
Java 3D 1

Java 3D API
Applet or Application

Java 3D

Java 2

Native Graphics Calls

Hardware Graphics System

OpenGL Direct3D future API

High level graphics
programming interface

Scene graph based
graphics universe
Java threads for parallel
rendering

100+ classes in
Java 3D core library
javax.media.j3d package

Java 3D utility package com.sun.j3d.utils

Use other Java libraries (Swing, AWT) and capabilities (url class for
networking, multimedia classes etc.)

Notes adapted from Sun’s j3d_tutorial.pdf (in vrlab or sunsoft.com)

Java 3D 2

Basic
Scene
Graph

VirtualUniverse

Locale

BG BG

TGS

Appearance

View Platform

View

Physical
Environment

Physical
Body

Canvas 3D

Screen 3D

Node Components

Shape 3D
node

BranchGroup
Nodes

TransformGroup
Node

leaf nodes

parent / child

references

Geometry

The Virtual Universe and View Platform

Java 3D 3

Scene graph is a DAG -- there is one path from the locale to a leaf
nodepath describes how the leaf is rendered.

Writing a Java 3D Program
1 create a Canvas3D
2 create a VirtualUniverse
3 create a Locale object, attach to VirtualUniverse
4 construct a view branch graph

a create View object
b create ViewPlatform
c create a PhysicalBody
d create a PhysicalEnvironment
e attach ViewPlatform, PhysicalBody,

PhysicalEnvironment, Canvas3D to View
5 construct content branch graph
6 compile branch graph
7 insert subgraphs into Locale

Java 3D 4

BG

S

Appearance Geometry

Node Components

Shape 3D
node

SimpleUniverse

SimpleUniverse -- convenience, beginning
ignore view branch graph.
no multiple views of universe

Writing a SimpleUniverse program

1 create a Canvas3D
2 create a SimpleUniverse that

references Canvas3D
a customize SimpleUniverse

3 construct content branch
4 compile content graph
5 insert content branch into Locale

of SimpleUniverse

Java 3D 5SimpleUniverse methods
SimpleUniverse()
SimpleUniverse(Canvas3D canvas3D) // references canvas3D
void addBranchGraph(BranchGroup gb) // add content to Locale

BranchGroup methods
void compile() // compiles branch group facilitates rendering

ViewingPlatform methods
ViewingPlatform getViewPlatform() // retrieve viewplatform
void setNorminalViewingTransform() // move back to see world

Inserting a branch graph into a Locate makes it live and it will be
rendered.

All modifications to branch graph should be done before it becomes live.

Compiling allows Java3D to optimize branch graph once rather than
every render loop cycle

Java 3D 6

Rend loop begins when a branch group with an instance of View
becomes live.

while (true) {
process input
if (request to exit) break render loop

perform behaviors
traverse scene graph and render visual objects

}
cleanup and exit

Example world: adapted from Sun’s j3d_tutorial.pdf (on vrlab systems)

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.ColorCube;
import com.sun.j3d.utils.universe.*;
import javax.media.j3d.*;

Java 3D 7public class HelloJava extends Applet {
public HelloJava() {

setLayout (new BorderLayout());
Canvas3D canvas3D = new Canvas3D(null);
add(“Center”, canvas3D);
BranchGroup scene = createSceneGraph();
scene.compile();
SimpleUniverse sU = new SimpleUniverse(Canvas3D);
// move viewplatform back
sU.getViewingPlatform().setNominalViewingTransform();
sU.addBranchGraph(scene);
}

public BranchGroup createSceneGraph() {
BranchGroup root = new BranchGroup();
// ColorCube convenience shape, different colored sides
root.addChild(new ColorCube(0.4));
return root;
};

// run as applet or application
public static void main (String[] args) {

Frame frame = new MainFrame(new HelloJava(), 256, 256);
}

}

Java 3D 8Adding Transformation

Transform3D object is used to specify the transformation of a
TransformGroup object.

Transform3D() // identity matrix
TransformGroup(Transform3D t3d) // construct with t3d
setTransform(Transform3D t3d) // set to t3d

numerous matrix, vector, point3D classes in javax.vecmath.*
i.e.: rotX(double radian), set(Vector3f translate), Math.PI

public BranchGroup createSceneGraph() {
BranchGroup objRoot = new BranchGroup();
Transform3D r1 = new Transform3D(), r12 = new Transform3D();
r1.rotX(Math.PI/4.0d); r2.rotY(Math.PI/5.0d);
r1.mul(r2);
TransformGroup objRotated = new TransformGroup(r1);
objRotated.addChild(new ColorCube(0.4));
objRoot.addChild(objRotated)
return objRoot:
}

ColorCube

BG

TG

The basic concept of Behavior

• Behavior is a class for specifying animations of or
interaction with visual objects.

• The distinction between animation and interaction is
whether the behavior is activated in response to the passing
of time or in response to user activities, respectively.

• To specify a behavior for a visual object, the programmer
creates the objects that specify the behavior, adds the
visual object to the scene graph, and making the
appropriate references among scene graph objects and the
behavior objects

Scheduling region and activation volume

• In a virtual universe with many behaviors, a significant amount of
computing power could be required just for computing the behaviors.
Since both the renderer and behaviors use the same processor(s), it is
possible the computational power requirement for behaviors could
degrade rendering performance.

• Java 3D allows the programmer to manage this problem by specifying
a spatial boundary for a behavior to take place. This boundary is called
a scheduling region. A behavior is not active unless the
ViewPlatform’s activation volume intersects a Behavior object’s
scheduling region. In other words, if there is no one in the forest to see
the tree falling, it does not fall. The scheduling region feature makes
Java 3D more efficient in handling a virtual universe with many
behaviors.

Java 3D 9

Branch graphs can’t be changed once live (or compiled) unless their
capabilities are set for modification (prior to becoming live).

void setCapability(int bit)
ALLOW_TRANSFORM_READ can read values
ALLOW_TRANSFORM_WRITE can write values

Behavior class specifies animations or interactions with visual objects.
animations are activated by passing of time
interactions are activated by user activities

Many behaviors can affect performance.

Behaviors can be limited by a proximity test.
Behaviors have scheduling regions (bounding boxes or spheres)

Behaviors w/ scheduling regions are active only when they
intersect with ViewPlatform’s activation volume

Interpolator objects can manipulate behaviors in scene graph based on a
time function.

Java 3D 10

Interpolator objects can manipulate behaviors in scene graph based on a
time function.

Alpha class generates values 0 to 1 depending on parameters
Alpha(); // continuous loop 1 second period
Alpha(int loopCount, long periodDuration); // in milliseconds

loopCount == -1 repeats

public BranchGroup createSceneGraph() {
BranchGroup objRoot = new BranchGroup();
TransformGroup spin = new TransformGroup();
spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
objRoot.addChild(spin);
spin.addChild(new ColorCube, 0.4));
Alpha rotation = new Alpha(-1, 4000);
RotationInterpolator rotator =

new RotationInterpolator(rotation, spin);
BoundingSphere bounds = new BoundingSphere();
rotator.setSchedulingBounds(bounds);
spin.addChild(rotator);
return objRoot
}

ColorCube

BG

TGB

Java 3D 11

Geometry

Shape3D() // no geometry or appearance node components
Shape3D(Geometry geometry)
Shape3D(Geometry geometry, Appearance appearance)

before a Shape3D is live or compiled
void setGeometry(Geometry geom)
void setAppearance(Appearance appear)

after live or compiled need to set capability bits to enable changes
ALLOW_GEOMETRY_READ | WRITE
ALLOW_APPEARANCE_READ | WRITE
ALLOW_COLLISION_BOUNDS_READ | WRITE

Java 3D 12

SceneGraphObj

NodeComponent

Node

Appearance

Geometry

Material

Texture

Attributes *

Group

Leaf

Fog

Light

Morph

Shape3D

Sound

ViewPlatform

Background

Behavior

* many subclasses of attribute

Java 3D 13Application class definition “psuedocode”

public class VisualObject {
private Transform3D voTransform;
private Shape3D voShape3d;
private Geometry voGeometry;
private Appearance voAppearance;

public visualObject(Transform3D t,Geometry g, Appearance a) {
voTransform = new Transform3D(t);
voGeometry = new Geometry(g);
voAppearance = new Appearance(a);
voShape3d = new Shape3D(voGeometry, voAppearance);
voShape3D.setCapability(ALLOW_GEOMETRY_READ |

ALLOW_GEOMETRY_WRITE | ALLOW_APPEARANCE_READ |
ALLOW_APPEARANCE_WRITE);

setTransform(voTransform);
voTransform.setCapability(ALLOW_TRANSFORM_READ |

ALLOW_TRANSFORM_WRITE)
voTransform.addChild(voShape3D);
}

// ... numerous set and get methods
}

Java 3D 14Geometry utility classes: box, cone, cylinder, sphere

Categories of Geometry are: non - indexed, indexed, and other
non-indexed vertices are used once
indexed vertices are re-used.

Geometry

GeometryArray

LineArray

PointArray

QuadArray

TriangleArray

GeometryStripArray

LineStripArray

TraingleStripArray

TriangleFanArray

IndexedGeometryArray

Indexed*Array

IndexedGeometryStripArray

Indexed*StripArray

Java 3D 15
Appearance

Defines all rendering state attributes.
Appearance() constructs a default Appearance object

color: white (1,1,1)
texture environment mode: TEXENV_REPLACE
texture environment color: white(1,1,1)
depth test enable: true
shade model: SHADE_SMOOTH
polygon mode: POLYGON_FILL
transparency enable: false
transparency mode: FASTEST
cull face: CULL_BACK
point size: 1.0
line width: 1.0
line pattern: PATTERN_SOLID
point antialiasing enabled: false
line antialiasing enabled: false

Java 3D 16

There are set* and get* methods for all attributes
Changeable attributes must be set w/ a setCapability(flag)

For example:
setCapability(ALLOW_COLOR_READ | ALLOW_COLOR_WRITE)
ColoringAttribute(Color3f color, int shadeModel)
or
ColoringAttribute(float r, float g, float b, int shade)
or
setColor(Color3f color)
setShadeModel(SHADE_GOURAUD) // _FLAT _NICEST _FASTEST

Light Nodes
AmbientLight, default light, reflective surface, SimpleUniverse
DirectionalLight, PointLight, SpotLight

Sound Nodes
BackgroundSound (unattenuated), PointSound (radiates
uniformly), ConeSound (directed), SoundScape (reverb, air...)

Java 3D 17Example Geometry, Appearance

Axis.java su

contentBG

rotatorRI axisTG background

edgeTG

cylinder

appear

edgeBG

appear

cone

edgeTG edgeTG

coneTG

Graphics primitives Cylinder
and Cone.

ambient

Java 3D 18

Input, Behavior and Picking

Java3D has access to keyboards and mice using the Java API.

Java3D also provides access to continuous input devices, 6 DOF
trackers and joysticks via an abstract InputDevice Interface.

InputDevice or sensors must be implemented for actual devices.

Input data from the sensor data can be read and processed.

Behavior nodes contain:
a scheduling region that “activates” node (intersects view platform)
an initialization method called when live, sets wakeup (event)
and a processStimulus method called when active & “woke up”

ProcessSimulus() receives and processes on going messages, sets new
wakeup criteria, and sets the next wakeup condition before exiting

Java 3D 19Mouse interaction

Java3D provides 4 utility classes for mouse interaction.

abstract class MouseBehavior
defines initialize, processStimuli etc for subClasses
MouseRotate, MouseTranslate, MouseZoom

MouseRotate
a Behavior to set for a TransformGroup
drag the left mouse

import com.sun.j3d.utils.behaviors.mouse.*;
...
MouseRotate behavior = new MouseRotate();
behavior.setTransformGroup(objTrans);
objTrans.addChild(behavior);
behavior.setSchedulingBounds(bounds);
... TG

MR

Java 3D 20

MouseTranslate
drag the right mouse

MouseZoom
alt-drag the left mouse

see AxisMouse.java example
or Sun tutorials on Interaction

Java 3D 21

Using the rotate, translate and zoom pick utilities

1. Create your scene graph.
2. Create this behavior with root and canvas
.

PickRotateBehavior behavior =
new PickRotateBehavior(canvas, root, bounds);

root.addChild(behavior);

Generalized picking and Pick Utility classes

Generalized picking is ray based:

Java 3D 22A picking ray is projected from the screen along Z.
The sceneGraphPath of objects (closest or all) intersecting ray is
created. The object is obtained by searching the sceneGraphPath.

Example mouse picking behavior -- see also Sun's
MousePickApp.java in java3D tutorials

WakeupCriterion[] mouseEvents;
WakeupOr mouseCriterion;
Positions positions;
PickRay pickRay = new PickRay();
SceneGraphPath sceneGraphPath[];
...
public void initialize() {

...
mouseEvents = new WakeupCriterion[2];
mouseEvents[0] = new

WakeupOnAWTEvent(MouseEvent.MOUSE_DRAGGED);
mouseEvents[1] = new

WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED);
mouseCriterion = new WakeupOr(mouseEvents); // any condition
wakeupOn (mouseCriterion);
}

Java 3D 23
public void processStimulus (Enumeration criteria) {

WakeupCriterion wakeup;
AWTEvent[] event;
...
while (criteria.hasMoreElements()) {

wakeup = (WakeupCriterion) criteria.nextElement();
if (wakeup instanceof WakeupOnAWTEvent) {

event = ((WakeupOnAWTEvent)wakeup).getAWTEvent();
for (int i=0; i<event.length; i++) {

id = event[i].getID();
if (id == MouseEvent.MOUSE_DRAGGED) {
... }
else if (id == MouseEvent.MOUSE_PRESSED) {
... }

...
pickRay.set(mousePos, mouseVec);
sceneGraphPath = branchGroup.pickAllSorted(pickRay);
...
if (sceneGraphPath != null) {

for (int j=0; j<sceneGraphPath.length; j++) {
if (sceneGraphPath[j] != null) {

Node node = sceneGraphPath[j].getObject();
... // do something with node picked

wakeupOn (mouseCriterion); ... }

Java 3D 24Navigation w/ mouse using SimpleUniverse

TransformGroup viewTG = new TransformGroup();
viewTG =

su.getViewingPlatform().getViewPlatformTransform();
...
// For each mouse behavior
MouseRotate myMouseRotate = new
MouseRotate(MouseBehavior.INVERT_INPUT);
myMouseRotate.setTransformGroup(viewTG);
myMouseRotate.setSchedulingBounds(mouseBounds);
edgeBG.addChild(myMouseRotate);
...

see AxisView.java

su

scene (BG) ... view branch

viewTG

ViewPlatform

... mouse Behaviors

