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Abstract

Modern Graphics Processing Units (GPUs) are providing breakthrough performance for nu-

merical computing at the cost of increased programming complexity. Current programming

models for GPUs require that the programmer manually manage the data transfer between

CPU and GPU. This thesis proposes a simpler programming model and introduces a new

compilation framework to enable Python applications containing numerical computations

to be executed on GPUs and multi-core CPUs.

The new programming model minimally extends Python to include type and parallel-loop

annotations. Our compiler framework then automatically identifies the data to be trans-

ferred between the main memory and the GPU for a particular class of affine array accesses.

The compiler also automatically performs loop transformations to improve performance on

GPUs.

For kernels with regular loop structure and simple memory access patterns, the GPU

code generated by the compiler achieves significant performance improvement over multi-

core CPU codes.
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Chapter 1

Introduction

In recent years, processor designers have hit a wall in increasing the performance of a single

processor core. Processors have adopted multicore designs fitting multiple cores on a single

die or a single package. Quad-core CPUs are already common on the desktop and hexa-core

processors are available for servers. Another new development in the hardware field has been

the emergence of programmable graphics processing units (GPUs). GPUs have evolved from

a fixed function pipeline to a highly programmable pipeline. Modern GPUs are a massively

parallel architecture containing hundreds of programmable ALUs that can be utilized for

tasks such as numerical computation. A programmable GPU which can be utilized for

non-graphic related tasks is termed a general-purpose GPU (GPGPU). GPGPUs are less

flexible than CPUs but offer much greater floating-point capability. GPGPUs offering up to

a teraflop of floating-point performance are already available. This performance is an order

of magnitude better than current x86 processors.

The performance gains offered by multicores and GPGPUs comes at the cost of increased

programmning effort. To utilize multicores, a programmer is required to write parallel code.

Many abstractions, such as threads and parallel loops, are available for writing parallel pro-

grams. For numerical programs, expressing parallelism through parallel for-loops (available

in APIs such as OpenMP) is a common choice for multicores as well as for symmetric mul-

tiprocessor architectures. Programming for GPGPUs requires the programmer to rewrite

much of her code to utilize a GPU specific API. GPGPUs usually have a completely separate

address space and therefore the programmer has to copy data from the system RAM to the

GPGPU address space.

On the software side, languages such as Matlab and Python are becoming more popular

for scientific computing. Python in particular is starting to attract a lot of attention in the

numerical-programming community. Python is a general-purpose object-oriented language

with very clean syntax. An extension library for Python, called NumPy, offers very flexible

multi-dimensional array abstractions and is particularly useful for scientific programming.

However, while Python offers great flexibility to the programmer, performance is usually
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much lower than equivalent C programs. Python also does not currently provide any simple

tools for parallel programming for numerical programs.

This thesis presents a compiler for Python that enables the programmer to easily utilize

multicore processors and GPUs for maximum performance. The programmer only needs

to add minimal annotation to the program and the compiler can automatically generate

multicore CPU and GPU code. The annotations are designed to be portable to systems

with or without a GPU.

1.1 Contributions

The thesis presents a compiler system that implements the following:

1. A simple type-annotation system and a simple parallel for loop API for Python. The

parallel for loop exposes a data-parallel shared-memory paradigm to the programmer.

2. A new array-access analysis algorithm that can automatically compute the memory

addresses to be transferred between the CPU and the GPU for a class of parallel loops.

The algorithm handles rectangular loop nests with loop-invariant bounds and with a

particular class of affine subscript expressions for array references.

3. A set of loop optimizations for the AMD Radeon 4800 series of GPUs.

The compiler is implemented as a three-part system:

1. An ahead-of-time compiler, unPython, that compiles a subset of annotated Python to

C++ and OpenMP.

2. A just-in-time compiler, jit4GPU, that generates optimized GPU code from a tree

representation of the Python program. Jit4GPU also computes the memory addresses

to be transferred between the CPU and the GPU as required by the computation.

3. A run-time system that supports jit4GPU by providing jit4GPU with a simple API

to manage program execution on the GPU as well as data transfer between the CPU

and GPU.

Experimental results, discussed in Chapter 7, show that using a GPU resulted in up to

100 times performance improvement over compiler-generated parallel C++ with OpenMP

programs.

1.2 Thesis Organization

Chapter 2 discusses the GPGPU architecture used in this thesis, codenamed the AMD

RV770. All experiments in this thesis were done using the GPU AMD Radeon 4870 based
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upon the RV770 architecture. A brief description of Python, NumPy and the new annota-

tions proposed is given in Chapter 3. Chapter 4 gives an overview of the compiler imple-

mentation. Chapter 5 describes the array-access analysis algorithm used by the compiler to

automatically copy relevant data between CPU and GPU. Loop optimizations performed by

the compiler for GPUs are described in Chapter 6. Performance of the compiler is evaluated

over several benchmarks in Chapter 7. Related work is examined in Chapter 8. Finally,

Chapter 9 concludes the thesis.
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Chapter 2

AMD RV770 architecture for
GPGPU

A modern GPU board consists of the core chip, on-board high-bandwidth RAM and various

connectors all put on a single board which is then inserted into interconnects such as the

PCIe. In this thesis, all experiments were done on AMD’s Radeon HD 4870 GPU, which

is one of the fastest GPUs available on the market at the time of writing. Radeon 4870 is

capable of delivering over a teraflop of performance for 32-bit and 240 gigaflops of perfor-

mance for 64-bit floating point. Therefore, the theoretical peak of Radeon 4870 is much

higher than top-of-the-line x86 CPUs from Intel and AMD.

The Radeon 4870 is based on a chip, codenamed the RV770, and pairs it with high-

bandwidth GDDR5 memory. RV770 is a massively parallel-processing core designed both for

graphics and more general-purpose computing tasks. RV770 powers various GPUs such as

Radeon 4850, Radeon 4870 and Radeon 4830. A power-optimized variant of RV770 powers

the Radeon 4890, which is currently the fastest single GPU solution from AMD. AMD

has also released smaller and cheaper chips, such as the RV730 and RV740, containing

less computational cores, but with designs similar to RV770 and with conceptually the

same architecture. Therefore understanding the RV770 is sufficient for understanding the

workings of most of the current GPU designs from AMD.

This chapter covers the RV770 architecture as well as the programming model exposed

by AMD for GPGPU tasks and code transformations tailored for the architecture. Under-

standing the architecture is necessary to produce high-performance code for the GPU. As

will be shown, the AMD GPU architecture is different from modern CPU architectures and

has very different strengths and weaknesses.

The following terminology will be used in the chapter:

1. fp32 : 32-bit floating-point

2. fp64 : 64-bit floating-point
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3. float : 32-bit floating-point

4. double : 64-bit floating-point

5. int : 32-bit signed integer

6. float2 : A 64-bit structure of 2 floats. If X is a float2, then it has two float components

which can be referenced as X.x and X.y. Numerical indexing is not allowed and .x and

.y is the only way to get to components.

7. float4 : A 128-bit structure of 4 floats. The 4 components are respectively x, y, z and

w. Numerical indexing is not allowed.

8. double2 : 128-bit structure of 2 doubles with components .x and .y.

2.1 Overview

RV770 is a massively parallel graphics and computing core. An overview of the chip is

provided in Figure 2.1. In the figure, the following blocks of RV770 are visible:

1. A setup engine and an ultrathreaded dispatcher that dynamically schedules thread

execution on the SIMD units.

2. Ten SIMD units. These form the execution cores of the chip.

3. Ten texture units, where each texture unit is aligned with an SIMD unit. Texture

units are equivalent to a load unit on a CPU. Each texture unit also has a dedicated

L1 texture cache.

4. Four 64-bit memory controllers (for a total 256-bit memory interface) that can be

combined with GDDR3 or GDDR5. Each memory controller has a dedicated L2

cache. The memory controllers are connected to the texture units through a crossbar

switch.

5. Various connectors such as PCIe and display controllers.

6. A UVD (Universal Video Decode) block for decoding video codecs.

From the GPGPU performance perspective, understanding the SIMD units and the

texture units is important for obtaining the best performance out of the chip. The SIMD

units and texture units are described next.
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Figure 2.1: RV770 Block Diagram. Source : AMD. Printed with permission.
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2.1.1 SIMD units

Each SIMD unit is composed of the following:

1. 16 thread processors (TP). Each TP is a VLIW unit that can execute one 5-wide Very

Long Instruction Word (VLIW) instructions each cycle. Each TP contains five ALUs.

AMD calls each ALU as stream processor (SP). Each SP can execute one fp32 or one

int32 multiply-and-add (MAD) operation per cycle. One of the five SPs in a TP is

a “fat” SP and only the fat SP can execute transcendental functions such as sin or

cos. Thus, the peak performance of a TP is ten fp32 FLOPs per cycle. For fp64, the

scenario is more complex. The four non-fat ALUs co-operate to execute a single fp64

MAD instruction each cycle and thus the fp64 peak of each TP is two FLOPs/cycle

or 1/5th of the fp32 peak. If the compiler is unable to pack 5 instructions into one

packet, then the peak is not achieved because each TP is a VLIW processor.

2. Each SIMD has a huge register file with 64×256 float4/int4 registers. The registers

are untyped with four 32-bit components. Each component of a register can either

store a floating-point value or an integer value. Two components of a register can be

combined to store a double-precision value. The register file is arranged in sixteen

blocks of four banks each. This gives a total of 64 banks and each bank can do one

float4 transfer per cycle. Thus the bandwidth to the register file is 1024 bytes/cycle.

The peak transfer rate from the register file is less than the peak demand of the ALUs.

This is explained by the fact that there exists a forwarding path where a TP can use

a result computed in a previous cycle.

3. A 16-Kbyte shared memory called the local data share (LDS). The LDS is arranged in

four banks, each with 256 128-bit entries. Each bank can do one 128-bit transfer per

cycle. Thus the LDS can transfer 64 bytes/cycle. Therefore, the bandwidth from the

LDS is much smaller than the bandwidth from the register file. The size and layout of

the register file suggests that it is very similar to one block of a register file but with

additional indexing hardware.

2.1.2 Texture units

Each texture unit can compute four addresses per cycle. Therefore, the ten texture units

can calculate a total of 40 addresses per cycle. Each texture unit has a dedicated L1 cache.

The size of the L1 cache has not been published by AMD. Each texture unit is aligned with

and services exactly one SIMD unit. Given that an SIMD can execute 800 ALU operations

or equivalently 1600 FLOPs per cycle, the asymmetry in the ALU:TEX ratio is apparent.

The texture unit provides many facilities, such as filtering, but those are typically not used

in compute workloads and are thus not discussed in this thesis.
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2.2 AMD CAL Programming model

Various APIs and programming languages are available to program the RV770 GPU for

GPGPU purposes. The AMD Compute Abstraction Layer (CAL) Application Programming

Interface [8] provides the ability to program the GPU using either the R700 family ISA[10] or

using the AMD Intermediate Language (IL) [9]. OpenCL support and DirectX-11 compute

shader 4.1 support are also expected in the future for the RV770. To program the GPU

using the CAL API, the programmer explicitly manages the GPU. For most efficiency,

the programmer must explicitly manage the GPU’s on-board memory and must explicitly

transfer data between the system RAM and the GPU on-board RAM. While the hardware

does provide some ability to directly access the system RAM without explicit transfers to the

GPU on-board RAM, the ability is very limited. Accessing the system memory directly over

the PCI-e bus is also highly inefficient due to the high latency and relatively low bandwidth.

This document discusses the AMD IL programming model since it corresponds closely

to the hardware. AMD IL is a RISC-like program representation derived from the Shader

Model 4.0 assembler. The AMD CAL API includes a JIT compiler to compile and run AMD

IL programs and also provides routines for managing the GPU memory, initialization and

shutdown of the GPU and querying the GPU for available resources. The CAL runtime and

the CAL compiler are distributed as part of the AMD graphic driver.

2.2.1 Memory management

In the CAL API, the memory on the GPU is allocated as two-dimensional resources. To

allocate a resource, the programmer specifies the height, width, format, memory type and

location of the resource. The width and height are both restricted to 8192 elements. The

format specifies the element type of the resource and can be of any of the numeric datatypes

up to 128-bit width. For example, float, float2, float4, int, int2, int4, double and double2

are all valid format specifiers. The location specifies whether the resource is located in the

GPU memory or in a driver-allocated portion of system RAM.

For GPU resources, another specifier is the memory type. AMD GPUs are capable of

storing resources in two different physical arrangements. The default arrangement is a tiled

arrangement where a block of 16×4 bytes is stored contiguously. The other option is to store

resources in linear memory that corresponds to row major order, similar to 2-dimensional

arrays in C. The two memory arrangements are illustrated in Figure 2.2.

2.2.2 Context management

A GPU can support one or more execution contexts. All execution on a GPU is done

through a context. Within a context, resources can be mapped to one or more predefined

names. A resource is mapped to a name that specifies how the resource can be used within

8



Figure 2.2: Memory arrangements
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a context. The predefined names are i0, i1, .. i7, o0, o1, .. , o7 and g. A resource mapped as

i0, i1,.. i7 can be used as a read-only resource in any kernel launched within the context. A

kernel mapped as o0, o1, .. o7 can be used as a write-only render backend within any kernel

launched in the context. A resource mapped as ’g’ can be used as the unique read-write

global buffer that can be read or written to by any thread in a kernel. Any resource can be

mapped to any of the names with the only constraint being that the resource mapped to g

must have been allocated in linear memory. A resource can be mapped to multiple names

but no guarantees are provided about coherence.

One severe limitation in the current AMD SDK is that the global buffer only supports

128-bit elements. For example, address computation is always done assuming that the

elements are float4/int4 etc. This means that write patterns that are not aligned to 128-bit

boundaries are very hard to support.

2.2.3 Software execution Model

The AMD IL allows two types of shader programs : pixel shaders and compute shaders.

The main difference between these programming modes is the way the threads are organized

and the memory elements the threads can access.

In pixel-shader mode, threads are organized in a two-dimensional grid and each thread

knows its two-dimensional thread id. Pixel shader programs can output to either the render

backends or to the global buffer. The write capability to a render backend is limited. A

thread with ID (x,y) can only output to index (x,y) in a render backend. The global buffer

is indexed through a one-dimensional index. Any thread can read from, or write to, any

index in the global buffer but no guarantees are provided about coherence if there is a data

race between different threads reading or writing from the same location. Any thread can

read from any index from the read-only resources i0 to i7. The end of a kernel is an implicit

synchronization point but no other communication or synchronization is provided between

threads. An illustration of the pixel-shader programming model is provided in Figure 2.3

In compute-shader mode, threads are arranged in one-dimensional thread groups and

thread groups are organized in a one-dimensional grid. Each thread knows its one-dimensional

absolute id as well as one-dimensional id within its group. A thread group can have a size

of up to 1024 threads. In compute-shader mode, a thread cannot write to render backends

and can only write to the global buffer. Threads within a thread group can communicate

through the LDS or through shared registers. To utilize the LDS, each thread declares

the size of memory that the thread owns in the LDS. Each thread can only write to the

piece of memory it owns in the LDS but can read from any index in the LDS. Compute

shaders also provide synchronization primitives used to synchronize within a thread group.

No communication or synchronization is possible between thread groups.

10



Figure 2.3: CAL programming model
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2.3 Hardware execution model

2.3.1 Pixel shaders

The programmer can specify millions of threads to be executed. However not all threads

are executed at the same time on the GPU. In pixel-shader mode, the hardware divides

the two-dimensional grid of threads into groups of 8×8 thread groups called wavefronts.

An SIMD runs one or more wavefronts in parallel. The wavefront sizes vary from GPU

to GPU: it is 64 on the RV770 but it is 32 on the RV730. A wavefront starts executing

on an SIMD and continues executing until it encounters a non-ALU instruction (such as a

texture related instruction). Then the wavefront is swapped out and replaced with another

wavefront while the original non-ALU wavefront is sent back to be scheduled on the unit

required to complete the instruction that it is waiting on. Thus the GPU uses the massive

parallelism to hide the latency of memory loads.

The number of wavefronts that can be run in parallel on an SIMD in pixel-shader mode

is decided by the availability of registers. If R denotes the number of registers required per

thread, W denotes the wavefront size (64 on RV770), N is the number of wavefronts running

in parallel and P is the number of physical registers in the register file, then N = P/(W ∗R).

The driver is responsible for partitioning the physical register file among all the running

wavefronts. When a wavefront is swapped out from an ALU to a texture unit, the registers

being used by the wavefront are still retained in the register file until the wavefront finishes

execution.

For RV770, the wavefront size of 64 is four times the number of thread processors per

SIMD. Thus each thread processor is running four threads in parallel and is likely to hide

the latency of ALU units. The register file is divided into banks of 64 and thus I speculate

that each thread in a wavefront reads and writes to exactly one bank.

2.3.2 Compute shaders

Compute shaders are similar to pixel shaders in most respects. To execute a compute shader,

64 continuous thread-ids in a thread are chosen as a wavefront. The maximum number of

wavefronts that can run in parallel in a compute shader is determined by the number of

registers used per thread as well as the amount of local data share owned by each thread.

Shared registers

The register file in a compute shader is used not only for the per-thread registers but

also for shared registers. Shared registers are registers shared amongst threads in a thread

group. However shared registers have the restriction that the register is actually only shared

between threads n, n+64, n+128.. and so on within a thread group. Thus thread 0 and

thread 1 within a thread group do not actually see the same register. Instead there are 64
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distinct and independent copies of a shared register. This is explained by the fact that a

shared register is actually shared by threads in the different wavefronts.

There are 64 threads in a wavefront and 64 banks in the register file. When a shared

register is declared, one entry in each of the 64 banks is reserved as the shared register thus

creating 64 independent copies that are not consistent with each other. Thread 0 and thread

1 can only read/write to different banks. For instance, thread 0 cannot see the copies of the

shared register seen by thread 1 because threads in the same wavefront cannot access the

same banks. Thread 0 and thread 64, thread 1 and thread 65 etc are in different wavefronts

but associated with the same bank in the register file and hence can read/write to the 0th

and 1st copy of the shared register respectively. Shared registers can be useful in reduction-

type kernels. Shared registers increase register pressure because shared registers reduce the

register availability in the register file.

Local Data Share

Apart from shared registers, the LDS can be used for data sharing within a thread group.

The size of LDS is declared in terms of the number of 128-bit values owned by each thread.

All the entries owned by a thread are stored in the same bank in continuous locations. The

banks are assigned to threads in a round-robin fashion. Thus, thread 0 is associated with

bank 0, thread 1 with bank 1, thread 2 with bank 2, thread 3 with bank 3, thread 4 with

bank 0 and so on. Each thread can read/write from any index in the LDS by specifying the

thread number that owns the data and the offset within the portion of memory owned by

the target thread. However, a thread may need to wait for many cycles before reading from

or writing to the LDS because the LDS has only 4 banks and each bank can only service

one 128-bit value per cycle.

For data sharing, shared registers access is as fast as non-shared registers but have

restricted sharing semantics. LDS has more flexible sharing semantics but the bandwidth

from the LDS is much lower than that of the register file.

2.4 Code generation for matrix multiplication

A matrix-multiplication example can be used to illustrate the effect of the ALU:TEX ratio

on the performance on a GPU performing general-purpose computations. If the code were

to do N loads and N FLOPs, then the ALUs would be idle 95% of the time. Any code that

needs to be executed on the RV770 should execute very few load instructions and lots of

arithmetic instructions. Ideally the code should contain 20 ALU operations for every TEX

instruction.

Two important observations can be made about the GPU. First, the ALUs can only

operate on data present in registers. To execute a load, the ALU invokes a sample instruction
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on the texture unit to bring the data first into a register. Second, the texture units run

in parallel to the ALUs. Therefore, to predict performance, the number of cycles required

to execute the texture instructions and the number of cycles required to execute ALU

instructions are calculated separately. The larger of the two values represents the bottleneck

in the computation.

Consider matrix multiplication of matrices of size N*N. the syntax used in the examples

is very similar to code accepted by the compiler library, calseum, that I wrote. This

syntax corresponds roughly to C-like code. First, consider a naive code. This code launches

N*N threads each computing one scalar value. Consider the following pseudo-C code that

represents the code being executed by one thread.

float[] i0;
float[] i1;
float o0;
float sum = 0.0;
for(int i=0;i<N;i++) sum += i0[threadId.x][i]*i1[i][threadId.y];
o0 = sum;

The code is performing 2N loads and N ALU operations. A multiply-and-add (MAD)

instruction is counted as a single ALU operation but 2 FLOPs. To understand the perfor-

mance, we need to consider the time required to execute the loop by the texture units, the

time required by the ALUs and then take the maximum of these times. In other words, the

slowest step determines the execution step.

The total number of loads is 2*N*N*N because there are N*N threads and 2N load

instructions per thread. Let the number of cycles required by the texture units be denoted

by ctex and the number of cycles required by ALUs be calu. The texture units can execute

40 instructions per cycle. Therefore, ctex can be calculated as:

ctex = 2 ∗N ∗N ∗N/(40).

The ALUs can do 800 operations per cycle and therefore calu can be calculated as:

calu = N ∗N ∗N/(800)

This performance estimation assumes perfect packing into VLIW instructions and no

other overhead on the ALUs. Therefore, the texture units take 40 times longer than the

ALUs and are the limiting factor in the above code. Assuming a 750MHz clock rate, the

theoretical peak of the code above is limited to 30Gflops due to the texture unit bottleneck.

We absolutely have to get rid of the bottleneck to reach anywhere near the 1200 Gflops

promised by the hardware.

Let’s take a look at ways to optimize the above code. First, try unrolling the loop:

float[] i0;
float[] i1;
float o0;

14



float sum = 0.0;
for(int i=0;i<N;i+=4){
sum += i0[threadId.x][i]*i1[i][threadId.y];
sum += i0[threadId.x][i+1]*i1[i+1][threadId.y];
sum += i0[threadId.x][i+2]*i1[i+2][threadId.y];
sum += i0[threadId.x][i+3]*i1[i+3][threadId.y];
}
o0 = sum;

The loop has been unrolled but it still contains exactly the same ALU:TEX ratio of

0.5 (as opposed to ideal case of 20) and the texture units remain the bottleneck. However,

we can take advantage of the fact that the GPU can deal with float4. We can reduce the

address calculations in the case of float4 by a factor of 4. Assuming that i0 contains float4

values, the following transformation is possible:

float4[] i0;
float[] i1;
float o0;
float sum = 0.0;
for(int i=0;i<N;i+=4){
float4 temp = i0[threadId.x][i/4];
sum += temp.x*i1[i][threadId.y];
sum += temp.y*i1[i+1][threadId.y];
sum += temp.z*i1[i+2][threadId.y];
sum += temp.w*i1[i+3][threadId.y];
}
o0 = sum;

Now the GPU is performing four MADs and five loads in every loop iteration giving

a slightly better ALU:TEX ratio of 0.8 (as opposed to ideal of 20) resulting in a peak

performance of of 1200*0.8/20 = 48 GFLOPs but still limited by texture units. To increase

efficiency, we need to increase the amount of work done per thread. By taking advantage of

data locality we can reduce the number of load instructions by bringing data into registers

and reusing it as many times as possible. The code above only brings data into registers

once, does one ALU operation on the data and then discards it. Instead of computing just

a single scalar value per thread, we should be calculating a tile of floats.

Lets first consider the case of a 1×4 tile such that each thread is writing a float4 instead of

a single float. Assume that i0, i1 and o0 contain float4 values. Then the code is transformed

into the following loop (omitting the output lines):

float4[] i0;
float4[] i1;
float4[] g;
float4 sum = {0.0, 0.0, 0.0, 0.0 };
for(int i=0;i<N;i+=4){
float4 temp = i0[threadId.x][i];
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float4 temp1 = i1[i][threadId.y/4];
float4 temp2 = i1[i+1][threadId.y/4];
float4 temp1 = i1[i+2][threadId.y/4];
float4 temp1 = i1[i+3][threadId.y/4];
sum.x += temp.x*temp1.x;
sum.x += temp.y*temp2.x;
sum.x += temp.z*temp3.x;
sum.x += temp.w*temp4.x;
sum.y += temp.x*temp1.y;
sum.y += temp.y*temp2.y;
sum.y += temp.z*temp3.y;
sum.y += temp.w*temp4.y;
sum.z += temp.x*temp1.z;
sum.z += temp.y*temp2.z;
sum.z += temp.z*temp3.z;
sum.z += temp.w*temp4.z;
sum.w += temp.x*temp1.w;
sum.w += temp.y*temp2.w;
sum.w += temp.z*temp3.w;
sum.w += temp.w*temp4.w;
}

The code above contains sixteen ALU operations and five load instructions resulting in

a ALU:TEX ratio of 3.2. This yields a peak theoretical performance of 172 Gflops for the

Radeon 4870. We can further increase the tile size to further increase the ALU:TEX ratio.

The tile size is restricted by the number of registers available per thread. To hide memory

latency, let’s assume we run 8 wavefronts per SIMD giving 5120 threads on the chip. Then

we get 32 registers available per thread, each of size 128 bits. 32 registers allows for a tile

of up to 5×8 giving a ALU:TEX ratio of 12 with a predicted performance of 720 GFLOPs.

If the memory access latency is not completely hidden, then the actual performance will be

less than the predicted value.

From the matrix multiplication example, it can be concluded that increasing the ratio of

ALU instructions to texture instructions is essential for achieving maximum performance on

the GPU. Loop transformations such as unrolling and tiling and the use of packed 128-bit

datatypes wherever possible can substantially reduce the number of texture instructions

executed.

2.5 On-chip bandwidth bottlenecks

A simple way to understand the ALU:TEX bottleneck is to understand the on-chip band-

width available compared to the bandwidth available on a modern CPU. Lets compare the

bandwidth from the L1 cache and the bandwidth from the register file on the Radeon 4870

to an AMD Phenom II X4 940 CPU. Phenom II X4 940 is a relatively high end x86 3.0 GHz

quad-core. We compare the bandwidths available to the x4 940 to the bandwidths available
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Table 2.1: Comparision of bandwidth available to Radeon 4870 and Phenom II X4 940
Property Radeon 4870 Phenom x4 940 GPU/CPU ratio
Register file bandwidth 7680 GB/s 768 GB/s 10
L1 cache bandwidth 480 GB/s 384 GB/s 1.25
RAM bandwidth 115.2 17 GB/s 6.77

to the Radeon 4870, which runs at 750MHz, coupled with the 900MHz GDDR5. One core

of X4 940 can do one SSE ADD and one SSE MUL each cycle. Thus it must be capable

of reading 16 floats or 64 bytes from the SSE register file each cycle. Each core the x4 940

can also load 32 bytes each cycle from the L1 data cache. The bandwidth estimates for the

Radeon 4870 and Phenom II 940 are provided in Table 2.1.

The GPU has almost the same bandwidth from the texture unit as the bandwidth to a

CPU from the L1 data cache. In situations where the cache bandwidth is the limitation,

the GPU simply cannot reach anywhere near the theoretical ALU peak. Therefore the

programmer has to spend a considerable amount of effort on loading as much data as

possible into registers. Further, while the GPU cache sizes have not been published by

AMD, the cache sizes on GPUs have traditionally been much smaller than the cache sizes

on a CPU. Taking into account the number of threads that are utilizing the cache at the

same time, the cache is of very limited use on the GPU when compared to a CPU. The GPU

relies almost entirely upon its large register file and multi-threading to hide load latencies.

2.6 Final Remarks

This chapter described the architecture of a typical contemporary GPU, the AMD RV770.

Then it analysed the issues involved with the generation of efficient code for such a GPU.

As this analysis showed, the compiler must take into account the memory hierarchy of the

GPU and must properly utilize the register file to efficiently feed the ALU.
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Chapter 3

Python and the proposed
programming model

The objective of this thesis is to provide a high-productivity programming model to the

scientific programmer which is portable to both GPUs and multi-core CPUs. Increasingly,

scientific programmers are choosing high-level programming languages such as Matlab and

Python over languages such as C and Fortran. For parallel programming, shared-memory

paradigms, such as OpenMP, are popular with C/C++ programmers.

This thesis provides the programmer with a programming model based on a combination

of Python and the concept of parallel loops inspired by OpenMP parallel loops. The choice

of Python was based on multiple reasons.

1. Unlike special-purpose languages such as Matlab, Python is a fully featured general-

purpose programming language well known for its simplicity and productivity. NumPy

is a multi-dimensional array library for Python providing a very flexible array abstrac-

tion with concise notations for operations such as slicing. Python in combination with

NumPy is well suited for rapidly developing full applications in a wide variety of

domains.

2. Python and NumPy are both open source and therefore it was much easier to under-

stand the inner workings of Python and NumPy.

3. Python, in combination with NumPy, is becoming popular in the scientific and numeric

computation community because of simplicity and productivity. A library collection

aimed at scientific computation for Python, called SciPy, and built upon NumPy is

also available. SciPy includes libraries for tasks such as function optimization. An

active community is forming around NumPy and SciPy. Various mailing lists, wikis

and project listings can be found at the scipy.org website.

This chapter introduces the relevant features of Python and NumPy followed by the

proposed extensions to Python and NumPy.
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3.1 Python

Python is a high-level, dynamically typed, object-oriented programming language. Python

has syntactic support for high-level data structures such as growable vectors (called lists

in Python), hashtables (called dictionaries) and tuples. Python also supports operator

overloading, decorators, first-class functions and metaclasses.

1 def f (n ) :
2 sum = 0
3 for i in range (n ) :
4 sum += i
5 #This i s a comment
6 return i

Figure 3.1: Simple example of a Python function.

Python functions are defined using the keyword def and support default and keyword

arguments. If a function does not contain a return statement, then the function implicitly

returns a built-in value called None. Figure 3.1 shows a simple example of a Python program

containing a function definition and a for loop. Python’s for loop is more general than the

for loop found in languages such as C and is based on the concept of iterators. Python’s

for loops are written using the notation for x in y where the expression y must evaluate

to an iterable object such as a list. One common expression used for iteration is Python’s

built-in range function. The invocation range(n) returns a list of values from 0 to n-1. The

function range requires three arguments: the starting value, the stop value and the step.

The starting value defaults to zero and the step defaults to one. In the code of Figure 3.1

the expression range(n) returns a list and the resulting list is then iterated over. Any

object that supports the iterator protocol can be iterated over. Built-in types such as lists,

dictionaries and tuples can all be iterated over elegantly using for loops.

Python also supports generators to enable a lazier iteration style. For example, the

function xrange can be used instead of range. Function xrange does not return a list but

rather it returns a generator. The elements produced by this generator can be iterated, one

at a time, without holding the entire list in memory. This form of iteration is advantageous

because it reduces memory consumption. In numerical applications, loops of form for x

in range(x,y,z) and for x in xrange(x,y,z) are often used to implement the C-style

for loops with fixed integer bounds.
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3.2 NumPy

Python has no native-language support for arrays. NumPy is an extension module that

defines a fast multi-dimensional array class. NumPy is implemented in C and uses Python’s

support for operator overloading to provide flexible indexing. Indexing in NumPy arrays is

zero based and subscripting is bound checked.

NumPy arrays are much more general abstractions than arrays in languages such as C.

Before going into a detailed description of NumPy arrays, I first examine some properties

of C arrays and pointers.

C arrays differ from C pointers in that C arrays are actually allocated regions of memory

while pointers are just views into already allocated data. If a C array goes out of scope,

then the memory region allocated for the array is also destroyed. If a pointer goes out of

scope, memory being pointed to by it is not automatically freed. Therefore, C arrays can

be thought of as owning the data while pointers do not own the data they point to.

NumPy arrays are a general abstraction that encompasses both C array types and C

pointers. NumPy arrays contain a field called data that points to the raw data buffer holding

the data. NumPy arrays also have a flag bit that indicates whether or not the NumPy array

owns the data. If a NumPy array owns the data, then the raw data buffer is freed when the

array destructor is called. If the NumPy array does not own the data, then the data buffer

is not freed when the array destructor is called. Therefore, NumPy arrays can either act as

true owners of data or as views (or pointers) into data owned by some other object.

NumPy arrays can be indexed with integers just like C arrays or pointers but the address

arithmetic is much more general than C pointers. Consider a snippet of C source code in

Figure 3.2. The expression p[i][j][k] refers to the address p + s1 ∗ i + s2 ∗ j + s3 ∗ k where

s1 = m ∗ n, s2 = n and s3 = 1. The values s1, s2 and s3 can be thought of as strides in

3 dimensions representing the number of memory locations moved when the corresponding

subscript is incremented by unity. Due to the pointer declaration syntax and semantics of

C, the last stride (in this case s3) is always constrained to be 1. The strides are also always

positive in C and follow a very regular ordering. For example, si is always greater than si+1

in C.

1 int i , j , k ;
2 .
3 .
4 .
5 char (∗p ) [m] [ n ] = some funct ion ( ) ;
6 char c = p [ i ] [ j ] [ k ] ;

Figure 3.2: C pointer example
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Unlike C, NumPy does not impose any order upon the strides used in index computa-

tions. NumPy disassociates strides from the dimensions of the array and allows the pro-

grammer to specify arbitrary integer strides for memory address computation. Each NumPy

array has a field called strides. The field strides for an n-dimensional NumPy array is

an array of n integers representing the stride in each dimension. A stride in dimension d

defines the number of bytes in memory that must be jumped when the index in dimension

d is incremented by 1. If arr is a NumPy array with n dimensions, and (i0, i1, ..., in−1) is an

index into the array, then the actual memory address M referenced is computed as follows:

M = arr.data+
n−1∑
j=0

a.strides[j] ∗ ij (3.1)

The programmer specifies the strides of an array. A stride is an arbitrary integer in-

cluding zero. The generalized strides enable a NumPy array to emulate C-style row-major

array indexing, Fortran-style column-major indexing and many types of non-contiguous data

layouts depending upon the programmer-specified strides.

Apart from the generalized stride-based indexing, the second key feature of NumPy is

the support for multiple views into the same underlying data. NumPy provides many ways

to create such views, the most common of which is the slicing operator. Slicing for arrays

is defined as follows. Let ar be an one-dimensional array. Let br = ar[start : stop : step] be

a slice of the array ar. Then element br[i] is the same element as ar[i ∗ step + start]. The

length of the array br is given by b(stop − start)/stepc. Slices are views into the original

array and no data copying occurs when creating a slice. Multi-dimensional arrays can be

sliced independently in each direction.

Figure 3.3 shows some examples of array creation and slicing. Line 1 imports the NumPy

library. Line 2 allocates an array arr of doubles of size 100×300 initialized to zero. The

strides of this array emulate a row-major storage order. Line 3 creates a slice of arr. The

notation 5:97:3 states that the slice starts at 5, stops at 97 (excluding 97 itself), and has

a step size of 3. Line 4 writes the constant 1.0 in the fifth row, third column of arr. Line

5 prints 1.0 because the element [0,0] of the slice v1 corresponds to the element [5,3] of

the array arr. Line 7 prints 2.0, the constant assigned to the array via slice v1 in line 6.

Each NumPy array has a field called strides that is a tuple storing the strides of the array in

each dimension in bytes. Lines 8 and 9 print (2400,8) and (7200,16), respectively, assuming

that each element is 8 bytes. Line 10 creates a new view, v2, of arr where the axes are

swapped. Thus, line 11 prints (8,2400). In line 12, a new one dimensional view v3 of arr

is created. Line 12 prints 1.0 because element 300*5+3 of v3 is the same as element [5,3]

of arr. Line 13 creates a view v4 of v3 using the slice [3:100*300:5] which starts at the

element 3 and has stride of 5 elements or 40 bytes. Line 14 prints 1.0 because element 300

of v4 is the same as element 5*300+3 of v3 or, equivalently, element [5,3] of arr.

21



1 import numpy
2 ar r = numpy . z e ro s ( ( 100 , 300 ) )
3 v1 = arr [ 5 : 9 7 : 3 , 3 : 3 0 0 : 2 ]
4 a r r [ 5 , 3 ] = 1 .0
5 print v1 [ 0 , 0 ]
6 v1 [ 1 , 2 ] = 2 .0
7 print ar r [ 8 , 7 ]
8 print ar r . s t r i d e s
9 print v1 . s t r i d e s

10 v2 = arr . swapaxes (0 , 1 )
11 print v2 . s t r i d e s
12 v3 = arr . reshape (100∗300)
13 print v3 [300∗5+3]
14 v4 = v3 [ 3 : 1 0 0 ∗ 3 0 0 : 5 ]
15 print v4 [ 3 0 0 ]

Figure 3.3: Examples of array slicing in Python.

The strides field can be changed directly without going through slicing or method calls

such as reshape. The strides of a NumPy array can also be changed through the NumPy C

API.

3.3 Python-C API

Python combines the development flexibility of a dynamically-typed language with an API

for efficient C implementation of performance critical portions — functions and classes —

of an application. This Python-C API provides many utility functions for passing data

back and forth between C and Python. Python exposes all Python objects as a PyObject

datatype in C. The API provides various convenience functions and macros to convert

between PyObject and C native types such as int, long and structures. Various other C

datatypes are also provided for Python types such as list and tuple. However, the base type

of all these types is PyObject. NumPy’s C-API exposes NumPy arrays as PyArrayObject

datatype in C and allows direct manipulation of all fields of the NumPy object.

For implementing functions, the Python-C API requires that any function that is to be

used as a Python function must have a predefined type signature and must pass and return

pointers to PyObjects because the Python interpreter only knows about PyObjects.

Python modules implemented in C utilizing the Python-C API are called Python exten-

sion modules. To write an extension module foo in C, a programmer first writes the code

for the functions to be implemented in C in one or more C files. The programmer then

writes a special module initialization function, which must be named initfoo if the desired

module name is foo. The C code is then compiled into a single dynamically loadable library

(DLL on windows or shared object files on linux) called foo.so on Linux or foo.dll on
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Windows. The module initialization function passes a symbol table mapping C strings to

C pointers to functions or variables of suitable type to be exported to Python. When the

Python interpreter encounters an import foo statement, it first looks for a file called foo.so.

If foo.so is found, then the interpreter looks for the function initfoo to initialize the module.

If the initfoo function is not found, then Python throws an exception. If the file foo.so is

not found, then Python looks for a Python source file called foo.py.

For details, see Python’s official C-API documentation[6].

3.4 Programmer’s workflow

The typical development of applications containing performance-critical, numerical-intensive,

sections of code in Python consists of writing a prototype in Python, profiling the code to

identify performance-critical sections, and then re-writing these sections in a compiled lan-

guage such as C or C++. The programmer also writes glue code in C/C++ using the

Python-C API. Figure 3.4(a) presents a block diagram that illustrates this state-of-the-

art development process and emphasizes the code that has to be written by a developer.

Rewriting the code in C/C++ is a tedious and error-prone process that reduces developer’s

productivity and results in a code base that is less maintainable. If a GPU version of the

code is also required, then the amount of code to be written by the programmer, and the

complexity of the code base, is further increased.

This thesis presents an alternative for the development of such applications in Python,

as illustrated in Figure 3.4(b). It introduces a new compiler system for automatic generation

of C++ code for the performance-critical Python sections. The programmer is not required

to rewrite the code in C++. Instead, the programmer annotates the Python code with type

declarations and parallel loop annotations.

The compiler framework that supports this new programming model is described in

detail in chapter 4. The compiler automatically generates the C++ code as well as the

required glue code for the annotated code. The programmer then invokes a standard C++

compiler to compile the code into a DLL. This DLL is a drop-in replacement for the original

Python module. To generate code for multi-core CPUs, the programmer only needs to add

parallel-loop annotations, where possible, to the code before compilation. To take advantage

of GPU acceleration, the programmer simply annotates certain parallel loops to be executed

on the GPU and the compiler handles everything else.

The implemented compiler can only deal with a subset of Python and requires type

annotation. However, since only a small portion of the application needs to be compiled to

C++, only a small portion of the Python code needs to conform to these restrictions. The

rest of the application, which does not need to be compiled, remains as is and requires no

changes.
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Figure 3.4: Comparison between state of the art for generation of numerical-intensive ap-
plications for execution in CPU/GPU and the proposed programming model.

Furthermore, we designed the annotations in such a way that they are still compliant

with the Python grammar and are transparent to the Python interpreter. Thus if the

programmer does not wish to compile the module to C++ during development to avoid the

build and link steps, the annotated Python will run on the interpreter.

3.5 Proposed extensions to Python

For efficient and simple compilation, several extensions to Python were introduced in the

form of various annotations. The key idea behind the syntax of the annotations is that

no new keywords should be introduced and the grammar of the language should not be

altered. The language should remain compatible with the standard Python interpreter and

any annotations introduced should be essentially transparent to the interpreter. However,

when the unPython compiler encounters the annotations, it treats them as special compiler

directives and accordingly generates the appropriate C code.

Thus, even if the code is not compiled, the code can run on any standard Python

interpreter. The ability to run on the standard Python interpreter has the benefit of faster

development and debugging cycles for the programmer by avoiding the compilation step until

the code is fully debugged. The interpreter compatibility also ensures easier debugging of

the compiler because a mismatch between the compiled and the interpreted versions of the

code usually indicates a bug in the compiler.
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3.5.1 Type annotations

Type declarations enable the compiler to generate efficient C code. Python is a dynamically

typed language and has no type declaration syntax. For this purpose, an extension was

introduced to Python to declare the type signature of a function.

In this extension, the programmer creates a special decorator to annotate each function

to be compiled. This decorator declares the types of the function’s parameters and of its

return value. Decorators are annotations added just before a function definition and are

a standard Python syntax feature. Optionally, the types of local variables may also be

declared in a similar fashion. If no such declarations are provided, the compiler infers the

types of a local variable based on the type of the first value assigned to the variable in the

function. In this framework, a variable cannot change its type within a function.

Figure 3.5 shows an example of type-declaration syntax. The decorator unpython.type

is added to the function declaration. Types are passed to the decorator as arguments. If

the function takes x number of parameters, then x+ 1 types are required. The first x types

are for the parameters and the last type specified is for the return type of the function. In

the example, the first type is for the parameter n and the second type is for the return type.

The types of sum and i are automatically inferred by the compiler to be int64 which is the

default integer type. These types can be forced to be int32 by adding type declarations for

the local variables.

1 @unpython . type ( ’ in t64 ’ , ’ i n t64 ’ )
2 def f (n ) :
3 sum = 0
4 for i in range (n ) :
5 sum += i
6 return sum

Figure 3.5: Example of decorator used as a type declarator.

3.5.2 Parallel annotations

The Python interpreter does not provide any support for parallel programming. One way

to take advantage of multiple processor cores is to utilize process-based parallelism where

multiple instances of the Python interpreter may be launched. Process-based parallelism is

not suitable for all types of problems and is not considered in this thesis. The only way

to take advantage of multiple processor cores within a single Python process is to write

a multithreaded function in C using an API such as pthreads or OpenMP. However, the

current Python interpreter is not multithreaded and calling Python-C API functions from

two different C threads is unsafe. Therefore, the programmer must be careful about calling
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Python-C API functions from multithreaded functions.

I introduce an extension to mark certain for loops as parallel to provide a shared-

memory data-parallel model similar to (but less general than) the OpenMP parallel for loop

directives. To avoid the complexity of specifying parallel semantics for arbitrary iterators,

only a parallel version of xrange iterator is defined. A special iterator, prange, is introduced

that is used to specify that a loop is parallel. The iterator prange is only a hint to the

compiler that the programmer intends to execute the loop in parallel but the compiler is

not obligated to compile the loop to a parallel C++ loop. To the Python interpreter, prange

is identical to xrange. However, unPython treats the annotations as a special parallel-loop

annotation. A for loop over the parallel iterator prange has the following properties:

1. Let the program point immediately before the loop be P. Then the program execution

is serial before P.

2. Let the program point immediately after the loop be Q. Then the program may spawn

multiple threads between P and Q. The point Q is an implicit join-point. Program

execution does not continue until all threads spawned reach Q. After Q, serial execution

of the program continues.

3. Each iteration of the loop is independent and may be executed in any order.

4. Parallel loops may be nested but, in this model, a join point only exists at the ending

of the outermost parallel loop.

5. Parallel loops are a compiler directive and the compiler is not obligated to parallelize

the loop.

6. If there is a data-race between any two iterations, then the output of the program is

undefined.

7. The body of the loop may only access variables of basic numeric types (float32, float64,

int32 and int64) or NumPy arrays of basic numeric types. If any other object type is

referenced in the loop, then the loop is not parallelized by the compiler to avoid the

possibility of calling Python-C API functions from two different C threads.

8. All variables defined outside the loop are treated as shared variables among threads.

However, a programmer can define some variables as private by passing the keyword

argument private with the value equal to a tuple containing a list of variable names

as strings.

9. All variables local to the loop are treated as private.
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UnPython generates OpenMP code for parallel loops that will be executed in multi-core

CPUs.

A variant of prange called gpurange is also introduced. This parallel loop type is meant

for acceleration by the GPU. The compiler is responsible for generating GPU code as well as

for managing data transfers between CPU and GPU automatically. However, the compiler

is not obligated to utilize this directive and may not generate GPU code. Further, if the

target machine does not have a suitable GPU or if GPU code generation is disabled through

compiler command line options, then the compiler does not generate any GPU code. Thus,

the same code can easily be ported to multiple platforms.

3.5.3 Constraints on Python code to be compiled

To efficiently compile Python, unPython only accepts a subset of Python that is critical for

the performance of numerical applications. Currently, unPython does not support features

such as runtime code execution, higher order functions, generators, metaclasses and special

methods such as setitem. UnPython supports 32- and 64-bit integers and 32- and 64-bit

floating point numbers, but it does not support arbitrary-precision arithmetics. Ensuring

no overflows is the responsibility of the programmer. These restrictions only apply to the

compiled code. All features are available for the non-compiled portion of the application

code that is executed by the Python interpreter.

3.6 Conclusion

This chapter provided a brief overview of the syntax and semantics of Python, NumPy

and the proposed extensions. These extensions were carefully designed to ensure that the

parallel-annotated code written for execution on a GPU can also be run by an unmodified

Python interpreter. The flexibility of NumPy arrays combined with the proposed paral-

lel loop extensions provides the programmer with very productive tools to write parallel

numerical programs.
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Chapter 4

Compiler implementation

The compiler system presented in this thesis is a hybrid combination of two different compil-

ers: unPython, an ahead-of-time compiler and jit4GPU, a just-in-time compiler. Generating

CPU code is solely the responsibility of unPython. For GPU code generation, several anal-

yses need to be performed that cannot be done completely ahead of time. Therefore, code

generation for GPU is primarily done by jit4GPU assisted by information supplied by un-

Python. To understand the working of the entire system, it is simpler to consider the code

generation process for CPUs and GPUs separately.

4.1 CPU code generation

Consider a Python program to be compiled for a multi-core CPU target. The programmer

invokes unPython passing the Python filename to unPython. A block diagram of unPython

is given in Figure 4.1. UnPython reads the Python source code and generates C++ and

OpenMP code for execution of the program on the CPU. UnPython is a simple translator

and therefore it only performs a few transformations.

The front-end of unPython is simply a Python script that parses Python code using the

standard Python interpreter’s parsing interface. The parser returns an abstract syntax tree

(AST) and the AST is dumped into a file by the front-end script. The AST is then read

back into the middle end of unPython. After parsing, unPython performs type-checking

which includes type inference for local variables. The initially untyped AST is converted

into a typed AST by the type-checking phase. The typed AST is then lowered into a simpler

typed AST. Lowering the AST involves breaking down complex expressions and statements

into simpler expressions and statements that are closer to the desired C++ code. After

lowering, unPython performs liveness analysis using an iterative dataflow algorithm. The

liveness analysis algorithm is currently very restricted and only works on functions that only

manipulate numeric scalar types and numeric NumPy arrays. If a function involves objects

of other types, the liveness analysis is not performed. Results of the liveness analysis are used
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Parser

Type Checker

Tree Lowerer

Liveness Analysis

Code generator

Python source code

C++ with OpenMP

Figure 4.1: Block diagram of unPython for CPU code generation

by the compiler to determine which scalar variables referred to within a parallel loop can

be declared as private when generating OpenMP code. After liveness analysis is complete,

the compiler simply traverses the typed AST to generate the final C++ and OpenMP code.

To generate code, the compiler generates the function and method bodies required. All

boiler-plate code required (such as wrapper functions for Python-C API) is generated with

the help of a text-templating system. UnPython is implemented in a combination of Java

and Scala languages. Scala is a statically-typed object-oriented language with many features

derived from functional programming languages and it runs on the JVM. FreeMarker text

templating library for Java is used for generating boiler-plate code.

4.2 GPU code generation

For GPU code generation, simple translation is not sufficient. The objective is to map

a shared-memory parallel-loop programming model to a heterogeneous system with two

distinct address spaces. Therefore, the compiler needs to not only generate GPU code, but

also perform analysis to determine which data must be transferred between the two distinct

address spaces. The compiler needs to know the memory access patterns of all the array

references inside the loop to analyze the data to be transferred to the GPU. The memory
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access pattern analysis and GPU code generation is done by a JIT compiler jit4GPU and

unPython only plays a supporting role in GPU code generation.

4.2.1 Motivation for the JIT compiler

One of the original goals in the project to compile Python was to extend unPython to

generate GPU code. However, after some effort, it became clear that unPython does not

have sufficient information to perform the analysis required for GPU code generation. For

example, the compiler does not know the data layout and the aliasing of NumPy arrays

that are parameters to a function being compiled. NumPy arrays are generally views of

an underlying data array and are more like pointers than true arrays from the perspective

of compiler analysis. The memory layout of a NumPy array is determined by the strides

of the NumPy array and these strides are dynamic quantities unknown to unPython. Two

apparently distinct NumPy arrays passed into a function may be two different views of

the same piece of memory. A somewhat similar problem arises in C functions that have

pointer parameters. Typically C compilers perform a global analysis and can customize the

function differently for different calling contexts. However, such an analysis is not applicable

for unPython. UnPython is not a whole-program compiler and therefore cannot do global

analysis, such as finding the calling context of all functions.

The objective of unPython is to compile Python libraries that can be used by various

applications. The idea is that unPython will only see a small portion of the application

because only a small portion of the application is performance critical. Python program-

mers cannot be expected to impose the typing restrictions required by unPython on their

entire program. Even if a whole-program compiler were implemented for Python, Python

applications often contain bindings to C libraries and those libraries are opaque to a Python

compiler unless it is also interfaced with a full C compiler. The complexity of such a sys-

tem can be prohibitive to implement. Thus, effectively, unPython cannot do any global

analysis. In absence of a global analysis, one other possible solution for generating code

from unPython was to generate different versions of the loop for different cases of layouts

of NumPy arrays accessed within a loop. But NumPy arrays are very general structures

and the number of possible loop versions can become intractable as the number of NumPy

arrays increases.

A simpler solution to the problem of performing analysis for GPU code generation is to

compile a parallel loop to GPU code just before the loop is to be executed. At this stage,

jit4GPU can query all the NumPy arrays to determine their data layouts and also knows

the value of loop-invariant numeric constants. For example, loop bounds may appear to

be unknown symbolic constants to unPython but those constants are known to jit4gpu.

Jit4GPU operates on a typed AST of the loop to be compiled and performs several analysis
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and optimizations detailed later in Chapters 5 and 6.

The JIT compiler is actually not visible to the programmer. As far as the programmer

is concerned, an additional library (the JIT compiler) is linked into the application but the

programmer is not concerned with the function or inner workings of the JIT compiler. The

JIT compiler also makes no difference to codes that do not target GPUs.

4.2.2 GPU code generation

Now consider the full process of generating GPU code. When unPython encounters a loop

that is marked by the programmer to be compiled for execution on the GPU, it outputs two

versions of code for that loop. First, unPython outputs a typed AST representation of the

parallel loop to be used by jit4GPU for analysis and code generation. The representation is

printed out in a Lisp-like S-expression format read by jit4GPU along with a symbol table

and a table of array references inside the loop. However, jit4GPU is not guaranteed to

produce GPU code and can return failure if any of the analysis phases fails. Therefore,

unPython also generates a C++ and OpenMP codepath for the parallel loop which is used

as a fallback in case jit4GPU fails to generate GPU code.

Jit4GPU is implemented as a multi-phase compiler operating on typed ASTs. An

overview of jit4GPU is provided in Figure 4.2. In the first phase, jit4GPU performs an

array-access analysis detailed in chapter 5 to determine the data to be transferred to the

GPU. The array access-analysis phase produces two outputs: a data structure represent-

ing the data transfers to be performed and a tree of code to be executed on the GPU. If

jit4GPU fails to perform the access analysis, then it returns failure. In the next phase,

jit4GPU optimizes the typed AST using loop optimizations detailed in chapter 6. The loop

optimization phases optimize the AST and can also alter the data layout chosen on the

GPU and can therefore also change the parameters for data transfer. In the next phase,

jit4GPU generates AMD IL assembly from the AST and passes this assembly code to the

compiler that converts AD IL code to GPU binaries. The AMD IL to binary compiler

performs extensive low-level code transformations, such as physical register allocation, on

the GPU and instruction scheduling on various units of the GPU. The exact optimizations

performed by the AMD compiler are not published by AMD but I have observed, looking at

the disassembler output, that the AMD CAL compiler performs code transformations. In

the final phase, jit4GPU issues a call to a supporting runtime library to perform the actual

data transfer and to execute the code on the GPU.

Once the execution is finished and data is transfered back to the CPU, jit4GPU reports

success and the execution of the program resumes on the CPU from the program point just

after the parallel loop.
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Figure 4.2: Block diagram of unPython for CPU code generation

4.3 Final Remarks

This chapter described the design of a new compiler system that combines an ahead-of-time

compiler, a just-in-time compiler and the AMD CAL IL compiler to create a compilation

path for parallel-annotated Python numerical code. This compilation infrastructure gener-

ates flexible code that execute either in a GPU or in a multicore CPU.
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Chapter 5

Array access analysis

Array access analysis is performed by a compiler to compute the set of memory locations

that may be accessed by array references occuring in a loop nest. Jit4GPU performs array

access analysis to compute the set of memory locations accessed in a parallel loop to be

executed on the GPU. Jit4GPU then computes a one-to-one mapping of the set of memory

locations accessed in the system memory to a set of memory locations on the on-board

memory of the GPU. Jit4GPU also checks if all the memory potentially accessed within

the loop can fit in the limited on-board memory of the GPU. If the data accessed during

computation does not fit on the GPU, then jit4GPU attempts to tile the loop. Finally, if the

array access analysis and potential tiling of the loop are successful, then jit4GPU generates

data transfer parameters and GPU binary and executes the loop.

This chapter describes a new array access analysis algorithm used by jit4GPU .

5.1 Representation and problem statement

To execute a loop nest on the GPU, the compiler first needs to compute the set of memory

locations that can potentially be accessed by the loop nest and then transfer the data to the

GPU. The compiler also needs to compute the size of the set of memory locations accessed

to determine if the set will fit on the GPU. In this work, the analysis is restricted to loop

nests of the form shown in Figure 5.1.

In Figure 5.1, a loop nest of depth d, where the top m loops are parallel, is shown.

Variables i1 to id above are loop counters while u1 to ud are upper bounds of the loops. The

loop body may contain zero or more array accesses. The set of memory locations accessed

by an array reference depends on the subscript expression used in the reference, the mapping

of the subscript expression to memory locations based on strides of the array and on the

loop bounds.

For array access analysis, the compiler requires a formal representation of the memory

access pattern. Such a representation is a mapping from the d-dimensional space of tuples of
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1 for i1 in prange(u1) :
2 for i2 in prange(u2) :
3 . . .
4 for im in prange(um) :
5 for im+1 in range(um+1) :
6 .
7 .
8 for id in range(ud)
9 #loop body

Figure 5.1: Loop nests considered for array access analysis

loop counters to one-dimensional space of memory locations. The space of memory locations

represents the locations in virtual memory. This space starts at zero and ends at positive

infinity. The memory space is assumed to consist of discrete cells where each cell is composed

of one discrete unit of memory. If all the arrays in the loop have the same element size s,

(for example if all arrays are arrays of 4-byte values), and if the starting position of all

arrays is aligned on s bytes, then one cell of memory can be thought of as having s bytes.

In this work, I restrict myself to the case where one cell of memory is equated to the size of

one element of the array.

For array-access analysis, representing and reasoning about arbitrary memory access pat-

terns is not feasible. Thus array-access analysis is typically restricted to representing one

particular class of memory access patterns. Linear Memory Access Descriptors or LMADs,

first introduced by Paek et al. [17], are one such representation capable of precisely repre-

senting a wide variety of memory access patterns.

Definition 1. An LMAD L is a mapping from a d-dimensional space of tuples of loop

counters to the 1-dimensional space of memory locations of the form:

L(i1, i2, .., id) = c0 +
d∑

k=1

fk(ik) (5.1)

where ∀(1 ≤ k ≤ d), starting with k = 1 and going to k = d:

0 ≤ ik < uk (5.2)

uk = gk(i1, i2, .., ik−1) (5.3)

ik, uk, c0, fk(ik), gk(i1, i2, .., ik−1)εZ (5.4)

where L is the LMAD, Z is the set of integers, ik is the k-th loop counter, c0 to cd are

integer constants and uk is the upper bound of the k-th loop counter. Functions fk and gk

are arbitrary integer functions.
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LMADs can represent a wide variety of access patterns but require the compiler to

retain the symbolic representations of the functions fk and gk. Thus representing and

reasoning about general LMADs requires a general symbolic algebra engine to be embedded

in the compiler. Instead of dealing with general LMADs, this thesis is limited to a simpler,

yet common, subset which I term as RCSLMADs for restricted constant stride LMADs.

Intuitively, RCSLMADs represent a class of affine subscript expressions occurring inside a

rectangular loop nest with loop invariant bounds.

Definition 2. An LMAD L is an RCSLMAD if and only if it satisfies all of the following

conditions:

1. Let N be the set of integers {1, 2, .., d}. Then L must be of the following form:

L(i1, i2, ..., id) = c0 +
d∑

k=1

pk ∗ ik (5.5)

where ∀(kεN):

0 ≤ ik < uk (5.6)

pk, ukεZ+ (5.7)

c0εZ (5.8)

c0 ≥ 0 (5.9)

Z+ is the set of positive integers.

2. There must exist a one-to-one mapping G from N to N such that ∀(kεN):

pG(k) >
n=d∑
k+1

pG(n) ∗ (uG(n) − 1) + pG(n) − 1 (5.10)

where G(k) represents the application of the mapping G on the value k. The mapping

G is called the ordering function of L.

For convenience, a number of auxiliary terms can be defined. Let L be an RCSLMAD.

Then:

Definition 3. The integer constant c0 is called the base of the RCSLMAD.

Definition 4. ∀(kεN), the integer constant pk is called the stride in the k-th dimension.

Definition 5. The mapping G is called the ordering function of the RCSLMAD L.
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Definition 6. ∀(kεN), the value pk ∗ (uk − 1) is called the span in the k-th dimension and

represents the distance traveled in memory space when the k-th loop counter ik goes from 0

to the upper bound uk.

The definitions of stride and span are compatible with the definitions given by Paek et

al. for stride and span of general LMADs.

Definition 7. Let there be a set D such that

D = {(i1, i2, ..., id) : ∀(1 ≤ k ≤ d), 0 ≤ ik < uk} (5.11)

The set D is called the domain of the RCSLMAD L.

Definition 8. Let D be the domain of RCSLMAD L and let V εD be a d-tuple. Then the

value v = c0 +
d∑

k=1

V (k) ∗ pk is called the application of L on V and is denoted by L(V ).

To understand the concept of RCSLMADs, an example can be considered. Consider a

two-dimensional example:

L1 = 5 + 20 ∗ i+ 3 ∗ j (5.12)

0 ≤ i < 7 (5.13)

0 ≤ j < 5 (5.14)

To visualize the RCSLMAD, consider a matrix with 7 rows and 20 columns. The number

of rows was chosen to be equal to the upper bound of i while the number of columns was

chosen to be equal to the stride of i. Then set the element in i-th row and j-th column of the

matrix to 5 + 20 ∗ i+ j. The matrix is effectively constructed to represent a row-major two-

dimensional array (such as those present in programming languages C/C++) of size 7 ∗ 20

beginning at memory address 5. Figure 5.2 highlights all the elements in the matrix which

belong to the RCSLMAD L1. The RCSLMAD is representing a regular pattern of accessing

the matrix similar to the access of the form [i][3∗j] of a C-style two-dimensional array. This

is the intuitive idea behind RCSLMADs. All the accesses are effectively accessing a very

simple strided pattern in a C-style d-dimensional matrix.

RCSLMADs have several useful properties. To describe the properties of RCSLMADs,

we will use notation consistent with the above definitions. L will represent an RCSLMAD

defined over a d dimensional domain D. Symbols ik, uk, pk, σk will represent the loop

counter, upper bound, stride and span respectively in the k-th dimension.

Theorem 1. L is a one-to-one mapping from D to the memory space. Alternately, each

d-tuple of loop counters from the domain D is mapped to a unique location in memory by

the RCSLMAD L.
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Figure 5.2: Visualization of a two-dimensional RCSLMAD example

Proof. Without loss of generality, the ordering function G is assumed to be the identity

function. The theorem can be proved by contradiction. Let us assume that there exist 2

tuples V1 and V2 such that

L(V1) = L(V2), V1εD, V2εD, V1 6= V2 (5.15)

Then the d-dimensional tuples V1 and V2 must differ in at least one dimension. Without

loss of generality, we assume V1 > V2 lexicographically. Let m be the smallest integer such

that V1(m) > V2(m). Then

L(V1)− L(V2) = pm ∗ (V1(m)− V2(m))−
d∑

k=m+1

pk ∗ (V2(k)− V1(k)) = 0 (5.16)

pm ∗ (V1(m)− V2(m)) =
d∑

k=m+1

pk ∗ (V2(k)− V1(k)) (5.17)

min(pm ∗ (V1(m)− V2(m))) = pm (5.18)

max(
d∑

k=m+1

(pk ∗ (V2(k)− V1(k)))) =
d∑

k=m+1

(pk ∗ (uk − 1)) (5.19)

However, by definition of RCSLMAD:

pm >

d∑
k=m+1

(pk ∗ (uk − 1)) (5.20)

∴ min(pm ∗ (V1(m)− V2(m))) > max(
d∑

k=m+1

(pk ∗ (V2(k)− V1(k)))) (5.21)

∴ L(V1)− L(V2) > 0 (5.22)
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Thus we have arrived at a contradiction and proved that for RCSLMADs, each d-tuple

in the domain D maps to a distinct location in memory.

Theorem 2. The size S of the set represented by the RCSLMAD L is given by S =
d∏

k=1

uk.

Proof. The size S of the set is equal to the size of the domain D because each element in

the domain maps to a distinct memory location. The size S can simply be computed as a

product of the upper bounds because the domain is rectangular.

A loop nest may have multiple RCSLMADs and they may overlap at one or more memory

locations. If each RCSLMAD is transferred independently, then the same memory location

on the CPU may be copied to multiple copies on the GPU. If there is a read/write depen-

dence involving a memory location, then creating multiple copies on the GPU is cumbersome

because the copies must be kept consistent. A better solution is to compute a set union of

the RCSLMADs and then transfer the union to the GPU. This way there will be exactly

one copy of M on the GPU. The compiler also ensures that no other CPU thread writes

to the memory locations copied to the GPU before the GPU execution and data transfers

are complete. For correctness, it is not necessary to compute an exact union. If the union

is represented by U , then it is sufficient to compute a superset U of the union. We now

present the problem statement including the design criteria of an analysis to compute the

union:

Problem Statement 1. Given a list {L1, L2, .., Ln} of RCSLMADs defined over a d-

dimensional domain D:

1. Compute the set M of memory locations to be transferred to the GPU. The set M should

be a superset of the union U of RCSLMADs. The number of elements in M−U should

be as small as possible. M should be easily representable by the compiler.

2. Compute the size S of the set M .

3. Construct a map F with domain M . The range R of F should be a set of valid

memory locations in the GPU address space. If F (m),mεM represents the address of

the memory location m on the GPU, then F should be such that F (m1) 6= F (m2) if

m1 6= m2. The Range R should be as small as possible. The computational complexity

and memory requirement for computing F should be as low as possible.

5.2 General solution

Consider the case where the list contains a single RCSLMAD L defined over a domain D.

Without loss of generality, assume that the ordering function of L is the identity function.

In such a case, an exact solution for the problem 1 can be calculated by algorithm 1.

38



Algorithm 1 solves the data transfer problem for a single RCSLMAD L defined over a
domain D.

1: M = {L(V )|V εD}.

2: S =
d∏

k=1

uk from property of RCSLMAD.

3: Let m = L(V ), V εD, then F (m) =
d∑

k=1

(V (k) ∗ (
d∏

j=k+1

uj)) and range R = S.

To argue that the algorithm 1 does produce a correct function F , we observe that given

a d-dimensional tuple D, the composite function F (L) is also an RCSLMAD defined over

the domain D, and hence each distinct tuple V is mapped to a distinct location in the

GPU memory by the composite function F (L). The range R can be directly verified by

calculating the maximum and minimum values of F (L) over D.

The problem of multiple RCSLMADs can be simplified in many cases by considering

the memory intervals spanned by the RCSLMADs in the list. If the memory intervals

spanned by the RCSLMADs in the list are completely disjoint, then each RCSLMAD can

be analyzed individually without any necessity to compute the union because there can be no

dependencies and no possibilities of multiple copies. If the interval spanned by two or more

RCSLMADs overlaps, then we can form a group of RCSLMADs. A group of RCSLMADs

spans over an interval given as the union of intervals of all members of the group. In general

we can partition the list of RCSLMADs into groups of RCSLMADs where the interval

represented by each group is disjoint from other groups. An algorithm to compute groups

of RCSLMADs is given by algorithm 2.

Algorithm 2 partitions a list of RCSLMADs defined over a domain D into disjoint groups
of RCSLMADs.
Inputs: List {L1, L2, .., Ln} of RCSLMADs defined over a domain D.
Outputs: List {G1, G2, .., Gn} of groups of LMADs such that the interval spanned by each
group is disjoint from the interval spanned by any other group.

1: for each RCSLMAD L in {L1, L2, .., Ln} do
2: Find out the start and end addresses of R in memory.
3: end for
4: Construct a graph G where each RCSLMAD is a node.
5: for each pair of nodes in G do
6: Insert an edge if the start-to-end intervals of the two nodes overlap.
7: end for
8: Find the connected components in the graph G using a suitable algorithm such as a

depth first search. Each connected component represents a group of RCSLMADs.
9: return A list of connected components.

If one or more groups contains more than one RCSLMAD, then the problem of computing

the union (or the superset) still remains. One general solution is described in algorithm 3.
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The algorithm is very conservative and transfers all memory locations in the memory interval

spanned by the group. The algorithm is correct but transfers too much data and uses too

much GPU on-board memory. Better solutions are needed in most cases.

Algorithm 3 computes a superset of union of arbitrary RCSLMADs
Inputs: A group {L1, L2, .., Ln} of RCSLMADs defined over domain D.
Outputs: Set M , size S of set M and function F for mapping CPU memory locations to
GPU memory locations.

1: Compute m1 = min(min(L1(V ), V εD),min(L2(V ), V εD), ..,min(Ln(V ), V εD)).
2: Compute m2 = max(max(L1(V ), V εD),max(L2(V ), V εD), ..,max(Ln(V ), V εD)).
3: Compute M = {m|m1 ≤ m ≤ m2,mεZ}.
4: Compute S = m2 −m1.
5: Construct F (m) = m−m1 and R = {m|0 ≤ m ≤ m2 −m1,mεZ}.
6: return M , S, and F .

While the algorithms 1, 2 and 3 have only been described for RCSLMADs, they are

actually applicable on a slightly wider class of LMADs. For convenience, assume that

the ordering function is the identity function and consider the condition pk > pk+1 − 1 +
d∑

j=k+1

pj ∗ (uj − 1) imposed on RCSLMADs. If the condition is instead loosened to pk >

d∑
j=k+1

pj ∗ (uj − 1), then the algorithms 1, 2 and 3 are still valid (and can be verified by

substituting the loosened condition in the corresponding proofs).

5.3 More efficient solutions in specific cases

In some cases, it is possible to derive more efficient solutions that transfer less data than

the general algorithm presented earlier. Computing and reasoning with unions of arbitrary

RCSLMADs is non-trivial. Consider a group of n RCSLMADs. Let pjk be the stride in

the j-th RCSLMAD in k-th dimension. Instead of attempting to compute the union of

RCSLMADs in arbitrary cases, this section is limited to the case pt1k = pt2k, 1 ≤ t1, t2 ≤ n,

i.e. all RCSLMADs have the same stride in any given dimension k. Such cases occur when

a programmer is accessing multiple array locations in the loop body with fixed distance

between the array accesses. All the RCSLMADs must have the same ordering function

because all the RCSLMADs share strides and are defined over the same domain. Without

loss of generality, assume that the ordering function is identity throughout this section.

One example of the types of problems being studied in this section is as follows:

L1 = 0 + 20 ∗ i+ 3 ∗ j (5.23)

L2 = 21 + 20 ∗ i+ 3 ∗ j (5.24)

0 ≤ i < 5 (5.25)
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0 ≤ j < 5 (5.26)

In the example, the two RCSLMADs share the same strides but have different bases.

5.3.1 Representation of union

A suitable representation needs to be chosen to represent the union of RCSLMADs. The

representation chosen influences how accurately the union can be computed. As in any other

compiler analysis, a tradeoff needs to be made between simplicity and accuracy. One poten-

tial choice for representing unions is a single RCSLMAD. However the set of RCSLMADs

is not closed over the union operation, i.e. the union of two RCSLMADs cannot always be

represented exactly using a single RCSLMAD. Instead, I define a new type of set designed to

represent a collection of interleaved RCSLMADs with common strides. For brevity, I term

such groups as ERL for Extended Restricted CSLMADs since they extend RCSLMADs to

multiple bases. Formally an ERL E is defined as a set over a d-dimensional domain D as

follows:

Definition 9. Let there be n RCSLMADs L1, L2, ..., Ln defined over the same d-dimensional

domain D with the following constraints:

1. Let pt1k and pt2k represents the k-th strides of Lt1 and Lt2 respectively. Then the

following condition must be satisfied:

∀(1 ≤ t1, t2 ≤ n, 1 ≤ k ≤ d) pt1k = pt2k (5.27)

2. Let bx be the base of the RCSLMAD Lx. Then

∀(1 ≤ x, y ≤ n) bx − by < pd (5.28)

Given the above two constraints, ERL E is defined as the union of the RCSLMADs L1 to

Ln. For d-dimensions and n RCSLMADs, an ERL has 2 ∗ d + n parameters including d

upper bounds, d strides and n bases.

One example of the type of sets represented by ERLs is seen by the following example:

L1 = 0 + 20 ∗ i+ 3 ∗ j (5.29)

L2 = 1 + 20 ∗ i+ 3 ∗ j (5.30)

0 ≤ i < 5 (5.31)

0 ≤ j < 5 (5.32)

As can be verified, the above RCSLMADs can be represented by an ERL since all conditions

are satisfied. The 2 RCSLMADs are interleaved, i.e. they never overlap and have the same
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strides. In general, ERL has the useful property that the size of the set being represented

can be easily computed. To find an algorithm for finding the size of such a group E, I first

prove a theorem.

Theorem 3. Let there be two d-dimensional RCSLMADs L1 and L2 defined over the same

domain D with equal strides pk in each dimension k. If the bases b1 and b2 of the two

RCSLMADs are such that 0 ≤ b2 − b1 < pd, then L1 and L2 are completely disjoint.

Proof. I prove the theorem by contradiction. Let there be two d-dimensional tuples V1εD

and V2εD such that L1(V1) = L2(V2). For the sake of contradiction, I assume that V1 6= V2.

Let m be the smallest dimension in which V1 and V2 differ. The rest of the proof is similar to

the proof given in theorem 1. First, consider the case where V1(m) < V2(m). We substitute

the values of V1 and V2 in the definitions of L1 and L2. Then we apply the condition

pm > p1 − 1 +
∑d

k=m+1 pk ∗ (uk − 1). Following the logic of proof of theorem 1, using the

condition it can be proven that L1(V1) < L2(V2). Therefore, we arrive at a contradiction

and the theorem is proved for this case. Second, consider the case V1(m) > V2(m). In this

case it can be proven that L1(V1) > L2(V2). Again we arrive at a contradiction and the

theorem is proved.

Given the previous theorem, computing the number of distinct elements in an d-dimensional

ERL E composed of n RCSLMADs is straightforward.

Theorem 4. Let E be a d-dimensional ERL composed of n RCSLMADs L1, L2, .., Ln with

bases b1, b2, ..., bn respectively. Then the number of distinct elements of E is given by q ∗
d∏

k=1

uk where q is the number of distinct elements in the list {b1, b2, b3, .., bn}.

Proof. The theorem is a corollary of the previous theorem.

5.3.2 One-dimensional RCSLMADs with common stride

Consider two one-dimensional RCSLMADs L1, L2 having the same stride m and defined

over the domain D.

L1 = b1 +m ∗ i (5.33)

L2 = b2 +m ∗ i (5.34)

0 ≤ i < u (5.35)

Without loss of generality assume that b1 ≤ b2. As was shown earlier, RCSLMADs can

be visualized as simple-strided accesses into an imaginary C array. If there is more than one

RCSLMAD, we can attempt to place both of them in the same imaginary C array. In this
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case, assume we had a C array starting at some arbitrary positive integer b0 ≤ b1.1 The

RCSLMADs can be rewritten as:

L1 = b0 +m ∗ (i+ t1) + r1 (5.36)

t1 = b(b1 − b0)/mc (5.37)

r1 = (b1 − b0)%m (5.38)

L2 = b0 +m ∗ (i+ t2) + r2 (5.39)

t2 = b(b2 − b0)/mc (5.40)

r2 = (b2 − b0)%m (5.41)

0 ≤ i < u (5.42)

Further rewriting:

L1 = b0 +m ∗ j + r1 (5.43)

t1 ≤ j < u+ t1 (5.44)

L2 = b0 +m ∗ k + r2 (5.45)

t2 ≤ k < u+ t2 (5.46)

We observe that the value t1 will be less than or equal to t2 because b1 ≤ b2. We can

construct an RCSLMAD L3 that is a superset of L1 by increasing the domain of L1.

L3 = (b0 + r1) +m ∗ j (5.47)

0 ≤ j < u+ t2 (5.48)

Similarly we can construct an RCSLMAD L4 as a superset of L2.

L4 = (b0 + r2) +m ∗ j (5.49)

0 ≤ j < u+ t2 (5.50)

L3 and L4 are defined over the same domain D′ = {j|0 ≤ j < u + t2}. Further, the

difference in bases of L3 and L4 is equal to |r1 − r2| and |r1 − r2| < m because r1 < m and

r2 < m. The union of L3 and L4 is therefore a one-dimensional ERL E defined over domain

D′ with stride m and with bases b0 + r1 and b0 + r2. Since we have not yet chosen b0, we

should attempt to choose a b0 such that the set D′ is the smallest. The integer b0 = b1 gives
1The new base b0 will later be chosen to minimize the domain of an RCSLMAD that combines the

memory references of L1 and L2.
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the smallest set E because any value of b0 smaller than b1 will result in either the same or

a larger domain D′.

The methodology is generalized by construction in algorithm 4 for n RCSLMADs with

b0 = b1. The idea is that if the number of non-distinct bases in the construct ERL E is q,

and if the upper bound of the domain of E is tn +u, then the total number of elements to be

transferred to the GPU is (tn+u)∗q since tn+u elements need to be transferred for each non-

distinct RCSLMAD present in the ERL E. Thus on the GPU, we can allocate space equal

to (tn + u) ∗ q elements. For address mapping, consider the interval b0 to b0 +m− 1 on the

system RAM. Out of this interval, q elements accessed by the q non-overlapping RCSLMADs

are transferred. This pattern of q out of every m elements is repeated. Therefore if elements

not accessed by the ERL were to be discarded, then the pattern is equivalent to q interleaved

accesses with stride q.

Algorithm 4 computes the approximate union of n one-dimensional RCSLMADs with the
same stride.
Inputs: n one-dimensional RCSLMADs {L1, L2, .., Ln} with stride m and bases
{b1, b2, .., bn} such that b1 ≤ b2... ≤ bn defined over domain D = {i, 0 ≤ i < u}.
Outputs: ERL E and a list of n expressions representing the transformed address of each
RCSLMAD.

1: for each RCSLMAD Lj do
2: Compute the term tj = b(bj − b1)/mc and rj = (bj − b1)%m.
3: end for
4: Construct a list R = {b1 + r1, b1 + r2, .., bn + rn}.
5: Remove any duplicates from R. Let the number of elements remaining in R be q.
6: Sort R in-place.
7: Construct a one-dimensional ERL E with stride m, bases R1 and domain D′ = {j, 0 ≤
j ≤ tn + u}.

8: Construct an empty list I.
9: for each RCSLMAD Lj do

10: Find x such that R(x) = bj + rj .
11: Append the expression (represented as an AST or other compiler IR) q ∗ (i+ tj) + x

to I where i is the original loop counter for which the analysis is being conducted.
12: end for
13: return E and I.

5.3.3 Multidimensional RCSLMADs with common strides

Consider n RCSLMADs {L1, L2, .., Ln} with the common strides P = {p1, p2, .., pd}. Let

the RCSLMADs be defined over a d dimensional domain D = {(i1, i2, .., id) | 0 ≤ ij <

uj , 1 ≤ j ≤ d} and with the bases B = {b1, b2, .., bn}. I assume that there are no duplicate

RCSLMADs. The objective is to find a d-dimensional ERL E with n-components and with

strides P such that E is the approximate union of the given RCSLMADs. Let the base of E

be B′ = {b′1, b′2, ..., b′n} and the domain of E be D′ = {(i1, i2, .., id)|0 ≤ ij < u′j , 1 ≤ j ≤ d}.

To find the ERL E, the idea is to derive a set of linear integer constraints and then
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solve for unknown parameters of E using an integer programming solver. The equations are

derived as follows:

1. E can be constrained such that the m-th component of E must be a superset of

RCSLMAD Lm. The idea is to assume that for each V εD, there exists a point V ′εD′

such that V ′ = V + {tm1, tm2, ..., tmn} and that E(m)(V ′) = Lm(V ). The values tmk

are assumed to be unknown integer constants. The following equations can be stated:

bm +
d∑

k=1

pk ∗ ik = b′m +
d∑

k=1

pk ∗ (ik + tmk) (5.51)

u′1 ≥ uk + tm1 (5.52)

u′2 ≥ u2 + tm2 (5.53)
...

u′d ≥ ud + tmd (5.54)

tm1 ≥ 0 (5.55)

tm2 ≥ 0 (5.56)
...

tmk ≥ 0 (5.57)

If suitable integer values are found for the unknowns tmk and u′k that satisfy the above

constraints, then E is a superset of the union of the RCSLMADs by construction.

2. Each component of E must be an RCSLMAD and must therefore satisfy constraints

relating the upper bounds and strides.

For each integer k such that 2 ≤ k ≤ d

p′k ≥ pd +
d∑

j=k+1

(pj ∗ (u′j − 1)) (5.58)

3. From the definition of an ERL, the difference between any pair of bases (b′x, b
′
y should

be less than stride pd in the last dimension.

For {(x, y)|1 ≤ x ≤ n, 1 ≤ y ≤ n, x 6= y}

bx − by ≤ pd − 1 (5.59)

These inequalities forms a set of (n− 1)2 constraints necessary for ensuring that E is

an ERL.

Thus a total of n equality constraints and n∗d+ (d−1) + (n−1)2 inequality constraints

can be derived for a total of n + d + n ∗ d unknowns. The unknown variables are u′k, b
′
m
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and tmk where 1 ≤ k ≤ d and 1 ≤ m ≤ n. Ideally we want to minimize the size of E but

the size of E is a nonlinear function. To utilize an integer programming solver, I define the

following objective function that still attempts to minimize the size of the E. To choose a

suitable objective function, the following observations can be made:

1. Let tk = max(tmk). Then uk ≥ uk + tk. Observing all constraints involving u′k, if

the linear integer solver finds a feasible solution such that u′k > uk + tk, then simply

reducing the value of u′k to tk + uk will still satisfy all constraints.

2. Let q be the number of distinct entries inB′. Then the size of ERL E is q∗
∏d

k=1(uk+tk)

by property of ERLs proved earlier.

Therefore we derive a heuristic objective function that should provide a reasonable ap-

proximation to minimizing the number of entries:

Minimize

d∑
k=1

u′k (5.60)

Given the constraints and the objective function, an integer programming solver is uti-

lized to find the value of all unknowns. However, if the number of dimensions or the number

of RCSLMADs exceeds a threshold, then the compiler falls back to algorithm 3 because

integer programming solvers can take a large amount of time as the number of variables

increases.

Consider the following example:

L1 = 0 + 20 ∗ i+ 3 ∗ j (5.61)

L2 = 21 + 20 ∗ i+ 3 ∗ j (5.62)

0 ≤ i < 5 (5.63)

0 ≤ j < 5 (5.64)

Then the algorithm will find the following ERL:

L′1 = 0 + 20 ∗ i′ + 3 ∗ j′ (5.65)

L′2 = 1 + 20 ∗ i′ + 3 ∗ j′ (5.66)

0 ≤ i′ < 6 (5.67)

0 ≤ j′ < 5 (5.68)

If the general form was used in the example instead of the ERL approach, then the

number of elements transferred would have been 21 + 20 ∗ 4 + 3 ∗ 4 = 113. Using the ERL
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approach, the number of elements transferred is 6 ∗ 5 ∗ 2 = 60 elements. The ERL approach

can result in significant savings in the number of elements transferred if only a small tile of

a large array is accessed in a computation.

If the number of dimensions is greater than one, then a feasible solution does not nec-

essarily exist. The problem is that we are attempting to interpret the n RCSLMADs as n

interleaved accesses into a d-dimensional array but such an interpretation does not always

exist. If the integer programming solver is called and no feasible solution is found, then the

compiler falls back to algorithm 3 for data transfer analysis.

To generate the mapped address of each array access, algorithm 5 is used.

Algorithm 5 computes the mapped address for multidimensional RCSLMAD problems
solved using the integer linear programming method
Inputs: Specified constants uk, values tmk and b′m computed using integer lin-
ear programming Outputs: A list of n expressions representing the address on the
GPU.

1: Construct a vector R1 = [b′1, b
′
2, ..., b

′
n].

2: Construct a vector R2 = R1.
3: Remove all non-duplicate entries of R2.
4: Sort R2 in-place.
5: Construct a vector R3 such that R3[i] = x where R2[x] = R1[i].
6: Compute q = length of R2.
7: for each integer k such that 1 ≤ k ≤ d do
8: Compute tk = max(t1k, t2k, ..., tnk).
9: end for

10: Compute b0 = min(R1).
11: for each RCSLMAD Lm do

12: Construct an expression Im = (b′m − b0) +
d∑

k=1

q ∗ (ik + tmk) ∗
d∏

l=k+1

(ul + tl).

13: end for
14: return list {I1, I2, ..., In}.

5.4 Loop tiling for handling large loops

Using previously discussed algorithms 3 and 5, the number of elements to be transferred to

the GPU can be computed. However, if the amount of memory to be transferred does not fit

on the GPU, then the compiler must attempt to tile the loop. In the implemented compiler,

the compiler only considers tiling the parallel loops since tiling parallel loops is always legal.

Once an acceptable tile size is found, then the tiles are executed sequentially on the GPU.

The execution of the tiles can be pipelined but this possibility was not considered due to

time constraints.

In the ideal case, the tiling should be such that the total amount of data transferred

between the CPU and GPU should be minimized. However, again the problem is hard and

therefore a very basic heuristic was used. The compiler simply reduces the upper bound of
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each parallel loop to half its original value. If there are m parallel loops, then 2m tiles are

formed. The compiler then computes the amount of data to be transferred for each tile and

if the number of elements is less than the amount of memory available, then the compiler

continues tiling the loop. The compiler aborts the attempts to tile the loop if the total

number of tiles exceeds 64 and abandons efforts to use the GPU.

5.5 Conclusions

This chapter presented a new heuristic algorithm for array access analysis and for automat-

ically transfering data between the system memory and the GPU memory. The algorithm

only handles one class of LMADs but can offer significant space savings on the GPU com-

pared to more naive approaches. This chapter also presented a loop tiling algorithm that

can automatically scale parallel loop nests so that the data required for the computation

fits in the limited GPU memory. The algorithms have been implemented in jit4GPU that

currently only generates code for AMD GPUs, but the algorithms presented in this chapter

are equally applicable to any GPGPU system with a separate address space and limited

GPU memory.
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Chapter 6

Loop transformations for AMD
GPUs

To extract the maximum performance out of a chip such as the RV770, extensive code

transformations such as loop unrolling and load-coalescing are necessary. Programmers

are not expected to do such loop transformations manually for two reasons. First, loop

transformations like unrolling reduce programmer productivity and program maintainability.

Secondly, low-level details like the memory arrangement of the GPU and information about

specific datatypes are not exposed to the programmer. Therefore, it is the responsibility of

the compiler to do the necessary transformations. In the implemented compiler framework,

jit4GPU is responsible for loop transformations while the AMD CAL IL compiler does low

level transformations like instruction scheduling and register allocation.

One important code transformation done by jit4GPU is reduction of the number of

memory load instructions (called texturing instructions on the GPU) by coalescing loads

into loads of multi-component types such as float2 and float4. Due to the unbalanced ratio

of ALU to load unit hardware, the number of load instructions should be reduced so that

the load (texturing) unit is not the bottleneck. By default, the compiler uses all the memory

resources on the GPU in single-component formats. Single-component formats only allow

single-component loads. The compiler tries to identify GPU resources that can be stored

in aligned multi-component formats. Resources stored in aligned multi-component formats

only allow aligned multi-component loads. Thus, the compiler first analyzes if the loads

from a particular resource can always be grouped into aligned multi-component loads. If

the grouping is successful, then the compiler uses more efficient formats and reduces the

number of load instructions. To find out groups of loads that can be combined, the compiler

looks at the addresses accessed in the loop body and attempts to find loads of the form

4 ∗ e + c where e is any expression while c is a constant with the value 0,1,2 or 3. If all

the accesses from a memory resource match this form, then the memory resource can be

stored on the GPU using a aligned four-component format. The compiler then attempts to
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identify loads that can be coalesced.

Reducing the number of load instructions is only done by jit4GPU when it can find

suitable loads in the loop body to coalesce. Thus, larger loop bodies have more potential for

load-coalescing. Before doing load-coalescing transformations, Jit4GPU carries out a loop-

unrolling pass. A larger loop body also helps the AMD IL compiler to do better instruction

scheduling and register allocation. However, larger loop bodies can cause an increase in

register usage per thread that results in a lower number of threads running in parallel on

the GPU. Therefore, the compiler first uses an heuristic to determine if the register usage

is below a certain threshold. Loop transformations are only done if register usage is below

the threshold. Estimating register usage can be time consuming but fortunately need not

be done by the JIT compiler. Register usage is estimated by unPython and it passes the

information to jit4GPU. If enough registers are available then a loop unroll factor of either

four or two is applied. The factor four was chosen because in many cases a factor of four

unroll gives good opportunities to coalesce loads into float4, the widest data type available

on GPUs. If the loop upper is not divisible by four, then an unroll by two is attempted

instead. Inner loops are given higher priority for unrolling.

Under special conditions the jit4GPU also performs loop fusion. Loop fusion is a loop

transform where two loops with the same loop bounds and no dependence can be fused

into a single loop where the loop bodies of the two loops is concatenated into a single loop

body. Thus, loop fusion produces a single larger loop from two smaller loops. However,

loop fusion can only be performed when there is no dependence between loops. Further, if

there is some code occurring between the two loops, then loop fusion can only be applied

if the intervening code can be safely moved to a location before the first loop. I have

not implemented dependence analysis in jit4GPU . Therefore, in general jit4GPU cannot

perform loop fusion. However, under some circumstances the dependence checking is not

required. Let loop L1 be a parallel loop and let L2 be a loop contained in the body of L1.

If L1 is unrolled, then a copy L′2 of L2 is formed. There cannot be any dependence between

different iterations of L1 because L1 is parallel. Therefore, there cannot be any dependence

between L2 and L′2 because L2 and L′2 are in the body of two different iterations of L1.

Therefore, the compiler can easily fuse the loops L2 and L′2.

Jit4GPU performs all the loop transformations described before generating AMD IL

code. Jit4GPU performs loop unrolling and limited loop fusion followed by load-coalescing

as a means to reduce the number of texture unit instructions executed. The overview of the

transformations performed by jit4GPU is summarized in algorithm 6.
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Algorithm 6 performs loop transformations for GPU code
1: for all loops with no child loops do
2: Mark as candidate for unrolling
3: end for
4: for all parallel loops do
5: Mark as suitable for unrolling if children loops have no children.
6: end for
7: while register usage is below threshold do
8: Pick the innermost unrolling candidate loop available and unroll.
9: Update register usage estimate of parent loops.

10: Mark the unrolled loop as unsuitable for unrolling.
11: end while
12: Fuse as many loops as possible.
13: Perform load-coalescing transformations.
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Chapter 7

Experimental evaluation

This chapter presents the performance of the code generated for OpenMP and on several

highly parallel kernel benchmarks. Performance was evaluated against the generated serial

C++ code. For each kernel benchmark, the execution time of the generated serial code

was compared against the total execution time of generated OpenMP and GPU versions.

Performance on the GPU was measured with and without loop optimizations. For GPU

performance, four numbers are reported:

1. GPU total execution time with GPU-specific loop optimizations enabled in jit4GPU.

The time reported includes data transfers and JIT compilation overheads.

2. GPU execution time only with loop optimizations enabled. Only the time taken by

the GPU to execute the GPU binary are included and does not include data transfers

and JIT compilation times.

3. GPU total execution time without any GPU-specific loop optimizations.

4. GPU execution only without any GPU-specific loop optimizations enabled.

The kernels chosen for performance evaluation were matrix multiplication, CP bench-

mark from the Parboil benchmark suite, Black Scholes option pricing, 5-point stencil code

and RPES kernel from the Parboil benchmark suite. The objective of the performance

evaluation is to study the performance gains when GPU code generation is enabled against

the performance of an OpenMP version of each benchmark. Therefore, benchmarks were

all chosen to be highly parallel kernels which are suitable for execution on the GPU. Among

the chosen benchmarks, the memory access pattern in four of the benchmarks is describable

by RCSLMADs and the compiler is able to generate GPU code. In benchmark RPES, loops

are triangular with indirect memory references and the compiler was unable to generate

GPU code.

A more comprehensive study of the percentage of cases in which the compiler is able

to generate GPU code will require a standard benchmark suite implemented in Python
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with suitable GPU code annotations. Implementing such a benchmark suite is left as future

work. However, as mentioned in chapter 5, jit4GPU is only able to generate GPU code when

the memory access pattern is describable by RCSLMADs. Therefore, some examples for

which jit4GPU will be unable to generate a GPU version includes FFT, conjugate gradient

algorithms and matrix solvers with triangular loops.

The important results from the experiments are:

1. Using a GPU delivered upto 100 times speedup over generated OpenMP code running

on the CPU.

2. Loop optimizations performed by jit4GPU deliver upto four times performance im-

provement on the GPU.

3. Benchmarks that perform very little computation per data item accessed are not suit-

able for the GPU because the data transfer overhead is larger than the computation

time in such cases.

All experiments were done using a AMD Phenom X4 9550 (2.2ghz quad-core) paired

with a Radeon HD 4870 and 4gb of RAM. Frequency scaling was kept disabled on the CPU.

The operating system was Ubuntu 8.10 with Linux kernel version 2.6.27-7 and GCC version

4.3.2. For compiling C++ code, the optimization flag -O3 was passed to the CPU. When

compiling for OpenMP, the flag -fopenmp was also passed. Several other flags were also

tested but they produced no notable performance changes and were exluded in the results

presented here.

Each experiment was repeated 5 times and the minimum, maximum and mean execution

times are presented.

7.1 Matrix multiplication

Matrix multiplication was implemeneted for 32-bit and 64-bit floating point matrices. A

very simple implementation of matrix multiplication was done in Python and the outer two

loops were marked as parallel loops for GPU execution. Performance was studied against

the matrix sizes. For comparing performance of the generated GPU code against the CPU,

the performance results of the generated OpenMP code as well as performance results from

ATLAS library are included. ATLAS implements a tiled matrix multiplication algorithm

and also autotunes to best fit the system CPU at the time of installation. ATLAS is a high

performance library with many years of development effort. By comparision, the Python

implementation was a straightforward implementation of matrix multiplication written in

under ten lines of Python code. From this Python source, the compiler was able to generate
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GPU code that performed twice as fast as ATLAS and over 100 times faster than generated

OpenMP code.

The execution times for are presented in Table 7.1 for 32-bit floating point and in Ta-

ble 7.3 for 64-bit floating point. Each case was repeated 5 times and the minimum, maximum

and mean execution time are presented. The speedups obtained using the GPU over ATLAS

are presented in Table 7.2 and Table 7.4. The speedups are calculated using the minimum

execution time.

Table 7.1: Execution time for matrix multiplication benchmark for 32-bit floating point
(seconds)

Problem Size 1024 2048 4096 6120
OpenMP 4 threads min 7.64 68.35 874.42 1213.7

max 7.82 68.83 877.98 1219.4
mean 7.75 68.67 875.64 1215.14

ATLAS BLAS min 0.125 0.684 5.12 17.87
max 0.126 0.687 5.14 18.05
mean 0.125 0.685 5.13 17.91

GPU Total (Opt) min 0.084 0.39 3.00 8.19
max 0.087 0.41 3.00 8.34
mean 0.085 0.40 3.00 8.27

GPU Only (Opt) min 0.025 0.277 1.78 6.86
max 0.027 0.288 1.88 7.01
mean 0.026 0.282 1.82 6.93

GPU Total (No opt) min 0.159 0.99 8.68 28.16
max 0.161 1.04 8.84 28.8
mean 0.160 1.01 8.73 28.39

GPU Only (No opt) min 0.108 0.90 7.46 26.88
max 0.110 0.95 7.61 27.52
mean 0.109 0.916 7.5 27.11

Table 7.2: Speedups for matrix multiplication using GPU for 32-bit floating point over
ATLAS

Problem Size Speedup No Opt Speedup Opt
1024 0.786 1.488
2048 0.69 1.75
4096 0.58 1.7
6120 0.634 2.18

7.2 CP benchmark

CP benchmark from the Parboil suite was implemented in Python. The benchmark is a

simple nested loop and the top two loops are annotated to be parallel for GPU execution.

The CP benchmark is representative of some computations done in molecular dynamics.

This benchmark computes the columbic potential at each point in a planar grid. The

computation of potential at each grid point is independant of other grid points and therefore
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Table 7.3: Execution time for matrix multiplication benchmark for 64-bit floating point
(seconds)

Problem Size 1024 2048 3072 4096
OpenMP 4 threads min 8.55 109.5 274.85 1406.82

max 8.68 110.4 275.8 1409.5
mean 8.59 109.8 275.1 1408.0

ATLAS BLAS min 0.244 1.34 4.38 11.62
max 0.247 1.36 4.47 11.70
mean 0.245 1.35 4.41 11.64

GPU Total (Opt) min 0.147 0.679 3.71 5.34
max 0.16 0.695 3.82 5.53
mean 0.15 0.685 3.78 5.39

GPU Only (Opt) min 0.078 0.513 2.34 3.84
max 0.09 0.543 2.44 4.06
mean 0.081 0.523 2.38 3.91

GPU Total (No opt) min 0.227 1.42 6.21 11.26
max 0.24 1.53 6.52 11.73
mean 0.232 1.47 6.33 11.4

GPU Only (No opt) min 0.164 1.249 4.87 10.13
max 0.177 1.33 5.182 10.66
mean 0.168 1.27 4.96 10.31

Table 7.4: Speedups for matrix multiplication using GPU for 64-bit floating point over
ATLAS

Problem Size Speedup (No Opt) Speedup (Opt)
1024 1.07 1.659
2048 0.95 1.97
3072 0.7 1.18
4096 1.03 2.17
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CP is a highly parallel kernel suitable for GPUs. At each grid point, the potential is

computed as a summation of potentials due to atoms randomly distributed in 3D space.

Jit4GPU was able to achieve a speedup of more than 50 times over generated OpenMP

codes. Execution times for the benchmark are presented in Table 7.5. For each case, the

minimum, maximum and mean execution time are presented. The speedups are reported in

Table 7.6. The speedups are calculated based on minimum execution time.

Table 7.5: Execution time for CP benchmark (seconds)
Problem size 128 256 512 1024
Serial Time min 9.01 36.03 137.99 552.26

max 9.04 36.48 138.76 555.35
mean 9.11 36.11 137.19 553.08

OpenMP 1 thread min 8.78 34.56 138.01 552.71
max 8.89 35.09 139.52 554.00
mean 8.82 34.73 138.62 553.28

OpenMP 4 threads min 2.234 8.692 34.57 138.06
max 2.297 8.982 35.29 140.06
mean 2.24 8.925 35.77 138.96

GPU Total (Opt) min 0.084 0.1979 0.672 2.58
max 0.085 0.214 0.713 2.85
mean 0.084 0.204 0.692 2.65

GPU Only (Opt) min 0.05 0.163 0.635 2.524
max 0.05 0.182 0.687 2.802
mean 0.05 0.169 0.655 2.61

GPU Total (No opt) min 0.161 0.544 2.056 8.129
max 0.163 0.57 2.235 8.35
mean 0.162 0.55 2.096 8.4

GPU Only (No opt) min 0.13 0.51 2.022 8.088
max 0.15 0.53 2.20 8.30
mean 0.14 0.52 2.06 8.16

Table 7.6: Speedups for CP using GPU over OpenMP
Problem Size Speedup (No Opt) Speedup (Opt)

128 13.81 26.59
256 15.98 43.92
512 16.81 51.44
1024 16.98 53.51

7.3 Black Scholes option pricing

Black Scholes formula is used for option pricing in computational finance. Black Scholes for-

mula is a simple scalar computation that computes two scalar results from five scalar inputs.

The benchmark computes multiple Black Scholes options in parallel. The Python implemen-

tation is derived from a Brook+ implementation provided by AMD with the Stream SDK.

The performance of Black Scholes on the GPU is entirely dominated by the data transfer
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time and the execution time on the GPU is negligible. A speedup of about six times is

achieved over generated OpenMP code. The detailed results are presented in Table 7.7 and

the speedups are listed in Table 7.8. For each case, the minimum, maximum and mean

execution times are presented and the speedups are calculated bsaed on minimum execution

time.

The benchmark involves functions such as exponential and natural logarithms and these

functions were compiled to corresponding hardware instructions on the GPU. However, a

significant difference in the calculated results was observed between CPU and GPU. Accu-

rate software implementations of square root, natural log and other functions on the GPU

is future work for this thesis.

Table 7.7: Execution time for Black-Scholes benchmark (seconds)
Problem size 512 1024 2048
Serial Time min 0.36 1.438 5.71

max 0.363 1.46 5.77
mean 0.361 1.44 5.73

OpenMP 1 thread min 0.35 1.46 5.6
max 0.352 1.478 5.67
mean 0.351 1.465 5.62

OpenMP 4 threads min 0.1633 0.394 1.4
max 0.1633 0.394 1.4
mean 0.1633 0.394 1.4

GPU Total (Opt) min 0.0829 0.106 0.224
max 0.084 0.108 0.227
mean 0.083 0.1065 0.225

GPU Only (Opt) min 0.0004 0.0009 0.0020
max 0.0004 0.0009 0.0020
mean 0.0004 0.0009 0.0020

GPU Total (No Opt) min 0.079 0.111 0.22
max 0.079 0.112 0.23
mean 0.079 0.111 0.224

GPU Only (No Opt) min 0.0004 0.0009 0.0025
max 0.0004 0.0009 0.0025
mean 0.0004 0.0009 0.0025

Table 7.8: Speedups for Black-Scholes benchmark using GPU over OpenMP
Problem Size Speedup (No Opt) Speedup (Opt)

512 2.067 1.96
1024 3.54 3.71
2048 6.36 6.25

7.4 5-point stencil

5-point stencil benchmark computes an out-of-place 5-point stencil over a 2-dimensional

matrix. For each element in the input matrix, the code computes a weighted average of
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the element and its 4 neighbors and writes the result to the corresponding element in a

matrix of the same dimensions. The kernel is highly parallel as each element is processed

independently but the amount of computation per point is very small. The compiler was

able to successfully carry out the array access analysis and was able to generate the GPU

code for this benchmark. However, the data transfer overhead considerably outweighed the

computation time savings of the GPU. Therefore, the benchmark ran slower when using

a GPU compared to OpenMP. The results are reported in Table 7.9. For each case, the

minimum, maximum and mean execution times are presented.

Table 7.9: Execution time for 5-point stencil benchmark (milliseconds)
Problem size 1024 2048 3072 4096
Serial Time min 10.8 43.3 97.5 175

max 10.9 43.7 98.2 176.6
mean 10.8 43.4 97.7 175.8

OpenMP 1 thread min 10.1 46 70 150
max 10.26 47 71.24 152
mean 10.17 46.3 70.4 151

OpenMP 4 threads min 5 24 47.3 58.1
max 5 24 47.8 58.5
mean 5 24 47.5 58.2

GPU Total (Opt) min 65 98.8 123.1 1010
max 65.8 99.6 124.9 1016
mean 65.3 99.1 123.7 1014

GPU Only (Opt) min 0.39 0.89 2.8 25
max 0.39 0.89 2.8 26
mean 0.39 0.89 2.8 25.5

GPU Total (No Opt) min 35.3 63.1 112.1 1000.3
max 35.6 63.7 112.7 1006
mean 35.4 63.25 112.3 1002

GPU Only (No Opt) min 0.59 2.0 4.2 50
max 0.59 2.0 4.2 52
mean 0.59 2.0 4.2 51

7.5 RPES benchmark

RPES benchmark is a Python adaption of the benchmark from Parboil suite. The bench-

mark involves indirect memory loads and triangular loops. UnPython determined that a

GPU version cannot be generated and therefore did not generate calls to the JIT com-

piler. Therefore, the performance did not change when the GPU was enabled because the

GPU was never used and the JIT compiler was not called. The compiler only generated

an OpenMP version of the benchmark. This benchmark illustrates that the programmer

can safely add GPU parallel annotations without any fear of errors in the case of compiler

limitations.

The benchmark was only tested with default parameters provided by the benchmark
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suite. The serial version of the benchmark completed in 259 seconds and the parallel version

completed in 62 seconds.

7.6 Remarks

The section evaluated the implemented compiler over several kernel benchmarks. The gen-

erated GPU code delivered over 2 orders of magnitude performance over OpenMP code for

some benchmarks. Jit4GPU was also able to deliver better performance using the GPU

than highly tuned CPU libraries such as ATLAS. The loop optimizations done by the com-

piler were also found to be effective and provided considerable speedups over unoptimized

GPU code. The performance of some benchmarks, such as 5-point stencil, were found to be

bound by the data transfer overhead making it unsuitable for execution on the GPU.
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Chapter 8

Related Work

The most important previous research that relates to the main contributions of this thesis

can be divided into three cathegories: the conversion of code originally written to be inter-

preted in Python to compiled code to run in a CPU, the analysis of memory accesses via

arrays and the transfer of relevant memory regions between the CPU main memory and

the GPU memory, and the construction of compilers for general-purpose computations that

execute in GPUs. This chapter will discuss each category of related work in the subsequent

sections.

8.1 Compiling Python for CPUs

UnPython is not the first compiler attempting to compile Python to C/C++ or other lower

level language. Various compilers have been developed that compile Python or a closely

related dialect. Pyrex [5] is a compiler that compiles the Pyrex language to C/C++. Pyrex

language is a statically typed language with many syntactic similarities to Python. Pyrex

also has special syntax for interaction with C libraries. The major advantage of Pyrex over

unPython is that it allows very easy interaction with C libraries and it has a very simple

and efficient way of generating Python bindings for C libraries. However Pyrex language is

not Python and will not run on the Python interpreter. Further, Pyrex currently has no

support for NumPy arrays and does not support any parallel programming features.

Cython [2] is a fork of Pyrex and has added many features over Pyrex. Cython’s syntax

is much closer to Python and does support efficient access to NumPy arrays. However,

Cython does not support any parallel programming features.

Several compilers have attempted to compile pure Python to lower-level languages using

type inference. Shedskin [13] is a compiler that compiles pure, unannotated Python to

C++. Shedskin uses type inference and the type inference requires certain implicit typing

restrictions on the Python code being compiled. Shedskin uses a much more advanced

type inferencing algorithm than unPython and is designed to be a whole-program compiler.
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However Shedskin does not support efficiently accessing NumPy arrays and does not have

any parallel programming features.

Another compiler that compiles pure Python to lower level language is the RPython

[11] compiler present in the PyPy [4] project. PyPy is an attempt to write the Python

interpreter in Python itself. To achieve this goal, the interpreter is written in a subset of

Python called RPython that includes various implicit type-based restrictions. A compiler

then compiles RPython to various backends such as C. Various other backends are also in

progress including an LLVM backend and a Java backend. Therefore, in the future PyPy

can compile RPython to C, LLVM and Java. However, PyPy does not have support for

efficient access of NumPy arrays. To gain support for NumPy arrays, PyPy will require

implementation of NumPy array in RPython.

In a very different direction, a new project called Unladen Swallow [7] is a branch of

the standard Python interpreter with an LLVM-based JIT compiler. The project aims to

be a replacement of the standard interpreter and, as such, requires no changes in Python

code but may break C-API compatibility with the standard interpreter. One of the future

goals of the project is to have a completely thread-safe Python interpreter that will allow

true multithreaded applications in Python. The project is looking at replacing the garbage-

collection (GC) mechanism of the standard Python interpreter with an alternate thread-

safe scheme because the current reference count based GC is one of the major obstacles

to thread safety in the interpreter. Unladen Swallow is still a work in progress and if it

succeeds in building a high-performance thread-safe interpreter and offering a thread-safe

C API, then it has the potential to be a really good complement to unPython. The current

Python interpreter has severely handicapped the parallel programming capability offered by

unPython.

8.2 Array access analysis

The primary objective of array access analysis in this thesis is to find out the memory

locations to be transfered between CPU and GPU memories. The array access analysis used

is based on the concept of LMADs. LMADs were first defined by Paek et al. [17]. They

proposed LMADs as an efficient way to capture very accurate array access information.

They also discussed several operations on LMADs such as a set intersection of LMADs.

However they did not describe a method to compute the union of LMADs. In this thesis, I

proposed a method to approximately compute and represent a union of RCSLMADs which

are a a subclass of LMADs.

In this thesis, array access analysis is done by the JIT compiler jit4GPU and the concept

of LMADs is not used by the ahead-of-time (AOT) compiler unPython. One significant

advantage of doing array-access analysis just before executing a loop is that the value of
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loop-invariant symbolic constants is known just before executing the loop. AOT compilers

do not know the value of symbolic constants and thus may have to deal with a very large

number of possible scenarios of memory access patterns. JIT compilers can know the value

of the symbolic constants and can do a much more precise array-access analysis. Jit4GPU is

not the first compiler to do array-access analysis at runtime using LMADs. Rus et al. present

a runtime representation of LMADs called RT-LMADs [18],[19]. They were interested in

applying array-access analysis for parallelization and hence their implementation focused

on computing dependence information. They represented a union of LMADs simply as a

list of LMADs. However this representation is not useful for this thesis. In this thesis,

dependence information is not required and instead an efficient representation of the union

that easily maps to a different address space is needed. The algorithm presented in this

thesis for computation of union is a unique contribution of this thesis.

8.3 Compilers for GPGPU

The field of general-purpose computations on GPUs started with disguising general-purpose

programs as graphic-shader programs. The real emergence of GPGPU started with lan-

guages such as Brook [12]. Brook is an extension of the C programming language. Brook

provides a stream datatype and introduces kernel functions. Streams are similar to arrays

but represent data to be transferred to the GPU. Kernel functions are functions to be exe-

cuted by each GPU thread and only operate on streams and scalar values. Streams passed

as parameters to the kernel functions were marked as input or output streams. At the time

the original implementation of Brook was done, GPUs could not do writes to arbitrary lo-

cations. Thus, kernel functions could not write to arbitrary locations. To utilize GPUs for

general purpose computation, the programmer had to first copy data into streams and then

pass these streams to kernel functions. The Brook compiler compiled the kernel functions

into OpenGL GLSL or DirectX 9 HLSL shaders. AMD has extended Brook to create a

language called Brook+ to expose writes to arbitrary locations and to introduce several new

datatypes, but the programming model remains the same. Apart from Brook, several other

stream-based programming languages have been proposed for GPGPU such as StreamIt

[21][22], Sh [16] and Stream Virtual Machine [14].

Currently, APIs such as OpenCL [3] and Nvidia CUDA [1] are available to program

GPUs. Nvidia CUDA is an extension of C/C++. CUDA exposes the GPU as a Single-

Program Multiple-Data (SPMD) machine where the same code is executed by many GPU

threads. In CUDA, the GPU also has its own separate address space and the programmer is

required to manually transfer the data between the CPU and GPU address spaces. CUDA

extends C by providing device function types that are functions to be executed on the

GPU. The code in a device function represents the code to be executed by each GPU
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thread. Device functions are written in a subset of C and also can have added syntax

for utilizing GPU hardware features such as on-chip shared memory. The calls to device

functions must also provide a grid of threads that specifies as a parameter the number and

the configuration of GPU threads to be launched. Therefore, overall CUDA provides almost

complete control of the GPU to the programmer but is a fairly low-level programming

model. If a code is required to be portable between CPU and GPU, then writing code in

CUDA can require significant code duplication because two versions (normal C function

and a device function) of the same code may need to be implemented. OpenCL is based on

concepts similar to CUDA. Compared to CUDA, this thesis provides a simpler alternative

to programming GPUs by transferring the burden of generating and optimizing GPU code

from the programmer to the compiler. But the compiler framework presented in this thesis

is not always successful in generating GPU code and the JIT compilation utilized can also

represent a significant performance overhead.

One limitation of APIs such as CUDA and OpenCL is that each performance-critical

function is implemented twice: once as a CPU-specific function and then as a GPU-specific

device function. One attempt to reduce this duplication is offered by MCUDA [20]. MCUDA

compiles CUDA code to multicore x86 code and therefore allows CUDA code to be executed

on multicore CPUs. MCUDA is based on the premise that programmers should only write

the CUDA version of the performance-critical function and the MCUDA automatically

generates a CPU version. Thus, MCUDA is based on a philosophy exactly oppposite of

this thesis. This thesis provides the programmer an illusion of executing the program on

a symmetric multiprocessor machine while automatically utilizing GPU. MCUDA provides

an illusion of executing on a GPU but automatically generates a CPU version if a GPU is

not present.

The work closest to this thesis is the work by Lee et al. on compiling OpenMP code

to Nvidia CUDA [15]. They describe a compiler that can automatically generate Nvidia

CUDA code from C/C++ programs with OpenMP annotations. There are three primary

differences between this thesis and the work done by Lee et al. First, for analyzing which

data to transfer to the GPU, they can only deal with arrays but not with pointers. They

simply transfer the entire array without analyzing what specific memory locations within

the array are accessed in the loop. The approach in this thesis is based upon analyzing

the memory locations accessed and this approach, if used within a C/C++ setting, can be

applied to both pointers and arrays. Second, they cannot tile or break the loop if the data

does not fit into the GPU. If one of the arrays referenced in the loop is too big to fit on

the GPU, they cannot generate GPU code whereas this thesis can tile the loop in some

cases and can thus divide the computation into smaller pieces. Finally, they describe loop

optimizations that are suitable for Nvidia GPU architecture while this thesis is concerned
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with AMD architecture. Their loop optimizations are completely different than the loop

optimizations described in this thesis because the architectures are very different.

Another work that extends OpenMP for GPGPU programming is EXOCHI framework

by Wang et al [23]. EXOCHI is an extension of OpenMP for C/C++ for heterogenous

systems. Their implementation is for a multicore x86 CPU and for an integrated Intel

graphics chipset. Unlike the discrete GPUs considered in this thesis, such as the Radeon

4870, Intel graphics chipsets are integrated into the northbridge of the CPU and do not sit

on a PCIe bus. These integrated chips also do not have a separate onboard memory and can

access the system RAM. EXOCHI therefore does not need to copy data and instead only

needs to remap the memory address translation table from CPU to the GPU. The address

translation remapping is handled by EXOCHI’s runtime. To program the GPU, EXOCHI

requires the programmer to write GPU code but does not require the programmer to do any

data transfers because data transfers are not necessary. Instead, the GPU code can directly

access any data in system RAM thereby simplifying the programming. EXOCHI is only

suitable for systems where both the CPU and the accelerator (such as the GPU) can access

the system RAM directly and where the address translation table can be simply remapped.

Therefore EXOCHI is not applicable to current generation discrete GPUs.

8.4 Conclusions

This thesis describes the first Python compiler to provide simple parallel programming

support for numerical applications. The implented compiler is also one of the first to au-

tomatically map a shared-memory parallel programming model to a GPGPU system. This

thesis describes a new algorithm to automatically transfer relevant data between a CPU

and a GPU. The implemeneted compiler provides a programming model that is simpler to

program than current GPGPU APIs such as CUDA and that relies on compiler analysis

and optimization to automatically generate GPU code.
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Chapter 9

Conclusions

This thesis introduced a new programming model for more efficient programming of numer-

ical programs in Python for execution on GPUs. The thesis also described the design and

implementation of a compiling system to convert numerical Python programs annotated

with type and parallel loop annotations to multi-cores and GPUs. In this new programming

model, a programmer writes code for a simple shared-memory abstraction and the compiler

automatically converts the program to use a GPU as an accelerator. The program remains

portable to multicores and GPUs with no code changes.

The compiler system consists of unPython, an ahead-of-time compiler and jit4GPU,

a just-in-time compiler. Jit4GPU implements a new algorithm to analyze the regions of

memory accessed by an array reference in a loop nest. The algorithm is restricted to a class

of affine accesses termed as RCSLMADs. Jit4GPU automatically transfers the required data

for the computation between the CPU and the GPU based on the results of the array access

algorithms. Jit4GPU is not a general-purpose JIT compiler and only works on numerical

programs represented as parallel loop nests with array accesses representable as RCSLMADs.

Jit4GPU generates GPU code from a typed abstract-syntax-tree (AST) representation of the

Python program generated by unPython. Jit4GPU also performs several loop optimizations

such as loop unrolling and memory load coalescing.

The performance evaluation used several numerical kernels. On some kernels, Jit4GPU

performs over 100 times faster than OpenMP code generated by unPython. Jit4GPU also

delivers better performance than some highly tuned CPU libraries, such as ATLAS, without

requiring the programmer to do any optimizations such as unrolling or tiling in the original

Python source. Compilers, such as Jit4GPU, allow the programmer to easily utilize the

computational power of modern GPUs for general purpose computation.
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