
Peer-to-Peer Support of
Massively Multiplayer Games

Bjorn Knutsson
Honghui Lu

Wei Xu
Byan Hopkins

Presented by: Darcy Lien
Mark McElhinney

Outline

� Introduction
�Overview of Massively Multiplayer Games
�Current Multiplayer Infrastructure
�Peer-to-Peer Infrastructure
�Distributed Game Design
�Distributed Game on A P2P Overlay
� Implementation Details
�Experimental Results

Introduction

�Propose the use of peer-to-peer (P2P)
overlays to support massively multi-player
games (MMGs) on the Internet.

�Exploits the fact that players in MMGs
display locality of interest
�Can form self-organizing groups

� Implemented a simple game called
SimMud to experiment with
�Up to 4000 players

Problems to Consider

�Every massively multiplayer online game
must consider:
�Performance – updates must be propagated

under time constraints, limited bandwidth an
issue

�Availability – whether the “model” or game
state be accessed at all times

�Security – prevention of account thefts,
cheating etc (Clinton and Terry will discuss this)

Security

�P2P design prevents account theft by
centralizing account management at the
server

�Separate issue from the basic
performance and availability of P2P
gaming.

Overview of Massively Multiplayer Games

�Allows thousands of players to share a
single game world.

�Typically MMGs are role-playing
games(RPG) or real-time strategy
(RTS/RPG).
�Ex. EverQuest, Utlima, World of Warcraft, Sims

Online

Overview of Massively Multiplayer Games

�Game States
�Immutable landscape information (the Terrain)
�Characters controlled by players (PCs)
�Mutable objects such as food, tools, weapons
�Mutable landscape (e.g. breakable windows)
�Non-player characters (NPCs)

Overview of Massively Multiplayer Games

�Players are allowed three types of actions
�Position change
�Player-object interaction
�Player-Player interaction

�Resulting world is huge
�Divided into regions connected with each other
�Generally each region is hosted by its own

server

Current Multiplayer Infrastructure

�Traditionally supported by a client-server
architecture

�Scalability is achieved by deploying server
clusters

�Players connect to centralized server
�Server responsible for maintaining and

distributing game state
�Also handles account management

Current Multiplayer Infrastructure

�A typical single machine server can
support 2000 to 6000 concurrent clients

�A cluster solution supports up to 32,000
players.

Peer-to-Peer Infrastructure

�P2P overlays provide the functionality of a
scalable distributed hash table
�Reliably mapping object keys to a unique live

network node
�Built SimMud on top of the Pastry P2P

overlay and Scribe Application level
Multicast Infrastructure

Peer-to-Peer Infrastructure - Pastry

�Objects and Nodes mapped to random,
uniformly distributed Ids
�Objects mapped to node with numerically

closest ID
�Mapping procedure uses binary tree to index

the hash table
�Message routed to destination node in

Log2^bN b = height of tree, N = # of nodes

steps

Distributed Game Design

�Distribute the transient game state P2P
�Persistent information (payment info,

character experience) handled by central
server

�Delegate bandwidth and game state
management to clients, while maintaining
control over persistent game state

Distributed Game Design

� Partition the game world
� Interest management determines partitioning
�Players in same region form interest group of that region

Distributed Game Design

�Game State Consistency
�Split into Player state, Object state, Map
�Player state – Position is multicast at a fixed

interval to all other players in the region
�Object state – Each object is assigned a

coordinator that maintains and distributes its
state (Coordinators discussed later)

�Map – Distributed with the client software,
updated using a software update mechanism

Distributed Game on P2P Overlay

�Based on Pastry and Scribe
�Mapping game states to peers

�Each region is assigned an ID
�Live node with closest ID serves as the

coordinator for that region
�Random mapping means coordinator not likely

to be member of the region

Distributed Game on P2P Overlay

�Fault-tolerance problem
�Clients may crash or disconnect at random
�Must have replicas of games states
�We assume:

�Node failures are independent
�Failure frequency is relatively low
�Messages will be routed to the correct node

Distributed Game on P2P Overlay

�Shared state replication
� Failures are detected using regular game

events
�Dynamically replicate the coordinator once a

failure is detected
�At least one replica is kept under all circumstances to

prevent losses.
�To cope with higher frequency failures it can be

extended to multiple replicas
�Failure and replication use P2P communication

to route messages to the closest Node ID

Implementation Details

Uses SimMud on top of FreePastry (java)
�Map and Objects

�Each region is described by a 2D array of
terrain information

�An object array tracks one kind of mutable
object, food, modeled by the game

�A player object handles the player’s current
position and other states

�Players can perform moving, eating, and
fighting

Implementation Details

� Inter-Player Interaction
�Inter-player interactions are implemented with

direct UDP messages.
�All actions are executed on all participating

parties with the same input algorithm and the
results are exchanged for comparison

�The coordinator is used as an arbiter where
event ordering is important

Implementation Details

�Object Updates
�Initialization are implemented trivially by

sending the object and value to the coordinator
�For read-write updates, the update is only valid

if the current actual values matches the client’s
cached value
�Requests for read-writes are keep in a queue for the

coordinate to process the requests in order.

Experiment Results

� Implemented entirely in Java
�Used Pastry’s network emulator to

simulate various number of players
�Players eat and fight every 20 seconds
�Remain in a region for 40 seconds
�Position updates every 150 millisec by

multicast

Experiment Results

Experiment Results

�Position updates take up the majority of
the messages

�Region changes take most bandwidth
�Message rate of object updates higher

then player-player updates

Conclusions

�Measurements with up to 4000 players show
that SimMud scales with the number of players

�The average message delay of 150ms can be
easily tolerated by MMGs

�The bandwidth requirement on a peer is
7.2KB/sec on avg. and peaks to 22.34KB/sec

�Can sustain a practical failure rate for up to 20
hrs, exceeding the game interval for refreshing
games

