting a vertex and its associated triangles creates one
(simple or boundary vertex) or two loops (interior edge ver-
tex). Within each loop a triangulation must be created
whose triangles are non-intersecting and non-degenerate. In
addition, it is desirable to create triangles with good aspect
ratio and that approximate the original loop as closely as
possible.

In general it is not possible to use a two-dimensional
algorithm to construct the triangulation, since the loop is
usually non-planar. In addition, there are two important
characteristics of the loop that can be used to advantage.
First, if a loop cannot be triangulated, the vertex generating
the loop need not be removed. Second, since every loop is
star-shaped, triangulation schemes based on recursive loop
splitting are effective. The next section describes one such
scheme.

Once the triangulation is complete, the original vertex and
its cycle of triangles are deleted. From the Euler relation it
follows that removal of a simple, corner, or interior edge
vertex reduces the mesh by precisely two triangles. If a
boundary vertex is deleted then the mesh is reduced by pre-
cisely one triangle.

3.0 IMPLEMENTATION

3.1 DATA STRUCTURES

The data structure must contain at least two pieces of infor-
mation: the geometry, or coordinates, of each vertex, and
the definition of each triangle in terms of its three vertices.
In addition, because ordered lists of triangles surrounding a
vertex are frequently required, it is desirable to maintain a
list of the triangles that use each vertex.

Although data structures such as Weiler’s radial edge or
Baumgart’s winged-edge data structure can represent this
information, our implementation uses a space-efficient ver-
tex-triangle hierarchical ring structure. This data structure
contains hierarchical pointers from the triangles down to the
vertices, and pointers from the vertices back up to the trian-
gles using the vertex. Taken together these pointers form a
ring relationship. Our implementation uses three lists: a list
of vertex coordinates, a list of triangle definitions, and
another list of lists of triangles using each vertex. Edge defi-
nitions are not explicit, instead edges are implicitly defined
as ordered vertex pairs in the triangle definition.

3.2 TRIANGULATION

Although other triangulation schemes can be used, we chose
a recursive loop splitting procedure. Each loop to be trian-
gulated is divided into two halves. The division is along a
line (i.e., the split line) defined from two non-neighboring
vertices in the loop. Each new loop is divided again, until
only three vertices remain in each loop. A loop of three ver-

d

average plane

d

boundary

tices forms a triangle, that may be added to the mesh, and
terminates the recursion process.

Because the loop is non-planar and star-shaped, the loop
split is evaluated using a split plane. The split plane, as
shown in the figure below, is the plane orthogonal to the
average plane that contains the split line. In order to deter-
mine whether the split forms two non-overlapping loops,
the split plane is used for a half-space comparison. That is,
if every point in a candidate loop is on one side of the split
plane, then the two loops do not overlap and the split plane
is acceptable. Of course, it is easy to create examples where
this algorithm will fail to produce a successful split. In such
cases we simply indicate a failure of the triangulation pro-
cess, and do not remove the vertex or surrounding triangle
from the mesh.

Typically, however, each loop may be split in more than
one way. In this case, the best splitting plane must be
selected. Although many possible measures are available,
we have been successful using a criterion based on aspect
ratio. The aspect ratio is defined as the minimum distance of
the loop vertices to the split plane, divided by the length of
the split line. The best splitting plane is the one that yields
the maximum aspect ratio. Constraining this ratio to be
greater than a specified value,.e.g., 0.1, produces acceptable
meshes.

Certain special cases may occur during the triangulation
process. Repeated decimation may produce a simple closed
surface such as a tetrahedron. Eliminating a vertex in this
case would modify the topology of the mesh. Another spe-
cial case occurs when “tunnels” or topological holes are
present in the mesh. The tunnel may eventually be reduced
to a triangle in cross section. Eliminating a vertex from the
tunnel boundary then eliminates the tunnel and creates a
non-manifold situation.

These cases are treated during the triangulation process.
As new triangles are created, checks are made to insure that
duplicate triangles and triangle edges are not created. This
preserves the topology of the original mesh, since new con-
nections to other parts of the mesh cannot occur.

4.0 RESULTS

Two different applications illustrate the triangle decimation
algorithm. Although each application uses a different
scheme to create an initial mesh, all results were produced
with the same decimation algorithm.

4.1 VOLUME MODELING

The first application applies the decimation algorithm to
isosurfaces created from medical and industrial computed
tomography scanners.Marching cubeswas run on a 256 by
256 pixel by 93 slice study. Over 560,000 triangles were
required to model the bone surface. Earlier work reported a
triangle reduction strategy that used averaging to reduce the
number of triangles on this same data set. Unfortunately,
averaging applies uniformly to the entire data set, blurring

split plane

average plane

split line

Full Resolution
(569K Gouraud shaded triangles)

75% decimated
(142K Gouraud shaded triangles)

75% decimated
(142K flat shaded triangles)

90% decimated
(57K flat shaded triangles)

high frequency features. The first set of figures shows the
resulting bone isosurfaces for 0%, 75%, and 90% decima-
tion, using a decimation threshold of 1/5 the voxel dimen-
sion. The next pair of figures shows decimation results for
an industrial CT data set comprising 300 slices, 512 by 512,
the largest we have processed to date. The isosurface cre-
ated from the original blade data contains 1.7 million trian-
gles. In fact, we could not render the original model because
we exceeded the swap space on our graphics hardware.
Even after decimating 90% of the triangles, the serial num-
ber on the blade dovetail is still evident.

4.2 TERRAIN MODELING

We applied the decimation algorithm to two digital eleva-
tion data sets: Honolulu, Hawaii and the Mariner Valley on
Mars. In both examples we generated an initial mesh by cre-
ating two triangles for each uniform quadrilateral element in
the sampled data. The Honolulu example illustrates the
polygon savings for models that have large flat areas. First
we applied a decimation threshold of zero, eliminating over
30% of the co-planar triangles. Increasing the threshold
removed 90% of the triangles. The next set of four figures
shows the resulting 30% and 90% triangulations. Notice the
transitions from large flat areas to fine detail around the
shore line.

The Mars example is an appropriate test because we had
access to sub-sampled resolution data that could be com-
pared with the decimated models. The data represents the
western end of the Mariner Valley and is about 1000km by
500km on a side. The last set of figures compares the shaded
and wireframe models obtained via sub-sampling and deci-
mation. The original model was 480 by 288 samples. The
sub-sampled data was 240 by 144. After a 77% reduction,
the decimated model contains fewer triangles, yet shows
more fine detail around the ridges.

5.0 REFERENCES

[1] Baumgart, B. G., “Geometric Modeling for Computer Vision,”
Ph.D. Dissertation, Stanford University, August 1974.

[2] Bloomenthal, J., “Polygonalization of Implicit Surfaces,”Com-
puter Aided Geometric Design, Vol. 5, pp. 341-355, 1988.

[3] Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., and
Teeter, B. C., “Two Algorithms for the Three Dimensional Con-
struction of Tomograms,”Medical Physics, Vol. 15, No. 3, pp.
320-327, June 1988.

[4] DeHaemer, M. J., Jr. and Zyda, M. J., “Simplification of Objects
Rendered by Polygonal Approximations,”Computers &
Graphics, Vol. 15, No. 2, pp 175-184, 1992.

[5] Dunham, J. G., “Optimum Uniform Piecewise Linear Approx-
imation of Planar Curves,”IEEE Trans. on Pattern Analysis
and Machine Intelligence, Vol. PAMI-8, No. 1, pp. 67-75, Jan-
uary 1986.

[6] Finnigan, P., Hathaway, A., and Lorensen, W., “Merging CAT
and FEM,”Mechanical Engineering, Vol. 112, No. 7, pp. 32-
38, July 1990.

[7] Fowler, R. J. and Little, J. J., “Automatic Extraction of Irregular
Network Digital Terrain Models,”Computer Graphics, Vol. 13,
No. 2, pp. 199-207, August 1979.

[8] Ihm, I. and Naylor, B., “Piecewise Linear Approximations of
Digitized Space Curves with Applications,” inScientific Visu-
alization of Physical Phenomena, pp. 545-569, Springer-Ver-
lag, June 1991.

[9] Kalvin, A. D., Cutting, C. B., Haddad, B., and Noz, M. E.,
“Constructing Topologically Connected Surfaces for the Com-

prehensive Analysis of 3D Medical Structures,”SPIE Image
Processing, Vol. 1445, pp. 247-258, 1991.

[10] Lorensen, W. E. and Cline, H. E., “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,”Computer
Graphics, Vol. 21, No. 3, pp. 163-169, July 1987.

[11] Miller, J. V., Breen, D. E., Lorensen, W. E., O’Bara, R. M., and
Wozny, M. J., “Geometrically Deformed Models: A Method
for Extracting Closed Geometric Models from Volume Data,”
Computer Graphics, Vol. 25, No. 3, July 1991.

[12] Preparata, F. P. and Shamos, M. I.,Computational Geometry,
Springer-Verlag, 1985.

[13] Schmitt, F. J., Barsky, B. A., and Du, W., “An Adaptive Subdi-
vision Method for Surface-Fitting from Sampled Data,”Com-
puter Graphics, Vol. 20, No. 4, pp. 179-188, August 1986.

[14] Schroeder, W. J., “Geometric Triangulations: With Application
to Fully Automatic 3D Mesh Generation,” PhD Dissertation,
Rensselaer Polytechnic Institute, May 1991.

[15] Terzopoulos, D. and Fleischer, K., “Deformable Models,”The
Visual Computer, Vol. 4, pp. 306-311, 1988.

[16] Turk, G., “Re-Tiling of Polygonal Surfaces,”Computer Graph-
ics, Vol. 26, No. 3, July 1992.

[17] Weiler, K., “Edge-Based Data Structures for Solid Modeling
in Curved-Surface Environments,”IEEE Computer Graphics
and Applications, Vol. 5, No. 1, pp. 21-40, January 1985.

75% decimated
(425K flat shaded triangles)

90% decimated
(170K flat shaded triangles)

32% decimated
(276K flat shaded triangles)

32% decimated
(shore line detail, wireframe)

90% decimated
(40K Gouraud shaded triangles)

90% decimated
(40K wireframe)

Sub-sampled
(68K Gouraud shaded triangles)

Sub-sampled
(68K wireframe)

77% decimated
(62K Gouraud shaded triangles)

77% decimated
(62K wireframe)

