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Abstract

IF-conversion is a classic Control-Flow Graph (CFG) transformation that

linearizes the basic blocks in a loop and assigns a predicate to them to enable or

disable execution. IF-conversion is performed before vectorization where scalar

statements are translated into vector statements to enable the vectorization of

code with control flow constructs such as if-then-else statements. Divergent

control flow contributes to the under-utilization of vector instructions where a

low ratio of vector lanes produce a useful result. Traditional methods, such as

the insertion of Branch on Super-Word Condition-Codes (BOSCCs), attempt

to elide the execution of vector code with no active-lanes, however, with the

increasing vector-lengths (VLs) appearing in vector Instruction-Set Architecture

(ISA) extensions, BOSCCs lose their effectiveness.

This thesis presents Active-Lane Consolidation (ALC), a variable vector

permutation that re-organizes the lanes between two vector registers to consol-

idate those that are active into a single vector, increasing utilization; details

the implementation of ALC in a modern vector ISA using only the current

permutations available; presents two loop-transformations for loops with diver-

gent control flow to utilize ALC and presents case studies for four benchmarks

from the SPEC 2017 benchmark suite. The case studies show that ALC can

substantially increase vector utilization in certain loops with divergent control

flow, especially where IF-conversion and BOSCCs struggle. The increase in

vector utilization translates to a large reduction in the dynamic instruction

count giving evidence to the profitability of using ALC.

ii



Preface

Chapters 2, 3 and 4 have been submitted for publication as W. Praharenka,

D. Pankratz, J. P. L. Carvalho, E. Amiri, J. N. Amaral, “Vectorizing Divergent

Control Flow with Active-Lane Consolidation on Long-Vector Architectures.” I

was responsible for the conception, implementation and evaluation of the project.

D. Pankratz contributed many fruitful discussions regarding the engineering

aspects of the project in addition to providing insightful feedback on the

organization of the manuscript. J. P. L. Carvalho provided recommendations

on the workings of the loop transformations and helped guide the direction of

the project. E. Amiri guided the project during the early formulation of the

ideas and assisted in providing the required infrastructure for the experiments

and evaluation. J. N. Amaral oversaw the research, from start to finish, ensuring

a high standard of quality while contributing outstanding advice on all aspects

involved. All authors collaborated in the writing and editing of the manuscript.

iii



To my Mom

Your hard work in raising me and all your good teachings have resonated

throughout my life. I love you.

To my Dad

Your lessons in work ethic and perseverance have inspired me when needed the

most. I love you.

iv



Acknowledgements

I give thanks to my supervisor, Dr. J. Nelson Amaral, for all the teachings,

guidance, and opportunities he has given me. I asked him my first question,

about the operation of arithmetic shifts, in an intro architecture course only a

few short years ago. Since then, he has mentored me in my learning and has

played an immense role in shaping my academic interests.

Thank you to those I have come across in the lab, especially João Carvalho,

for all the discussions he took part in and feedback he has given, and Giancarlo

Pernudi Segura, for his help in experiments.

I thank my manager at Huawei, Ehsan Amiri, for the numerous discussions

and feedback he has given me since I began working with him. In addition, I

thank those from the compiler team at Huawei that I have had an opportunity

to work with. I have learned something from each one of you.

I thank all those that I have come across during my time at the University

of Alberta, including Dr. Ioanis Nikolaidis, who introduced me to research and

broadened my knowledge of computing science. It was a pleasure to have had

the opportunity to work with you.

I would also like to thank David Pankratz, for his friendship and for being an

incredible colleague. By now, our chat log used since first working together in

our undergraduate probably exceeds the word count of this thesis and contains

a great many conversations that reveal the depth of his creativity.

This research has been funded in part by the University of Alberta Huawei

Joint Innovation Collaboration (UAHJIC) and Graduate Research Assistantship

Fellowship (GRAF).

I thank all others who have supported me in one way or another throughout

this endeavor:

v



Thank you, Joel Praharenka, for being there for me. You are outstanding

as both a brother and a friend. I wish you the best.

I thank my friend, Steven Weikai Lu, for all the laughs and discussions

we have shared throughout our university careers. And for keeping me at the

computer lab until midnight.

I thank my close friend Brett Kueber, whom I had the pleasure of being

roommates with for the better part of my academic career, for your steadfast

fellowship. Your courtesy and humor always brought joy to my day, especially

over the last two years. I also thank his girlfriend, Delane Litke, who shares

the same kind-heartedness as Brett. It is always a delight to get together with

the two of you.

Finally, I give thanks to Ezra Cyr, whom I have been close friends with since

we were children. For all our experiences together and our regular conversations

to this day. It is always exciting to discover the interesting things you are up

to.

vi



Contents

1 Introduction 1

2 Background 5
2.1 SIMD Execution and Vector Extensions . . . . . . . . . . . . . 6

2.1.1 Scalable Vectors . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Loop Vectorization . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Gather and Scatter Memory Accesses . . . . . . . . . . 10
2.3 Control Divergence . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 IF-Conversion . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Uniform and Divergent Vectors . . . . . . . . . . . . . 12
2.3.3 Branch-on-Superword Condition Codes . . . . . . . . . 12

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Active-Lane Consolidation 15
3.1 Optimizing Divergent Vectors with ALC . . . . . . . . . . . . 18

3.1.1 Active-lane Consolidation Permutation . . . . . . . . . 18
3.1.2 Loop-Unrolling ALC . . . . . . . . . . . . . . . . . . . 19
3.1.3 Tracking Lane Indices Through Permutation . . . . . . 22
3.1.4 Permuting Instruction Operands . . . . . . . . . . . . . 23

3.2 Active-Lane Consolidation with SVE . . . . . . . . . . . . . . 24
3.2.1 SVE Permutations . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Active-Lane Consolidation in SVE . . . . . . . . . . . 28
3.2.3 Inter-Register Indexed Permutation in SVE . . . . . . 29

3.3 Proposal for native support in SVE . . . . . . . . . . . . . . . 30
3.4 Iterative ALC . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Evaluation 35
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Loop Transformations . . . . . . . . . . . . . . . . . . 39

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Iterative ALC . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Under-Utilization of Vector Instructions . . . . . . . . . 47
4.2.3 Overhead of the ALC Permutation . . . . . . . . . . . 48

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Related Work 52
5.1 Control-Flow Vectorization . . . . . . . . . . . . . . . . . . . . 52
5.2 Dynamic Uniformity Conditions . . . . . . . . . . . . . . . . . 55
5.3 Vector Lane Re-organization . . . . . . . . . . . . . . . . . . . 56
5.4 GPU Thread Re-organization . . . . . . . . . . . . . . . . . . 58
5.5 The ARM Scalable Vector Extension . . . . . . . . . . . . . . 58

vii



6 Future Work 59

7 Conclusion 62

References 64

viii



List of Tables

4.1 Loops where ALC may be applicable discovered by the static
analysis described in Section 4.1. . . . . . . . . . . . . . . . . 36

4.2 Static instruction counts for the control flow paths in each kernel. 48

ix



List of Figures

1.1 Distribution of vector hardware utilization in the LBM program
of the SPEC CPU 2017 benchmark suite when executing the
function StreamCollideTRT. Darker shades indicate a higher
vector utilization. This function accounts for 97% of execution
time. ifcvt: naive predicated execution of vectorized code using
flattened control-flow. ifcvt+boscc: the IF-converted code
optimized using BOSCCs. BOSCCs detect uniform vectors to
elide unnecessary execution of basic blocks. At a vector length
of 2048-bits, BOSCC optimizations have nearly no effect. . . . 2

2.1 Visual breakdown of the components in vector and predicate
registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A simple data-parallel loop with control flow . . . . . . . . . . 8
2.3 SVE assembly of the vectorized loop in Figure 2.2 . . . . . . . 9
2.4 BOSCCs used to optimize the IF-converted code . . . . . . . . 13
2.5 Example vector execution of Figure 2.2 with an any BOSCC

inserted to skip B1. Light coloured squares represent active
lanes while dark inactive lanes. . . . . . . . . . . . . . . . . . 13

3.1 Simplified loop from NAB . . . . . . . . . . . . . . . . . . . . 16
3.2 The ALC permutation performed on two divergent vectors.

Light coloured squares represent active lanes while dark coloured
lanes inactive. Inactive lanes are moved into the remainder vector
vR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Control flow graphs after: (a) Scalar, (b) If-conversion and
vectorization of (a), (c) Unrolling of (b), (d) ALC on (c). . . . 20

3.4 Inter-vector permutation to create the merged operand by per-
muting the concatenated vectors of the unrolled iterations based
on the consolidated index vector idxM . . . . . . . . . . . . . . 22

3.5 Example loop where the op variable must be permuted and
contiguous loads converted to gather loads to correct the order
to the consolidated iterations if ALC is applied. . . . . . . . . 24

3.6 Example loop from Figure 3.5 with vectorization,unrolling and
ALC applied. Operands are merged accordingly and contiguous
loads inside the consolidate block are converted to gather loads. 25

3.7 Semantics of SVE permutation instructions and index/whilelt
instructions used to implement the active-lane consolidation and
multi-register permutation. . . . . . . . . . . . . . . . . . . . . 26

x



3.8 Visual example of the ALC permutation implemented in SVE.
Active lanes are shown as light coloured squares while inactive
as dark coloured squares. For brevity, we use cntp as a function
but requires another instruction that returns the count of active
lanes. In addition, we use ~p0 to represent the logical NOT of
predicate register p0. In 1, once compacted, there are additional
zero values appended at the end of the vector which are empty
lanes rather than a valid zero index. These are not problematic
when used as the predicate will prevent any instruction from
using the zeros at the end . . . . . . . . . . . . . . . . . . . . . 27

3.9 Implementation of the ALC permutation in SVE described in
Section 3.1.1. Example values show in this listing are consistent
with the prior examples. . . . . . . . . . . . . . . . . . . . . . 28

3.10 SVE-specific pseudo-code for the inter-register permute as intro-
duced in Section 3.1.4. . . . . . . . . . . . . . . . . . . . . . . 30

3.11 Proposed instruction to support the active-lane consolidation
permutation in SVE . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12 Proposed extension of tbl to perform an multi-vector table lookup 31
3.13 Example of iterative ALC. Active lanes are shown as white

squares and inactive as dark squares. . . . . . . . . . . . . . . 32

4.1 Results of a static analysis on the loops matching the basic crite-
ria for ALC to be applicable in the SPEC CPU 2017 benchmark
suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Control flow graphs of the body of the loops of the benchmarks.
Percentages attached to edges indicate the runtime probability
the branch is taken in the TRAIN workload. . . . . . . . . . . 38

4.3 Reduction in dynamic instruction count of loops optimized with
BOSSCs (boscc) or the ALC transformations (alc unroll, alc -
iter) over the kernel with only vectorization and if-conversion
(ifcvt) applied. Figure 4.3d shows the control-flow graphs of
the kernels with the locations of the BOSSC branches that are
indicated by a dashed line. . . . . . . . . . . . . . . . . . . . . 42

4.4 Percent divergence of vector instructions. Dotted black bars
indicate 100% utilization while dotted white bars indicate 0%
utilization. Shaded bars indicate partial utilization with darker
shades representing higher utilization. . . . . . . . . . . . . . . 44

xi



List of Acronyms

ALC Active-Lane Consolidation.

AVX Advanced Vector Extension.

BOSCC Branch on Super-Word Condition-Code.

BOSCCs Branch on Super-Word Condition-Codes.

CFG Control-Flow Graph.

DLP Data-Level Parallelism.

GPU Graphics Processing Unit.

IR Intermediate Representation.

ISA Instruction-Set Architecture.

PC Program Counter.

RISC Reduced Instruction Set Computer.

SIMD Single-Instruction Multiple-Data.

SSE Streaming SIMD Extension.

SVE Scalable Vector Extension.

VL Vector Length.

VLA Vector-Length Agnostic.

xii



Chapter 1

Introduction

Loop vectorization is an important and popular optimization to extract perfor-

mance from data-parallel loops. During loop vectorization, multiple indepen-

dent loop iterations are mapped to the lanes of a single vector instruction that

executes quicker than performing each scalar operation individually. Interest

surrounding vector architectures is growing with the introduction of vector

extensions such as ARM’s Scalable Vector Extension (SVE) and RISC-V “V”

that bring new capabilities to accelerate a diverse collection of workloads using

vector hardware. For instance, ARM’s SVE has been successfully deployed in

the Fugaku supercomputer by Fujitsu, that has taken the lead in the TOP500

ranking of most powerful supercomputers [24].

The challenges to vectorization presented by control flow in loops — in-

troduced by if-then-else and goto statements — are commonly addressed

by linearizing the control flow through IF-conversion [1]. IF-conversion is

supported through predicated vector instructions, a common feature in modern

vector ISAs such as Intel’s Advanced Vector Extension (AVX), ARM’s SVE

and RISC-V’s “V” extension. However, predicated vector code generated

after IF-conversion is often inefficient because many of the lanes in the vector

may be inactive during execution and will not produce a useful result. In

VL-time architectures, the presence of inactive lanes does not lower the latency

of the vector instruction [7] and thus executing a vector instruction with a

high ratio of active to inactive lanes is desirable. In contrast, density-time

architectures [7] are designed such that the instruction latency depends on the

1



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

128 256 512 1024 2048 128 256 512 1024 2048

ifcvt ifcvt+BOSCC

P
e

rc
e

n
t 

o
f 

in
s
tr

u
c
ti
o

n
s
 w

it
h

 u
ti
liz

a
ti
o

n

Vector Length and Optimization

LBM

0%

(0-25%]

(25-50%]

(50-75%]

(75-100%]

100%

Figure 1.1: Distribution of vector hardware utilization in the LBM program of
the SPEC CPU 2017 benchmark suite when executing the function Stream-

CollideTRT. Darker shades indicate a higher vector utilization. This function
accounts for 97% of execution time. ifcvt: naive predicated execution of
vectorized code using flattened control-flow. ifcvt+boscc: the IF-converted
code optimized using BOSCCs. BOSCCs detect uniform vectors to elide un-
necessary execution of basic blocks. At a vector length of 2048-bits, BOSCC
optimizations have nearly no effect.

amount of active lanes so that executing an instruction with a single active lane

takes a shorter amount of time than executing the same instruction with all

lanes active. However, modern vector architectures are VL-time architectures.

Branch on Super-Word Condition-Code (BOSCC) instructions [30], [31]

can be used to bypass execution of vector instructions containing only inactive

lanes. BOSCC instructions are available in SVE and can be emulated in

RISC-V “V”. Figure 1.1 shows the vector utilization in a loop taken from

the LBM benchmark, a SPEC CPU2017 benchmark, of IF-converted code

before (ifcvt) and after the use of BOSCCs (ifcvt+boscc).1 IF-conversion [1]

is a compiler pass that enables vectorization of code containing control-flow

by linearizing the basic blocks so that every block in the original CFG is

executed and divergent control flow is handled by predicating the blocks with

the corresponding condition. Each bar shows the vector utilization distribution

of instructions measured at runtime. Darker bars represent higher utilization

1For details of the experiment refer to Chapter 4.1
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of vector registers.2 The results indicate that BOSCC instructions are effective

on short vectors and much less effective on longer vectors that are becoming

increasingly common. For instance, while executed on 128-bit long vectors,

BOSCCs raise the percentage of uniformly active executions from 55% to

88%; for 2048-bit long vectors, ifcvt and ifcvt+BOSCC are indistinguishable

because BOSCCs inserted in the code are unable to optimize the partially active

vector instructions that dominate when executing with 2048-bit long vectors.

The innovations presented in this thesis attempt to increase the efficiency of

execution on long vector architectures in the presence of divergent control flow.

The effectiveness of BOSCC instructions decreases as vector-length grows

because it is more likely that some lanes of the vector evaluate differently than

the others for a given condition causing the vector to become divergent and

the BOSCC instruction to fail. The penalty to the effectiveness of BOSCCs

when moving to longer vectors is concerning given that the industry has been

consistently increasing vector length. For instance, Intel first moved from

128-bit vectors in SSE to 256-bits with AVX and now to 512-bits in their

most current vector extension, AVX-512. ARM has taken a slightly different

approach, moving from 128-bit vectors in Advanced SIMD to SVE that now

allows support for up to 2048-bit long scalable-vectors. This thesis addresses

the issues with vector utilization by improving the handling of control-flow

divergence especially in long-vector architectures.

This thesis proposes a new permutation, ALC, to improve vector utilization

in the presence of divergent control flow where state-of-the-art optimizations

fall short. The goal of the ALC permutation is to consolidate active lanes from

two partially active vectors into a single vector register with the aim of forming

uniform vectors that BOSCC instructions are able to optimize. We propose

two loop-transformations that use the ALC permutation to consolidate vectors

corresponding to a conditional block in the control-flow graph in attempt to

increase vector utilization. The unrolling ALC transformation consolidates

instances of vector instructions in a vectorized loop from two consecutive

iterations exposed by loop-unrolling. The second transformation, iterative

2In this thesis vector registers are referred to simply as vectors.

3



ALC, broadens the range that lanes can be consolidated from to several

iterations by decoupling the consolidated vector from the loop, allowing for

active lanes in any iteration during the loop to be moved into the consolidated

vector.

The contributions of this thesis are as follows:

1. Active-lane consolidation, a new permutation operation that consolidates

active lanes to increase vector utilization. ALC includes a mechanism to

also retain the inactive lanes, allowing ALC to be applied to arbitrary

control flow.

2. An implementation of the ALC permutation to demonstrate that ALC

readily maps to existing vector architectures.

3. Two loop transformations, Loop-Unrolling ALC and Iterative ALC,

that marry ALC and BOSCCs to improve vector utilization leading to a

reduction in the number of instructions executed.

4. A proposal for a new vector permutation instruction, motivated by ALC’s

efficacy, that would provide out-of-the-box lane consolidation.

5. Emulation-based case studies that show the applicability of the ALC

permutation and the proposed loop-transformations to the SPEC CPU

2017 benchmark suite and the resulting benefits.

This remainder of this thesis is organized as follows: Chapter 2 introduces

and explains the required background material. Active-lane consolidation

and all accompanying techniques are presented throughout Chapter 3. Lastly,

Chapter 4 presents an evaluation of ALC and the loop-transformations through

four case studies of benchmarks selected from SPEC CPU2017.

4



Chapter 2

Background

Traditional scalar processors contain functional units that perform operations

on either a single operand for unary operations or two operands for binary

operations. Accordingly, each register is only able to hold a single data for

a single operand. These scalar registers are used by scalar instructions in an

ISA that define an operation on a set of input scalar operands to produce a

single result. Certain situations can arise because of the behavior of the code

where multiple similar scalar instructions, such as an add, are executed one

after the other and do not depend on one another. To exploit performance

in cases like this, where Data-Level Parallelism (DLP) exists, one could use a

vector processor. Contrary to scalar processors, each vector register in a vector

processor can hold multiple operands and each vector operation operates on all

operands held in the vector register. A vector functional unit is the hardware

component responsible for performing the operations on vector registers in a

Single-Instruction Multiple-Data (SIMD) manner. Of course, taking advantage

of vector execution requires the application to be written with vector execution

in mind, so that at the assembly level, vector instructions are used rather than

scalar instructions. There are a few different ways to accomplish this task, one

way is for a programmer to manually write vector assembly but is a tedious

and prohibitively time-consuming task. Another similar method is to take

advantage of vector intrinsics in high-level languages where library calls are

used to map high-level constructs to their vector assembly counterpart. The

last method is to delegate the task to the compiler so that a compiler pass

5



automatically works to translate scalar code to the vector equivalent.

v0

0 1 0 1

64b 64b 64b 64b

p0

EC=4   VL=256b

Vector LanesVector register

Element width

Predicate register Inactive/active lane

Figure 2.1: Visual breakdown of the components in vector and predicate
registers.

2.1 SIMD Execution and Vector Extensions

Figure 2.1 shows a visual breakdown of the components in a vector. A vector

register is organized into vector lanes with each lane able to hold a single vector

element. CPUs support SIMD execution through vector ISA extensions — e.g.

Intel AVX [12] and ARM’s Advanced SIMD [11] — that define arithmetic and

logic vector instructions for a number of data types. Vector operations may

operate vertically on the elements in the same lane of the operand vectors, in

the case of operations like add and multiply, or horizontally across lanes within

a single vector as in reduction operations.

The size of the vector registers or Vector Length (VL) can vary greatly

between architectures. For instance, Intel has three popular vector extensions:

SSE (128 bits), AVX and AVX2 (256 bits) and AVX512 (512 bits) each with

different vector lengths. Each vector register can be partitioned to enable

storage of operands of different types with varying bit-widths. Thus, the

number of lanes in a vector register with a set VL varies with the data type.

For instance, two 64-bit elements can be held in a 128-bit vector register while

four 32-bit elements can be held in the same register. In this thesis the number

of lanes in a vector register is called the vector element count (EC).

6



2.1.1 Scalable Vectors

Early appearances of vectors in CPU ISAs were meant to introduce support

for SIMD execution to accelerate graphics applications. To do so at a low

cost, a small amount of additional hardware was added to allow for SIMD

execution on an existing scalar register i.e. a 64-bit register could hold two

32-bit values or four 16-bit values and SIMD instructions could perform four

16-bit arithmetic operations at a time. No additional registers were introduced

beyond the existing scalar register and thus vector extensions in commodity

hardware were limited to small fixed-length vectors. Vector length increased as

processors attempted to exploit more DLP using SIMD extensions.

Logic design complexity, power consumption, chip area, and the target

application domains influence the choice of VL and thus the decision of vector

length differs depending on the deployment of a vector system. For example,

the CRAY-1 [27] supercomputer featured 4096-bit vector registers to exploit

applications with a high amount of DLP while a typical low-power Intel

processor enabled with Streaming SIMD Extension (SSE) has 128-bit vector

registers. For years, the length of vectors has been coupled to the instruction

encodings leading to unnecessary proliferation of instructions when architectures

extend the vector length [25]. To prevent this proliferation while addressing the

question of what vector length to use, ARM’s Vector-Length Agnostic (VLA)

SVE [21] decouples the VL from the vector instruction encoding and delegates

the choice of VL to the hardware implementation. Another ISA favoring to

follow the emerging VLA architecture is the RISC-V “V” vector extension [22].

In a VLA architecture, the ISA is cleverly designed to remove references of

the VL inside instruction definitions. In this sense, VL is abstracted at the ISA

level in VLA architectures. To accomplish this, instructions are introduced

whose result depends on the VL of the system the instruction is executed on.

For example, one common case the VL is needed in application code is to

store data consecutively into an array. Such a situation arises when traversing

memory in a loop. When vectorized, each store instruction results in multiple

elements being stored into the array. In this case, the code must be informed of

7



the VL to update the address for the next store. In fixed-length architectures,

the VL is known at compile time so that updating the pointer to the array is

trivial. In comparison, VLA architectures introduce an instruction in which

the VL is returned at runtime, such as SVEs incd instruction that increments

a scalar register by the number of 64-bit elements that can fit inside a vector

register defined by the hardware executing the program.

1 double * a, * b, * c, * d;

2

3 for (int i = 0; i < 1000; i++) {

4 if (a[i] < b[i])

5 B1: c[i] = (a[i]*a[i] + b[i]*b[i]) / (d[i]*d[i]);

6 else

7 B2: c[i] = (a[i] - b[i]) / d[i*2];

8 }

Figure 2.2: A simple data-parallel loop with control flow

2.2 Loop Vectorization

As mentioned, one of the methods to take advantage of SIMD execution in

a vector ISA is by the programmer manually writing the application code in

vector assembly. Often, only the hot loops in the program, uncovered through

profiling, are rewritten in vector assembly to gain the most performance from

re-writing a small section of code. Hand writing SIMD assembly fine-tunes

performance but is a tedious and error-prone task that requires the programmer

to have deep knowledge of the target architecture to achieve good performance

gains. Vector intrinsics, exposed in a high-level programming language through

a library, offer a compromise between productivity and performance. However,

the most productive approach for the generation of vector code relies on a

compiler that transforms sequential scalar code into vector code through a

process called automatic vectorization or SIMDization [34]. Often, the majority

of runtime of an application is spent in data-parallel loops, as such, loops

are the primary target for vectorization. Modern compilers implement loop-

vectorizers that widen each scalar operation appearing in a loop into a vector

8



1 // x0: i = 0 x1: d x2: c x3: b x4: a w3: 1000

2

3 whilelo p2.d, xzr, w3

4 .L1:

5 ld1d z1.d, p2/z, [x3, x0, lsl #3]

6 ld1d z0.d, p2/z, [x4, x0, lsl #3]

7 fcmlt p0.d, p2/z, z0.d, z1.d

8 bic p1.b, p3/z, p3.b, p0.b

9 movprfx z2, z0

10 fmul z2.d, p0/m, z2.d, z0.d

11 fmla z2.d, p0/m, z1.d, z1.d

12 index z4.d, x0, #2

13 ld1d z3.d, p1/z, [x1, z4.d, lsl #3]

14 fsub z0.d, p1/m, z0.d, z1.d

15 ld1d z1.d, p0/z, [x1, x0, lsl #3]

16 fdiv z0.d, p1/m, z0.d, z3.d

17 fmul z1.d, p0/m, z1.d, z1.d

18 movprfx z0.d, p0/m, z2.d

19 fdiv z0.d, p0/m, z0.d, z1.d

20 st1d z1.d, p2, [x2, z0, lsl #3]

21 incd x0

22 whilelo p2.d, w0, w3

23 b.any .L1

Figure 2.3: SVE assembly of the vectorized loop in Figure 2.2
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operation where consecutive iterations of the scalar loop map to lanes of a

vector. To ensure correctness, an extensive list of legality checks is performed

prior to loop vectorization. One important check uses memory dependence

analysis [17], [39] to ensure that either there are no loop-carried dependencies

between memory accesses in the loop or that the dependence distance is greater

than the number of elements in each vector. Control structures, such as an

if-then-else statement, introduce control dependencies that must also be

addressed by the vectorizer as discussed in Section 2.3.

Figure 2.2 shows an example of a vectorizable loop written in C. The

vectorized version of this example, in SVE assembly, is shown in Figure 2.3.

Assuming that a double data type contains 64 bits and the architecture

implements vector registers that are 512-bits wide, each vector register will have

eight lanes (EC = 8). The comment on line 1 specifies the initial values in the

corresponding scalar registers. After vectorization, lines 5 and 7 from Figure 2.2

are translated into various predicated vector arithmetic instructions. For

example, the fused-multiply-add vector instruction on line 11 of Figure 2.3 will

each perform eight multiply-add operations that correspond to iterations i to

i+7 of the scalar loop. The governing predicate p register in each instruction

contains Boolean values to indicate which lanes are active. The values in the p

registers are generated by the fcmplt and bic instructions that compute the

predicate for the if and the else block in Figure 2.2.

2.2.1 Gather and Scatter Memory Accesses

While contiguous memory accesses are well-supported by most vector extensions

and trivial to generate vectorized code for, non-contiguous accesses are not.

For instance, the load d[i*2] on line 7 has a stride of two with consecutive

lanes of this load accessing memory addresses: {d + 0, d + 2, ..., d + 2 ∗

(VL− 1)}. More capable vector extensions feature gather load and scatter store

instructions to move data between contiguous vector lanes and non-contiguous

memory addresses. SVE is equipped with a gather load instruction, shown on

line 13, that enables the vectorization of the load d[i*2]. In ISAs that do not

support gather and scatter instructions, these non-contiguous accesses can be

10



accomplished by scalarizing the memory access but such a solution is much

slower than a tailor made gather/scatter instruction.

2.3 Control Divergence

Control dependencies are introduced by conditional statements and must be

handled properly when generating vectorized code. For example, in Figure 2.2

blocks B1 and B2 are control dependent on the block that computes the

condition a[i] < b[i] (line 4). This control dependency is loop variant

because the condition depends on the value of the loop induction variable

i. A loop-variant dependency is a divergent condition — such conditions are

also referred as varying conditions [23] — while a loop-invariant control-flow

dependency, where the condition does not depend on the loop induction variable,

is called a uniform condition. Uniform conditions can often be hoisted out of

the loop by loop unswitching [2].

2.3.1 IF-Conversion

If-conversion [1] — also referred to as control-flow linearization [3], [23] —

is a technique to enable the vectorization of loops containing control flow.

If-conversion is applied to the control-flow graph of a loop prior to loop

vectorization to convert control dependencies into data dependencies. If-

conversion replaces a branch statement with the computation of predicates,

one for each successor of the branch and assigns these predicate accordingly to

each successor block in the if-converted code. As the branch in the original

code is removed, all successor blocks will execute at runtime and in this aspect,

the blocks are linearized. The predicated statements replace the behavior of

the branch to control execution as only predicated statements whose predicate

evaluates to true at runtime produce a result, thus the control dependence that

once existed due to the presence of a branch now exists as a data dependence

on the variable holding the predicate.

Predicated vector ISAs, like AVX-512 and ARM SVE, provide direct support

for IF-conversion. In predicated ISAs, predicated vector instructions define

11



an additional operand, the predicate or mask register, that holds a Boolean

value corresponding to each lane of a vector register. Lanes associated with a

true predicate value produce a result in a predicated operation and are called

active lanes while lanes that hold a false predicate do not and are referred to

as inactive lanes.

2.3.2 Uniform and Divergent Vectors

A vector is uniform either when all of the lanes are active or all of the lanes are

false and is divergent when some of the lanes are active while others are not.

The IF-converted and vectorized code for Figure 2.2 is shown in Figure 2.3

where all branches are removed and replaced by instructions to produce vector

predicates. Line 7 shows the fcmlt instruction to generate the predicate

for B1 and the bic instruction on line 8 that generates the predicate for B2.

Operations inside blocks B1 and B2 are vectorized and predicated by these

predicates.

In ISAs that do not support predicated execution the control dependencies

can be handled via IF-selection [37] or scalarization. Vector select instructions

perform an element permutation that retrieves values from the first input vector

if the lane is active or from the second otherwise. Scalarization performs a scalar

operations on each lane of the vector iteratively and may require expensive

packing and unpacking of the lanes of the vector register into scalar registers.

2.3.3 Branch-on-Superword Condition Codes

Predicated vector instructions selectively enable and disable lanes, with disabled

lanes producing no result. The ratio of active lanes to total lanes in a vector

is called the vector utilization. Lower utilization leads vector instructions to

consume CPU resources while producing few or no useful results. In addition,

most modern vector architectures feature VL-time performance rather than

density-time performance where the number of inactive lanes present in a vector

does not affect the latency of the predicated instruction [7]. Inactive lanes in

VL-time architectures are wasted opportunity and thus, it is desirable to have

code with high vector utilization.
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Figure 2.4: BOSCCs used to optimize the IF-converted code
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Figure 2.5: Example vector execution of Figure 2.2 with an any BOSCC
inserted to skip B1. Light coloured squares represent active lanes while dark
inactive lanes.

BOSCC [30], [31] instructions can be used to elide execution of vector

instructions that have no active lanes. A BOSCC instruction is a branch

instruction that branches based on whether a super-word (vector) satisfies a

certain condition. For instance, SVEs condition codes NZCV are set as the result

of vector compare instructions, e.g. cmpeq. Vector compares clear the flag Z if

any lane of the resulting predicate becomes active. A b.any BOSCC in SVE,

as shown in Figure 2.5, branches when the flag Z is not set, only taking the

branch if at least one active element exists in the predicate.

Two common BOSCCs are the any BOSCC that branches when any lane

of the vector is active and the all BOSCC that branches only if all lanes are

active. Figure 2.4 shows how any and all BOSCCs can be used to optimize
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vectorized code for Figure 2.2. A dashed line indicates the edge a BOSCC

branch introduces into the control flow graph. Figure 2.4a inserts an all BOSCC

in a manner described in WCCV [36] to branch to block B1U if every lane

is active for the B1 block. Since B1U is only executed if all lanes are active,

this block can contain unpredicated vector code. Figure 2.4b uses an any

BOSCC instruction to skip the execution of a predicated block when no lanes

are active; this method of utilizing an any BOSCC is described in Partial

Control Flow Linearization [23]. The all BOSCC instruction improves lane

utilization in the presence of biased branches while any BOSCC instruction

bypasses IF-converted code in blocks that rarely execute with active lanes [36].

Figure 2.5 shows one example of a possible execution of the control flow

graph in Figure 2.4b once vectorized. This example execution illustrates how

BOSCCs can break down in the presence of divergent vectors. In the example,

the predicate for B1P contains only a single active lane, as the BOSCC condition

is true when none of the lanes are active, the branch to skip B1P is not taken

and executes the vector code with only a single active lane (25% utilization).

Increasing vector length reduces the effectiveness of BOSCC instructions as

divergent vectors may become more likely.

2.4 Summary

This chapter presented an overview of vectorization and its place in compilers

as an automatic pass to optimize loops, modern vector ISAs, the qualitative

impact of control-flow divergence on vector performance, and the use of BOSCC

instructions to optimize divergent vector code. All of these topics are required to

understand the rest of this thesis. Chapter 3 will present the ALC permutation

and details two loops transformations that utilize ALC to optimize divergent

vector code. Chapter 4 will introduce four case studies that analyze the efficacy

and characteristics of applying the ALC transformations to loops suffering

from control divergence from the SPEC CPU2017 benchmark suite.
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Chapter 3

Active-Lane Consolidation

Figure 1.1 shows that using BOSCCs after vectorization and IF-conversion

works well to optimize execution on short vectors as they are likely uniform

because of the small amount of lanes they hold. The figure also indicates

that the benefit of optimization with BOSCCs decreases as the vector size

increases with the improvement becoming negligible at a vector length of

2048 bits. Thus, architectures that implement modern vector ISAs, which are

supporting increasingly longer vectors, require new compilation approaches. In

the effort towards this goal, this chapter introduces Active-Lane Consolidation

(ALC), a vector permutation that increases vector uniformity to create more

opportunities for profitable deployment of BOSCC instructions.

An application of ALC to a hot loop from the NAB (Nucleic Acid Builder)

benchmark — a molecular-dynamics application that is part of the SPEC

CPU 2017 suite — illustrates how this transformation can lead to performance

improvements. Figure 3.1 shows a simplified excerpt of one of NAB’s hot

loops where, for each iteration of the loop, only one of the B1-B5 blocks in

the if-else-if chain is executed. No loop-carried memory dependencies exist

within this loop and thus it can be vectorized. Profiling the run-time branch

behavior reveals that B2 is executed in approximately 85% of the iterations.

However, iterations that do not execute block B2 are interspersed with iterations

that execute B2, leading to divergent vectors when this loop is vectorized. To

improve the performance of this vectorized loop, ALC consolidates active lanes

from divergent vectors in consecutive iterations into uniform vectors.
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1 for (k = 0; k < lpears[i]+upears[i]; k++) {

2 ...

3 r2 = ...

4 diji1i = ...

5 dij = r2 * dij1i;

6 if (dij > rgbmax - sj) { // C1

7 B1:

8 sumi -= ...

9 } else if (dij > 4.0 * sj) { // C2

10 B2:

11 dij2i = dij1i*dij1i

12 ...

13 sumi -= ...

14 } else if (dij > ri + sj) { // C3

15 B3:

16 sumi -= ...

17 } else if (dij > fabs(ri - sj)) { // C4

18 B4:

19 sumi -= ...

20 } else if (ri < sj) { // C5

21 B5:

22 sumi -= ...

23 }

24 }

Figure 3.1: Simplified loop from NAB
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The runtime bias toward condition C2 implies that in many iterations of the

vectorized loop, the linearized basic blocks B1, B3, B4, B5 in the if-converted

code are unnecessarily executed. One solution is to unroll the vectorized loop

and then to use ALC to consolidate the active lanes of divergent vectors

into a single vector but has the downside of being limited to consolidating

active lanes only from two consecutive iterations. The other solution, iterative

ALC, decouples the consolidating vector from the loop iteration allowing active

lanes from any iteration during the loop to be consolidated. In both schemes,

the consolidated vector is stealing active lanes from future iterations of the

vectorized loop in an attempt to form a uniform vector. If ALC is able to re-

organize the lanes of two divergent vectors into a uniform vector, then BOSCCs

can ensure that the vector loop only executes the necessary conditional block

for this uniform vector. In the NAB example, ALC finds new opportunities to

skip unnecessary executions of basic blocks B1, B3, B4, and B5 by consolidating

the lanes in divergent vectors from subsequent iterations of the vectorized loop

that execute block B2.

Based on the predicates generated by IF-conversion, ALC moves as many of

the active lanes of two vectors as possible into a single vector and fills a second

vector with the remaining inactive lanes to handle the case when those inactive

lanes follow a different path of control. Once the ALC permutation is applied

on a pair of vectors, the order of the lanes will have changed and for correctness,

all vectors that are used as an operand inside a consolidated block must be

permuted in the same fashion. This chapter introduces the indexed-based inter-

register permutation to solve this in light of the large number of instructions

required by ALC in actual implementation. The ALC permutation is complex

in comparison to existing vector permutations so that an implementation using

only current instructions may be expensive depending on the capability of

the chosen ISA. This chapter details a proposal for a new vector permutation

using SVE as the base ISA that would solve some of the shortcomings of

implementing ALC using only existing instructions.

The remainder of the chapter is organized as follows: Section 3.1 introduces

the operation of the ALC permutation and the first ALC transformation: loop-
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MERGE v0,v1,p0,p1 REMAINDER v0,v1,p0,p1

vM vR
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Figure 3.2: The ALC permutation performed on two divergent vectors. Light
coloured squares represent active lanes while dark coloured lanes inactive.
Inactive lanes are moved into the remainder vector vR.

unrolling ALC. In addition, this section details issues caused by the change

in lane order and describes the necessary steps to resolve them. Section 3.2

describes the implementation of the ALC and index-based inter-register permu-

tations in SVE after giving a brief overview of the standard SVE permutations

required to implement ALC. Section 3.3 details an ISA extension to accom-

modate the ALC permutation. Finally, Section 3.4 introduces the alternate

method of exposing candidate vector registers for consolidation: iterative ALC.

3.1 Optimizing Divergent Vectors with ALC

This section introduces the operation of the ALC permutation and its use in

the loop-unrolling ALC transformation. First it provides a description of the

lane-order consistency problem and then presents the index-based inter-register

permutation as a solution.

3.1.1 Active-lane Consolidation Permutation

Figure 3.2 illustrates the application of ALC to two vector registers based on

their predicate values. In this example the vectors v0 and v1 contain the indices

of the loop (created with an index instruction) and the predicate vectors p0

and p1 indicate the lanes that are active (light gray) or inactive (dark gray).

ALC attempts to fill the merged vector (vM) with active lanes spread between

the two input vectors. The remaining lanes, active or not, are placed into the

remainder vector (vR). Let AL be the number of active lanes. If AL ≥ VL, then
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vM is uniform with all lanes active. If AL ≤ VL, then vR is uniform with all

lanes inactive.

If vM is a uniformly active vector with respect to a condition C2 after

consolidation then BOSCCs will execute only B2. Given that the conditions of

the if-else-if statement are mutually exclusive, the consolidated vector will

have an all-false predicate for conditions other than C2 and thus BOSCCs can

bypass execution of the blocks these conditions guard. In general, there are no

guarantees about the uniformity of the remainder vector vR and it may have

to be processed through the entire linearized graph. However, an additional

BOSCC can be inserted to check if vR is all-false for C2 to further optimize

execution.

Figure 3.2 presents ALC as a permutation of the two vectors v0 and v1

to create two new vectors vM and vR. Abstractly, ALC can be viewed as a

compaction on a vector created by concatenating v0 and v1. The AVX512

compress and the SVE compact instructions already perform the compaction

but only on a single vector register and do not retain inactive lanes in the

result.

Similar to the compact permutation, the ALC permutation retains the

relative order of the active lanes. However, due to complexities encountered in

the implementation for SVE, this is not the case for inactive lanes. The lack of

relative order in the inactive lanes did not have an impact in our experiments

but may become important later when new features are added to vector ISAs,

for example, instructions to detect intra-vector dependencies [4].

3.1.2 Loop-Unrolling ALC

The goal of ALC is to consolidate lanes from multiple vectors to create a

uniform vector. Thus, multiple vectors must be available for this consolidation.

Unrolling the vectorized and IF-converted loop by a factor of two yields two

vectors that can be consolidated by the ALC permutation into two new vectors,

one containing mostly active lanes and the other containing mostly inactive

lanes. This transformation is called “Unrolling ALC”.

Figure 3.3a shows the control flow graph of the scalar loop from the NAB
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Figure 3.3: Control flow graphs after: (a) Scalar, (b) If-conversion and vector-
ization of (a), (c) Unrolling of (b), (d) ALC on (c).
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kernel in Figure 3.1. The conditions C1 to C5 control the execution of blocks

B1 to B5. Two transformations are applied to the code from Figure 3.3a

to Figure 3.3b: IF-conversion and vectorization. Vectorization widens each

scalar instruction in Figure 3.3a so that each vector instruction in Figure 3.3b

performs the operation for EC iterations of the scalar loop. The letter P after the

block name in Figure 3.3b indicates that the block is predicated by a Boolean

expression composed of the conditions that control each block’s execution.

For instance, the condition for the predicated block B2P in Figure 3.3b is

C2 ∧ ¬C1 because B2 executes when C2 is true (Figure 3.1, Line 9) and C1

is false (Figure 3.1, Line 6). From Figure 3.3b to Figure 3.3c the linearized

and vectorized loop is unrolled by two so that each iteration of the new loop

contains two copies of the body of the loop in Figure 3.3b. Blocks to process

the second iteration are annotated with I2 in Figure 3.3c.

The most executed block in this loop, B2, is the target for consolidation.

In Figure 3.3d the active lanes of the vectors from the first and second iterations

of the unrolled loop are consolidated by ALC based on the predicates for B2P

and the other in B2I2P . Let P2I be the predicate of B2P and P2I2 be the

predicate of B2I2P , then, after ALC, vM is a uniform vector if and only if

popcnt(P2I) + popcnt(P2I2) ≥ VL. This condition is checked by counting

the number of active lanes using population-count instructions on the pair of

predicate registers corresponding to the condition that is being consolidated. If

this condition in Figure 3.3d is true, then the code can branch to the optimized

path, labeled p_opt. Otherwise, the unoptimized path that executes the if-

converted code p_unroll is taken. The p_opt path bypasses execution of

B1P,B3P,B4P and B5P for the merged vector vM because it is uniform with

respect to C2. This is reflected in Figure 3.3d as B2U is the only block that

processes vM. The p_opt path must still conservatively process vR through

the fully if-converted path represented by blocks B1RP to B5RP for correct

execution because vR is not guaranteed to be uniform. In some instances, vR

may have no lanes active for this predicate and thus, inserting an any BOSCC

to skip the block B2RP , may be worthwhile.

The idea of consolidating active lanes is applicable to more than a pair of
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Figure 3.4: Inter-vector permutation to create the merged operand by permuting
the concatenated vectors of the unrolled iterations based on the consolidated
index vector idxM

vectors; ALC could unroll the loop by a factor greater than two to expose three,

four, or more vectors for consolidation. Given the limitations of permutation

instructions currently in SVE, this thesis only considers unrolling by a factor of

two and consolidating the resulting pair of vectors. Unrolling the loop further

and consolidating more than a pair of vectors would add additional complexity

into the ALC permutation.

3.1.3 Tracking Lane Indices Through Permutation

Often, several vector operands within a single conditional block must be

consolidated in the same fashion. This is necessary in order to ensure that

the lanes of vectors defined outside of the block being consolidated are in the

correct consolidated order when used within the consolidated block. Figure 3.5

illustrates this issue: after vectorization, the order of the lanes of variable op

matches the unit-stride of the loop induction variable i with lane 0 holding

the value for iteration i, lane 1 holding the value for iteration i+1 and so

forth. After the ALC permutation is performed, the variable op must also be

permuted so the lanes match the order resulting from ALC.

In some vector extensions, such as in SVE, the implementation of the ALC

permutation shown in Figure 3.2 is expensive and therefore a more efficient

solution consists of performing ALC on a pair of vectors holding the indices 0

to VL-1 and VL to 2*VL-1 and using the result in an index-based inter-register

permutation. For instance, in Figure 3.2 EC = 4 and the vectors v0 and v1

hold the indices in the original order that the induction variable is incremented.

22



After ALC, the consolidated index vectors are vM and vR, which are used to

permute all other operands used in the conditional block. The indices in vM

and vR are also used to compute the addresses of gather loads and scatter

stores appearing inside the consolidated block.

3.1.4 Permuting Instruction Operands

Two issues deserve further examination:

1. a consolidated block may use an operand that was defined outside of the

block; and

2. a load inside a consolidated block may depend on the loop induction

variable.

For instance, Figure 3.5 shows a scalar loop while Figure 3.6 shows the loop

after vectorization, unrolling, and ALC is applied on the if condition. The

variable op is defined outside of the conditional block B1 being consolidated;

and the load C[i] depends on the loop induction variable i.

The notation (pred) expr; in lines 28-36 of Figure 3.6 represents predi-

cated execution where pred is the predicate and expr is the expression executed

if pred evaluates to true. The annotation _0 or _1 indicates to which of the two

iterations exposed by unrolling each variable belongs. The original consecutive

index vectors are created in lines 2 and 3. Line 19 performs ALC based on

the predicates generated by the condition in line 4 of Figure 3.5 to create the

new index vectors idxM and idxR. These indices are used to permute vectors

op_1 and op_2, in lines 22 and 26 before their use in the consolidated block.

Figure 3.4 illustrates the index-based inter-vector permutation that appears in

line 22 in Figure 3.6 within the consolidated block (B1).

Load/store operations that are inside a consolidated block are converted

to gather/scatter operations indexed by the consolidated induction vectors.

For instance, ALC requires that the contiguous load C[i] in Figure 3.5 be

converted to the gather loads indexed by idxM or by idxR in lines 23 and 28

of Figure 3.6. Gather and scatter accesses tend to be slower than contiguous
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1 for (int i = 0; i < N; i++) {

2 op = A[i] * 2

3

4 if (op) { // Consolidate

5 out += op * C[i] // B1

6 } else {

7 out += op / D[i] // B2

8 }

9 }

Figure 3.5: Example loop where the op variable must be permuted and con-
tiguous loads converted to gather loads to correct the order to the consolidated
iterations if ALC is applied.

accesses because they issue more micro-operations and may access a larger

number of cache lines.

3.2 Active-Lane Consolidation with SVE

To demonstrate the efficacy of ALC in mitigating divergence we develop

an implementation using ARM’s SVE [21], a widely adopted extension with

supporting tools for code generation and emulation. The permutation primitives

and transformations presented in Section 3.1 are also applicable to other long-

vector architectures such as RISCV “V”. This section details how the ALC

primitives map to SVE instructions and presents a brief overview of the

instructions’ semantics. An analogous mapping could be developed to apply

ALC to other vector ISAs. This section concludes by outlining challenges

discovered in mapping ALC to SVE and presenting additions to SVE that

help mitigate these challenges.

3.2.1 SVE Permutations

The following SVE instructions are illustrated with examples in Figure 3.7

where a light-grey predicate is true and a dark-grey predicate is false.

select: For each true predicate, take the elements from the first input vector

register and for each false predicate take the elements from the second input
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1 for (int i = 0; i < N; i += 2*VL) {

2 idx_0 = index(i,i+VL,1) ; // 0,1,2,3

3 idx_1 = index(i+VL,i+2*VL,1); // 4,5,6,7

4

5 a_0 = vld(A[i]) ; // 1,1,0,1

6 a_1 = vld(A[i+VL]); // 0,1,0,1

7

8 op_0 = a_0*2; // 2,2,0,2

9 op_1 = a_1*2; // 0,2,0,2

10

11 cond_0 = op_0 != 0; // 1,1,0,1

12 cond_1 = op_1 != 0; // 0,1,0,1

13

14 // Check whether ALC is beneficial, 3+2 >= 4

15 if (popcnt(cond_0) + popcnt(cond_1) >= VL) {

16

17 // ALC applied to index vectors

18 // idxM = 0,1,3,5; idxR = 2,7,4,6

19 idxM,idxR = alc(cond_0,cond_1,idx_0,idx_1,);

20

21 // Process merged vector, no need to execute code for B2

22 op_m = permute(op_0,op_1,idxM); // 2,2,2,2

23 out += op_m * gather(C+i,idxM);

24

25 // Process remainder vector, if-conversion

26 op_r = permute(op_0,op_1,idxR); // 0,2,0,0

27 cond_r = op_r != 0; // 0,1,0,0

28 (cond_r) out += op_r * gather(C+i,idxR);

29 (!cond_r) out += op_r / gather(D+i,idxR);

30 }

31 else {

32 // Fallback execution, if-conversion

33 (cond_0) out += op_0 * C[i];

34 (!cond_0) out += op_0 / D[i];

35 (cond_1) out += op_1 * C[i+VL];

36 (!cond_1) out += op_1 / D[i+VL];

37 }

38 }

Figure 3.6: Example loop from Figure 3.5 with vectorization,unrolling and
ALC applied. Operands are merged accordingly and contiguous loads inside
the consolidate block are converted to gather loads.
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(a) sel
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1 2 3 9

SPLICE z0.s, p0, z0.s, z1.s

z1

p0

z0

1 2 3 4z0

(b) splice

-1 0 3 4

0 1 4 0

TBL z2.s, { z0.s }, z1.s

z1

z2

1 2 3 4z0

(c) tbl

1 2 3 4

1 3 0 0

COMPACT z0.s, p0, z0.s

z0

p0

z0

(d) compact

0 1 2 3

INDEX z0.s, #0, #1

z0

(e) index

0

WHILELT p0.s, x0, x1

x0

p0

2x1

(f) whilelt

Figure 3.7: Semantics of SVE permutation instructions and index/whilelt
instructions used to implement the active-lane consolidation and multi-register
permutation.

vector register.

splice: The predicate register defines a range from the first true predicate to

the last true predicate. Elements within this range are taken from the first

vector and placed at the start of the result register. The remainder of the result

register is filled with elements from the second vector register starting from

the element in the lowest position.

tbl: In this programmable table lookup illustrated in Figure 3.7c, z0 is the

data register and z1 holds indices into z0. The result register receives elements

from the data register based on the values in the index register. Lanes where

the index register has a value outside of the interval [0,VLEN − 1], where

VLEN is the vector length, lead to the result register receiving the zero value.

For instance, in Figure 3.7c the index 4 is outside of the [0,3] range.

compact: Active elements of the input vector register are placed compactly at

the start of the output register. The remaining elements in the output register

are zeroed.

index: Creates a vector of incrementing values. Two scalar values, supplied

either in registers or as immediate values, specify the start value and the
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incrementing step.

whilelt: Given two scalar registers x0 and x1, generates a predicate register

where the first x1-x0 lanes are active and all other lanes are inactive.

The name whilelt highlights that the value of the predicate for each lane is

set by testing the condition x0 < x1 and then incrementing x0 before testing

for the next lane.

4 5 6 70 1 2 3

0 1 3 0 5 7 0 0

2 0 0 0 4 6 0 0

5 7 4 6

0 1 3 5 2 7 4 6

compact z2.s, ~p0, z0.s compact z3.s, ~p1, z1.s

compact z5.s, ~p1, z1.scompact z4.s, ~p0, z0.s

splice z3.s, p4, z3.s, z5.s

sel z4.s, p4, z4.s, z3.ssplice z2.s, p3, z2.s, z3.s

First iteration Second iteration

1 2

5 6

7

9 10

z1

p0

z0

p1

z2 z3

z4 z5

z3

z2 z4

~p0 ~p1

p3

p4

p4

(vM) (vR)

8 whilelt p4, cntp(~p0)

3 4whilelt p3, cntp(p0) whilelt p4, cntp(p1)

Figure 3.8: Visual example of the ALC permutation implemented in SVE.
Active lanes are shown as light coloured squares while inactive as dark coloured
squares. For brevity, we use cntp as a function but requires another instruction
that returns the count of active lanes. In addition, we use ~p0 to represent the
logical NOT of predicate register p0. In 1, once compacted, there are additional
zero values appended at the end of the vector which are empty lanes rather
than a valid zero index. These are not problematic when used as the predicate
will prevent any instruction from using the zeros at the end
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3.2.2 Active-Lane Consolidation in SVE

1 // EC=4, element count, i.e. VL/DTYPE_SIZE

2 z0: first vector containing indices // = 0 1 2 3

3 z1: second vector containing indices // = 4 5 6 7

4 p0: predicate for z0 // = 1 1 0 1

5 p1: predicate for z1 // = 0 1 0 1

6 p2: governing predicate

7

8 compact z2.s, p0, z0.s // = 0 1 3 0

9

10 compact z3.s, p1, z1.s // = 5 7 0 0

11

12 not p3.B, p2/z, p0.B // = 0 0 1 0

13 compact z4.s, p3, z0.s // = 2 0 0 0

14 cntp x2, p3, p3.s // = 1

15

16 not p4.B, p2/z, p1.B // = 1 0 1 0

17 compact z5.s, p4, z1.s // = 4 6 0 0

18

19 cntp x0, p1, p1.s // = 2

20 whilelt p4.s, xzr, x0 // = 1 1 0 0

21 splice z3.s, p4, z3.s, z5.s // = 5 7 4 6

22

23 cntp x1, p0, p0.s // = 3

24 whilelt p3.s, xzr, x1 // = 1 1 1 0

25

26 whilelt p4.s, xzr, x2 // = 1 0 0 0

27

28 // Merge

29 splice z2.s, p3, z2.s, z4.s // = 0 1 3 5 - all true

30 // Remainder

31 sel z4.s, p4, z4.s, z3.s // = 2 7 4 6

Figure 3.9: Implementation of the ALC permutation in SVE described in
Section 3.1.1. Example values show in this listing are consistent with the prior
examples.

Figure 3.9 shows the implementation of the ALC permutation in SVE. The

variables in lines 2-6 are the input to the permutation: the original loop indices

z0 and z1; the predicate registers p0 and p1; and the governing predicate p2.

The governing predicate controls the execution of the loop-trip and is all true

except for the tail-end of the loop when the trip count is not a multiple of VL or
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if the loop has a data-dependent exit that is taken before the loop terminates

by reaching the loop bound. The comments on each line provide an example

value for the initialization of these variables and later show the value that

results from the execution of each instruction. In this example, the value of the

predicates p0 and p1 in lines 4 and 5 correspond to the values of cond_0 and

cond_1 in lines 11 and 12 of Figure 3.5. The SVE population count instruction,

cntp in shown on line 14 and counts the number of active lanes in a predicate.

The .s in the instruction indicates the vector element width which is 32 bits

in this example.

The SVE ALC permutation shown in Figure 3.9, and illustrated in Fig-

ure 3.8, is used to create the consolidated loop induction vectors that are used

both for the index-based inter-register permutation of all the operands in the

block and for the gather-load and scatter-store operations. After this sequence

the merged vector, z2.s, contains up to VLEN elements from both z0 and z1

corresponding to the active lanes in p0 and p1 while the remainder vector, z3,

contains all other elements in z0 and z1 that were not consolidated into z2.

If the sum of the number of active lanes between p0 and p1 is greater than

the vector length, then z2 is guaranteed to be uniform with respect to the

condition that created the predicates p0 and p1.

3.2.3 Inter-Register Indexed Permutation in SVE

In SVE an index-based inter-register permutation can be implemented using a

chain of tbl instructions as shown in Figure 3.10. The tbl on line 7 selects

elements from the first vector data register that corresponds to the first iteration

in the unrolled loop. The last lane receives a zero value because the index 5 is

out of range for VL = 4. Line 10 normalizes the indices to the second vector

data register by subtracting the element count from all lanes. Line 11 gathers

the values from the second data vector with another tbl and the first three

lanes take a zero value again because -4, -3 and -1 are outside the range of valid

indices. Finally, adding the result of the two tbl instructions gives the final

merged operand in the order created by performing the ALC permutation.

The inter-register indexed permute makes extensive use of the tbl in-
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1 // EC=4, element count, i.e. VL/DTYPE_SIZE

2 z0 = first data vector // = 2,2,0,2

3 z1 = second data vector // = 0,2,0,2

4 z3 = merged indices // = 0,1,3,5

5

6 // Data from first vector

7 tbl z4.s, { z0.s }, z3.s // = 2 2 2 0

8

9 // Data from second vector with adjusted index

10 decw z3.s // = -4 -3 -1 1

11 tbl z5.s, { z1.s }, z3.s // = 0 0 0 2

12

13 // Combine data from TBLs

14 ptrue p0.s

15 add z4.s, p0, z4.s, z5.s // = 2 2 2 2

Figure 3.10: SVE-specific pseudo-code for the inter-register permute as intro-
duced in Section 3.1.4.

struction. ARM’s previous vector extension, Advanced SIMD, featured a tbl

instruction that took a register-table as input i.e. two or three consecutive

vector registers. However, the tbl in the SVE specification does not include this

feature because the SVE designers considered them not naturally vector-length

agnostic [21]. The proposed inter-register indexed permute presents a case for

the inclusion of a multi-register-table permutation in SVE because indices into

the vector table can be generated by other VLA instructions such as index.

3.3 Proposal for native support in SVE

There are two shortcomings in the SVE design that introduce inefficiencies

when implementing ALC: there are no native instructions that directly map

to the ALC permutation, and there is no support for indexed permutations on

multi-register tables. These shortcomings make it difficult to re-order the lanes

between a pair of vectors.

This section proposes two additional instructions to SVE that introduce

the active-lane-consolidation permutation as an instruction and support for the

multi-register-table permutation. Figure 3.11 shows the proposed syntax for

this new instruction consolidate illustrating the consolidation of the adjacent
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1 // Two-register group

2 consolidate {z0, z1}, {p0.t, p1.t}

3

4 // Three-register group

5 consolidate {z0, z1, z2}, {p0.t, p1.t, p2.t}

6

7 // Four-register group

8 consolidate {z0, z1, z2, z3}, {p0.t, p1.t, p2.t, p3.t}

Figure 3.11: Proposed instruction to support the active-lane consolidation
permutation in SVE

1 // Two-register group

2 tbl z0.t, {z0, z1}, zN.t

3

4 // Three-register group

5 tbl z0.t, {z0, z1, z2}, zN.t

6

7 // Four-register group

8 tbl z0.t, {z0, z1, z2, z3}, zN.t

Figure 3.12: Proposed extension of tbl to perform an multi-vector table lookup

register group { zN, zN+1 ... zY } based on the active lanes given by the

predicate group { pN.t, pN+1.t .. pY.t } with an element size of t. Similar

to the fixed-length tbl, the input operands for the proposed consolidation

instruction are provided as a list of consecutive vector registers to allow con-

solidation of more than two registers. Following SVE’s destructive operation

scheme, the input register group is also used as output.

Alternatively, a design could extend the existing compact instruction to

operate on a register group because the semantics of compact are very similar

to the semantics of consolidate. Such extension would need to change the

semantics of compact so that the inactive lanes are retained instead of being

zeroed as the compact instruction currently does.

The second shortcoming of SVE in the context of ALC is the lack of an

indexed permutation on a scalable vector. In the current SVE design, tbl

takes a single vector register as input while in Advanced SIMD the fixed-length

version of tbl allows up to four consecutive registers as input. Figure 3.12
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shows a proposed extension of tbl where the last vector operand is a vector of

indices into the register group defined within the curly braces. The proposed

consolidate operation could also be used to achieve the same result but

requires a predicate group to be supplied to the instruction.

3.4 Iterative ALC

A limitation of relying on the unrolling of vectorized loops to apply ALC is

that consolidation will only consider active lanes within the vectors exposed

by unrolling. Practically, there may be many more opportunities to form a

uniform vector if not limited to consolidating consecutive iterations. This

section presents Iterative ALC, a code transformation that overcomes this

limitation by consolidating active lanes across an arbitrary number of iterations

of a loop. The insight that led to the design of this Iterative ALC transformation

is that the merged vector can persist across loop iterations and consolidate

active lanes until the merged vector becomes uniform, at which point it can be

processed with 100% utilization.
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Figure 3.13: Example of iterative ALC. Active lanes are shown as white squares
and inactive as dark squares.

Figure 3.13 shows an example of Iterative ALC applied to a loop with an

if-else statement. The ALC permutation primitives and their applications
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are detailed in Section 3.1. In the figure, a thin line indicates a control line and

a thick line indicates that all the lanes of the vector are used in the operation.

Greyed lines and blocks indicate code that is not executed in this example.

Iterative ALC initializes the merged vector using the first iteration of the

vectorized loop 1 . In each iteration, an any BOSCC checks for active lanes

in the incoming iteration 2 to determine if the ALC permutation should be

applied 3 . If the incoming vector is already uniform then ALC is not applied

as a BOSCC can already exploit this vector. The ALC permutation produces

the updated merged vector 4 that now contains any active lanes that were

present in the incoming vector and also produces remainder vector 5 . In

iteration 1, after ALC, the remainder vector 5 is uniformly inactive so that

the BOSCC check fails and the else block 6 is executed. In iteration 2, the

any BOSCC 9 on the remainder vector 8 succeeds, revealing that not all

active lanes could be moved into the merged vector 7 and thus the merged

vector must now be uniform. The then block 10 can then be executed with

100% utilization. Once the uniform merged block is executed, the remainder

vector in that iteration is set as the merged vector for the next iteration 11 as

illustrated in iteration 3.

Iterative ALC is most beneficial in loops where a single condition needs to

be evaluated to determine the flow of control — loops that contain a simple

if-else control flow or with a single if statement rather than loops containing

long if-else-if statements — because in the presence of more complex control

flow iterative ALC would have to save all lanes of operands appearing in

each control path. In addition, if ALC is performed to consolidate active

lanes, all saved vector operands must also be permuted to correct the order,

further adding to the complexity of operand merging. In the case of a single

if statement with no else block, execution can be completely bypassed. In

addition, because there is no need to retain inactive lanes, the ALC permutation

shown in Figure 3.9 can be simplified. This simplification is not shown in detail

but involves removing instructions in Figure 3.9 dealing with retaining the

inactive lanes of the vectors being consolidated.

In the first transformation to enable ALC, described in Section 3.1.2, the
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number of active lanes available to be consolidated is limited by the unrolling

factor. The unrolling transformation uses an unrolling factor of two because the

combinatorial complexity of the ALC permutation increases with the unrolling

factor. Larger unrolling factors are also limited by the number of vector registers

available because unrolling increases register pressure. In contrast, iterative

ALC is able to consolidate active lanes of vectors from any subsequent iteration

of the vectorized loop, leading to better utilization at any vector length without

additional register pressure.

3.5 Summary

This chapter presented ALC, a vector permutation that re-orders active lanes

between two vector registers with the goal of creating a uniform vector. Consol-

idating active lanes into a uniform vector enables BOSCC branches to succeed

during runtime to bypass unnecessary code. However, because inactive lanes

may be needed through alternate control flow paths, they must be retained

through permutation. In addition, variables defined outside a conditional block

may be used inside the conditional block. Therefore, a mechanism — the

index-based inter-register permutation presented in this chapter — is required

to re-organize lanes to match the consolidated order. We implemented the

ALC permutation using the ARM scalable vector extension, a modern vector

ISA and showed that the proposed permutation is similar to the compact

instruction already defined in SVE. Future applications of ALC may warrant

the inclusion of a consolidate instruction that captures the semantics of the

ALC permutation. The versatility of the ALC permutation is illustrated

through the proposal of two loop transformations, unrolling ALC and iterative

ALC, that increase vector utilization in the presence of divergent control flow.

The next chapter presents four case studies that estimate the efficacy and

performance impact of the ALC loop transformations.
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Chapter 4

Evaluation

This benchmark-based study assesses the opportunities to apply, and potential

benefit of, ALC and iterative ALC in future programs. Using the SPEC CPU

2017 benchmark suite, this study tries to answer the following questions:

Q1: How many opportunities exist for applying ALC and iterative ALC in

the SPEC CPU 2017 benchmark suite?

Q2: Can the ALC permutation, through loop transformations, be used to

non-trivially increase vector utilization in loops that experience divergent

control flow?

Q3: What is the overhead of performing the ALC permutation and index-based

inter-register permutation?
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Figure 4.1: Results of a static analysis on the loops matching the basic criteria
for ALC to be applicable in the SPEC CPU 2017 benchmark suite.
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Total Applicable
500.perlbench 4667 11

502.gcc 17658 115
505.mcf 85 2

520.omnetpp 2170 1
523.xalan 10886 24
525.x264 1127 5

531.deepsjeng 148 8
541.leela 189 8
557.xz 247 0

508.namd 1449 0
510.parest 5486 35
511.povray 2450 35

519.lbm 2450 28
526.blender 19 4
538.imagick 36337 928

544.nab 2034 142
Sum 85230 1322

Table 4.1: Loops where ALC may be applicable discovered by the static
analysis described in Section 4.1.

4.1 Methodology

In order for a loop to contain an opportunity to apply ALC it must:

1. Not have any loop-carried dependencies;

2. Contain a block that is terminated by a conditional branch;

3. Not contain function calls.

To answer Q1 we designed a static analysis that detects loops with these

properties. Table 4.1 shows the total number of loops found and the number

of loops that meet the ALC conditions in each benchmark of the SPEC CPU

2017 benchmark suite compiled with vectorization, loop unrolling disabled and

function inlining enabled. The same static analysis answers two additional

questions of interest: how many conditional branches each loop contains; and

how large are the executed blocks. Figure 4.1a shows a histogram of the

number of conditional branches in ALC opportunity loops. Figure 4.1b shows

a histogram of the number of LLVM IR operations in blocks inside the loop.

36



The counts used to construct the histograms in Figure 4.1 exclude the latch,

exit, and header blocks whose predecessors are terminated by a conditional

branch. This analysis reveals that a large portion of the loops to which ALC

can be applied contain few conditional branches and the conditional blocks

contain a small number of operations.

For a profitable application of ALC, a loop also must exhibit divergent

control flow during its execution. Therefore the dynamic behavior of a loop

also has to be examined. The remainder of this Section investigates four loops

reported by the static analysis whose runtime branching behavior is divergent.

These loops illustrate how ALC and iterative ALC affect the vector execution

and performance. Divergency was confirmed by running the benchmark and

inspecting the branch directions at runtime. The criteria for divergency was

simply a non-uniform list of branch outcomes. When implemented inside a

production compiler, the application of ALC must also check for other factors,

such as non-vectorizable statements, that may prevent the application of these

transformations.

As of writing, the only SVE-enabled processor available is the Fujitsu

A64FX [16] that we are unable to access. Thus, this performance estimation

uses the Arm Instruction Emulator (ARMIE) [5] running on the non-SVE-

enabled AArch64 hardware. ARMIE uses DynamoRIO [8] to perform dynamic

binary translation. ARMIE replaces SVE instructions with an equivalent

sequence of scalar AArch64 instructions. Because the SVE instructions are

being emulated, wall-clock runtime cannot be used as a result.

The goal of ALC is to increase uniformity in vectors to improve the efficacy

of traditional compiler optimizations such as BOSCCs. BOSCCs elide the

execution of redundant instructions by exploiting uniform vectors and thus

reducing the dynamic instruction count. ARMIE collects these key measure-

ments and enables an assessment of the efficacy of ALC. Dynamic runtime

statistics collected through ARMIE include dynamic instruction count, control-

flow-path frequency, and vector-instruction utilization. These statistics are

used to compare ALC to the previous state of the art. Each version of the loop

is compiled using Clang 10 with the -fno-vectorize -fno-slp-vectorize
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Figure 4.2: Control flow graphs of the body of the loops of the benchmarks.
Percentages attached to edges indicate the runtime probability the branch is
taken in the TRAIN workload.

-fno-unroll-loops compiler flags. Emulated executions take much longer to

complete than native executions, therefore, the TRAIN workload of the SPEC

CPU 2017 benchmark suite is used for all ARMIE-based measurements. A

comparison of the frequency of execution of the branch instructions and of the

branch outcomes with executions of the REFRATE workload revealed that they

are very similar to the TRAIN workload.

4.1.1 Case Studies

The four test cases used in this study are loops taken from the following C/C++

SPEC CPU2017 benchmarks: NAB, LBM, and MCF. Open-source production

compilers’ implementations of SVE are in very early development. Until the

requisite infrastructure necessary to write an automatic compiler pass — which

requires effort from a team of developers — is available, the potential for

applying ALC can be assessed by rewriting each loop by hand using the ARM

C language extensions (ACLE) [4]. This laborious process limits the number

of case studies reported.

LBM LBM is a fluid-dynamic benchmark that implements the Lattice-

Boltzmann method to simulate incompressible fluids in 3D [33]. The case study
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from LBM is extracted from the function StreamCollideTRT, which takes 97%

of the runtime when LBM is run on the TRAIN workload. Figure 4.2 shows

the two main paths of control in this loop, B1 performs 19 loads and stores

while B2 performs 49 loads and 19 stores. The block B2 also performs many

multiply, add and subtract arithmetic operations. The step increment of the

loop induction variable is not unitary. Therefore, after vectorization, load and

store operations in B1 and B2 are translated into gather loads and scatter

stores. The predicate computation for the condition C1 in the vectorized version

is simple because it depends only on a load. Also of importance, the state-

ments inside the conditional blocks do not depend on values computed outside

and therefore the ALC loop transformation does not need to permute operands.

NAB The NAB (Nucleic acid builder) is a molecular-dynamic program in

the SPEC CPU2017 benchmark suite [33]. The case study from NAB is from

the egb function and contains parallel hot loops with complex control flow.

The control-flow excerpt for the first of the three loops is shown in Figure 4.2(a)

and was also used in the study that evaluated the effect of simple BOSCCs on

this loop [23].

MCF 1 The first case study from the MCF benchmark, MCF_1, is from the

flow_cost function. The MCF benchmark solves a network-flow problem to

compute schedules for public transportation [33]. The loop in this case study

takes around 1% of the execution time of the benchmark.

MCF 2 The second case study from the MCF benchmark, MCF_2, is found

in the read_min function. This loop calls the function getArcPosition, which

contains an if-else statement and is inlined into the loop during compilation.

4.1.2 Loop Transformations

For these case studies, each loop is vectorized using ACLE intrinsics to insert

BOSCC instructions and apply the unrolling ALC and iterative ALC trans-

formations. The different versions of the loop implemented and evaluated are
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as follows:

ifcvt: In this baseline the loop is vectorized with IF-conversion and no BOSCC

instructions are inserted. This version is similar to how the LLVM and GCC

vectorizers currently transform these loops.

boscc: After vectorization and IF-conversion, additional BOSCC instructions

are inserted, where appropriate, to optimize execution.

alc unroll: The unrolling ALC transformation described in Chapter 3.1 is

applied to the vectorized and IF-converted loop to consolidate active lanes of a

conditional block.

alc iter: In applicable benchmarks, the iterative ALC transformation de-

scribed in Chapter 3.4 is applied to the loop. Iterative ALC was only applied

to the LBM and MCF 1 loops because the long if-else-if statement in the

NAB kernel and the small conditional blocks in MCF 2 prevented application

on these kernels.

For the comparison with boscc one must establish the location in the

execution path where BOSCC instructions should be placed and the type of

instruction — all, any or none — to be placed. Both factors can greatly

affect performance. At the time, there is no automated compiler analysis to

determine a suitable placement of BOSCC instructions into a vectorized and

if-converted control flow graph. Thus, in order to present a fair comparison

with the ALC approaches for this study, we empirically vary the placement

and type of BOSCC and use the best-performing kernel as a baseline for the

comparison. For instance, the NAB loop contains an if-else-if statement

that creates five conditional blocks in the IR. As shown in Figure 4.2a, block

B2 is by far the most frequently executed conditional block in the NAB kernel.

Thus, the insertion of an all BOSCC on the condition computed in C2 that

predicates B2 leads to the execution of B2 only if all lanes are active and results

in good performance. However, another performant solution is to insert an any

BOSCC after B2, before the execution of B3 to elide execution of the remaining

linearized blocks in the case where all lanes were active for either B2 or B1.

In this study, we run experiments for both and report the best-performing

kernel. The locations in the control flow graphs where BOSCC instructions
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are inserted for each case study are shown as dashed edges in Figure 4.3(d).

For alc unroll, future compiler analysis will be needed to decide which

conditional block should be consolidated. In most cases, consolidating on the

most frequently executed block is a good heuristic. However there are cases

where consolidating a less frequently taken block, such as B1 in the LBM

benchmark, is more beneficial. In this study, a similar empirical approach to

the one used for boscc decides which block to consolidate for alc unroll.
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Figure 4.3: Reduction in dynamic instruction count of loops optimized with
BOSSCs (boscc) or the ALC transformations (alc unroll, alc iter) over the
kernel with only vectorization and if-conversion (ifcvt) applied. Figure 4.3d
shows the control-flow graphs of the kernels with the locations of the BOSSC
branches that are indicated by a dashed line.
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Figure 4.4: Percent divergence of vector instructions. Dotted black bars indicate
100% utilization while dotted white bars indicate 0% utilization. Shaded bars
indicate partial utilization with darker shades representing higher utilization.
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4.2 Results

Figure 4.3 reports the dynamic instruction-count reduction in the region-of-

interest (ROI) for each benchmark for the three code transformations. The

baseline is ifcvt. In comparison to the boscc kernels, the instruction reduction

in alc unroll is greater for longer vectors in the LBM and NAB case studies

(12% and 39% at 2048 bits). For the MCF 2 case study, no results are reported

because all three code transformations failed to reduce dynamic instruction

count over baseline.

In the alc unroll kernels, the control flow path which consolidates active

lanes of vectors is followed only when there are enough active lanes to create a

uniform vector and none of the input vectors are already uniform before the

ALC permutation. To handle situations where uniform vectors are encountered

before ALC, BOSCCs are inserted in the fall-back path that executes the

regular if-converted code. BOSCCs inserted in the fall-back path can account

for a large portion of the instruction reduction in the unrolling ALC versions.

In fact, at lower vector lengths, such as 128-bits and 256-bits, most of the

instruction reduction reported in Figure 4.3 is due to these BOSCCs.

A downward trend emerges in the graphs as VL increases because a larger

portion of the vectors in the loop become divergent causing BOSCCs to lose

effectiveness. In the alc unroll kernels, the effect is lessened because the

divergent vectors are consolidated into a uniform vector, leading ALC to out-

perform the boscc kernels in the LBM and NAB benchmarks after a certain

vector length (1024 bits in LBM and 512 bits in NAB).

There is a clear correlation between lower dynamic instruction count and

the loop kernels that execute more efficiently, i.e. higher vector utilization

reported in Figure 4.4. In the LBM loop, the unrolling ALC transformation

only begins to yield instruction reduction (Figure 4.3a) over the boscc kernel

once there is a clear gap between utilization, as seen in vectors greater than

1024 bits on alc unroll, compared with the the boscc kernel in Figure 4.4a.

This trend is also observed in the NAB loop between boscc and alc unroll.

alc unroll finds many opportunities to consolidate vector lanes in MCF 1
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(21% of iterations consolidate vectors at 2048 bits). However, it fails to out-

perform boscc regardless of vector length because bypassing the vectorized

code for the small basic blocks does not amortize the overhead introduced by

performing the ALC permutation.

4.2.1 Iterative ALC

When alc unroll encounters a vector that is uniform prior to the ALC permu-

tation, the fall-back path is taken because consolidation does not benefit this

case. This fall-back path contains IF-converted code with BOSCCs applied

to exploit the existing uniform vector as done for boscc. When one of the

two vectors exposed by unrolling is uniform and the other is divergent, the

divergent vector must be processed by the inefficient if-converted code similar

as is done for ifcvt. When both candidate vectors are divergent but do not

contain enough active lanes to consolidate into a uniform vector, both vectors

are processed by the inefficient if-converted code in the fall-back path. alc iter

addresses these inefficiencies by consolidating active lanes from several itera-

tions until a uniform vector is formed instead of being limited to consolidating

lanes only from the vectors exposed by unrolling.

Iterative ALC out-performs both boscc and alc unroll kernels in the

two loops where it was applied: LBM and MCF 1. We only apply iterative

ALC to these two loops as the simple control flow structures present in the

kernels make the implementation of iterative ALC straightforward. Iterative

ALC was not applied on the NAB kernel as the nature of iterative ALC

requires that all operands used within every conditional block be saved for later

permutation. The five-long if-else-if cascade present in the NAB loop leads

to a prohibitive state-saving space requirement. Furthermore, iterative ALC is

less applicable to loops with long if-else-if cascades because an automatic

compiler pass to perform the transformation would require a well-informed

decision about which conditional block to consolidate compared to loops with

simple single-if constructs.

Overall, fewer instructions are executed by alc iter because vectors are

utilized more efficiently. Where the boscc and alc unroll would sub-optimally
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process a vector with a partially active predicate, alc iter trades inactive lanes

in this vector with active lanes encountered in other iterations of the loop.

The MCF 1 case study contains a nested if-statement that sparsely takes the

branch to block C1 shown in Figure 4.2. BOSCC instructions are not effective

for longer vectors in this case because the long vectors will often contain

a few active lanes and cause the any-true BOSCC to succeed so that the

branch to C1 is taken. This gradual degradation of boscc due to it executing

instructions with ”near-empty” predicates as vector length increases is observed

in Figure 4.4b. The sparsity of C1 — taken 5% of the time — leads alc unroll

to struggle to find opportunities to merge vectors from consecutive iterations.

In comparison, iterative ALC steals active lanes from several iterations to

create a uniform merged vector with active lanes. The consolidation of active

lanes into the merge vector leaves a uniform remainder vector with only false

lanes whose execution can be completely bypassed because the control-flow

structure of the kernel only contains a single if statement with no else. The

result is that alc iter outperforms both boscc and alc unroll in both vector

utilization (Figure 4.4b) and dynamic instruction reduction (Figure 4.3b).

4.2.2 Under-Utilization of Vector Instructions

Figure 4.4 shows the percentage of vector instructions that are executed with

a certain predicate utilization. Darker shades indicate more lanes of the

predicate are active while lighter shades indicate less. The ifcvt kernel shows

the results from the version of the loop vectorized with naive IF-conversion

and is similar to how LLVM and GCC would currently vectorize these loops.

Figure 4.4 shows that a very large portion of vector instructions execute with

a predicate that is either all-false or has low utilization. This illustrates the

poor execution efficacy that traditional IF-conversion leads to especially when

control divergence becomes more prevalent as the vector length increases.

The results in Figure 4.4 indicate that when properly placed, BOSCC

instructions can effectively avoid executing instructions with all-false predicates.

For instance, an all BOSCC inserted on B2 in NAB and an any BOSCC

inserted on B1 in LBM result in the largest instruction reduction because B2 is
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the hottest block in NAB and B1 is the least frequent block in LBM. However,

a disadvantage of both boscc and alc unroll is that they both depend on

a yet-to-be-created compiler analysis. Such analysis has to determine the

place and type of BOSCC instructions to insert for boscc and which block to

consolidate for alc unroll. These decisions depend on accurately predicting

the branch probabilities at runtime. For some programs, such probabilities

depend on the workload and thus vary from run to run.

In comparison, alc iter fills the merged vector as it encounters active lanes

in the loop and therefore it does not depend on accurate branch-outcome

information. For instance, the block being consolidated in Figure 4.4a is the

lesser executed block B1. Even so, alc iter achieves perfect utilization and

significant instruction reduction over the best results for boscc and alc unroll.

4.2.3 Overhead of the ALC Permutation

Kernel ifcvt
boscc alc unroll alc iter

not-taken taken not-taken taken filled continue
lbm 583 589 74 1212 114 96 546
nab 204 205 98 470 331
mcf 1 25 32 15 74 66 48 21
mcf 2 45 46 40 90 130

Table 4.2: Static instruction counts for the control flow paths in each kernel.

This section addresses question Q3. As discussed in Chapter 3.2 the

ALC permutation requires at most fifteen instructions while the inter-register

permutation requires three instructions per operand that needs permuting.

To be profitable, the ALC loop transformations must amortize the cost of

executing instructions to perform these permutations.

Table 4.2 shows the instruction count for the primary control flow paths

in the loop kernels. As illustrated in Figure 4.3d BOSCC branches introduce

control flow for boscc, alc unroll and alc iter to allow bypassing sections

when all the lanes of a vector are inactive. If any of the lanes are active,

the BOSCC branch is not taken and the entire sequence of partially-active

predicated vector instructions must be executed. The number of instructions
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for each of these paths are reported under the columns boscc not-taken and

boscc taken in Table 4.2.

The slight increase in the number of instructions from ifcvt to boscc not

taken is indicative of the low overhead introduced by the BOSCC instruction.

The drastic instruction-count reduction from ifcvt to boscc taken for the LBM,

MCF 1 and NAB kernels underscores the inefficiency of applying only IF-

conversion to the loop. This inefficiency results from ifcvt executing predicated

code to account for all paths, including some which may be predicated by an

all-false predicate.

In the alc unroll kernels, there is a taken and a not-taken path. In the

taken path, ALC is performed and thus, it includes instructions to perform

the ALC and index-based inter-register permutations. In the not-taken path,

ALC is not performed either because candidate vectors for consolidation are

already uniform or because there is an insufficient number of active lanes to

form a uniform vector. Note that alc unroll executes two iterations of the loop

while ifcvt to boscc execute a single one — this difference accounts for static

instruction counts for alc unroll being close to twice the amount reported in

the ifcvt column.

For alc unroll in MCF 2 the taken path is longer than the not-taken path

and thus consolidation will result in performance degradation because several

operands must be permuted. The issue is compounded by the small size of

the basic blocks, which lowers the benefit of a BOSCC branch. Larger blocks

would result in more savings from bypassing execution and would amortize the

operand permutation costs. For kernels exhibiting similar characteristics where

many operands need to be permuted to correctly execute a small consolidated

block, it is not beneficial to consolidate execution of vectors through the

unrolling ALC transformations.

With the proposed ISA design changes described in Chapter 3.3 both the

ALC permutation and the index-based inter-register permutation would require

a single instruction each. Such change would significantly reduce the overhead

of ALC. For instance, for MCF 2, the overhead could be reduced to seven

instructions: one for ALC and six for index-based inter-register permutation
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of operands for the consolidated block and for the remainder block. Significant

overhead reduction, such as this one for MCF 2, will enable the use of ALC

for loops with small block sizes. This is especially interesting given the findings

presented in Figure 4.1 that show that small conditional blocks, containing

only two to eight instructions are most common.

The alc iter kernels contain two paths, filled and continue. The filled path

processes the merged vector once it becomes full, this is illustrated in iteration

2 of Figure 3.13. The continue path represents the path that control follows

when the ALC permutation is performed but the merged vector does not

become full. In the case of a single if statement with no else block, such

as in the MCF 1 benchmark, no additional code is executed. Furthermore,

because there is no need to retain the inactive lanes, a simplified version of

the ALC permutation, that requires fewer instructions, can be used. These

characteristics make iterative ALC very appealing to optimize loops with

lone if statements. In contrast, the LBM benchmark contains an if-else

statement so that the continue path executes code to process the lanes that

were inactive for the if block. In, MCF 1, 27 of the 48 instructions present

in the filled path are related to the actual execution of the conditional block.

The remaining 21 instructions execute the ALC permutation to consolidate

active lanes. The difference between the 15 required instructions presented in

Chapter 3.4 and the 21 listed here are due to imperfections in the compiler’s

code generation. Even with the large number of instructions required to perform

the ALC permutation, the iterative ALC kernel outperforms the best boscc

kernel because of the large increase in vector utilization provided by iterative

ALC.

4.3 Summary

This chapter presented case studies of the application of ALC to four different

loops found in the SPEC CPU2017 benchmark. These early results obtained

through emulation of the vector ISA on a loop optimized by the ALC trans-

formations indicate that the proposed permutation has significant potential
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for improving the performance of vectorized code by increasing the number of

lanes utilized by each instruction. Iterative ALC, in one setting in the LBM

benchmark, demonstrated a 30.9% reduction in dynamic instruction count

over the baseline IF-converted kernel optimized solely with BOSCCs. Such

a result gives evidence to the sporadic branch behavior present in real code

and workloads and indicates that there is vast room for improvement in vector

code generation. The characterization of the vector utilization in each bench-

mark highlights the inefficiencies of unoptimized IF-converted code and the

improvements that can be achieved using one of the ALC loop transformations.

Furthermore, this case-based experimental study illustrates the breakdown

of BOSCC instructions as vector lengths are extended and how ALC can be

used to improve vector performance in these cases. This chapter showed that,

in certain cases, complex control flow graphs may prevent the application of

iterative ALC. In these cases, unrolling ALC is still applicable and shown to

lead to a non-trivial instruction reduction over the baseline.
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Chapter 5

Related Work

Vectorization is a broad subject and has many active areas of interest that are

involved in this work. This chapter presents related work organized by topic.

5.1 Control-Flow Vectorization

Control flow is an integral programming construct that has presented an

obstacle for SIMD execution for decades since early supercomputers like the

CRAY-1 [27]. Today, supporting SIMD execution in the presence of control

flow exists an important problem more than ever with the exploitation of DLP

remaining as one of the most prominent directions of research to facilitate

performance improvements.

The traditional IF-conversion algorithm [1] presents a method to convert

control dependencies into data dependencies to enable compiler automatic

vectorization to take place. IF-conversion removes the complexities of ac-

counting for data dependence and control-dependence in compiler analysis,

simplifying the vectorization transformation. Predicate information can easily

be inferred from the data dependencies converted from control-dependencies

in the IF-converted code and directly map to execution conditions needed in

predicated/masked ISAs. ALC is supplemental to IF-conversion as it attempts

to address some of the inefficiencies in execution caused by linearized code.

Predicated or masked vector instructions are only one method to support the

vectorization of control flow. The various other methods such as using register

compress/expands or memory gather/scatter instructions have been studied
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extensively in comparison to masked instructions with the latter proving itself

as the most beneficial method, especially in density-time architectures [32].

In addition, most modern long vector ISAs like Intel’s AVX-512 or ARM’s

SVE support control flow vectorization through instruction masking and

predication. Other non-masking methods are still an important topic as

some popular vector ISAs like ARM’s NEON or Intel’s AVX do not provide

predication. Recent research is still uncovering novel techniques, like IF-

selection [37] to efficiently vectorize control flow in these architectures [26]. One

emerging vector ISA of interest, the RISC-V ”V” (vector) extension provides

both masked instructions and a prefix-sum instruction (IOTA) that can be used

for register compression operations [22]. In this work, we consider predicated

vector ISAs and present a permutation able to consolidate the active from two

under-utilized divergent vectors into one uniform vector that can execute with

100% utilization.

More modern IF-conversion algorithms have been proposed that try to ad-

dress shortcomings in the original method. Partial control flow linearization [23]

presents one such algorithm that takes into account the presence of uniform

branches that will not cause vector divergence. Uniform branches are branches

whose condition does not change throughout execution and can be discovered

through divergence analysis [13]. Rather than linearizing the control-flow graph

that includes such uniform branches as traditional IF-conversion would, the

algorithm transforms the graph such that the branch is retained even in the

final vectorized code. This elides execution of a large portion of vectorized code

that would otherwise execute with no active lanes and considerably decrease

vector utilization. In contrast, ALC addresses non-uniform branches that

may cause divergence in vectors at runtime. These branches are particularly

troublesome as compiler analysis is currently unable to discover much useful

information them and thus, applying optimizations presents the risk of degrad-

ing performance unless a runtime profile on a specific workload is available for

guidance. In this work, we present a loop transformation, unrolling ALC, that

incorporates traditional IF-conversion as a way to retreat from committing an

otherwise unprofitable optimization at runtime.
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Warp-coherent-condition vectorization (WCCV) attempts to address the

compiler inadequacies in analyzing non-uniform branch conditions [36]. In

particular, WCCV presents two types of conditions and proposes techniques

for their detection: high-probability conditions and Boolean-step conditions.

Boolean-step conditions are non-uniform conditions whose outcome only changes

once during execution as the thread ID or loop induction variable crosses a

boundary, for example, the condition i > 256 in a loop with a trip count of

512. WCCV uses Affine-Analysis to analyze and prove the condition is Boolean.

High-probability conditions are branch conditions that are statically provable

to be biased at runtime. WCCV proposes detection of these conditions through

auto-tuning the parameters given by LLVMs branch-probability estimation

and branch cost also given by LLVMs costing framework. Even though the

conditions are still considered non-uniform, by examining the equation associ-

ated with the condition or by taking into account the branches’ parameters, it

becomes clear the behavior of the branch will result in mostly uniform vectors

that will not be optimized by partial control flow linearization.

In comparison, ALC attempts to provide a method to optimize conditions

not meeting either the statically-uniform or runtime-uniform requirements

focused on by partial control flow linearization and WCCV. Instead, ALC

provides a solution to optimize runtime-divergent conditions by consolidating

the active lanes resulting from these types of conditions.

The trend in increasing vector-length brings into question the possibility

of their continued growth. Vector length has a profound impact on the per-

formance of SIMD and vector code with control divergence being one factor.

The impact of vector-length on SIMD performance has been studied in [29].

In this study, 76 benchmarks from various application domains were studied

the conclusions show that a large majority of applications do not suffer from

a heavy amount of control divergence and thus are likely to scale well with

increasing vector length. However, the study also showed that a large portion

of benchmarks suffered from a heavy amount of control divergence. In addition,

one notable conclusion of the study was that out of the examined kernels, the

vast majority had only four or less distinct control flow paths. In this work,
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four kernels are studied from a popular benchmark suite, SPEC 2017, that

suffer from control divergence and show the potential for ALC to alleviate

SIMD performance degradation.

5.2 Dynamic Uniformity Conditions

Shin et al. first propose a compiler analysis and code generation technique to

accelerate vectorized multimedia applications using the Altivec G4 BOSCC

instructions [30]. They later improve on their approach by nesting BOSCCs

to allow BOSCC instructions to bypass other BOSCCs improving their per-

formance margins. However, they do not address the problem of automatic

insertion as the compiler analysis used to estimate the profitability of inserting

a BOSCC relies on a separate profiling phase to gather metrics concerning

branch behavior.

Warp-coherent-condition vectorization [36], in addition to the contributions

made to formalize divergent-conditions, also propose a a simple control flow

transformation where an all BOSCC is inserted to guard the target block of

the boolean-step or high-probability condition. This translates to an efficient

execution where only the most frequently visited block is executed.

In comparison, Partial Control Flow Linearization, in addition to the

contributions made to improve IF-conversion, presents a use case of the partial-

linearization algorithm to showcase support for BOSCC constructs. They

introduce a control flow construct called a BOSCC-gadget that refers to the

semantics of a certain BOSCC instruction such as an any BOSCC. The par-

tial control-flow linearization algorithm retains these BOSCC gadgets as the

algorithm detects the branch as uniform and is later lowered to the respective

BOSCC instruction supported in the ISA. In their experiments, the control

flow transformation applied inserted any BOSCCs in such a manner so that

the least frequently visited blocks were bypassed. This is in contrast to the

transformation in WCCV where an all BOSCC was inserted on the most

frequently visited block.

Works related to BOSCC instructions are foundational for ALC and the
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proposed ALC loop transformations. In our experiments, the unrolling ALC

transformation uses control flow transformations similar to both those found in

Partial-Control-Flow-Linearization and WCCV. However, both works attempt

to optimize only naturally occurring uniform instructions with BOSCCs, in

contrast, ALC is able to dynamically re-organize the vector lanes such that a

uniform vector can be formed out of multiple divergent vectors so that more

opportunities for BOSCCs to bypass code are exposed. In this aspect, the

goal of ALC is slightly different and complementary to Partial-Control-Flow-

Linearization and WCCV.

5.3 Vector Lane Re-organization

Section 3.1.1 introduces the ALC permutation that dynamically re-organizes

the active lanes between two vector registers. The concept of permuting lanes

between registers with the goal of increasing coherency is not new and has been

proposed in the context of vectorized database queries [19]. Lang et al. present

a register-to-register and memory-to-register algorithm for refilling partially

utilized vectors in AVX-512. The register-to-register algorithm makes extensive

use of compress and expand instructions in AVX-512 while the memory-to-

register algorithm uses compress loads and expand stores. In contrast to this

work, the two ALC transformations operate on loops with arbitrary control

flow rather than code to process database queries. Consequently, the refilling

algorithms do not involve the retention of inactive lanes. Because the ALC

transformations need to consider the case where inactive lanes are processed by

another condition present in the control flow graph of a loop, ALC is written

to segregate the inactive lanes into the remainder vector while moving active

lanes into the merged vector. Section 3.4 presents a special case where ALC

can be altered to not retain inactive lanes, saving on the cost of performing

ALC.

Compaction/Restoration [7] proposes a hardware mechanism that detects

compactable instructions to merge them into a single dense instruction which

is issued to the VPU for execution. The restoration unit is one component of
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CR that is responsible for the restoration of lanes compacted into the dense

instruction back into their respective registers and correct lane for use in

subsequent instructions that may depend on the result. The compaction unit

is the component that performs the actual compaction of under-utilized vector

instructions into a dense instruction. CR finds candidate vector instructions for

compaction as they enter the reorder buffer and creates a new dense instruction

when a candidate is found at a PC that is not already considered for compaction.

A timeout policy controls the length of time a dense instruction may sit before

being issued for execution if it did not already become full during that time.

Because dense instructions may delay future vector instructions in out-of-order

processors, the timeout policy can greatly affect the performance of CR. A

timeout that is too short may pre-maturely issue dense instructions that could

have been issued with greater utilization while too long of time may cause

stalls due to contention in processor resources. Because of CRs sensitivity to

the timeout policy, the performance of CR is impacted in loops with a large

number of instructions. Their experimental results show that the performance

significantly degrades when moving from a loop with 20 instructions to 60

instructions.

The ALC and index-based inter-register permutations are essentially a

software version of the compaction/restoration unit in CR. While the actual

vector consolidation/compaction mechanism performs faster in hardware com-

pared to the ALC permutation’s required 15 instructions, the sensitivity to

loop length may limit the application where the ALC loop transformations are

not. In the limited case studies presented in this work, we show two loops that

would be completely un-optimizable by CR, LBM, and NAB with 583 and 204

instructions in the IF-converted kernel respectively; and two loops in the MCF

benchmark that fall within the instruction limitation imposed by CR. The

iterative ALC loop transformation presented in this work can consolidate active

lanes from any iteration throughout the trip of the loop and was successfully

applied to the LBM benchmark that is 583 instructions long once compiled.

Issues concerning the complexity of the ALC permutation could be solved

by introducing instructions similar to the one proposed in Section 3.3 that.
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One clear benefit of CR over ALC, stemming from its ability to dynamically

compact instructions at the ROB level, is that partially utilized vectors that

are not expected at compile-time, i.e. instructions from two blocks that are not

considered for consolidation by ALC, can be compacted to increase utilization

whereas ALC requires information before the final output binary is built.

5.4 GPU Thread Re-organization

The concepts behind the techniques referenced in this work, specifically BOSCC

instructions to bypass unnecessary blocks of code and lane re-organization

to increase utilization are applicable to any SIMD accelerator that suffers

from control flow divergence. The equivalent of lane re-organization in vectors

has been studied in the context of graphics-processing units (GPUs) which

typically group many parallel threads into a warp that is then executed in a

SIMD manner. These works primarily focus on micro-architectural techniques

to dynamically compact threads from different warps into a single warp that

executes with greater efficiency [14], [15], [38]. Software approaches [18] have

limited applicability as they must emulate moving lanes by copying data to

shared memory.

5.5 The ARM Scalable Vector Extension

The ARM Scalable vector extension was introduced to address the issues with

past vector extensions such as ISA disorganization and scalability [25] and

as a solution to drive performance in numerous application domains in the

face of demanding power requirements [28], [35]. The popularity of SVE is

increasing and mainstream compilers like GCC and LLVM are actively working

to implement support [20]. Research so far has focused on using SVE to

accelerate applications in specific workloads like stencil codes [6] and image

processing pipelines [10] and evaluates the resulting performance. ARM SVE

is not the only ISA to re-adopt the VLA architecture with RISC-V [22] also

introducing scalable vectors into their ISA for which production hardware has

already been produced [9].
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Chapter 6

Future Work

ALC is designed to optimize vector execution in the presence of divergent

control flow where past techniques like BOSCC, Partial Control Flow Lin-

earization, and WCCV fall short. Each work, including ALC, shares the

concept of inserting a BOSCC branch to bypass unnecessary instructions and

is well studied. However, the step before insertion, namely the identification

of profitable locations to insert BOSCCs, and the cost modelling to prevent

unprofitable insertions is underdeveloped in research. For transformations that

use BOSCCs to work well in an automatic compiler method, better static tech-

niques that can answer the question of when and where to place the BOSCCs

are required. WCCV [36] begins to touch on these ideas as they formulate a

way to automatically detect two types of conditions that are known to respond

well to BOSCC branches. Similar ideas could be applied for ALC to allow

the compiler to automatically perform the ALC transformations presented

in this thesis. In another line of thinking, the problem of deciding when and

where to apply the above transformations could be left up to the judgment

of the developer as they may have insight into the control-flow behavior and

have knowledge of the size of blocks in the target loop. In this case, ALC

could be applied manually by the programmer by using vector intrinsics. A

static analysis to find profitable opportunities could be used to only make the

developer aware of a possible opportunity to apply the transformation, leaving

the actual application up to the developer.

The ARM Scalable vector extension introduces radical changes in com-
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parison to the traditional fixed-length vector extension designs. ARM’s SVE

expansion of the capabilities of code generation techniques and a clean instruc-

tion set made it the primary candidate for the implementation of ALC and for

the case studies used to anticipate how ALC may affect performance. However,

the ALC permutation and loop transformations presented in this thesis are

applicable to any vector architecture provided the ISA is advanced enough to

enable the implementation of the ALC permutation. One other interesting

ISA, the RISC-V ”V”” extension has similar capabilities to that of SVE and

has the benefit of being open source. Future work could evaluate the ALC

permutations and loop transformations on other vector ISAs to uncover some

of the performance tradeoffs of using one ISA over another.

Infrastructure to support emerging vector ISAs like SVE and RISC-V

”V”” is currently lacking. Auto-vectorization for these ISAs in mainstream

compilers such as LLVM is still under development and will undergo many

changes in the near future. The lack of mature infrastructure is a big limitation

to experimentation with ALC, and to evaluation of ALC. The evaluation

presented in this thesis uses a functional simulator and collects as much

information about the experiment as possible. Such a functional simulation

does not capture all the factors affecting performance that are present in

a production processor. Future work could include a re-evaluation of the

techniques proposed in this thesis when more processors implementing either

SVE or RISC-V ”V”” become available. In addition, the limitation listed above

prevented the breadth of evaluation that would be desired. We present only

four case studies because of the time required to hand-write the assembly code

for each case study and the long simulation time. Future work could make

progress by evaluating ALC on a wider set of kernels and workloads to uncover

limitations or opportunities that were missed during this research.

One of the loop transformations presented in this thesis, unrolling ALC,

harnesses loop unrolling to expose candidate lanes for consolidation. In this

work, the unrolling factor is capped at two due to the complexity of implemen-

tation. The opportunity to use an unrolling factor greater than two, which

would allow consolidation from a larger set of lanes leading to the formation of
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a larger number of uniform vectors, is still to be investigated.

The ALC permutation and loop-transformations introduced in this thesis

involve re-organizing possibly contiguous lanes of vectors to increase control-flow

uniformity. In some cases, contiguous vector loads and stores may need to be

translated into gather and scatter memory accesses. Because gather and scatter

memory accesses are more expensive, due to the number of micro-operations

issued and the potential decrease in memory access locality, ALC may degrade

the performance of a vectorized loop. A study to characterize the potential

impact of the increased memory-divergence due to ALC would provide a clearer

answer to whether this is a problem for ALC. Such a study would be best

performed on a production processor to be able to measure wall-clock runtime

rather than emulation or simulation. One line of intuition regarding the results

of this kind of study says that most uniform vectors formed by ALC will

be formed within two-to-three iterations of the vectorized loop and thus, the

locations accessed by a gather-load or scatter-store will most commonly access

two cachelines. This increase will not prohibitively impact the performance

beyond the performance savings gained when using ALC compared to leaving

the vector memory accesses contiguous.
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Chapter 7

Conclusion

Divergent control flow is a source for inefficiency in vectorized loops. While prior

methods have proven useful to battle against inefficiencies there remains plenty

of room for improvement. The control flow divergence problem is exacerbated by

the industry trend to increase vector length that causes an uptick in the number

of divergent predicates encountered. This thesis contributes a significant effort

to counteract these effects. Prior methods with a similar goal that utilize

BOSCC instructions focused only on the case when vectors are uniform without

additional intervention, leaving the case when a divergent vector is encountered

unable to be optimized.

Chapter 3 presents a novel vector permutation, Active-Lane Consolidation,

that consolidates the active lanes between two divergent vectors to facilitate

the formation of a uniform vector. Traditional BOSCC branches are then

able to exploit this opportunity by bypassing the execution of unnecessary

predicated vector code leading to an increase in vector utilization. The chapter

describes an implementation of the ALC permutation on a modern vector ISA,

the ARM Scalable Vector Extension, and proposes two loop transformations

to illustrate the use of ALC: unrolling ALC and iterative ALC.

Chapter 4 presents case studies of the ALC transformations on a set of four

kernels found in a popular benchmark, SPEC 2017, and show that using ALC

in a loop transformation has significant potential to increase vector utilization

and decrease dynamic instruction count, in one case up to 30.9%. The chapter

highlights the current inefficiencies of IF-conversion, the pitfalls of BOSCC
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instructions and the effect of ALC as a means to combat these increasingly

frequent disturbances.
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