
University of Alberta

Jit4OpenCL: A Compiler from Python to OpenCL

by

Xunhao Li

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Xunhao Li
Fall 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is
converted to, or otherwise made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis
and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed
or otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Examining Committee

José Nelson Amaral, Computing Science

Duane Szafron, Computing Science

Marek Reformat, Electrical and Computer Engineering

To my beloved family.

Abstract

Heterogeneous computing platforms that use GPUs and CPUs in tandem for computation

have become an important choice to build low-cost high-performance computing platforms.

The computing ability of modern GPUs surpasses that of CPUs can offer for certain classes

of applications. GPUs can deliver several Tera-Flops in peak performance. However, pro-

grammers must adopt a more complicated and more difficult new programming paradigm.

To alleviate the burden of programming for heterogeneous systems, Garg and Amaral

developed a Python compiling framework that combines an ahead-of-time compiler called

unPython with a just-in-time compiler called jit4GPU. This compilation framework gener-

ates code for systems with AMD GPUs. We extend the framework to retarget it to generate

OpenCL code, an industry standard that is implemented for most GPUs. Therefore, by

generating OpenCL code, this new compiler, called jit4OpenCL, enables the execution of

the same program in a wider selection of heterogeneous platforms. To further improve the

target-code performance on nVidia GPUs, we developed an array-access analysis tool that

helps to exploit the data reusability by utilizing the shared (local) memory space hierarchy

in OpenCL.

The thesis presents an experimental performance evaluation indicating that, in compar-

ison with jit4GPU, jit4OpenCL has performance degradation because of the current perfor-

mance of implementations of OpenCL, and also because of the extra time needed for the

additional just-in-time compilation. However, the portable code generated by jit4OpenCL

still have performance gains in some applications compared to highly optimized CPU code.

Acknowledgements

First and foremost, I would like to show my deepest gratitude to my supervisor, Professor
José Nelson Amaral. Without your constant guidance, inspiration, supervision, support
in researching and thesis writing, this thesis would not have been completed. You not
only taught me the knowledge and methodology but also encouraged me to be a person of
persistence, industriousness and integrity. I would have lost myself without your generous
help.

I am also grateful to Rahul Garg. Thanks to the unPython + jit4GPU framework you
constructed, I did not need to start from scratch. Your brillant idea makes a solid foundation
to our work, I am heartily thankful to you.

I would also like to thank Professor Duane Szafron from Computing Science and Pro-
fessor Marek Reformat from Electrical Engineering for helping me examine my work. Your
suggestions and advices are of great help to me.

I especially want to thank my mentor, Professor Yu Zhang in USTC, for your great help
in both my technical and personal development. She opened my mind and told me to pursue
whatever I love, and offered advice and suggestions whenever I need them. I treasure those
time we worked and shared together.

Last but not least, I wish to thank my parents, for bearing me, raising me and sheltering
me. Nothing can substitute the love and comfort they give me. I love you both. To you I
dedicate this thesis.

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Organization . 3

2 Background on CUDA and OpenCL 4
2.1 Programming for GPUs . 4

2.1.1 GPU Characteristics . 4
2.2 nVidia GPGPU Hardware . 6

2.2.1 The Tesla Architecture . 6
2.2.2 Execution . 7

2.3 CUDA GPU Computing Framework . 7
2.4 OpenCL Framework . 10

2.4.1 OpenCL Portability . 11
2.4.2 Similarities with CUDA . 11

2.5 OpenCL in Examples . 12
2.5.1 An optimized Kernel . 14

2.6 Conclusion Remarks . 17

3 Background on Python, NumPy, and unPython 18
3.1 The Python Language . 18

3.1.1 Features . 19
3.1.2 Performance Limitations . 19
3.1.3 Python/C API . 20

3.2 Scientific Computing Tools for Python – NumPy 20
3.2.1 The Array Object . 21

3.3 unPython – unwrapping python to C . 22
3.4 jit4GPU – Just In Time Compiling for GPU 23
3.5 Chapter Conclusion . 25

4 Research Problem Formulation 26
4.1 The Goal . 26
4.2 Problem Statement . 27
4.3 Refined Array Access Analysis . 27

4.3.1 Identifying Array Access Elements . 27
4.3.2 Program Transformation and RCSLMAD Decomposition 31
4.3.3 Ordering . 32
4.3.4 RCSLMAD Decomposing Example . 34

4.4 Discussion on LMAD-based Analysis for GPGPU 36

5 Generation of OpenCL code from Python 38
5.1 Dealing with Overlapping LMADs . 38
5.2 OpenCL Program Generation . 39

5.2.1 Host Code Generation . 40
5.2.2 Grid Configuration Generation . 41
5.2.3 Kernel Code Generation . 41
5.2.4 Transforming Loops . 42
5.2.5 Scenario Example of Kernel Transformation 45

5.3 Chapter Conclusion . 47

6 Experimental evaluation 49
6.1 Methodology . 49
6.2 Result Analysis . 50

6.2.1 Results on nVidia Machine . 50
6.2.2 Jit4OpenCL Results Compared with Jit4GPU on AMD Machine . . . 54
6.2.3 Performance Analysis . 57

6.3 Concluding Remarks . 68

7 Related Work 69
7.1 Other Compilations of Scripting Languages 69

7.1.1 Dynamic Scripting Language Embedders 69
7.1.2 Dynamic Scripting Language Compilers 69

7.2 Loop Access Analysis . 70
7.3 Optimizing GPU Programs . 71
7.4 Compiling for Hybrid Systems . 71

8 Conclusions 74
8.1 Future Work . 75

List of Figures

2.1 Graphic Rendering Pipeline . 5
2.2 Tesla Architecture (from [16]) . 6
2.3 CUDA Processing Flow, (extracted from http://en.wikipedia.org/wiki/CUDA,

Mar 11th, 2010) . 8
2.4 The Organization of CUDA threads (from [34]) 10
2.5 OpenCL Platform Model (from [18]) . 12
2.6 Example OpenCL Program Flowchart . 13
2.7 Tiled Memory Access Example . 16

3.1 jit4GPU Workflow . 24

4.1 Example of legal RCSLMAD . 30
4.2 Domain Decomposition Example . 32
4.3 3-Dimensional LMAD example . 35
4.4 Decomposing LMAD into small Groups . 36

5.1 Modified jit4GPU Analysis Flowchart . 39
5.2 Stencil Program Thread Grid Example . 43

6.1 Matrix Transpose Result (nVidia) . 51
6.2 Stencil Result (nVidia) . 51
6.3 Matrix Multiplication Result (nVidia) . 52
6.4 Coulomb Potential Energy Result (nVidia) 52
6.5 N-Body Simulation Result (nVidia) . 53
6.6 Blackscholes Filter Result (nVidia) . 53
6.7 Mandelbrot Result (nVidia) . 54
6.8 Matrix-Multiplication Result on AMD . 55
6.9 CP Result on AMD . 55
6.10 N-Body Result on AMD . 56
6.11 Blackscholes Result on AMD . 56
6.12 Mandelbrot Filter Result on AMD . 57
6.13 Matrix multiplication Execution Time Decomposition (nVidia) 59
6.14 Matrix Transpose Execution Time Decomposition (nVidia) 60
6.15 Stencil Execution Time Decomposition (nVidia) 61
6.16 CP Execution Time Decomposition (nVidia) 62
6.17 N-Body Execution Time Decomposition (nVidia) 62
6.18 Blackscholes Execution Time Decomposition (nVidia) 63
6.19 Mandelbrot Execution Time Decomposition (nVidia) 63
6.20 Matrix-Multiplication Execution Time Decomposition (AMD) 64
6.21 CP Execution Time Decomposition (AMD) 64
6.22 N-Body Execution Time Decomposition (AMD) 65
6.23 Blackscholes Execution Time Decomposition (AMD) 65
6.24 Mandelbrot Execution Time Decomposition (AMD) 66

List of acronyms and symbols

API Application Programming Interface

CAL Compute Abstract Layer language

CPU Central Processing Unit

CSLMAD Constant Stride Linear Memory Access Descriptor

DRAM Dynamic Random Access Memory

CUDA Compute Unified Device Architecture

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

JIT Just-in-time

OpenCL Open Computing Language

RAM Random Access Memory

LMAD Linear Memory Access Descriptor

CSLMAD Constant-Stride Linear Memory Access Descriptor

RCSLMAD Restricted Constant-Stride Linear Memory Access Descriptor

SIMD Single Instruction Multiple Data

SM Stream Multiprocessor

SP Stream Processor

SPMD Single Program Multiple Data

STMD Single Thread Multiple Data

TPC Thread Processor Cluster

1

Chapter 1

Introduction

Scientific computing is a field that focuses on the execution of numerical computation to

solve scientific and engineering mathematical problems. Ever since computers were used to

model and simulate scientific problems, scientists and engineers were constantly demanding

greater computing power.

Comutation on computers involves a software platform and a hardware platform.1 On

the software platform side, high-productivity scientific programming languages, such as

FORTRAN and MATLAB, are designed to enable people to implement high-performance

software with a reasonable amount of effort. The constant development of compiler opti-

mization delivers higher performance by reducing the amount of time required to execute

computer programs.

Thanks to abundant support and extensions, the Python language has become one of

the major language choices for scientific computing. Python features a plethora of library

support, simple syntax, a flexible programming model, lightweight execution, agile devel-

opment, and cross-platform portability. Using Python as the programming language has

some advantages over competing programming languages and platforms for scientific com-

puting. With the help of an extension library called NumPy, Python can support flexible

multi-dimensional array abstractions that are essential to scientific computing. Drawbacks

of using Python for scientific computing include the interpretation overhead that limits the

execution speed and the lack of support for parallel execution. To eliminate interpretation

overhead for scientific computation, numerical libraries, such as NumPy, are written in the

C programming language and are linked to interpreted Python programs.

On the hardware platform side, conventional hardware development, by increasing CPU

clock rate in order to gain higher computing ability, is approaching the possible limit of

clock rate, forcing micro-chip engineers and computing scientists to adopt multi-core de-

signs to improve performance. As the number of cores constantly increases, a revolution of
1“Computing on computers” sounds redundant today, but there was a time when a “computer” was a

person, and the “computing” was done with pencil and paper. Such computing was not only for accounting
but also for scientific purposes.

1

computing is emerging. Programmers need to adapt to this programming paradigm shift in

order to exploit the potential of hardware.

An aggressive example of parallel execution occurred in graphic processing units (GPU).

GPUs are designed to be processors dedicated to graphic processing. Its architecture is

drastically different from conventional CPU. Recently GPUs have evolved from a fixed-

function graphical processing hardware pipeline to a programmable general-purpose graphic

processing unit (GPGPU), allowing programmers to implement software code that can make

use of the computing ability of the GPU. However, the huge architecture difference demands

that programmers adopt a stream processing paradigm, which greatly increases the difficulty

of programming.

A computing platform consisting of CPUs and GPUs is a heterogeneous computing

system. Thanks to the many cores in a GPU chip, GPU excels in numerical computing

that is highly parallelizable. In modern heterogeneous computing, GPUs undertake the

majority of the computation tasks. However, programming for heterogeneous computing

systems requires fully understanding of the application and the programming paradigms

involved. In the case of GPGPU the random data access of the CPU and the streaming

data of the GPU need to be integrated. Stream processing can handle a subset of scientific

applications efficiently, but programming an stream-oriented hardware efficiently is more

difficult than programming a random-access hardware. This programming-paradigm shift

is a major obstacle for beginning GPGPU programming.

Some researchers are working to eliminate the gap of shifting to a new programming

paradigm when programming for GPGPUs [35][38][15]. They adapt mainstream program-

ming models to GPGPU programming to reduce the efforts required and the complexity of

programming for GPGPUs. An example is the unPython and jit4GPU compilation frame-

work developed by Garg and Amaral [12]. UnPython compiles a subset of annotated Python

program into C++ and OpenMP code. Jit4GPU interprets the program at runtime and

handles program execution on AMD GPU. Although unPython and jit4GPU can deliver

significant performance improvements, it comes with the cost of less portability, limiting its

target platform to a system containing AMD GPUs. This thesis presents an extension to

jit4GPU, named jit4OpenCL, that interprets the program into an industry-standard lan-

guage for heterogeneous computing: OpenCL. This change will make jit4OpenCL executable

on platforms that support OpenCL.

1.1 Contributions

This thesis presents the following contributions:

• an extension to the existing RCSLMAD array access analysis usable in SIMD program

generation and optimization.

• a new just-in-time compiling framework for generating OpenCL for annotated Python

program on the fly.

• an experimental evaluation showing that, with the GPU assistance, annotated Python

programs can result in performance gain up to 91 times compared to hand-written

CPU code in some applications.

1.2 Thesis Organization

The first two of the following chapters serve as a review of background material. Chapter 2

briefly introduces GPGPU computing, including concepts, the nVidia Tesla architecture,

CUDA programming model and OpenCL platform. Chapter 3 describes the Python lan-

guage, NumPy scientific computing package and unPython compiling framework. Chapter 4

is a formal statement of the array access analysis problem and the solution. Chapter 5 states

the methods and algorithms used by jit4OpenCL to generate OpenCL code. Chapter 6

evaluates and analyzes the experimental result. Chapter 7 briefly examines related work.

Chapter 8 concludes this thesis.

3

Chapter 2

Background on CUDA and
OpenCL

This chapter presents a brief introduction of computing on mainstream nVidia GPGPU

(General Purposed GPU), including an anatomy of GPGPU hardware architecture, two

GPGPU programming frameworks (CUDA and OpenCL), along with examples as supple-

mentary materials for reader’s reference. Throughout the chapter is the explanation of

the difference of programming paradigms between the conventional CPU programs and the

GPGPU programs for those readers that are familiar with CPU programming. Our compil-

ing framework’s backend targets the code generation on OpenCL; thus understanding the

programming platform of GPGPUs is fundamental to our analysis.

2.1 Programming for GPUs

2.1.1 GPU Characteristics

GPU is the place for rendering process. Rendering is the computing process that generates

digital image/video from an object model describing the objects shape, appearance, geom-

etry, texture and lighting. Rendering may also be refereed to as the process of generating

digital graphic effects. It is a very common computing task in computer-aided simulation

and design, video gaming, movie creation, and others.

Commodity graphics hardware, such as nVidia and AMD GPUs, have a graphic pipeline

to perform rasterization-based rendering. For a graphic pipeline hardware, the input of

the rendering process to GPU is a set of vertices, indicating the shape and size of the

object. Those vertices then must undergo linear transformation and per-vertex lighting in

vertex-shader units to geometrically shape the polygon of the object and make the object

lit according to the lighting atmosphere. The object is then clipped if necessary, then

rasterized on Render Output Units into fragments. Those fragments may undergo texturing

on Texture Mapping Units to add textures to the fragments. Finally, those fragments are

4

stored in a buffer frame for display. Figure 2.1 shows the process.

Figure 2.1: Graphic Rendering Pipeline

Because most of the computing described above is based on individual vertex, and each

of the vertices shares a same processing pipeline, the pipeline can exploit the benefits of

the stream processing1 to accelerate the computing by parallelizing the operations. GPU

designers are fully aware of this situation and commodity GPUs are designed to be a parallel

stream processing computing environment that are Single Instruction Multiple Data (SIMD)

capable.
1stream processing is a restricted parallel programming paradigm that let a stream of data goes through

a processing pipeline consists of a sequence of operatons. There are no dependencies between two different
data element in the stream, which makes the stream processing fully parallizable.

5

2.2 nVidia GPGPU Hardware

A General-Purpose GPU (GPGPU) is programmable to acclerate a wide range of applica-

tions besides graphic processing. NVidia’s Tesla series GPU is the first GPU series from

nVidia that supports general-purpose computing. Different from conventional CPUs, the

Tesla GPU is a large-scale parallel processing unit with hundreds of computing cores that

can perform computation at the same time.

2.2.1 The Tesla Architecture

Figure 2.2: Tesla Architecture (from [16])

Figure 2.2 shows a block diagram that describes the internal structure of a Tesla GPU.

Basically, in a typical Tesla GPU there is an array of Thread Processor Clusters(TPC),

which is shown in the middle of the figure. Within each TPC there are 2 or 3 Stream

Multiprocessors (SM). About 8 to 12 Stream Processors (SP) are encapsulated in each SM,

along with at least two Super Function Units (SFUs), Stream Processors and Super Function

Units are small cores where computing actually happens. There is also an instruction

fetch/dispatch scheduler in a Thread Processing Cluster that reads, decodes, and schedules

instruction execution for each Stream Processor inside. There are also register file space

6

for storing registers, local memory space for storing spilled registers when the register file

cannot hold all the registers. In order to serve as an intermediate software-managed cache

hierarchy for fast memory access, there is an on-chip, small memory storage space ranging

between 16KB to 32KB in each Stream Multiprocessor called shared-memory space. Finally,

the GPU is connected with an Interconnection network to the off-chip large-capacity DRAM

memory, which is used to load/store processing data.

2.2.2 Execution

Tesla is designed to support parallel threading; its hundreds of Stream Processors enables a

Tesla GPU to have more than ten thousand threads issued concurrently and thousands of

threads running in parallel at a same time. To reduce the complexity of hardware for han-

dling thousands of threads, a simplified scheduling schema is used: Instead of handling each

thread individually, the scheduler handles one “warp” at a time, which consists of a group

of threads. Scheduling by warps reduces the hardware scheduling overhead, thus reducing

the complexity of the hardware design. A thread warp has the following characteristics:

• consists of 32 threads.

• threads in a warp share a single program counter, thus they progress together. For

example, if a warp is chosen to be executed for the next cycle in an 8-core SM, then

it will take 4 consecutive cycles to let all the threads proceed one instruction.

• there can be several warps executing concurrently on the same SM. When a warp is

executed, the other warps will wait for their turn.

A thread running on GPUs can only access the memory space in off-chip DRAM on the

same graphic card and the shared-memory space . Threads that are executing on the same

SM share a limited-sized on-chip register file. Using too many registers may cause threads

to spill the values from the register file to a local memory.

2.3 CUDA GPU Computing Framework

Introduction to CUDA Architecture

As a stream processor, the architecture of the Tesla GPU is drastically different from the

architecture of conventional computer. As a result, traditional programming models are

not suitable for application implementation on Tesla GPUs. The Compute Unified De-

vice Architecture (CUDA) was developed to help programmers implement software code on

nVidia’s Tesla GPUs.

CUDA implements a Single-Instruction-Multiple-Thread (SIMT) programming model to

fit with the parallel GPU architecture. SIMT is an abstraction of the Single-Instruction-

Multiple-Data (SIMD) programming model. The difference is that, in SIMD the CPU can

7

issue vector instructions, but in SIMT vectors of threads are issued rather than vectors of

instructions. In general, SIMD is not scalable but SIMT is. When programming in an SIMD

model, programmers need to specify the instruction width (the vector width), or the width

is an characteristic of the hardware. In SIMT, programmers only describe the behaviours

of the threads, CUDA will issue as many threads as the width of the vector, which can

be decided at runtime. This dynamic-thread issuing technique makes a compiled program

compatible with new hardware models released in the future, as long as the architecture

remains the same. Figure 2.3 shows the processing flow of the CUDA platform.

Figure 2.3: CUDA Processing Flow, (extracted from
http://en.wikipedia.org/wiki/CUDA, Mar 11th, 2010)

In Figure 2.3, the actual computing stage (steps 2 and 3) requires the overhead of

copying processing data to GPU memory and copying the result back to main memory

(CPU memory) (step 1 and step 4). However, often the time used on this extra work can

be compensated by the fast processing speed of GPU core execution.

CUDA Programming Model

CUDA models a heterogeneous architecture that consists of a host and one or several devices.

A host is a conventional CPU, and a device is a General Purpose GPU (GPGPU). The host

and the devices have to collaborate in order to achieve successful CUDA program execu-

tion. Due to the hardware design, the CUDA programming model on Tesla architecture is

only suitable for computing tasks that adopt the stream-processing programming paradigm.

8

Tasks that cannot be parallelized in stream processing are not suitable for execution on this

platform.

A complete CUDA program consists of one or more phases. Each phase is implemented

either in serial host code or parallel device code. Phases implemented in device code ex-

ecute on one or several devices, while those in host code only execute on the host. It is

a programmer’s duty to specify whether a computing phase exhibits data parallelism. A

data-parallel phase must be implemented in device code rather than host code. Such device

code is called a “kernel function” or just “kernel”.

The relationship between a CUDA host and a CUDA device is a master/slave relation-

ship. Device code cannot be invoked outside of host code. Therefore, a CUDA program

always starts serially from the host. Before invoking a kernel, the host prepares the exe-

cution on GPU by transferring processing data to the GPU memory, setting up execution

parameters and then invoking the device code asynchronously. After the device code exe-

cution terminates, the host takes over the execution again until the next kernel is invoked.

This processing flow is shown in Figure 2.3.

CUDA Kernel Execution Organization

The launching of device code in CUDA requires the launching of many kernel threads. In a

typical CUDA program, when the Step 1 in Figure 2.3 is finished, the host launches kernel

threads for computing. These threads are organized into a 1, 2 or 3-dimensional array. The

array is further divided into a grid (1, 2, or 3-dimensional), which is comprised of many

thread blocks as shown in Figure 2.4.

CUDA’s programming model is tailored to be capable of efficient execution on Tesla

Architecture. The execution follows these rules:

• All the threads from a thread block are executed on a single Stream Multiprocessor

(SM) in a Thread Processor Cluster (TPC).

• The GPU scheduler divides the task into a queue of thread blocks. An SM accepts one

thread block at a time. Once all the threads in a thread block finish their execution,

the scheduler immediately assigns a new thread block to the SM from the queue, until

the queue is empty. The sequential execution of thread blocks in an SM guarantees

that each thread block has exclusive access to shared-memory space while executing.

• The execution of threads follows the rules described in Section 2.2.2.

Threads in a thread block can communicate by:

• synchronizing execution to avoid hazardous memory accesses.

• accessing the on-chip low-latency shared memory space.

9

Figure 2.4: The Organization of CUDA threads (from [34])

• accessing the off-chip high-latency global memory space.

The only means of communication available for threads in different thread blocks is the

off-chip global memory.

Threads and thread blocks have their own IDs. The index representing the position of

a thread in the array is called global ID. The index representing the position in the thread

block is called local ID. The index of a block in the grid is called block ID. Those IDs may

be 1, 2 or 3-dimensional, depending on the thread grid configuration. Figure 2.4 shows an

example where the launched kernel 1 has a 2-dimensional thread grid, which is divided into

2× 3 blocks. The figure also shows the inside of a block with block ID (1,1) (the indexes of

the first dimension and of the second dimension are both 1), which consists of 5×3 threads.

Their local IDs are also 2-dimensional, indicating their position in the block.

2.4 OpenCL Framework

One significant drawback of the CUDA architecture is that it is developed exclusively for

the nVidia Tesla architecture. Programs written in CUDA are not portable to any other

heterogeneous computing architectures, such as platforms that have AMD GPUs. Due to

10

the lack of portability, programmers have to implement several versions of each computing

kernel if to implement a same program for different computing platforms.

In 2009, the industry announced a new open, cross-platform, royalty-free computing

framework called OpenCL. OpenCL was proposed by Apple, and developed in collaboration

with nVidia, AMD, Intel, and IBM, etc. Now OpenCL is under the management of the

non-profit organization Khronos Group, and implementations on different platforms are

emerging quickly since its specification 1.0 announcement in 2009.

Mac OSX 10.6 Snow Leopard comes with native support for OpenCL 1.0, which is the

first operating system that supports OpenCL. nVidia has released its OpenCL implemen-

tation to registered GPU programmers starting from mid-2009, and AMD published its

OpenCL support for its CPUs later in 2009 and for its GPUs in early 2010. Thus, OpenCL

is now available for tens of millions of personal computers.

2.4.1 OpenCL Portability

Generally speaking, the OpenCL Architecture is a framework for parallel programming,

including a C99-like language, a set of OpenCL API, a set of libraries and a runtime support

system. OpenCL represents programs at a higher level of abstraction when compared with

a program written in CUDA.

As a general, standard framework designed for heterogeneous computing, OpenCL cre-

ates a general parallel computing framework used for CPU-GPU computing system, re-

gardless of the 3D graphics API, such as OpenGL or DirectX. Still, OpenCL programs

can execute on homogeneous computing systems containing only GPUs. OpenCL supports

parallel computing natively. Programs implemented in OpenCL are extremely portable.

OpenCL programs can be, without any modification, compiled to and executed on such

hardware platforms as mobile devices, ordinary desktop computers or dedicated personal

supercomputers, as long as the platform has OpenCL support.

2.4.2 Similarities with CUDA

OpenCL and CUDA share the following features.

• They are both heterogeneous computing platforms. They both have a host, and the

host takes control of a set of devices.

• They are both parallel computing platforms adapting SIMT paradigm. In OpenCL,

a program issues many thread instances for execution; these thread instances, called

work-items, and work-items, are grouped into work-groups. These concepts correspond

to threads and thread-groups in CUDA.

11

• In OpenCL, all work-items in a work-group have access to dedicated fast local-memory

space. In CUDA, all threads in a thread group have access to dedicated shared memory.

• Both OpenCL and CUDA have an index space for identifying work-items/threads.

Both index spaces are divided into a grid. Each element in the grid is a work-group

(OpenCL) or a thread-group (CUDA).

• Their kernel instances have the same restrictions:

– Can only have access to GPU memory space (shared memory space and global

memory space).

– Can only be declared to have a void return type.

– Cannot have recursive structure.

– Cannot have static variables.

– Cannot have variable number of arguments.

Figure 2.5: OpenCL Platform Model (from [18])

2.5 OpenCL in Examples

This section uses a program example to show how to implement an OpenCL Program.

Consider the computation of the matrix multiplication (C = A×A). For an element in C,

say, (i, j), the following computation must be performed:

C(i, j) =
N∑

k=1

A(i, k)×A(k, j)

The host code is straightforward. First the host program allocates two memory buffer

on device — a memory buffer refers to a contiguous memory space in global memory. In this

12

Code 2.1: OpenCL Matrix Multiplication

1 __kernel void multiply(__global float *a, __global float *c,
int N){

2 int row = get_global_id (0);
3 int col = get_global_id (1);
4 float sum = 0.0f;
5 for (int i = 0; i < N; i++){
6 sum += a[row*N + i]*a[i*N+col];
7 }
8 c[row*N + col] = sum;
9 }

example there will be one memory buffer for array A and another for array C. Then, the

CPU executes instructions to copy array A from the host memory to device memory so that

the computing units can have access to A. After the transfer, the CPU sends instructions to

computing units to start the execution of a kernel function. The computing units calculate

every element of array C and store the result into device memory. Once all the computing

is done, the result stored in the device memory is transferred back to host memory, and

the computing on the device terminates while the host can continue to execute. Figure 2.6

illustrates the decomposition of the whole process.

Clearly for any two different elements in C, C(a, b), C(c, d), there is no dependency

between the two, thus the computation follows the stream processing paradigm. Therefore,

we can create N × N threads, each thread computes a single element in C. Assuming the

array is row major, Code 2.1 shows the kernel function for computing C.

Figure 2.6: Example OpenCL Program Flowchart

In the kernel function shown in Code 2.1, lines 2 and 3 get the thread’s first and second

13

dimension IDs, respectively. Lines 5-7 accumulate the sum. Line 8 stores the result to global

memory. In line 6, a[row*N +i] and a[col+i*N] are array accesses. The subscript uses the

local variables row and col to calculate the memory location offset. The performance of this

OpenCL program is low because it frequently accesses the high-latency global memory (the

memory space storing array A). The bandwidth usage to transfer from off-chip DRAM to

the chip is 2×N3, which is the performance bottleneck for this program.

2.5.1 An optimized Kernel

The implementation in the last example is not optimized because it takes up a great amount

of bandwidth to transfer between DRAM and the GPU. The latency for each global-memory

access is often as high as 300 to 500 GPU cycles. Moreover, the global-memory access of

each column is strided, which causes banking conflicts because of restrictions in the hardware

architecture, resulting in even longer access latency. In the Code 2.1, most of the kernel

execution time is wasted waiting for the retrieval of data, rather than computing sums.

An analysis of the source code quickly reveals that Code 2.1 have redundant global-

memory accesses. Although the size of the array stored in global memory is N2, the kernel

consumes 2 × N3 global-memory bandwidth. A better strategy is to utilize the on-chip

shared memory space because accessing shared memory is much cheaper than accessing

global memory. The replacement of global-memory accesses with shared-memory accesses

can greatly reduce both bandwidth consumption and access latency. In OpenCL, shared-

memory space is a limited-sized cache that is software-managed by threads. Therefore the

optimized kernel must include code that issues loads and stores to the shared memory.

Different threads may need to read the same element in the array. For instance, threads

with the same value of either row or col have to access the same strip of row or col of

the array. The bandwidth demand can be reduced by moving array elements into shared

memory by tiles, and then letting the program have tiled access to the array in the shared

memory. The bigger the tile is, the less the bandwidth demand will be.

It is not possible to move all the processing data to shared memory at once because

shared memory is a scarce resource. The traditional solution is to divide the data into small

sections, and to reuse the shared memory space by moving one small section of data to it at

a time. This strategy requires the programmer to stripmine the innermost loop-i in order

to allow the program to perform tiled array accesses.

Definition 1. Loop stripmining is a compiler optimization that splits a single loop a into

nested loops a′ and a′′. Assume that a′ is the outer loop and a′′ is the inner loop. The loop

a′′ only iterates over a smaller section of the loop a, and the loop a′ executes a′′ multiple

times to make a′′’s iterations cover all the iterations of a.

Loop stripmining refers to the transformation of a single loop. In some cases when more

14

Code 2.2: OpenCL Matrix Multiplication

1 __kernel void multiply(__global float *a, __global float *c,
int N){

2 int row = get_global_id (0);
3 int col = get_global_id (1);
4 float sum = 0.0f;
5 for (int tile_i = 0; tile_i < N; i+= tile_size){
6 for (int i = 0; i < tile_size; i++){
7 sum += a[row*N + (tile_i+i)]*a[col + (tile_i+i)*N];
8 }
9 }

10 c[row*N + col] = sum;
11 }

than one loop is involved, loop tiling is used to enable the program to have tiled array

accesses.

Definition 2. Loop tiling is a compiler optimization that breaks a loop’s iteration space into

smaller blocks (each block is also called a “tile”), and let the loop iterate over tiles of data.

Loop stripmining and loop tiling are common compiler optimization techniques used to

ensure that the block size fits in the cache line size, preventing cache-line spilling. In this

example loop stripmining is used to divide the processing-data sections. Code 2.2 presents

the kernel code with loop i stripmined.

From the view of thread groups, once the loop i is stripmined in the kernel, the array

access is tiled. Assume the tile size is 10, Figure 2.7 shows the array accesses of a 10 × 10

rectangle thread group with row value ranging from 10 to 19 and col from 20 to 29. In

the figure, grey areas are the memory sections that the threads in the thread group have to

access in order to complete computing the sum. The access direction is also shown in the

figure. Code 2.3 shows the kernel that have tiled access for shared memory utilization.

In Code 2.3, two shared (local) memory array spaces, aTile1 and aTile2, are declared as

parameters for intermediate fast storage space. In the kernel body, threads interleave the

computation with shared-memory loading operations. The outer loop tiled i holds the code

that loads the global-memory tile to shared-memory space and the synchronization that

maintains data consistency. The barrier statements immediately around the inner loop i

(lines 17 and 21) ensure that all threads in a thread group finish computing their tile before

the computaion of the next set of tiles starts. These two barriers guarantees the inner loop

has access to the desired elements in shared memory space. With the data loading and

barriers together, most global memory accesses are eliminated.

A thread loads two elements — one for aTile1 and one for aTile2 — to shared memory

in each tile, but accesses 2×TILE SIZE elements in shared memory space, thus eliminating

15

Figure 2.7: Tiled Memory Access Example

Code 2.3: OpenCL Matrix Multiplication

1 // TILE_SIZE is a constant

2 __kernel void multiply(__global float *a, _global float *c,
3 int N,
4 __local float aTile1[TILE_SIZE*TILE_SIZE],
5 __local float aTile2[TILE_SIZE*TILE_SIZE]){
6 float sum = 0.0f;
7 int x = get_local_id (0);
8 int y = get_local_id (1);
9 int gidx = get_group_id (0);

10 int gidy = get_group_id (1);
11 int row = gidx*TILE_SIZE + x;
12 int col = gidy*TILE_SIZE + y;
13

14 for (int tiled_i = 0; tiled_i < N; tile_i += TILE_SIZE){
15 aTile1[y*TILE_SIZE+x] = a[(gidy*TILE_SIZE*N+tiled_i)+y*N+x];
16 aTile2[y*TILE_SIZE+x] = a[(tiled_i*N+gidx*TILE_SIZE)+y*N+x];
17 barrier(LOCAL_MEM_FENCE);
18 for (int i = tiled_i; i < tiled_i +TILE_SIZE; i++){
19 sum += aTile1[y*TILE_SIZE+i] *aTile2[i*TILE_SIZE+x];
20 }
21 barrier(LOCAL_MEM_FENCE);
22 }
23 c[(gidy*TILE_SIZE+y)*N + gidx*TILE_SIZE+x] = sum;
24 }

16

global memory accesses. Assume that both the tile size and the thread group size are

also TILE SIZE × TILE SIZE and the matrix size is N × N . The total bandwidth

consumption is only 1
TILE SIZE of the non-optimized kernel, which results in around 10x

speedup in performance.

Another difference between Code 2.2 and Code 2.3 is that Code 2.3 uses thread local

ID together with group ID to compute the array offset. The results computed by these two

method are the same.

2.6 Conclusion Remarks

This chapter presents the idea of GPGPU heterogeneous computing, along with a short

primer on GPGPU hardware and its programming model. GPU is a massive parallel com-

puting equipment that has many cores on-chip with a restricted execution model. A GPU is

most suitable for stream computing. For the sake of exploiting the GPU architecture, CUDA

and OpenCL programming framework are designed to be the programming environment for

GPGPUs. Common GPGPU applictions show strong computing ability compared to CPU

applications; however they require programmers a paradigm shift to stream programming.

To alleviate the burden of such paradigm shift is a main goal of our compiling framework.

17

Chapter 3

Background on Python,
NumPy, and unPython

Chapter 2 introduces the nVidia GPGPU hardware and programming framework that are

used in our analysis and compiling framework. This chapter continues to supply the readers

with background knowledge of the compiling framework’s source language and front-end

framework. Section 3.1 discusses relevant features of the Python language; Section 3.2 shows

one of Python’s extension, NumPy, on which our framework is based; Finally the compiling

framework’s frontend and backend, unPython and jit4GPU are explained in Section 3.3 and

Section 3.4 respectively.

3.1 The Python Language

Python is an object-oriented, full-fledged but flexible scripting language developed by a

Dutch programmer Guido van Rossum in 1989. Ever since its creation, Python has always

been a fast, light-weight, concise language with extreme flexibility, portability; it provides

high productivity to the programmers. Because of these features it affords, after 20 years

of development and establishment, Python is now widely used by millions of people in the

fields of industry, scientific research and entertainment (game scripting).

There are several other benefits of using Python language:

• It’s simple, with concise language syntax.

• It’s easy to learn, easy to understand.

• It’s free and open.

• It’s high level.

• It supports multiple programming paradigms, including functional, imperative, object-

oriented, reflective, etc.

18

• It’s extensible and embeddable.

• It has strong library support.

3.1.1 Features

The most significant feature of Python is that it is a dynamic, scripting language. As a

scripting language, Python is written in plain text format and is interpreted by Python

virtual machine at runtime. Using a virtual machine, Python enables itself to provide such

features as dynamic memory management, name resolution (late-binding) and dynamic

typing.

Python has its own dynamic typing system. Typing system are used in every program-

ming language to ensure the correct interpretation and memory allocation of variables.

Static typing system enforces a variable to have a type and it performs type checking at

compile time as many static languages do, while dynamic typing system enforces a value

to have a type rather than enforcing a variable to have a type, which leads to postponing

the type-checking until runtime. A dynamic typing system provides a more flexible pro-

gramming environment than a static one, but it also makes the runtime check sophisticated

and intepreter design restricted by some additional constraints. Many scripting languages

cannot perform static typing check ahead of time due to the language features they offer,

so dynamic typing system is dominant among those languages.

3.1.2 Performance Limitations

Although Python has brought so many exciting new features, the biggest limitation of this

language is the performance. Because of its runtime interpretation and optimization, Python

programs is often more than 10 times slower than C/C++ implementation that does the

same job. This is a common problem in dynamic scripting languages, which hinders their

expansions.

Although itself very suitable for GUI, text processing, controlling scripting, etc, pure

Python programs are indeed not capable for computing-intensive core programs that re-

quires high performance. However, developers of Python did not seek solutions to this by

aggressively optimizing Python running speed overnight(which was, of course, impossible

at the moment), but to provide internal APIs to Python programmers in order to allow

them to have internal control over Python objects. By implementing custom Python ob-

jects in other languages like C by hand, programmers not only can have grasp on those

functions Python does not ship with originally, but also achieve better performance because

customized Python modules that are written using those APIs will be compiled statically

and do not require runtime interpretation.

19

3.1.3 Python/C API

One of the reason Python is popular is that it is extremely extensible. Python gives pro-

grammers the privileges of using other programming languages in working with Python

modules for Python so that programmers can have implementations of extension modules

in languages other than Python (extending Python), and use Python-written modules as

components in a larger application implemented in other languages (embedding Python).

Python/C API is Python’s gateway for C/C++ programmers for extending Python. It

allows C/C++ programmers to create Python modules in C/C++. The reasons to utilize

Python/C APIs may include:

• Calling functions in existing libraries written for C/C++.

• Optimizing cores for performance.

• Adding new built-in types for Python.

Python/C API enables Python developers to do what exceeds Python’s capability, like

creating distributed computing platforms not supported natively. For details please refer to

official Python/C API documentation [1].

3.2 Scientific Computing Tools for Python – NumPy

Many popular Python extensions are created using Python/C API; one of the important

product essential to our work is the NumPy library module. NumPy is a Python extension

module created specifically for granting Python the scientific computing ability [20]. NumPy

comes as a bundle that includes:

• a powerful N-dimensional array object which is not supported natively by Python

• sophisticated (broadcasting) functions

• tools for integrating C/C++ and FORTRAN code

• useful linear algebra, Fourier transform, and random number capabilities.

• additional NumPy C APIs that allow programmers to write high performance C ex-

tensions.

In the following context we will focus on the array object, as it is connected to the

“unPython+jit4GPU” framework.

20

3.2.1 The Array Object

Functions

The core of NumPy is the flexible multi-dimensional array object implemented using

Python/C API. a NumPy array object is an object that represents a multi-dimensional

array in the memory, it comes with its member methods for setting or getting the objects

attributes and values, like initialization, sub-matrix slicing, dimension change, etc.

Code 3.1: Example of NumPy array

1 from numpy import array
2 a = array ([1,2,3,4,5,6])
3 print a
4 b = a.reshape (3,2)
5 print b

Code 3.1 and Code 3.2 together illustrates the programmer’s view of NumPy. Code 3.1

shows an example of manipulating a NumPy array object, and Code 3.2 shows the output

of the example in terminal. In Code 3.1, line 2 creates an array object from a list, which

contains 6 elements. Line 1 in Code 3.2 shows the structure of the object pointed to by a,

it is a 1-dimensional array with 6 elements. Line 4 in Code 3.1 assigns a “reshaped” view of

the same object to variable b and , line 5 prints it. The printing result is shown in Code 3.2,

which is a 2-dimensional array consists of the same values.

Code 3.2: Output of Code 3.1

1 >>>[1 2 3 4 5 6]
2 >>>[[1 2]
3 [3 4]
4 [5 6]]

Object Structure

An array object has a member variable pointer pointing to an allocated raw array buffer

in the memory pool, and a list of strides that defines the the layout of the array. Given

a variable a refers to an n dimensional object, a set of indices of each dimension (the ith

dimension’s index denoted as di), the memory pointer ptr that points to the raw array

buffer, and the list of strides s, then the memory location of a[d0,d1,. . .,dn−1], denoted as

m, can be calculated as:

m = ptr +
n−1∑
i=0

s[i]× di

Given the same ptr, same di where i = 0, . . . , n − 1, but with different strides s, the

shape of the array is different. The line 4 of Code 3.1 creates another array object from the

object a points to. b and a share a same raw array buffer area but with different lists of

21

strides. Array shape manipulation operations are all based on the manipulation of strides.

This is different from other array types in C or C++. In the view of a C programmer, the

strides in multi-dimensional addressing is statically defined.

NumPy array object also provides public access to its raw data information for pro-

grammers to take full control or build extensions for NumPy [21]. This is essential to the

analysis in unPython. In the following section we are going to take a look at unPython and

its analysis.

3.3 unPython – unwrapping python to C

unPython is a Python library compiling framework created by Rahul Garg [11], which

unwraps Python programs into C programs. Newer version of unPython translates an

annotated Python program into an OpenMP program and an AMD CAL program(which

requires the runtime support from jit4GPU). The translated program can be executed on

CPUs (using generated OpenMP code) or on AMD GPUs (using generated AMD CAL code),

depending on the machine hardware availability. The choosing of execution hardware is one

of the jobs of jit4GPU, which will be introduced later.

Language Model Extension

The language model of unPython is an extension to the conventional Python language model.

In unPython, annotations that describe parameter type information, and new object types

that serve as compiler directives for declaring parallel loops are introduced in the language

model. The extension is designed in such a ways that it is still compliant with Python

interpreter (adding a line starting with @ immediately before the definition of a function).

To be specific, decorator type declares the parameter types in its own parameter list, an

iteration over a gpurange is declared to be a parallel iteration. The extended Python

program can be compiled successfully by a Python interpreter without altering the program.

However, in the view of unPython compiler, the injected compiler directives (annotations

and new types) provide additional information and instruction for generating parallel code.

Code 3.3 shows a function that is written in unPython format.

Code 3.3: Example of unPython Program Extension

1 from unpython import gpurange
2 @type(’ndarray[int32 1]’,’ndarray[int32 1]’ ,’ndarray[int32 1]’

,’int32 ’,’int32 ’)
3 def f(A,B,C,n):
4 sum = 0
5 for i in gpurange(N):
6 C[i] = A[i] + B[i]
7 sum += C[i]
8 return sum

22

The code states that the first three parameters from the left, A, B and C are 1 dimensional

arrays with element data type int32; the last parameter is a variable of int32; the return

type is also int32 (indicated by the last element in the annotation list). In the function

there is a parallel iteration that calculates array C and sums up its elements.

Benefits and Constraints

Standard Python language does not ship with support for parallel programming. unPython

introduces parallelism that works as an alternative way of developing Python programs.

What is more, the extended programming model is fully compatible with standard Python

interpreters. Programs written for unPython can execute as a standard Python program

without modification, this would benefit programmers in debugging programs and porting

to new software and hardware environments.

However, unPython is not omni-potent. Due to the dynamic typing system in Python,

unPython requires additional parameter typing information declared in annotation to gen-

erate efficient target code. Also, at present unPython only compiles a subset of Python

program features for efficient compiling. unPython cannot support features like runtime

code execution, higher order functions, generators, meta-classes or special methods [11].

3.4 jit4GPU – Just In Time Compiling for GPU

Jit4GPU is the just-in-time support component of Garg’s unPython+jit4GPU Python com-

piling framework. The main job of jit4GPU is to dynamically translate the program into

AMD CAL code, and to deal with data allocation, data transferring.

Figure 3.1 shows jit4GPU GPU execution workflow, what does not show in the figure

is that whenever jit4GPU encounters an program pattern it cannot handle, it will exit

immediately to fallback to CPU execution.

Jit4GPU accepts as parameters the program abstract syntax tree (AST) in stream for-

mat, variable type information and array access information. Jit4GPU first rebuild a new

AST from the stream, then it does the following jobs:

Computing the Memory Region for Data Transfer

Jit4GPU computes the processing array element memory regions from array access infor-

mation (the discussion of array access information is in Chapter 4). For each array access

reference in the program, it calculates a rectangular memory region that covers all its mem-

ory locations that the reference points to. If two or more rectangular regions overlap, a

bigger rectangular region is calculated to cover them all. The computing result is a set of

disjoint rectangular memory regions, which will be transferred to device memory.

23

Figure 3.1: jit4GPU Workflow

24

Transferring data between host memory and device memory costs time due to the rela-

tively small bandwidth between the two. Transferring rectangular regions rather than the

whole bunch of memory locations helps to reduce the required bandwidth.

Code Patch, GPU Code Generation, Device Memory Allocation and Data Trans-
fer

The array access references in the program must be altered due to the change of memory

place and layout. Before actually generating GPU code, jit4GPU patches all the array access

references on the AST tree, re-directing array header pointers to new place, and changing

array access subscripts.

Besides code generation, jit4GPU also handles device memory operations and data trans-

fer. Jit4GPU does the following jobs:

1. generate AMD CAL code by traversing the patched AST tree

2. allocate device memory objects, initialize with size

3. before GPU code execution, copy rectangular memory regions of processing arrays to

device memory space

4. handle GPU execution

5. after GPU code execution, copy results from device memory space back to host memory

space

After fetching results from device memory, jit4GPU exits and hands in the execution to

its caller function.

3.5 Chapter Conclusion

As a swift and flexible programming language, Python is a very popular widely used lan-

guage. With the extension module NumPy, Python now supports various scientific opera-

tions and functions. NumPy also provides its own C APIs to allow programmers to build

further customized extensions. These APIs provide a good opportunity for those who wants

to expand Python’s computing ability by directly taking control over NumPy objects.

To extend the Python language to allow execution on parallel machines such as het-

erogeneous computing platforms consisting of CPUs and GPUs, the unPython+jit4GPU

framework translates annotated Python program with NumPy array objects as main data

structure for computing into CPU and AMD GPU code. Our jit4OpenCL framework aims at

replacing jit4GPU in the unPython+jit4GPU framework in order to expand its portability.

25

Chapter 4

Research Problem Formulation

One of the great difference between CPU and GPU programming is the control of their mem-

ory hierarchy. NVidia GPUs have a software-managed cache space called shared-memory

space (discussed in Chapter 2) that is used to reduce data-movement requirements between

off-chip DRAM space and the GPU itself. Automatically generating code, by a compiler,

which can utilize the additional memory space is the key for performance optimization. This

chapter introduces the array-access analysis based on RCSLMAD used in jit4OpenCL. This

analysis allows jit4OpenCL to exploit the potential data reuse for array accesses. Specifi-

cally, Section 4.1 gives an overview of the goal of the analysis; Section 4.2 presents a problem

statement that the analysis must solve; Section 4.3 formalizes the problem solution; Sec-

tion 4.4 concludes this chapter.

4.1 The Goal

The goal of this research is to let one of the existing array access analysis methods, Linear

Memory Address Descriptors (LMADs), which is deployed in unPython and jit4GPU , be

applied on jit4OpenCL compiler for successful OpenCL code analysis, optimization and

code generation.This chapter describes the problem statement and the modifications to this

analysis that were necessary for our own purposes.

Jit4OpenCL has to restructure loops, including loop strip mining, loop domain dividing,

etc, in order to make the data fit into the limited memory resources in the GPUs. Therefore

the analysis must be able to identify memory locations that are accessed within a parallel

loop nest as well as the memory locations accessed by any single iteration of the loop. Most

importantly, the analysis must be suitable for stream processing that can be used to generate

SIMD-style programs.

26

4.2 Problem Statement

Given a set of array access references S in a parallel loop nest P : use S to identify the tiled

memory accesses in P ′, which is a transformation of P . The transformation may include

parallelization, strip mining and tiling.

4.3 Refined Array Access Analysis

This section first starts by introducing the LMAD-based analysis, and then discusses the

adaptation of this analysis to jit4OpenCL.

4.3.1 Identifying Array Access Elements

In array access analysis, a memory location (noted as l) indicates a position in the memory

space. Let M be the set of memory locations referenced by an array access throughout the

program’s execution.

Given a loop nest of depth d, the memory references within the loop nest may be repre-

sented by a function f , whose input is a d-component vector~i = (i1, i2, i3, ..., id), where ik is

the kth loop index in the loop nest. The set of legal loop indices ~i forms the d-dimensional

iteration domain D. D is represented in the following format: D = (l1..u1, l2..u2, . . . , ld..ud),

where for any 0 < k ≤ d, lk and uk are the lower and upper bounds of loop k, respectively,

and lk ≤ uk. For normalized loops, the lower bound of each loop counter is 0. We fur-

ther constrain D by requiring the upper bound to be an affine function of the outer loop

indices. Such constraint does limit the analysis on applications that has certain memory

accessing patterns, but a large portion of scientific applications can be implemented with

such constraints.

Let f :~i → N be the following affine function:

f(~i) = b +
d∑

k=1

sk × ik|~i ∈ D

where sk|k = 1, 2, ..., d are the increment strides of each loop counter, b is the base of the

array access descriptor. The function f(~i) is an array descriptor called a Constraint-Stride

LMAD (CSLMAD) [11]. Assume that the strides are sorted in decreasing order. Let srk

be the kth stride in this sorted list, urk
be the upper bound, and rk be the position in the

sorted list of the loop with stride srk
. Let srm

= min(srk
)|srk

6= 0.

A CSLMAD is a Restricted Constant-Stride LMAD (RCSLMAD) if and only if for every

srk
we have:

srk
≥ srm

− 1 +
m∑

j=k+1

urj
× srj

27

This restriction guarantees that in a RCSLMAD the references with small strides do not

overlap with references with larger strides.

A function f(~i) and a loop-iteration domain D define a set of memory locations Lf (D) =⋃
~j∈D

f(~j). The memory space between min(f(~j)) and max(f(~j)) for all ~j ∈ D is the region

defined by f on D, and is denoted as |D|f . Not all locations within this region are necessarily

referenced by the loop. The locations that are referenced are called the effective memory

locations in this analysis. Figure 4.1 shows an example of a region. Grey blocks are effective

memory locations while white blocks are not.

Theorem 1. Given ~i ∈ D and ~j ∈ D, such that f(~i) and f(~j) are RCSLMADs. If ~i 6= ~j

then f(~i) 6= f(~j).

Proof. For the sake of contradiction, assume that there are two vectors~i and ~j in an iteration

domain D such that ~i 6= ~j and f(~i) = f(~j). Therefore:

f(~i)− f(~j) = 0 (4.1)
d∑

k=1

ik × sk −
d∑

k=1

jk × sk = 0 (4.2)

d∑
k=1

(ik − jk)× sk = 0 (4.3)

d∑
k=1,ik 6=jk

(ik − jk)× sk = 0 (4.4)

In an RCSLMAD, strides are sorted in decreasing order. Let p be the dimension for which

sp ≥ sk for all k such that ik 6= jk, and assume that ip > jp. Equation (4.4) can be rewritten

as:

(ip − jp)× sp +
d∑

k>p,ik 6=jk

(ik − jk)× sk = 0 (4.5)

To prove that Equation (4.5) cannot be true, we refer to the definition of a RCSLMAD.

In the definition, the strides satisfy the following condition:

sp ≥ sd − 1 +
d∑

j>p

uj × sj (4.6)

Thus, replacing sp in the left hand side of Equation (4.5) with (4.6) will yield:

(ip − jp)× sp +
d∑

k>p,ik 6=jk

(ik − jk)× sk ≥

(ip − jp)× (sd − 1 +
d∑

k>p

uk × sk) +
d∑

k>p,ik 6=jk

(ik − jk)× sk (4.7)

28

ip − jp ≥ 1 because ip 6= jp, thus:

(ip − jp)× (sd − 1 +
d∑

k>p

uk × sk) +
d∑

k>p,ik 6=jk

(ik − jk)× sk

≥ (sd − 1 +
d∑

k>p

uk × sk) +
d∑

k>p,ik 6=jk

(ik − jk)× sk

≥ (sd − 1) +
d∑

k>p,ik 6=jk

(uk + ik − jk)× sk (4.8)

Now we will show that the sum in expression 4.8 must be strictly positive. For any

values of ik and jk, (ik − jk) ≥ −|ik − jk|. Therefore:

d∑
k>p,ik 6=jk

(uk + ik − jk)× sk ≥
d∑

k>p,ik 6=jk

(uk − |ik − jk|)× sk (4.9)

For ik, jk we have that : 0 ≤ ik < uk, 0 ≤ jk < uk. The difference between two numbers

that are strictly smaller than uk must be less than or equal to (uk − 1), therefore:

|ik − jk| ≤ (uk − 1)

−|ik − jk| ≥ (1− uk) (4.10)

Combining expressions 4.10 and 4.9 results in:

d∑
k>p,ik 6=jk

(uk + ik − jk)× sk ≥
d∑

k>p,ik 6=jk

(uk + (1− uk))× sk

d∑
k>p,ik 6=jk

(uk + ik − jk)× sk ≥
d∑

k>p,ik 6=jk

sk

sk is always positive, therefore we can conclude that:

d∑
k>p,ik 6=jk

(uk + ik − jk)× sk > 0 (4.11)

Using expression 4.11 we conclude that the left-hand side of equation 4.5 is strictly greater

than 0. That is, under the assumption that ip > jp, f(~i)− f(~j) cannot be 0, which means

that there cannot exist two different vectors ~i, ~j in domain D such that f(~i)− f(~j) = 0.

Thus from the contradiction it is proven that f(~i), i ∈ D is a one to one mapping.

Corollary 1. Given D1 ⊆ D and D2 ⊆ D such that D1 ∪ D2 = D, D1 ∩ D2 = ∅ then

Lf (D1) ∪ Lf (D2) = Lf (D), Lf (D1) ∩ Lf (D2) = ∅.

Proof. Lf (D1) ∪ Lf (D2) = Lf (D) is a straightfoward deduction from the fact that:(⋃
a∈D1

{f(a)}

)⋃(⋃
b∈D2

{f(b)}

)
=

⋃
c∈D1∪D2

{f(c)}

29

To prove that Lf (D1) ∩ Lf (D2) = ∅, we use the fact that ~i → f(~i) is a one-to-one

mapping from Theorem 1. If we have ∀~t /∈ D then f(~t) /∈
⋃

~p∈D

f(~p). Let ~j ∈ D1 and

~i ∈ D2 where D1 ∩ D2 = ∅. Then f(~j) /∈
⋃

~p∈D2

f(~p) and f(~i) /∈
⋃

~p∈D1

f(~p). Therefore⋃
j∈D1

f(~j)
⋂ ⋃

i∈D2

f(~i) = ∅, that is Lf (D1) ∩ Lf (D2) = ∅.

There may be unnecessary elements (non-effective memory locations) interleaved with

effective memory locations, creating “holes” in the memory region. It is a waste to leave

these holes in shared memory because transferring data between different levels of device

memory is expensive. Consider the example shown in Figure 4.1. The figure represents

array access of the following RCSLMAD (assuming that the starting address is 0):

f((i, j)) = 2× i + 12× j

0 ≤ i < 3 and 0 ≤ j < 3

Figure 4.1: Example of legal RCSLMAD

Although the region of the RCSLMAD covers a large area, there are only 9 effective

memory locations. In some cases transferring the whole RCSLMAD region to the device

shared memory would be extremely expensive because the effective memory locations only

occupy a small portion of the region.

The solution to this is to compress the RCSLMAD to squeeze the holes out. If f(~i),∀~i ∈

D is a RCSLMAD, where the jth dimension’s lower bound is 0, upper bound is uj , then

we can construct another RCSLMAD function g(~i) such that its strides are srd
= 1, srk

=
d∑

j=k+1

urj
× srj

, where rl, l = 1, 2, ..., d is the dimension index sorted in stride’s decreasing

order. This transformation of RCSLMADs eliminates the access holes from the region

defined by g on D, |D|g ≤ |D|f and |Lg(D)| =
d∏

i=1,ui 6=0

ui. Most importantly, the memory

30

space occupied by the effective memory locations in f(~i) is |D|g.

Theorem 2. All memory locations in the region of D on g (that is, the memory space

spreading from max(Lg(D)) to min(Lg(D))) are effective memory locations.

Proof. It is obvious that:

1. g(~i),~i ∈ D is a RCSLMAD;

2. there are |Lg(D)| =
d∏

i=1,ui 6=0

ui effective elements in f(~i), g(~i), and |D|g, which means

that every memory location in g(~i) is an effective memory location.

For instance, consider the example shown in Figure 4.1. The constructed RCSLMAD

function g(~i) is: g((i, j)) = 1 × i + u1 × j = i + 3j, and |D|g = 9, resulting in no waste of

shared memory.

In a compiler implementation, LMADs are transferred to shared memory and are com-

pressed to reduce the usage of scarce shared memory using Theorem 2. In other words,

given a RCSLMAD f(~i) representing processing data elements in device global memory, our

compiler creates a new RCSLMAD g(~i) in device shared memory, and maps every legal f(~i)

to its destination g(~i) before computing. After the computation f(~i) is updated if g(~i) has

any change.

4.3.2 Program Transformation and RCSLMAD Decomposition

In some real-world scientific computing applications the computer needs to crunch large

amount of input data. Due to the size restriction of the on-chip shared-memory architecture

used in present nVidia GPGPU, programmers cannot process big RCSLMADs on device

shared memory for data reuse. To generate efficient code, the compiler must decompose the

RCSLMAD into smaller RCSLMADs, so that:

1. each of the smaller RCSLMADs fits to shared memory size;

2. any of the stream processor in GPU can process one decomposed RCSLMAD at a

time;

3. the collective result of the access to the decomposed RCSLMADs is exactly the same

as accessing RCSLMADs that are not decomposed.

In this compiler implementation, the domain for RCSLMAD is manipulated for decom-

posing. Given a RCSLMAD f(~i),~i ∈ D, split the domain D into disjoint sub domains D1,

D2 . . . Dn such that ∀i, j, Di∩Dj = ∅, D1∪D2∪. . .∪D3 = D, thus n smaller RCSLMADs are

31

formed. These RCSLMADs are: f(~i),~i ∈ D1, f(~j),~j ∈ D2, . . ., f(~k),~k ∈ Dn. According to

Corollary 1, ∀i, j we have Lf (Di)∩Lf (Dj) = ∅, and Lf (D1)∪Lf (D2)∪. . .∪Lf (Dn) = Lf (D).

D is split in such a way that every dimension of D is divided into contiguous regions.

This way D is decomposed from a large cube into many smaller cubes. Each small cube

represents the region of a sub domain. In this thesis this process is called RCSLMAD

decomposition. RCSLMAD decomposition requires transformations to the program source

code: for a parallel loop nest that contains sequential loops with array accesses in the

body, the compiler makes the array accesses tiled by strip-mining the sequential loops and

dividing parallel loop domains. These transformations will split D into many sub-domains.

By iterating over a tiled array access, the corresponding iteration sub-domain is traversed.

Figure 4.2 is an example showing a 3-dimensional domain (100 × 100 × 100) decomposed

into 8 smaller contiguous sub-domains, each sub-domain consists of 1
8 of the bigger domain’s

space (the size is 50× 50× 50). This is done by splitting each dimension in half.

Figure 4.2: Domain Decomposition Example

4.3.3 Ordering

Sorting all the elements in a RCSLMAD enables the compiler to generate shared-memory

transfer code through memory-address mapping. Threads have their own, unique IDs, the

compiler must know which elements in a RCSLMAD should a thread load to shared memory.

Creating an order among those memory locations pointed by a RCSLMAD will also create

a correspondence relationship between threads and the elements of RCSLMADs.

32

Ordering Elements for Different Memory Layer Mapping

Elements in f(~i),~i ∈ D can be ordered because a RCSLMAD is a one-to-one mapping from

vector value to scalar value. To calculate this order number, we have to reuse some concepts

defined before: in previous context, we used the stride list sorted in decreasing order, Srj |j =

1, 2, . . . , d to explain the idea of RCSLMAD, where the subscript rj |j = 1, 2, . . . , d is the

the domain index of the jth stride in this sorted list, urj
and lrj

are the upper bound and

lower bound corresponding to Srj respectively, and the rmth stride represents the smallest

non-zero stride in the list. The order number of element f(i1, i2, . . . , id) in this thesis is

defined as:

Order(~i) =
rm−1∑
j=1

(irj
− lrj

)

 rm∏
k=j+1

(urk
− lrk

)

+ (irm
− lrm

) (4.12)

Expression (4.12) constructs a unique order ID of an element using those non-zero strides.

In our analysis each RCSLMAD is normalized, so lri = 0, i = 1, 2, . . . , d, (4.12) can be

simplified to:

Order(~i) =
rm−1∑
j=1

irj

 rm∏
k=j+1

urk

+ irm
(4.13)

Conversely, given Order(~i), and D, we can calculate ~i. Assume that we have the value

of Order(~i), that the bounds of D are (l1 . . . u1, l2 . . . u2, . . . , ld . . . ud), and that the strides

are (s1, s2, . . . , sd). Let srk
be the kth largest stride, then~i = (i1, i2, . . . , id) can be found as

described below. The first non-zero index, irm
is given by:

irm
=
{

Order(~i) if m = 1
Order(~i) (mod urm

− lrm
) if m 6= 1

(4.14)

the remainder indices irm−1 , irm−2,...,i1 can be calculated as follows:

ij =

 Order(~i)
rm∏

b=j+1

(ub − lb)

 (mod uj − lj) (4.15)

where j = rm − 1, rm − 2, . . . , 1.

For normalized loops all lower bounds (lb and lj in the expression above) are equal to

zero. In this case, a simplified version for normalized RCSLMADs is:

ij =

Order(~i)
rm∏

b=j+1

ub

 (mod uj) (4.16)

33

where j = rm − 1, rm − 2, . . . , 1.

We use an example to show how it works: assume there is a RCSLMAD, f(~i) = 24 ×

i1 + 4× i2 + 1× i3, 0 ≤ i1 < 5, 0 ≤ i2 < 6, 0 ≤ i3 < 4, we need to compute the order ID of

the element at (i1, i2, i3) = (1, 2, 3), it will be:

Order(~i) = 1× (6× 4) + 2× 4 + 3 = 24 + 8 + 3 = 35

And to compute the ~i when Order(~i) = 35:

i3 = 35 (mod 4) = 3

i2 = b35
4
c (mod 6) = 2

i1 = b 35
6× 4

c (mod 5) = 1

Ordering Threads

Within a thread group, every thread has its own order. This order is defined as follows: for

an n-dimensional thread group, with dimension sizes of li, i = 1, 2, . . . , n, then the thread

ID in the group is:

IDthread =
n∑

i=1

di ×
i−1∏

j=i−1

lj

 (4.17)

Where di is the ith component of the thread local ID. The range of thread ID extends

from 0 to the size of group minus one.

Assigning Shared Memory Loading/Storing Order

Each thread is responsible for loading and storing RCSLMAD elements to shared-memory

space. Each ith thread can load/store the ith element because a sequence has already been

assigned to the threads in a thread group, and to the elements in the RCSLMAD.

However, this solution may cause hazards to the program. Section 5.1 describes the po-

tential threats and the compromises the compiler makes in order to maintain the correctness

and consistency of the program.

4.3.4 RCSLMAD Decomposing Example

Consider the following RCSLMAD:

f(i, j, k) = 64× i + 8× j + 2× k

0 ≤ i < 4, 0 ≤ j < 8, 0 ≤ k < 4 (4.18)

The RCSLMAD described by equation 4.18 has three parameters — i, j, and k — whose

strides are 64, 8 and 2, respectively. Assuming that the array is stored in row-major order,

34

Figure 4.3: 3-Dimensional LMAD example

Figure 4.3 explicitly represents the memory space as a cube. White blocks represent memory

locations that are not accessed while grey ones are those that the RCSLMAD (4.18) accesses.

Consider the case in which this LMAD must be decomposed into 8 smaller adjacent but

disjoint RCSLMADs so that each can be processed with smaller memory space requirement.

The 8 smaller RCSLMADs can be obtained by splitting dimensions i, j and k in half as

indicated by the black broken lines Figure 4.4.

Now assume that the compiler needs the RCSLMAD representation of the memory loca-

tions in Group 7. The RCSLMAD function f(i, j, k), can be adapted to this new iteration

domain. The i, j and k dimensions are split in half. The i dimension of group 7 extends

from 2 to 3, the j dimension extends from 4 to 7, and the k dimension from 0 to 1. Therefore

group 7 can be represented by:

f(i, j, k) = 64× i + 8× j + 2× k

2 ≤ i < 4, 5 ≤ j < 8, 0 ≤ k < 2 (4.19)

This RCSLMAD can be normalized to make every dimension index variable starts from

35

Figure 4.4: Decomposing LMAD into small Groups

0. The normalization requires the following transformation to Equation 4.19:

f(i, j, k) = 64× (2 + i) + 8× (4 + j) + 2× k

0 ≤ i < 2, 0 ≤ j < 4, 0 ≤ k < 2 (4.20)

→ f(i, j, k) = 160 + 64× i + 8× j + 2× k

0 ≤ i < 2, 0 ≤ j < 4, 0 ≤ k < 2 (4.21)

Equation 4.21 is the normalized RCSLMAD for Group 7, the other three RCSLMADs

can be obtained by exactly the same analysis. The analysis is most suitable for stream-

processing programs.

4.4 Discussion on LMAD-based Analysis for GPGPU

LMAD is a simple and straightforward representation for memory accesses that has been

developed to assist in the formulation of compiler memory behavior analysis. This chapter

presented an adaptation of the LMAD analysis to decompose loops in a way that is espe-

cially suitable for stream processing. Given an RCSLMAD function and its parameters, the

compiler can identify on the fly the memory locations that each stream processor should

process. This analysis enables automatic parallel-program generation for stream proces-

36

sors such as GPGPUs because the analysis incurs in only a small amount of performance

overhead.

37

Chapter 5

Generation of OpenCL code
from Python

This chapter describes the generation of OpenCL code from the code generated by unPython

for programs written in Python/NumPy. The approach adopted in this thesis is to reuse as

much of the infrastructure developed by Rahul Garg as possible. The jit4OpenCL analysis

flowchart is shown in Figure 5.1. At a high level, the modifications listed below were nec-

essary to transform jit4GPU from a compiler that generates AMD CAL code to a compiler

that generates OpenCL code.

• Remove AMD CAL program generation.

• Insert OpenCL runtime support and OpenCL kernel generation routine.

• Insert a grid-configuration analysis that is specific for OpenCL.

5.1 Dealing with Overlapping LMADs

The memory regions referenced by multiple LMADs may overlap. In Rahul Garg’s imple-

mentation, several LMADs are grouped if they overlap, and the compiler schedules group

transfers for each LMAD group.

That analysis is not working perfectly with LMADs whose regions overlap. Consider

the following situation: assume there are two LMADs f(~i)|~i ∈ D1 and g(~j)|~j ∈ D2, that

we have ~i′ ∈ D1, ~j′ ∈ D2 where f(~i′) = g(~j′). If the program writes to both LMADs in

two different threads and the two LMADs are loaded to shared memory at different times,

the program may result in a Write-After-Write (WAW) hazard because the same element is

written twice but the two writes are not ordered.

To avoid this problem and preserve data consistency, jit4OpenCL makes the following

decisions regarding the write and read status of the array references if there is an overlap

between two or more LMADs.

38

Figure 5.1: Modified jit4GPU Analysis Flowchart

• If all the references in the overlapping LMADs are read references, then there are no

hazards. The compiler generates code that moves these LMADs to on-chip shared

memory to reduce the cost of data transfer.

• if the overlapping LMADs contain at least one array write references, then the compiler

does not generate shared-memory code for all of the overlapping LMADs. Instead,

global memory access code is generated.

5.2 OpenCL Program Generation

The following problem description is similar to a problem description presented by Rahul

Garg[11].

39

Given a Python function P , a table of array accesses Ta that occurs within a loop in P

and a table of the loop bounds Tb, compute a heuristic solution to the following problem:

• generate a parallel OpenCL program POpenCL, including grid configuration and kernel,

such that for all inputs s ∈ S that are legal for P , the results produced by P and

POpenCL are identical, that is P (s) = POpenCL(s)|s ∈ S.

• compute a new table T ′
a for array accesses representing the memory addresses in the

shared memory on the GPU, and a sequence of OpenCL code that loads Ta from the

GPU’s global memory into shared memory. Modify POpenCL to make array accesses

in POpenCL refer to T ′
a rather than Ta.

5.2.1 Host Code Generation

The host code generation mainly consists of transferring LMADs to global memory on the

device and setting up arguments for the kernel execution.

Copying from Host Memory to Device Memory

There are significant differences in device resource allocation between CAL and OpenCL.

In CAL, the programmer may create 1D, 2D or 3D area storage space in the device, and

the device memory address is mapped to a host memory address. Thus, when CAL API

is used to allocate memory space in the device memory, the API returns a global pointer

pointing to a host memory address. The programmer can use this global pointer to transfer

data from and to device memory space in the same fashion as for a transfer between two

host memory addresses.

OpenCL uses a different kind of API format to manipulate device memory. OpenCL

requires the programmer to initialize device memory objects with their sizes, then the pro-

grammer must use OpenCL APIs to request transfers that are handled by OpenCL itself.

To reduce the data transfer bandwidth from host memory to device memory, Garg’s

jit4GPU determines the smallest rectangle shape from source memory space that covers

all the effective elements in an LMAD group in the memory. Then jit4GPU creates a

rectangular memory space of the same size on the device memory for storage of the group.

Such an approach works for CAL but is not suitable for OpenCL.

Rather than calling CAL API to get a host memory pointer, the compiler for OpenCL

must create a host memory buffer area. The data in the source rectangle is copied to this

buffer and then the content of the buffer is transferred to device memory. This change

enables jit4OpenCL to use Garg’s analysis to reduce data transfer between host and device

but has the shortcoming of additional host memory to accommodate memory copy, and

additional instructions to be executed in the host.

40

jit4OpenCL now adapts OpenCL 1.1 specification and tested all the experiments using

OpenCL 1.1 implementations. The compiler first test if the input RCSLMAD is a contiguous

memory region, if the answer returns yes, it will trasfer the memory region using two OpenCL

APIs: clEnqueueReadBuffer(...) or clEnqueueWriteBuffer(...). Otherwise the com-

piler invokes clEnqueueReadBufferRect(...) or clEnqueueWriteBufferRect(...) for

copying rectangular memory regions.

5.2.2 Grid Configuration Generation

Grid configuration controls the parameters for a kernel issue. A grid configuration must

determine the number, the geometry, and the size of each thread group as a parameter prior

to kernel execution.

The size and geometry of a thread group may affect performance. Groups that have

few threads may fail to utilize shared-memory space effectively, while groups that are too

big would probably overflow the register file or would not execute because of insufficient

shared-memory space to hold all the data. To optimize shared-memory utilization the grid

configuration must be determined according to the program’s array access pattern.

The current implementation of jit4OpenCL creates a grid configuration such that:

• the total number of threads in a thread group is a multiple of 32.

• the thread group has the geometrical shape of a rectangle.

• threads in a group collectively do not require more shared memory space than the

hardware can offer.

• the group is big enough to efficiently use shared-memory space.

The grid is configured by a heuristic search method. The result depends on the hardware

availability information that is retrieved via the OpenCL API, and on the program shared

memory usage.

5.2.3 Kernel Code Generation

The kernel code generation transforms the information passed by unPython into an OpenCL

kernel, with additional optimizations.

While invoking jit4OpenCL, unPython passes the following arguments to jit4OpenCL:

• a serialized abstract syntax tree (AST) of the source code in the form of a string.

• a set of LMADs describing the array-access references in the source code.

Jit4OpenCL reconstructs an abstract syntax tree from the string and traverses the tree

to generate target OpenCL kernel code. The following content describes the kernel code

generation approach.

41

5.2.4 Transforming Loops

Translating Perfect Parallel Loop Nests According to Banerjee[3],“a sequence of

loops form a nest, if each loop(except the first) is totally included within the previous loop”,

such a sequence of loops form a perfect loop nest. The number of loops is said to be the

“depth of the loop nest”. The loop that has i− 1 outer loops is called “the ith level loop of

the loop nest”.

We expand the definition of perfect loop nest into the parallel domain:

Definition 3. If different iterations of a loop can be performed simultaneously or out-of-

order, then the loop is a parallel loop. The entire loop finishes when all its iterations are

finished.

Definition 4. A sequence of parallel loops form a perfect parallel loop nest, if each loop

(except for the first) is totally included within the previous parallel loop, and all the non-

looping instructions are inside the deepest loop.

Assume that there are p levels of parallel loops in the perfect loop nest, counting from

the outermost loop, we denote those loop indexes as l1, l2, . . . lp respectively, this sequence

of loop indices makes up a vector. We also denote their index domains as d1, d2, . . . dp

respectively. Jit4OpenCL generates a p-dimensional thread grid configuration (in reality,

OpenCL and CUDA only support dimensions not exceeding 3), and the ith dimension’s

iteration domain starts from 0 to di − 1.

Code 5.1: Python Stencil Computing Code

1 for y in gpurange(n-2):
2 for x in gpurange(n-2):
3 w = float32 (0.2)
4 B[y,x] = w*A[y+1,x+1] + w*A[y+2,x+1]
5 + w*A[y,x+1] + w*A[y+1,x] + w*A[y+1,x+2]

Code 5.2 is an example frequently used in graphic processing, it represents the operation

of a low-pass filter. We will use this simple stencil computation as an example to demonstrate

how jit4OpenCL generates OpenCL grid configuration: Jit4OpenCL first recognizes that the

depth of perfect parallel loop is 2, the values of d1 and d2 are both n−2. Thus, the compiler

generates a 2-dimensional grid, with the domain of the first dimension (the y dimension)

and the second dimension (the x dimension) both stretching from 0 to n − 3, as shown in

Figure 5.2, where a small square represents an issued thread. In this example, (n−2)×(n−2)

threads are issued, and each thread has its own loop index. For example, the thread at the

upper-left is assigned with its x = 0 and y = 0, thus, that thread computes B[0,0].

Translating Serial Loops

42

Figure 5.2: Stencil Program Thread Grid Example

Definition 5. A serial loop is a common loop in which the execution of the xth iteration

depends on one or more of the predecessor iterations. The predecessors of iteration x are

the iterations 1, 2 . . . (x− 1).

For serial loops that are in a loop nest body, jit4OpenCL performs the following trans-

formations:

• strip mines serial loops according to the RCSLMAD analysis for tiled array accesses;

• inserts code to transfer the tiled array block that is going to be accessed in the strip-

mined loop from off-chip global memory onto on-chip shared memory — this code is

inserted immediately before the execution of the stripmined loop body;

• replaces the global array accesses in the loop body with corresponding shared-memory

accesses;

• inserts code to transfer modified array tiles from shared memory back to global memory

(this code executes immediately after the stripmined loop body);

• inserts synchronization barriers right after the data transfer between shared memory

and global memory for data consistency.

The later part of this chapter describes the process of creating data transfer code and of

redirecting array access references. Section 5.2.5 illustrates the translation of a serial loop.

Dealing with Imperfect Loop Nests Not all applications contain perfect loop nests

that can be easily optimized for performance by a compiler, some applications execute

43

imperfect parallel loop nests. For instance, some instructions may appear between different

levels of loops instead of appearing inside the deepest loop. Dealing with imperfect loops

enables the compiler to handle a larger set of applications.

Jit4OpenCL’s approach is to break down the imperfect parallel loop nest into two or

more smaller perfect parallel loop nests so that the compiler can then handle each of them,

but still keeping the data/instruction dependency in the program. Given the Abstract

Syntax Tree(AST) of the imperfect loop nest, jit4OpenCL splits an imperfect parallel loop

nest into two or more smaller perfect parallel loop nests, while preserving dependencies.

Because jit4OpenCL does not perform instruction scheduling, the transformation guar-

antees that before the execution of an instruction, all its predecessor instructions are exe-

cuted, to ensure the correctness of the program. Algorithm 5.2.4 describes the approach.

The compiler invokes SplitAST method to split the input AST.

Shared Memory Loading/Storing Code Generation

Given a set of RCSLMADs R that will be used in the loop body, the thread’s global and

local IDs: IDg, IDl respectively, the group size and the grid size in each dimension x (Sgroup
x

and Sgrid
x , respectively), the loop stripmining length Lsm, and the stripmined outer loop

counter c, jit4OpenCL can calculate the data elements that will be accessed within the inner

loop by changing the RCSLMAD’s domain.

For each RCSLMAD r ∈ R, r : f(~i),~i ∈ D, the following address will be referred in the

inner loop:

f(~i),~i ∈ D′

where for each dimension j in D′, if j is a parallel dimension, then:

IDg × Sgroup
j ≤ j < IDg × (Sgroup

j + 1)− 1

otherwise

Lsm × c ≤ j < Lsm × (c + 1)− 1

It is obvious that f(~i),~i ∈ D′ is also a RCSLMAD. To verify that, just replace D with

D′, and the characteristics of RCSLMAD defined in previous chapter still stand. Moreover,

D′ covers the loop index domain of the inner loop for all the threads in the group. To utilize

shared memory, f(~i),~i ∈ D′ is transferred to shared memory, where it gets compressed using

the method stated in Theorem 2.

In the host code jit4OpenCL declares a dedicated, independent, shared-memory space

for each r ∈ R that is accessed in a serial loop in the code. The size of this space is

exactly Lf (D′) where r : f(~i),~i ∈ D. Therefore, jit4OpenCL can generate shared-memory

loading/storing code using the following method:

1. assign an unique order ID to the thread, using the method discussed in Section 4.3.3;

44

2. for every RCSLMAD r : f(~i),~i ∈ D′, the ith thread loads/stores the ith element

from f(~i),~i ∈ D′, and stores it to the ith position in the corresponding RCSLMAD in

shared-memory space.

Adding Synchronization

Synchronization instructions are interleaved between shared-memory load/store operations

and the computing instructions to ensure that data dependencies are honored and the mem-

ory accesses are correct.

Redirecting Array Access References

After the shared-memory loading stage, the array accesses references in the source code,

which have shared-memory copies have to be redirected to their copies in shared-memory

space. Two changes must be made:

1. change of the array head pointers.

2. change of the subscripts.

Changing the array pointer is simple, we just need to replace the array name with the one

declared to point to shared-memory space. Changing of the subscripts requires jit4OpenCL

to construct a new normalized RCSLMAD for the copy in shared memory.

Given a RCSLMAD r : f(~i),~i ∈ D′ referring to an array access in global memory

(where D′ is the tiled domain that will be accessed within the strip-mined serial loop by

all the threads in the group), and the shared memory with size larger than or equal to

Lf (D), the compiler constructs another RCSLMAD g(~i),~i ∈ D′′, where D′′ is a normalized

representation of D′, and g(~i),~i ∈ D′′ points to memory locations in the shared memory

space. Normalization shifts the region of each dimension to start from 0 and leaves the

region size unchanged. The compiler redirects the array access references by replacing the

access to the first RCSLMAD with the new one.

5.2.5 Scenario Example of Kernel Transformation

This section uses the annotated Python code shown in Figure 5.2 as an example to illustrate

how the compiler works. This code is an implementation of matrix multiplication in Python.

The top two loops in the nest, loop i and loop j, are parallel; the innermost loop, loop k,

is a serial loop because of the data dependence in the scalar variable sum. There are three

array access references: A[i,k], B[k,j] and C[i,j].

To generate a kernel, the compiler extracts the code content within the parallel loops

for kernel body generation. The information in these loops is used to generate thread grid

configuration. In this example, a 2-dimensional grid 〈i, j〉 configuration is generated.

45

Code 5.2: Python Matrix Multiplication Code (Before Translation)

1 for i in gpurange(N):
2 for j in gpurange(N):
3 sum = 0
4 for k in range(N):
5 sum = sum + A[i,k]*B[k,j]
6 C[i,j] = sum

Code 5.3: Translated Kernel Body (intermediate result)

1 int sum = 0;
2 int i = gid_i*group_size_i + lidi;
3 int j = gid_j*group_size_j + lidj;
4 for (int sp_k = 0; sp_k < N; sp_k+= sp_size){
5 for(int k = 0; k < sp_size; k+=1){
6 sum = sum +A[i][sp_k+k]*B[sp_k+k][j];
7 }
8 }
9 C[i][j] = sum;

Now consider the content inside the parallel loops: to generate an efficient kernel that

can utilize shared memory, the serial loop k has to be strip mined in order to allow the GPU

to have tiled array access. Also, in the generated kernel the parallel-loop indexes i and j

are replaced by a combination of OpenCL group IDs, group sizes, and thread local IDs, as

shown in Code 5.3. In Code 5.3, gid i and gid j are the group ID of variables i and j

respectively; group size i and group size j are their size along the i and j dimensions,

respectively. Line 2, and line 3 calculate the correct value of i and j.

The next step is to generate shared-memory utilization code. The memory loading/s-

toring code is inserted between the inner loop and the outer loop of the strip-mined serial

loop. To correctly generate code, the compiler must identify the set of array accesses that

is referenced in the innermost loop by all the threads in the group. This identification is

done by calculating the RCSLMAD representation of the array accesses in the strip-mined

loop body (line 6 in Code 5.3). The smaller iteration domain of loop index, together with

the original LMAD function, identify the set of memory locations that will be accessed by

the loop body.

The number of threads in a group can be calculated as the multiplication of group size i

and group size j. A unique order value is assigned to each thread, which can be calcu-

lated as lidi*group size i + lidj or lidj*group size j + lidi. Next, the ith thread

must load the ith element in a RCSLMAD, and the global-memory array reference must be

replaced with a shared-memory reference. All these changes yield Code 5.4.

Code 5.4 is simplified by omitting details from the kernel instance compiled using

46

Code 5.4: Kernel Body with Shared memory Utilization

1 int lidi = get_local_id (0);
2 int lidj = get_local_id (1);
3 int gid_i = get_group_id (0);
4 int gid_j = get_group_id (1);
5 int order = lidi*group_size_i + lidj;
6 int sum = 0;
7 for (int sp_k = 0; sp_k < N; sp_k+= sp_size){
8 A_sm[order] = A[N*(gid_i*group_size_i+ (order/group_size_i))
9 + 1*(sp_k*p_size +(order % group_size_i))];

10 B_sm[order] = B[N*(sp_k*sp_size + (order/sp_size))
11 +1*(gid_j*group_size_j +(order/group_size_j))];
12 for(int k = 0; k < sp_size; k+=1){
13 sum = sum + A_sm[group_size_i*lidi +1*k]
14 *B_sm[group_size_j*k+1* lidj];
15 }
16 //no need to generate shared memory store because

17 //A and B are read only.

18 }
19 C[i][j] = sum;

jit4OpenCL. When executed on an nVidia Tesla Architecture this code achieves about

7× better performance than Code 5.2. This performance improvement indicates that the

method that jit4OpenCL uses is effective to generate efficient OpenCL code for this type of

computation on nVidia GPUs.

5.3 Chapter Conclusion

This chapter presented a high-level description of the techniques used in jit4OpenCL for

just-in-time compilation and kernel generation followed by a scenario demonstration, in

which it discussed in detail some of the implementation challenges that had to be overcome

to use the analysis described in Chapter 4 for kernel generation. This chapter also discussed

the need for additional synchronization to prevent the generation of incorrect results due to

dependencies.

47

Algorithm 1 The Algorithm for splitting AST
SplitAST:
Require: the imperfect parallel loop nest root node r as input
1: initialize queue of ASTs: A1

2: initialize stack s for loop information storage (each stack frame holds the information
of a loops loop-id, the iteration domain)

3: initialize queue of ASTs: A2

4: enqueue r to A2

5: call RecursivelySplitAST
6: return A1

RecursivelySplitAST:
1: extract first AST t from A2, if A2 is empty then exit
2: construct a stack frame f , record t’s loop info f , push f to the stack s
3: if t’s loop body only contains another parallel loop p then
4: enqueue the loop body of t to A2

5: else
6: {loop body contains more than one parallel loop}
7: split the loop body instructions using parallel loop statement as delimiter into a list

L of instruction lists and parallel loops
8: for each l in L do
9: if l is a list of non-loop instructions then

10: p′ = BuildLoop
11: enqueue p′ to A1

12: else
13: {it is a parallel loop}
14: call recursivelySplitAST
15: end if
16: end for
17: end if
18: pop s

BuildLoop:
1: initialize a temporary stack s2

2: initialize an AST node pointer t = l
3: while s is not empty do
4: get f by popping stack top s
5: re-construct a loop node n with the information stored in f
6: make n the parent node of t
7: make t points to n
8: push f to s2

9: end while
10: while s2 is not empty do
11: get r by popping stack top s2

12: push r to s
13: end while
14: return t

48

Chapter 6

Experimental evaluation

This chapter explains the experimental methodology used to evaluate the performance of

the unPython and jit4OpenCL framework and then presents an analysis of the experimental

results. The results of the experiments reported in this chapter support the following claims:

1. The execution on a CPU-GPU heterogeneous architecture can deliver significant per-

formance speedup in some applications. However, not all applications can achieve

speed improvements.

2. The process for just-in-time compiling and data transfer incurs significant overhead.

In some cases the overhead dominates the execution time.

3. jit4OpenCL is targeting an abstract architecture (OpenCL) rather than AMD GPU,

the jit4OpenCL executing on an AMD GPU is slower than jit4GPU in some cases.

6.1 Methodology

An important claim for jit4OpenCL over jit4GPU is that jit4OpenCL generates OpenCL

code that can be executed in all platforms that support OpenCL while jit4GPU is restricted

to execution in AMD GPUs. Therefore the experimental evaluation of the performance of

jit4OpenCL is conducted on two machines, one with a nVidia GPU and the other with an

AMD GPU.

The machine with nVidia GPU is a desktop Intel Core 2 Duo E5200 (2.5GHz), nVidia

GTX260, and 6GB DDR3 memory. The result is obtained on Ubuntu 9.10 32-bit using

GCC 4.4 and nVidia Computing SDK 3.2 Beta.

The machine with an AMD GPU has a Phenom II X4 925 2.8GHz CPU, Radeon 5850

1GB GPU, 4GB DDR3. The OpenCL driver and compiler used is Catalyst 10.7 OpenCL

1.1 update with AMD Stream SDK 2.2 on Ubuntu 10.04 64-bit.

Codes on both machines are compiled using GCC flag -O3.

49

Several highly parallel applications are chosen as benchmarks in this evaluation. The

Coulomb Potential (abbr. CP), N-body simulation and Mandelbrot, Blackscholes that de-

rived from Parboil benchmark suit by Garg [12], are used, along with Matrix-Multiplication.

These applications are widely used in scientific computing and represent a class of applica-

tions that can be parallelized for efficient execution. Those applications embed high stream

parallelism, thus they are suitable for execution on stream processors such as GPUs.

We also included benchmark testing results of Matrix-Transpose and Stencil applications

on nVidia platform for reference. These two applications show low computing/data ratio

and thus are not recommended to be compiled using jit4OpenCL. The test results support

this received wisdom.

In the experimental evaluation, each test is executed 40 times on each machine (execute

on CPU for 20 times, another 20 executions are on GPU). Throughputs or speedups are

plotted on figures with error bars indicating a 95% confidence interval. Each GPU execution

is profiled to record the take down time, the JIT compiler’s total execution time, including

the time used for compiling OpenCL code, data transfer, data analysis and actual computing.

Those histogram figures also show the comparison results against generated OpenMP code

or highly optimized CPU library code.

6.2 Result Analysis

6.2.1 Results on nVidia Machine

The performance benchmark result of each application with different size of input is plotted

in the figures in this section. In the figures code generated by jit4OpenCL is compared to

either highly-optimized ATLAS library, hand-written C code, or OpenMP code generated

by unPython, depending on the availability.

Figure 6.1 shows the execution performance of the Matrix-transpose application. The

jit4OpenCL code is compared against hand-written C implementation. The benchmark

shows that highly optimized CPU code outperforms the GPU code in all tests.

Figure 6.2 compares the stencil performance throughput between hand-written C code

and the generated OpenCL code on nVidia GPU. This experiment shows that hand-written

C code runs faster than jit4OpenCL for all input data size.

Profiling shows that in Matrix Transpose and Stencil, most of the execution time of the

jit4OpenCL code is spent on overhead because of the low computation/data transfer ratio

(the ratio of Stencil is 5 : 1 while Matrix Transpose is 1 : 1). Although the kernel execution

on GPU runs in just several hundredth of a second, the data transfer and JIT compiling

time overhead exceeds the total time required to execute the CPU code. This benchmark

suggests that, in order to take advantage of the GPU, programmers need to carefully select

the applications that they will run in such architectures.

50

Figure 6.1: Matrix Transpose Result (nVidia)

Figure 6.2: Stencil Result (nVidia)

51

Figure 6.3: Matrix Multiplication Result (nVidia)

Figure 6.3 shows the throughput of matrix-matrix multiplication execution on the nVidia

GPU measured in GFlops using code generated by jit4OpenCL. The result is compared to

highly optimized code from the Automatically Tuned Linear Algebra Software (ATLAS)

code. ATLAS features a state-of-the-art auto-tuning linear-algebra library toolkit for differ-

ent homogeneous computing system. The performance of the ATLAS library ranges from 30

Gflops to 33 Gflops throughout the test, while jit4OpenCL can reach as high as 42 Gflops.

Figure 6.4: Coulomb Potential Energy Result (nVidia)

Figure 6.4 is the comparison result of the Coulomb Potential (CP) on the nVidia GPU.

The figure suggests that up to 92 times speedup can be achieved when the input data size

is large (N=512). CP has a high computation/data transfer ratio and therefore it requires

52

a small transferring data set, yielding a small data transfer overhead.

Figure 6.5: N-Body Simulation Result (nVidia)

N-Body simulation result is shown in Figure 6.5. Jit4OpenCL delivers a peak perfor-

mance of 227 Gflops, while the generated OpenMP code runs at a speed of 4.7 Gflops. This

is a 49x speedup achievement that can be obtained when the problem size is as large as 768.

However, the performance degrades when the problem size is small. The OpenMP program

performs steadily at a speed of 4.6 to 4.8 Gflops through out the test.

Figure 6.6: Blackscholes Filter Result (nVidia)

Figure 6.6 shows that the Blackscholes application has a performance gain of 3.3x when

the problem size is as large as N=4096, while the speedup is 1.26x when N=2048 and 0.35x

when N=1024.

53

Figure 6.7: Mandelbrot Result (nVidia)

Figure 6.7 gives the result of performance for code generated by jit4OpenCL for the

Mandelbrot application. It shows that Mandelbrot can have performance gain when the

input problem size is large. When the input data size is equal or less than 2048, the

performance actually degrades; when the input data size is 4096, we observed a 3.9x speed

up.

6.2.2 Jit4OpenCL Results Compared with Jit4GPU on AMD Ma-
chine

We also obtained the performance results of Matrix-Multiplication, N-Body simulation,

Coulomb Potential, Blackscholes and Mandelbrot on the AMD platform. The result is com-

pared against jit4GPU and unPython-generated OpenMP code (except Matrix-Multiplication

that is compared against code from the ATLAS library). We expect the jit4OpenCL per-

formance on AMD architecture to be lower than that of jit4GPU — because jit4OpenCL is

targeting OpenCL architecture rather than AMD architecture.

Figure 6.8 shows the execution result of jit4GPU and jit4OpenCL on the AMD GPU.

From the figure we can see that jit4OpenCL cannot generate efficient GPU code on AMD

platform for the Matrix-Multiplication application. The jit4OpenCL has around 12x perfor-

mance degradation compared with CPU ATLAS, while the jit4GPU can reach an execution

rate as high as 233GFlops. The CPU ATLAS library has a 67Gflops throughput, compared

to around 3Gflops that jit4OpenCL achieves. This result suggests that jit4OpenCL is not

yet capable of generating some applications for AMD platform when it is tuned for nVidia

architecture.

Figure 6.9 shows the performance result of Coloumb Potential on AMD platform. In

54

Figure 6.8: Matrix-Multiplication Result on AMD

Figure 6.9: CP Result on AMD

55

the figure, Jit4OpenCL has a speedup factor of 29x compared to OpenMP while jit4GPU

performs 124x faster than the CPU code. Compared to jit4GPU, jit4OpenCL is 4.3x slower.

Figure 6.10: N-Body Result on AMD

Figure 6.10 shows the performance result of N-Body simulation on AMD machine. From

the figure we can see that the performance of jit4OpenCL is about 71% of that of jit4GPU.

Jit4GPU can reach up to 500GFlops while jit4OpenCL is 158GFlops slower.

Figure 6.11: Blackscholes Result on AMD

Results for Blackscholes are shown in Figure 6.11. The figure tells that given a large

problem size input (N=4096), jit4OpenCL can have roughly 1.4 times speedup compared

to generated OpenMP code, while jit4GPU can perform 8 times faster than OpenMP.

The result in Figure 6.12 is interesting because the jit4OpenCL performance surpasses

56

Figure 6.12: Mandelbrot Filter Result on AMD

that of jit4GPU and is 1.6x faster than jit4GPU on the same AMD machine for large input

size (N = 4096). But when the input data size is small, neither jit4OpenCL nor jit4GPU

can outperform generated OpenMP code.

6.2.3 Performance Analysis

Time Decomposition

The execution time of a program compiled by jit4OpenCL can be decomposed into three

parts: jit4OpenCL analysis time, OpenCL JIT compiling time, Data Transfer time and

Kernel computing time. A discovery is that for some benchmark applications, such as

Coloumb Potential, Mandelbrot and Blackscholes, the GPU kernel computing time only

takes up less than 15% of the total execution time. Most of the execution time is overhead.

Figures 6.13-6.19 show the distribution of the execution time of each application on nVidia

GPU; Figures 6.20-6.24 show the time distribution on AMD GPU. Each graph shows four

components of the execution time:

• the time used for generating OpenCL host and device program

• the time used for generating GPU kernel binary by invoking external compiler

• the time used for copying processing data to temporary buffer

• the time used for GPU computing

Figure 6.13-6.19 show that the compilation and data transfer overheads are non-trivial.

For applications that are not computing-intensive, such as Matrix-transpose, Stencil, kernel

execution time only take up a small portion of the overall execution time. However, even

57

for the computing-intensive applications such as Matrix-multiplication, CP, the combined

overhead is around 50% of the total execution time at least. Although jit4OpenCL gains

speedup on applications like Blackscholes and Mandelbrot, most of the execution time is

still consumed in combined overhead. In the N-Body simulation the kernel execution takes

up to 12.5 seconds, marginalizing the combined overhead to 9% of the total execution time.

However, the overhead is still significant.

Figures 6.20-6.24 show that on the AMD machine jit4OpenCL has a larger overhead

compared to jit4GPU. In those figures, jit4OpenCL’s kernel compiling time component is

the time used for invoking AMD OpenCL compiler, and jit4GPU’s kernel compiling time

indicates how long the AMD CAL compiler takes to compile the generated CAL code.

• Figure 6.20 shows the jit4OpenCL and jit4GPU Matrix-multiplication break down

time on AMD machine. The Figure shows that the kernel execution of jit4OpenCL is

55x slower than jit4GPU. A reason may be that the jit4OpenCL-generated code con-

flicts with the design of AMD GPU architecture, probably is connected with memory-

bank conflicting. Fixing the problem is a high-priority task in the next update of

jit4OpenCL.

• Figure 6.21 shows the Coulomb Potential execution breakdown time on AMD machine.

The result indicates that the kernel execution time of jit4OpenCL is about 5x slower

than that of jit4GPU. Also, the jit4OpenCL analysis overhead takes 2 times longer

than jit4GPU; the kernel compilation takes 2.5 times longer.

• Figure 6.22 plots the N-Body simulation time breakdown in the experiment. The

long kernel computing time offsets the overhead when the input problem size exceed

512. Although the time spent on overhead of jit4OpenCL is 3x of that of jit4GPU,

the kernel execution time of jit4OpenCL is 1.4x longer, resulting the overall time of

jit4OpenCL around 50% longer than jit4GPU.

• Figure 6.23 shows the result of Blackscholes. The figure tells that: 1, jit4OpenCL-

generated kernel is around 34x slower than jit4GPU; 2, the data transfer time required

by jit4OpenCL doubles; 3, the kernel compilation takes 2.5x longer. The jit4OpenCL

overall performance is around 20% of jit4GPU when input problem size N is 4096.

• The last figure in this chapter, Figure 6.24 shows an unexpected result. jit4OpenCL-

generated kernel performs 6.3x faster than jit4GPU-generated kernel: when N=4096,

jit4OpenCL took 0.088 second to complete kernel computing, while jit4GPU needs

around 0.55 second. However, jit4OpenCL demands 0.15 second for data transfer,

while jit4GPU only needs 0.037 second on average; the analysis overhead time of

jit4OpenCL compared with jit4GPU is 2.7:1; the kernel compiling comparison is 1.2:1.

58

In sum, compared to jit4GPU, Jit4OpenCL needs an additional stage of compilation that

translates generated OpenCL kernel into GPU binary code, and this additional compilation

leads to big losts of performance; Jit4OpenCL requires longer time to transfer a same

amount of data; also, the analysis time in jit4OpenCL is longer than jit4GPU. This is

possibly because jit4OpenCL is derived from an old version of jit4GPU, whose analysis

takes a longer time to finish, and that in the OpenCL context the initialization process is

more complicated than that of AMD Stream platform. Large overhead hinders performance

speedup.

Figure 6.13: Matrix multiplication Execution Time Decomposition (nVidia)

The figures in this section show that, as expected, jit4OpenCL has a constant compila-

tion time for a certain application, regardless of the input problem size. Such overhead is

determined by the following factors:

• The input program source code implementation: jit4OpenCL selects kernel generating

and data transfer strategies according to the program being compiled.

• The performance of corresponding platform OpenCL compiler: different implementa-

tions of the OpenCL compiler for different target platforms have different compilation-

time requirement for the same input.

The cost of data transfer, however, is dependent on the input problem size and the ap-

plication characteristics. Stencil, Matrix-Transpose and Blackscholes, have a large comput-

59

Figure 6.14: Matrix Transpose Execution Time Decomposition (nVidia)

60

Figure 6.15: Stencil Execution Time Decomposition (nVidia)

61

Figure 6.16: CP Execution Time Decomposition (nVidia)

Figure 6.17: N-Body Execution Time Decomposition (nVidia)

62

Figure 6.18: Blackscholes Execution Time Decomposition (nVidia)

Figure 6.19: Mandelbrot Execution Time Decomposition (nVidia)

63

Figure 6.20: Matrix-Multiplication Execution Time Decomposition (AMD)

Figure 6.21: CP Execution Time Decomposition (AMD)

64

Figure 6.22: N-Body Execution Time Decomposition (AMD)

Figure 6.23: Blackscholes Execution Time Decomposition (AMD)

65

Figure 6.24: Mandelbrot Execution Time Decomposition (AMD)

ing/data transfer ratio, thus the data transfer cost occupies a large portion of the computing

time; applications such as CP, N-Body and Mandelbrot, require much less data transfer.

The current version of jit4OpenCL cannot handle small inputs efficiently due to the large

overhead. When the input problem size is small, most of the execution time is used for com-

piling and data transfers rather than actual computation. Thus, jit4OpenCL should only be

used to process large inputs. Also, jit4OpenCL spends most of the time on kernel computing

for a computing-intensive applications such as N-Body simulation (time complexity O(n4)),

and this can marginalize overhead.

Our evaluation result shows that the automatically generated kernel is efficient in some

benchmark tests. On the nVidia GPU platform, most of the time is used in overhead

rather than actual computation. The time consumption for CP needs a constant time

(roughly 1.28 seconds) for overhead running, while the kernel execution took less than 1

second at most (Figure 6.16); Mandelbrot requires around 1.13 seconds for compiling and

analysis, as a contrast, the kernel only needs less than 0.1 seconds to finish computing

(Figure 6.19); Blackscholes also needs more than 1.3 seconds for analysis and compiling,

adding another 1.05 seconds for data transfer, while the computing time is only 0.47 seconds

at most (Figure 6.18). Those results suggest that the overhead reduction is of highest priority

in the following development of jit4OpenCL.

The only exception is the N-Body simulation, which is the most computing-intensive

application used in our evaluation. However it still has more than 1 second overhead (Fig-

ure 6.17). We expect that a tuning on the analysis overhead will boost jit4OpenCL overall

performance.

66

OpenCL Kernel Compiling Time Cost

One of the greatest performance obstacle is the compilation time used for calling the external

OpenCL compiler to generate GPU kernel binary code. For instance, nVidia NVCC OpenCL

compiler typically takes 0.4 second to generate a binary for nVidia platform. This is a

heavy delay we cannot eliminate in jit4OpenCL, as it is only related to target platform

SDK implementation.

We also discovered that the time used for compiling OpenCL kernel into target platform

code varies drastically on different platforms, even on the same platform, the time required

still fluctuates on AMD platform. The following table shows the average time used for

invoking just-in-time compiler to generate OpenCL binary kernels on nVidia and AMD

platforms:

Benchmark nVidia NVCC AMD Stream
Matrix-Mult 0.403 0.125

CP 0.416 0.183
N-Body 0.414 0.074

Blackscholes 0.417 0.246
Mandelbrot 0.399 0.112

NVCC compiler needs around 0.4 second to compile each input kernel, which prevents

jit4OpenCL from gaining further performance speedup; the AMD Stream compiler is around

3 times faster. In some of the tested benchmarks the cost of just-in-time compiling generated

kernel occupies 30% of the execution time.

It is useful to point out that the time used for compiling target platform code includes

the time needed for common optimizations such as dead code elimination, loop unrolling,

common subexpression elimination, etc, which greatly enhances GPU kernel performance.

Data Transfer

In an heterogeneous computing platform, data transfer between a host and a computing

device is a necessary process to prepare data for computing on the device. The cost of data

transfer can be high. This cost is related to the transfer bandwidth between CPU memory

and GPU memory, and to the size of input data. In general, the higher the bandwidth, and

the higher the ratio of computing/transfer, the lower the overhead portion will result. For

instance, in Figure 6.16 the CP application only requires a very small computing/transfer

ratio, thus resulting in very low transfer overhead.

The data transfer speed is dependent on the implementation of the target platform

OpenCL implementation as jit4OpenCL invokes OpenCL APIs for data transfer. Our eval-

uation observed that jit4OpenCL requires a longer time than jit4GPU for data transfer

between CPU memory and GPU memory on AMD machine. On nVidia machine the trans-

fer speed is around 1.6GB/s, which is 800MB/s slower than the CUDA implementation

67

on the same machine. The results indicates that current OpenCL implementation on both

nVidia and AMD platforms provide slow communication between CPU memory and GPU

memory. We expect future OpenCL implementations can diminish or eliminate the speed

gap, which will lead to a performance gain in jit4OpenCL.

6.3 Concluding Remarks

We measured the performance of several benchmark applications on jit4OpenCL using two

different machines. In some cases overhead accounts for most of the execution time. When it

comes to the execution of computing-intensive applications, jit4OpenCL can still outperform

traditional CPU code by up to 91 times. However, we did observe a serious performance

degradation when compiling Matrix-Multiplication, this suggests that jit4OpenCL-compiled

program performance may vary on AMD architecture. User discretion is advised.

The experimental evaluation also indicates that the jit4OpenCL execution has a heavy

overhead, including fixed-cost compiling time that is determined by the program structure,

the jit4OpenCL analysis requirement and the target executing platform OpenCL compiler

that shipped with the corresponding SDK. In most cases, the biggest parts of the overhead

are the analysis in jit4OpenCL inherited from jit4GPU, and the time consumption used in

invoking OpenCL compiler for the target platform GPU binary code generation.

Jit4OpenCL cannot generate efficient code for all benchmarks, due to the restrictions on

array access analysis and the GPU architecture. Only those applications that adapt stream

processing programming paradigm are capable of exploiting the parallelism on GPU, and

only those that have regular array access patterns can be compiled efficiently by jit4OpenCL.

68

Chapter 7

Related Work

7.1 Other Compilations of Scripting Languages

There has already some tool kits for compiling scripting language into either another source

language or into executable. Pros and cons of different techniques used for compiling script-

ing languages are discussed in the rest of this section.

7.1.1 Dynamic Scripting Language Embedders

Dynamic script embedders are programs that wrap script and interpreter into executables.

It is worthy to talk about embedders here because they also create executables, but generally

speaking they are not compilers. Py2exe [27], Py2app [26], cx Freeze [7], Squeeze [32] and

exemaker [8] are tools for wrapping Python programs into executables for Windws(Py2exe),

Mac OSX(Py2app) or cross-platform environment(cx Freeze, Squeeze, exemaker). Those

tools creates Python executables that do not require an Python interpreter at runtime. The

wrapping procedure is as follows: First, conduct a dependency analysis to get the dependent

script files, Python libraries and interpreters; second, archive all necessary files and libraries

into a standalone executable distro. When user invokes the program, the executable calls

Python interpreter to perform an JIT compile on the archived python bytecode/script.

This method for translating scripting language into executable format suffers from slow

execution(JIT compilation is required) and big file size. However, embedding a runtime

machine is a quick and simple way for generating standalone distros for dynamic typed

scripting language.

7.1.2 Dynamic Scripting Language Compilers

Dynamic scripting language compilers often follow the traditional compiler process flowchart:

they typically converts the source file into abstract syntax tree, then into intermediate

representation, performs simple data and type analysis for optimization. For instance,

Rhino JavaScript compiler translates JavaScript file into Java bytecode [10], BaCon [2],

69

XBLite [37], etc translates Basic language into executables.

Another approach is to use code templates for code generation, and is part of the tem-

plate meta-programming. For instance, BCX [5] convert BASIC scripts to C source code

using code templates. Lliasov et al. used a special code template to build a simple but

highly-portable Just-In-Time compiler [14]. They use machine-code templates to efficiently

generate target code and use different templates for retargeting platforms. Their experi-

ments showed that they brought the JIT compiler performance to a level comparable with

traditional static compilers, but requires considerably more memory (often 5 to 20 times

more) than other JIT compilers.

7.2 Loop Access Analysis

Paek et al. proposed the Linear Memory Access Descriptor(LMAD) in [22] [23]. It is a

simplified linear model that describes the memory locations accessed by an array in a loop

nest. LMAD is used to analyze array access behaviors. For instance, to identify coalescing

accesses, interleaving accesses, contiguous accesses, and is capable of privatizing arrays for

parallel shared memory machines. Garg et al. uses a subset of LMAD, Restricted Constant

Strided Linear Memory Access Descriptor(RCSLMAD) to discover and identify memory

locations of accessed array elements[12]. In our work we utilize RCSLMAD for identifying

accessed memory locations of thread groups and threads inside the group to do the array

privatization on on-chip shared memory.

Another powerful access analysis tool that is widely used in compiler analysis is the

polyhedral model. The polyhedral model was first introduced for systolic array synthesis,

and this representation is called Systems of Affine Recurrence Equations (SAREs) over

polyhedral domains [28]. Feautrier later proved that exact data flow analysis on a certain

types of loops can obtain an isomorphic form (dynamic single assignment) of the SARE

over polyhedral domain [9]. Analyzing dynamic single assignments can lead to discovery of

potential parallelism. The processing of polyhedral model is divided into three parts: static

dependency analysis on input program; polyhedral transformation; loop code generation.

However, the domain of transformation is often large enough to take a good amount of time

of search to get the exact transformation that will lead to improved performance. Though

more accurate, due to the time constraint, at present, polyhedral model cannot be used

when time constraint is a main concern.

Several polyhedral model implementation has been published. Especially in GCC ver-

sion 4.4.0, the polyhedral model analysis module called Graphite [25] has been included

for high-level memory optimizations for loop nests. When GCC obtain the program GIM-

PLE, SSA and CFG representation, it then undergo the Graphite pass, which constructs a

polyhedral model of the program (GPOLY). Graphite performs on the input optimizations

70

or analysis like cost-modeling, scheduling execution order by data access pattern. Experi-

ments revealed that adapting Graphite may increase generated file size (because of complex

domain decomposition), and lead to longer compiling time (because of model computation

complexity). But the generated code shows significant speed up on benchmark.

7.3 Optimizing GPU Programs

Ryoo et al. discussed the possible optimization space for CUDA programs on nVidia’s Tesla

Architecture [30] [29] [31]. They argued that to achieve good performance using CUDA,

programmers have to strike the right balance between the number of simultaneously active

threads, and thread resource usage, including register usage, shared memory usage, and

the global memory bandwidth usage. One of the important discovery they found in their

benchmark is that without overflowing register file, increase the amount of simultaneously

active threads will lead to better performance. They also studied several application cases

and discussed about their portability to parallel platforms, along with in-depth analysis such

as performance bottlenecks, and some general guideline for implementation. In our work,

the automatic grid configuration generation module follows the guidelines described in [29],

and we regard the optimization principles a good source for reference.

Unlike Ryoo et al., Volkov et al. showed that dense linear algebra computation can

achieve up to 40% of performance gain compared to Ryoo’s result by an in-conventional

way of implementation on some benchmarks [36]. In their implementation, they carefully

analyzed the access latency to each different level of memory and the PTX code (the in-

termediate byte code format for CUDA programs) generated by NVCC compiler, to devise

an implementation pattern that unrolls loops aggressively and interleaves memory trans-

ferring with computing. They argued that fewer active thread will lead to more register

file space available for each thread, and less thread-scheduling overhead. Their tweaking

is most suitable for manual optimization, however, their method is hard to be adapted to

compiler design due to the involvement of delicate analysis on the cost of accessing the

memory architecture, and different GPU may result in different performance.

7.4 Compiling for Hybrid Systems

Garg et al. created a Python compiling framework that translates annotated Python pro-

gram into both OpenMP and AMD CAL language [12]. When executing on a hybrid

execution environment, the compiler framework’s backend jit4GPU decides whether to exe-

cute compiled OpenMP code or AMD CAL code, depending on the program behaviors and

available hardware components. Compared with our OpenCL generation framework, Garg’s

work has less portability because the GPU acceleration is specifically designed for the AMD

71

architecture, but its advantage is that jit4GPU can generate optimized CAL assembly di-

rectly. Redirecting jit4GPU into generating OpenCL code is a trade off of portability and

runtime performance, and it makes the real performance dependent on the performance of

OpenCL JIT compiler provided by hardware manufacturers.

Baskaran et al. developed a C-to-CUDA code generation framework for affine pro-

grams [4]. They used PLUTO(PLUTO: A polyhedral automatic parallelizer and locality

optimizer for multi-cores) [24] for polyhedral model analysis and CLooG [6] for multi-level

tiled code generation. In spirit they used a very similar approach to solve on-chip/off-chip

data transfer and tiling problems: by dividing the multi-dimensional loop domain into con-

tiguous sub-domains. However, they use polyhedral model for array analysis rather than

LMAD. Another difference between their system and ours is that theirs is an static com-

piler that involves no runtime compiling, while unPython must cope with jit4GPU to resolve

runtime dynamic type checking.

Lee et al. developed an automatic OpenMP-to-CUDA compiler framework, resulting

around 14x to 25x speedup in some systems [15]. This framework can translate irregular

(unaffined) OpenMP programs into CUDA program, however, it only does straightforward

language-to-language transformation and cannot utilize the on-chip shared memory to op-

timize data access, which results severe performance degradation compared to other CUDA

generation frameworks.

Liu et al. came up with an optimization framework, G-ADAPT (GPU adaptive opti-

mization framework), that takes as input an unoptimized CUDA source code and outputs

a parameter-optimized one [17]. They use heuristic-based empirical search to traverse the

optimization space to automatically find the (near-)optimal program configuration. In the

searching, a database containing past program execution information is used to help heuris-

tically generate next version of output. Each output is compiled and executed for immediate

benchmark feedback. Their works could be used on further optimization of other ahead-of-

time CUDA generation frameworks but is not suitable for a just-in-time system like ours

due to time constraints.

Zhu et al. designed a data classification and distribution algorithm based upon LMAD

representation, they used it to translate programs manually for distributed shared memory

(DSM) systems [39]. In their analysis, data is categorized into three classes via LMAD

analysis: private, distributed and shared. Private data consists of variables only accessed

by a single processor; distributed data consists of variables that might be used for multiple

processors; shared data consists of variables their accessing pattern is complex or just stat-

ically unknown. The framework divides the iteration space to assign each sub-iteration to

one processor, message passing communication is used to distributed data and shared data

across processors. Their works involve inter-processor communication, which is not suitable

72

for nVidia GPU architecture.

Multicore-CUDA (MCUDA) [33], developed by Stratton et al. translates CUDA pro-

grams to the conventional shared memory CPU architecture. The benefit is that the pro-

grammers can adapt CUDA programming model to write conventional systems. MCUDA

translates CUDA kernel to sequential program but requires a framework to manipulate

threading, transform shared memory declarations at runtime. Compared to our approach,

it is an opposite one that translate GPU code back to CPU code.

CUDA-Lite [35] is a higher CUDA-like programming model developed by Ueng et al.. It

aims at reducing the burden upon programmers and increasing the productivity by introduc-

ing an automated memory coalescing tool into the framework. With annotations in CUDA

kernel, CUDA-Lite is capable of generating memory loading/storing code automatically,

sometimes it is capable of generating coalesced memory accesses. The reason CUDA-Lite

requires annotations is that it does not utilize analysis on the behavior of memory accesses,

and our OpenCL framework also involves automatic memory access generation, but it can

acquire enough information to generate memory access code via the LMAD analysis.

Another similar CUDA tweak that requires additional annotation is the hiCUDA (Hi-

level directive-based language for CUDA program) developed by Han et al. [13]. It is

a source-to-source compiler that translates hiCUDA programs into CUDA programs. In

hiCUDA model, the programmer writes conventional programs with additional hiCUDA

directives, then the compiler transforms it into CUDA host code and kernel code according to

the program behaviors and the directives, which includes identifying data transferring region,

loop partitioning, barrier fencing, etc. The experiment shows that there is no performance

loss after a hiCUDA program translation. Generally speaking the model Han et al. created

requires the programmers to have knowledge on GPGPU computing, and the programmers

still need to design program in the view of GPU, it is not as adaptable as our framework

that does not require programmers prerequisites on heterogeneous computing systems.

73

Chapter 8

Conclusions

This thesis describes jit4OpenCL, a retargetting of jit4GPU, which is a Just-in-Time com-

piler developed by Garg and Amaral for runtime execution on a heterogeneous architecture

consisting of AMD GPUs. Jit4OpenCL generates code for the industry-standard OpenCL

language, enabling the framework to execute the same source program on any platform that

supports OpenCL.

In order to efficiently exploit the potential of the new memory hierarchy model in

OpenCL, we proposed an adaptation of the LMAD analysis for scattered memory accesses.

Our analysis tiles the program’s RCSLMAD accesses by splitting the program’s iteration

domain, and then reusing the original RCSLMAD function to describe each tile. The anal-

ysis can break down array accesses while maintaining program consistency, making fur-

ther transformations possible. This analysis was originally developed to generate optimized

kernel code for the nVidia’s Tesla GPU architecture, but it also works for similar SIMD

platforms.

Jit4OpenCL adapts this analysis for OpenCL code generation. Jit4OpenCL blocks par-

allel iterations into smaller parallel iteration blocks and converts each into a thread group.

Each iteration in each group is converted into a parallel thread. Jit4OpenCL uses the analy-

sis as the essential way to identify the memory locations accessed by each thread and thread

group.

Depending on the memory reference patterns, jit4OpenCL may compromise the perfor-

mance to maintain program correctness by avoiding optimizations that potentially break

the program’s consistency. For example, when multiple array access references overlap in

their regions, shared memory space is not used for the sake of data consistency.

The experimental evaluation indicates that jit4OpenCL can improve the performance

significantly in some applications on either AMD or nVidia platform. The execution per-

formance is determined by the following factors:

• the compiling overhead that is determined by the complexity of the program code.

74

• the data-transfer overhead that relates to the bandwidth between host and devices,

and the size of data.

• the computation/data transfer ratio of the input application. High ratios often yields

high performance.

• the array access pattern in input application. Irregular access pattern may cause

jit4OpenCL to generate inefficient code or to fail to produce GPU code.

8.1 Future Work

There is still significant room for improving the framework presented in this thesis. The

expensive overhead at runtime is a main obstacle for further performance improvement, thus

further optimization should focus on improving the time used on JIT compiling.

Our experiments show that the kernel execution speed is not optimal – it is because

either:

• the grid configuration is not optimal

• the auto-generated algorithm is not optimal

Current implementation of jit4OpenCL uses a fixed, square grid configuration that cannot

be optimal in most cases. However, grid configuration is an important parameter that will

affect the execution performance. A better solution is to adapt irregular grid configurations

that better suit the input application better. This change requires more in-depth analysis

we do at the JIT compiling time, and asks for more information gathering from the input

application and the GPU architecture. Several tuning approaches can be used for this job,

including utilizing machine-learning to reach an optimal solution, or adapt an auto-tuning

framework, either method must focus on the grid dimension configuration.

Current implementation of jit4OpenCL regards each run as independent to one another.

However, a library method can be called several times in its software lifespan, some of the

analysis result, such as RCSLMAD analysis, kernel code generation, can be re-used in the

following executions. This will greatly reduce the overhead.

A large portion of compilation overhead is the invoking of OpenCL compiler to generate

target GPU binary code. For example, to generate OpenCL code for nVidia system, around

0.4 second must be consumed in order to get the kernel binary by invoking the OpenCL

compiler. According to the specification of OpenCL 1.0 [19], each OpenCL platform is

capable of providing APIs for saving or loading a kernel binary. However, different kernels

may be generated for different input problem size of the same application, Thus, jit4OpenCL

needs additional information when storing the binary kernel. Utilizing those APIs to avoid

repetitively generating kernel binaries will accelerate the performance.

75

Jit4OpenCL is not capable of handling RCSLMADs that their memory regions overlap.

When jit4OpenCL detects that the memory regions of two or more RCSLMADs overlap,

and at least one of them contains a writing operation, jit4OpenCL will avoid utilizing shared

memory optimization for those RCSLMAD memory accesses in order to maintain consis-

tency. This is a coarse analysis because even when the regions of two RCSLMADs overlap,

it is still possible that the two RCSLMADs do not reference the same memory element.

When it happens jit4OpenCL loses an opportunity to perform memory access optimization.

Also, in current implementation of jit4OpenCL we are using a one-to-one mapping rule for

mapping global memory elements to shared memory space. This is sufficient in handling

an application whose RCSLMADs do not overlap. However, when dealing with overlapping

RCSLMADs, jit4OpenCL can no longer adapt current analysis method. A refined analysis

based on the characteristics of RCSLMADs may be capable of identifying such situation.

76

Bibliography

[1] Python/C API Reference Manual (2009-09-30). http://www.python.org/doc/2.5/

api/api.html.

[2] BaCon: Basic to C converter. http://www.basic-converter.org/.

[3] Utpal Banerjee. Dependence Analysis. Kluwer Academic Publishers, Boston, 1997.

[4] Muthu Manikandan Baskaran, J.(Ram) Ramanujam, and P. (Saday)Sadayappan. Au-

tomatic C-to-CUDA code generation for affine programs. In Compiler Construction

(CC), pages 244–263, Paphos, Cyprus, 2010.

[5] Bcx(basic to c converter). http://bcx-basic.sourceforge.net/.

[6] CLooG. http://www.cloog.org/.

[7] cxFreeze. http://cx-freeze.sourceforge.net/.

[8] exemaker. http://effbot.org/zone/exemaker.htm.

[9] Paul Feautrier. Parametric integer programming. RAIRO Recherche opérationnelle,

22(3):243–268, 1988.

[10] M. Foundation. Rhino: Javascript for java, 2007.

[11] Rahul Garg. A compiler for parallel execution of numerical python programs on graphic

processing units. Master’s thesis, University of Alberta, 2009.

[12] Rahul Garg and José Nelson Amaral. Compiling Python to a hybrid execution en-

vironment. In Workshop on General-Purpose Computation on Graphic Processing

Units(GPGPU), pages 19–30, 2010.

[13] Tianyi David Han and Tarek Abdelrahman. hi CUDA: a high-level directive-based

language for GPU programming. In Workshop on General-Purpose Computation on

Graphic Processing Units(GPGPU), pages 52–61, Washington, DC, USA, 2009.

[14] Alex Iliasov. Templates-based portable just-in-time compiler. SIGPLAN Notices,

38(8):37–43, 2003.

77

[15] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a compiler

framework for automatic translation and optimization. In Principles and Practice of

Parallel Programming(PPoPP), pages 101–110, Raleigh, NC, USA, 2009.

[16] Eric Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla:

A unified graphics and computing architecture. IEEE Micro, 28:39–55, 2008.

[17] Yixun Liu, Eddy Z. Zhang, and Xipeng Shen. A cross-input adaptive framework for

GPU program optimizations. In International Parallel and Distributed Processing Sym-

posium(IPDPS), pages 1–10, Rome, Italy, 2009.

[18] Aaftab Munshi. The OpenCL specification version 1.0. Khronos OpenCL Working

Group, 2009.

[19] Aaftab Munshi. The OpenCL specification version 1.1. Khronos OpenCL Working

Group, 2010.

[20] Scientific Computing Tools For Python – NumPy. http://numpy.scipy.org/.

[21] Travis E. Oliphant. Guide to NumPy. NumPy Developers, 2006.

[22] Yunheung Paek, Jay Hoeflinger, and David A. Padua. Simplification of array access

patterns for compiler optimizations. In Programming Language Design and Implemen-

tation(PLDI), pages 60–71, Montreal, QC, Canada, 1998.

[23] Yunheung Paek, Jay Hoeflinger, and David A. Padua. Efficient and precise array access

analysis. Transactions on Programming Languages and Systems(TOPLAS), 24(1):65–

109, 2002.

[24] PLUTO compiler. http://pluto-compiler.sourceforge.net/.

[25] Sebastian Pop, Albert Cohen, Cedric Bastoul, Sylvain Girbal, Georges-André Silber,

and Nicolas Vasilache. Graphite: Loop optimizations based on the polyhedral model

for GCC. In GCC Developers’ Summit, pages 179–198, Ottawa, ON, Canada, 2006.

[26] Py2app. http://svn.pythonmac.org/py2app/py2app/trunk/doc/index.html.

[27] Py2exe. http://www.py2exe.org/.

[28] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equa-

tions. In International Symposium on Computer Architecture(ISCA), pages 208–214,

Ann Arbor, Mi, USA, 1984.

[29] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.

Kirk, and Wen-mei W. Hwu. Optimization principles and application performance

78

evaluation of a multithreaded GPU using CUDA. In Principles and Practice of Parallel

Programming(PPoPP), pages 73–82, Salt Lake City, UT, USA, 2008.

[30] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee

Ueng, and Wen-mei W. Hwu. Program optimization study on a 128-core GPU. In

Workshop on General-Purpose Computation on Graphic Processing Units(GPGPU),

Boston, MA, USA, 2007.

[31] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, John A. Stratton, Sain-Zee Ueng,

Sara S. Baghsorkhi, and Wen-mei W. Hwu. Program optimization carving for GPU

computing. Journal of Parallel and Distributed Computing, 68(10):1389–1401, 2008.

[32] Squeeze. http://bcx-basic.sourceforge.net/.

[33] John A. Stratton, Sam S. Stone, and Wen-mei Hwu. MCUDA: An efficient implemen-

tation of cuda kernels on multi-cores. In Workshop on Languages and Compilers and

Parallel Computing (LCPC), Edmonton, AB, Canada, 2008.

[34] Damien Triolet. nVidia CUDA, preview. nVidia, 2007.

[35] Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen mei W. Hwu. CUDA-

Lite: Reducing GPU programming complexity. In Workshop on Languages and Com-

pilers and Parallel Computing (LCPC), pages 1–15, Edmonton, AB, Canada, 2008.

[36] Vasily Volkov and James Demmel. Benchmarking GPUs to tune dense linear algebra.

In Conference on Supercomputing(SC), pages 1–11, Austin, TX, USA, 2008.

[37] XBLite compiler. http://www.xblite.com/.

[38] Yonghong Yan, Max Grossman, and Vivek Sarkar. JCUDA: A Programmer-Friendly

Interface for Accelerating Java Programs with CUDA. In Euro-Par, pages 887–899,

Delft, Netherland, 2009.

[39] Jiajing Zhu, Jay Hoeflinger, and David A. Padua. Compiling for a hybrid programming

model using the LMAD representation. In Workshop on Languages and Compilers and

Parallel Computing (LCPC), pages 321–335, Cumberland Falls, KY, USA, 2001.

79

