
Java 3D – Texture Mapping

Winter 2003

Texture Mapping Models

� Geometry Model
Model the details of every 3D shape in our graph scene, but this
requires a substantial modeling effort. The more shapes we have
the more things to draw

� Image Model
Create the illusion of geometry details by taking a picture of the
"real image”, and then attaching the image onto a simple 3D
geometry. The benefits of this approach is that realism is increased
without having to draw a large amount of geometry objects

Texture Mapping

Appearance Object

� We recall that the Appearance object is a container for
several visual attributes of a 3D shape:
� Coloring Attributes
� Transparency Attributes
� Rendering Control
� Point Attributes
� Line Attributes
� Polygon Attributes
� Rendering Attributes
� Texture Control
� Texture
� Texture Attributes
� Text Coordinate Generation

Texture Mapping

Describing 3D Geometry for Texture Mapping

� NodeComponent
� Super class for Geometry and Appearance classes
� GeometryArray class and its subclasses consists of separate

arrays of coordinates, normals, RGB and RGBA colors and texture
coordinates

� Appearance objects may specify color, texture parameters, culling,
and shading

� GeometryArray Methods:
� GeometryArray(int vertexCount, int vertexFormat)
Vertex format is a mask indicating what is present in each vertex:
COORDINATES, NORMALS, COLOR_3 or COLOR_4,
TEXTURE_COORDINATE_2 or TEXTURE_COORDINATE_3

Texture Mapping

Describing 3D Geometry for Texture Mapping

� GeometryArray Methods:
� final int getVertexCount()
� final int getVertexFormat()
� final void setCoordinate(...)
� final void setCoordinates(...)
� final void setColor(...)
� final void setColors(...)
� final void setNormal(...)
� final void setNormals(...)
� final void setTextureCoordinates(...)

Texture Mapping

Texture Appearance Attributes

� Texture appearance attributes are divided among several
node components:

� Texture: Allows the selection of a texture image and controls
basic mapping attributes

� TextureAttributes: Controls advanced mapping attributes

� TexCoordGeneration: Automatically generates texture coordinates
unless user defined coordinates are provided

Texture Mapping

Specify Geometry and Texture Coordinates

Sample Code

� 1. QuadArray plane = new QuadArray(4, GeometryArray.COORDINATES
� 2. | GeometryArray.TEXTURE_COORDINATE_2);
� 3. Point3f p = new Point3f();
� 4. p.set(-1.0f, 1.0f, 0.0f);
� 5. plane.setCoordinate(0, p);
� 6. p.set(-1.0f, -1.0f, 0.0f);
� 7. plane.setCoordinate(1, p);
� 8. p.set(1.0f, -1.0f, 0.0f);
� 9. plane.setCoordinate(2, p);
� 10. p.set(1.0f, 1.0f, 0.0f);
� 11. plane.setCoordinate(3, p);
� 12.
� 13. TexCoord2f q = new TexCoord2f();
� 14. q.set(0.0f, 1.0f);
� 15. plane.setTextureCoordinate(0, 0, q);
� 16. q.set(0.0f, 0.0f);
� 17. plane.setTextureCoordinate(0, 1, q);
� 18. q.set(1.0f, 0.0f);
� 19. plane.setTextureCoordinate(0, 2, q);
� 20. q.set(1.0f, 1.0f);
� 21. plane.setTextureCoordinate(0, 3, q);

Texture Objects

� Texture is the base class for two node components that
select the image to use
� Texture2D: a standard 2D image
� Texture3D: a 3D volume of images

� Texture2D and Texture3D Methods:
� Texture2D(): Default constructor
� Texture3D(): Default constructor
� void setImage(int level, ImageComponent2D image): Select mip-

map level and which image to use
� void setEnable(boolean onOff): Set texture mapping on or off

Texture Mapping

Texture Loader

� Getting a texture map requires:
� A file to load from disk or network using a URL
� A TextureLoader object to load the file
� An ImageComponent to hold the loaded image in memory, which

in turn uses a standard BufferedImage object

� ImageComponent:
� Base class for two image containers

� ImageComponent2D: Holds a 2D image
� ImageComponent3D: Holds a 3D volume of images

� Used for Background or Texture objects
� Can utilize java.awt.Image.BufferedImage object

Texture Mapping

Texture Loader

� ImageComponent2D and 3D Methods:
� ImageComponent2D(int format, BufferedImage image): Default

2D constructor

� ImageComponent3D(int format, BufferedImage image): Default
3D constructor

� final int getWidth(): Get image width

� final int getHeight(): Get image height

� final int getDepth(): Get image depth. Used for 3D images only

� final int getFormat(): Get internal pixel format. Image component
has support for several internal pixel formats

� final void set(Image): Set the image buffer essentially copies the
buffered image into the object

Texture Mapping

Adding a Texture Map

� Adding a texture map to a 3D shape can be done in 4
steps:

� Load an image from local storage or the network using a Texture
Loader object into a Component Image object

� Create a Texture2D object using the Component Image loaded
into memory

� Create an Appearance object and place the texture map into it

� Assemble a shape object by attaching the geometry and the
appearance object into it

Texture Mapping

Texture2D Example

Void createTexture() {
// load a texture image from disk
TextureLoader myLoader = new TextureLoader(”Earth.jpg”);
ImageComponent2D myImage = myLoader.getImage();

// create a Texture2D using the image loaded
Texture2D myTexture = new Texture2D();
myTexture.setImage(0, myImage);

// create an Appearance object and place the texture map into it
Appearance myAppearance = new Appearance();
myAppearance.setTexture(myTexure);

// assemble the shape object by attaching the geometry and appearance object into
it

Shape3D myShape = new Shape3D(myGeometry, myAppearance);
}

Texture Mapping

Appendix: J3DTexture Example

Texture Mapping

