Peer-to-Peer Support of
Massively Multiplayer Games

Bjorn Knutsson
Honghui Lu
Wei Xu

Byan Hopkins

Presented by: Darcy Lien
Mark McElhinney

Outline

Introduction

Overview of Massively Multiplayer Games
Current Multiplayer Infrastructure
Peer-to-Peer Infrastructure

Distributed Game Design

Distributed Game on A P2P Overlay
Implementation Detalls

Experimental Results

Introduction

Propose the use of peer-to-peer (P2P)
overlays to support massively multi-player
games (MMGs) on the Internet.

Exploits the fact that players in MMGs
display locality of interest

Can form self-organizing groups
Implemented a simple game called
SimMud to experiment with

Up to 4000 players

Problems to Consider

Every massively multiplayer online game
must consider:

Performance — updates must be propagated
under time constraints, limited bandwidth an
ISsue

Availability — whether the “model” or game
state be accessed at all times

Security — prevention of account thefts,
cheating etc (Clinton and Terry will discuss this)

Security

P2P design prevents account theft by
centralizing account management at the

server

Separate issue from the basic
performance and availability of P2P

gaming.

Overview of Massively Multiplayer Games

Allows thousands of players to share a
single game world.

Typically MMGs are role-playing

games(RPG) or real-time strategy
(RTS/RPG).

Ex. EverQuest, Utlima, World of Warcraft, Sims
Online

Overview of Massively Multiplayer Games

Game States
Immutable landscape information (the Terrain)
Characters controlled by players (PCs)
Mutable objects such as food, tools, weapons
Mutable landscape (e.g. breakable windows)
Non-player characters (NPCs)

Overview of Massively Multiplayer Games

Players are allowed three types of actions
Position change

Player-object interaction

Player-Player interaction

Resulting world is huge
Divided into regions connected with each other

Generally each region is hosted by its own
server

Current Multiplayer Infrastructure

Traditionally supported by a client-server
architecture

Scalability is achieved by deploying server
clusters

Players connect to centralized server

Server responsible for maintaining and
distributing game state

Also handles account management

Current Multiplayer Infrastructure

A typical single machine server can
support 2000 to 6000 concurrent clients

A cluster solution supports up to 32,000
players.

Peer-to-Peer Infrastructure

P2P overlays provide the functionality of a
scalable distributed hash table

Reliably mapping object keys to a unique live
network node

Built SimMud on top of the Pastry P2P
overlay and Scribe Application level
Multicast Infrastructure

Peer-to-Peer Infrastructure - Pastry

Objects and Nodes mapped to random,
uniformly distributed Ids

Objects mapped to node with numerically
closest ID

Mapping procedure uses binary tree to index
the hash table

Message routed to destination node In
Log,a,N b = height of tree, N = # of nodes
steps

Distributed Game Design

Distribute the transient game state P2P

Persistent information (payment info,
character experience) handled by central
server

Delegate bandwidth and game state
management to clients, while maintaining
control over persistent game state

Distributed Game Design

Partition the game world
Interest management determines partitioning
Players in same region form interest group of that region

Region 3
IH
Hllln.l.fl‘ .
! .' |

l_- b . Diir sl ceams (B0
& rood T
Ry ® Region 1

¥ o

Fig. 1. Game Design

Distributed Game Design

Game State Consistency
Split into Player state, Object state, Map

Player state — Position is multicast at a fixed
Interval to all other players in the region

Object state — Each object is assigned a
coordinator that maintains and distributes its
state (Coordinators discussed later)

Map — Distributed with the client software,
updated using a software update mechanism

Distributed Game on P2P Overlay

Based on Pastry and Scribe

Mapping game states to peers
Each region is assigned an ID

Live node with closest ID serves as the
coordinator for that region

Random mapping means coordinator not likely
to be member of the region

Distributed Game on P2P Overlay

Fault-tolerance problem
Clients may crash or disconnect at random
Must have replicas of games states

We assume:
Node failures are independent
Failure frequency is relatively low
Messages will be routed to the correct node

Distributed Game on P2P Overlay

Shared state replication

Failures are detected using regular game
events

Dynamically replicate the coordinator once a
failure Is detected

At least one replica is kept under all circumstances to
prevent losses.

To cope with higher frequency failures it can be
extended to multiple replicas

Failure and replication use P2P communication
to route messages to the closest Node 1D

Implementation Detalls

Uses SimMud on top of FreePastry (java)

Map and Objects

Each region is described by a 2D array of
terrain information

An object array tracks one kind of mutable
object, food, modeled by the game

A player object handles the player’s current
position and other states

Players can perform moving, eating, and
fighting

Implementation Detalls

Inter-Player Interaction

Inter-player interactions are implemented with
direct UDP messages.

All actions are executed on all participating
parties with the same input algorithm and the
results are exchanged for comparison

The coordinator Is used as an arbiter where
event ordering Is important

Implementation Detalls

Object Updates

Initialization are implemented trivially by
sending the object and value to the coordinator

For read-write updates, the update Is only valid
If the current actual values matches the client’s
cached value

Requests for read-writes are keep in a queue for the
coordinate to process the requests in order.

Experiment Results

Implemented entirely in Java

Used Pastry’s network emulator to
simulate various number of players

Players eat and fight every 20 seconds
Remain in a region for 40 seconds

Position updates every 150 millisec by
multicast

Experiment Results

Number of Nodes 1000 1000 | 4000 | 4000 1000 1000 1000
Number of Regions 100 100 400 400 25 25 100
Message Aggregation Yes No Yes No Yes No Yes
Failure (node(s) per sec) 0 0 0 0 0 0 l
Total Messages Average 2412 | 8217 | 2098 | 8212 | 2658 | 283.13 | 2432
Max 20062 | 11557 | 21604 | 12508 | 38311 | 34171 | 221.38
Average Application Messages || 14.76 | 8184 | 1473 | 817 746 | 282.81 | 13
Average Position Updates 1334 | 8033 | 1334 | 8018 | 1334 | 27889 | 1331
Object Update Average (.83 0.84 0.93 (.95 231 2.28 .07
Messages Maxy 8.24 1.82 [1.31 1075 | 1392 | 1442 | 1348
TABLE |

BREAKDOWN OF MESSAGE RATE BY FUNCTIONALITIES.

Experiment Results

Position updates take up the majority of
the messages

Region changes take most bandwidth

Message rate of object updates higher
then player-player updates

Conclusions

Measurements with up to 4000 players show
that SimMud scales with the number of players

The average message delay of 150ms can be
easlily tolerated by MMGs

he bandwidth requirement on a peer is
/.2KB/sec on avg. and peaks to 22.34KB/sec

Can sustain a practical failure rate for up to 20
hrs, exceeding the game interval for refreshing
games

