A Probabilistic Model for Reconstruction of Torn Forensic Documents

Ankush Roy¹ and Utpal Garain²

¹.Dept. of Computing Science, Univ. of Alberta, Canada.
².CVPR Unit, Indian Statistical Institute, India.

ICDAR 2013
Analogy

• Reconstruction of torn documents
 – 2-D pictorial cardboard puzzles (Jigsaw puzzle)
 • Presence of irregular shapes
 • Existence of missing pieces
 – Panoramic image reconstruction
 • Assumption of overlapping regions
Our Method: Exploit Every Possible Thing
The Model

- $I_k = \{i_1, i_2, \ldots, i_{nk}\}$
 - Set of sub-images at k-th iteration
- i-th piece has n_i number of edges
- E_k is the total number of edges at k-th iteration
- No. of max. arrangements at k-th step
- Let these arrangements are:

 $$t \ A_k = (t \ A_k | t \in 1,2,\ldots, E_k - n \ P_{n_i})$$

- How to compute probability of every arrangement
The Model

- Let s_i^m be the m-th edge of i-th piece
- Let s_i be the seed and s_j be one of the other pieces
- P_s is the probability of shape matching
- P_c is the probability of content matching
- Is probability that m-th side of s_i to be stitched with l-th side of s_j

$$\alpha_m = \arg\max P_s(s_j^l | s_i^m) P_c(s_j^l | s_i^m)$$

$j = 1, 2, \ldots, nk; i \neq j$

- So the probability of an arrangement (A_k^t) is

$$p(A_k^t) = \prod_{m=1}^{n_i} \alpha_m$$
The Model

- **Shape statistics**
 - Polygonal approximation [Bhowmick, IEEE PAMI 29(9), 2007]
 - Horizontal distance is used to align individual sides [Lowe, IJCV, 2004]

- **Image Statistics**
 - Texture close to edges are considered
 - Ideas borrowed from Cho et. al [The Patch Transform, IEEE PAMI 2010]
Convergence

• **Lemma:**
 • In $k+1$ iteration, $|I_{k+1}| \leq |I_k|$

• **Proof:**
 • In k-th iteration, n_i edges of s_i will find match with another n_i edges from $|I_k|-1$ images. If these n_i images are
 • Distinct: $|I_{k+1}| = |I_k| - n_i$
 • The same image: $|I_{k+1}| = |I_k| - 1$
 • No match found: $|I_{k+1}| = |I_k|$
 • Proved

• **Constraint to damp explosion**
 • Choose n_i from non-boundary (non-smooth) edges only
Experiments

• Datasets were developed with help from Forensic Experts

• Two sets
 • **Unintended tearing**
 • 100 images
 • Average no. of pieces: 12
 • **Intended tearing**
 • 100 images
 • Average no. of pieces: 8
Evaluation

- Two strategies
 - Qualitative
 - Human judged
 - Binary decision (could recognize or not)
 - Quantitative
 - Borrowed from 3-D reconstruction technique [CVPR 2006]
 - Registration of actual and reconstructed images
 - Distance of their intensities
- Two environments
 - With cue
 - Information of intentional tearing is provided
 - Without cue
• Qualitative [Averaged over 10 runs]

<table>
<thead>
<tr>
<th>Without cue</th>
<th>With Cue</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.9%</td>
<td>77.9%</td>
</tr>
</tbody>
</table>

• Quantitative (Intensity level difference of registered images), [Seitz et. al. CVPR 2006]

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Without Cue</th>
<th>With Cue</th>
</tr>
</thead>
<tbody>
<tr>
<td>50th</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>75th</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>90th</td>
<td>22</td>
<td>43</td>
</tr>
</tbody>
</table>
Conclusions

• Contribution

• Assumption of shape regularity is not needed

• Torn pieces could of any size and shape

• Final arrangements are ranked according to their likelihood
To be explored

- Incorporation of missing pieces in the model
- Handling of large number of small pieces
- Evaluation of image reconstruction