
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Martin Ichilevici de Oliveira

PTB: An Integrated Page, Thread and Bandwidth
Allocation Approach for NUMA Architectures

PTB: Uma Abordagem Integrada de Alocação de
Páginas, Threads e Banda para Arquiteturas NUMA

CAMPINAS
2016



Martin Ichilevici de Oliveira

PTB: An Integrated Page, Thread and Bandwidth Allocation
Approach for NUMA Architectures

PTB: Uma Abordagem Integrada de Alocação de Páginas,
Threads e Banda para Arquiteturas NUMA

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Guido Costa Souza de Araújo
Co-supervisores/Coorientadores: Prof. Dr. Alexandro José Baldassin

Prof. Dr. José Nelson Amaral

Este exemplar corresponde à versão da
Dissertação entregue à banca antes da
defesa.

CAMPINAS
2016



Na versão final, esta página será substituída pela ficha catalográfica.

De acordo com o padrão da CCPG: “Quando se tratar de Teses e Dissertações finan-
ciadas por agências de fomento, os beneficiados deverão fazer referência ao apoio recebido
e inserir esta informação na ficha catalográfica, além do nome da agência, o número do
processo pelo qual recebeu o auxílio.”
e
“caso a tese de doutorado seja feita em Cotutela, será necessário informar na ficha cata-
lográfica o fato, a Universidade convenente, o país e o nome do orientador.”



Na versão final, esta página será substituída por outra informando a composição da banca
e que a ata de defesa está arquivada pela Unicamp.



Acknowledgements

First and foremost, I would like to thank my beloved wife Ana, whose companionship,
support and understanding are greatly treasured. I would also like to thank my mother,
Vita, for encouraging me to pursue an academic career and my father, Gustavo, for
introducing me to math and science so early and for keeping it interesting and fun at all
times. I would like to thank my brother Alan and my sister Lara for their friendship and
confidence.

I would also like to thank my advisor, Guido Araújo, for all the incentive and patience
throughout our project. I am very grateful for his openness and guidance ever since I
approached him to learn about a research career.

I thank my co-advisor Alexandro Baldassin for always helping me think outside the
box. I am also thankful to my co-advisor, Nelson Amaral, who taught me so about being
a researcher and for welcoming me in Canada. I thank Emílio Francesquini for his support
and all the effort he put into this work.

I would like to thank the financial support of CAPES and FAPESP.



Resumo

A correta alocação de threads e páginas de memória em nós de computadores de uma
arquitetura NUMA (Non-Uniform Memory Access), visando igualar a demanda por aces-
sos remotos com a disponibilidade de banda de comunicação entre os nós, pode ter um
impacto significativo no tempo de execução de programas. Tipicamente, esta alocação
deve atender quatro objetivos simultaneamente: (a) manter threads próximas às páginas
que elas acessam; (b) distribuir a carga de trabalho de maneira uniforme entre todos os
nós; (c) manter a demanda à memória abaixo da banda suportada pelo controlador de
memória de cada nó; e (d) realocar threads e páginas de memória de acordo com alterações
nos padrões de acesso do programa. A maioria das soluções existentes para o problema
de distribuição de threads e páginas em máquinas NUMA concentra-se somente em um
subconjunto destas metas, principalmente devido à complexidade das soluções requeridas
e à sobrecarga resultante da implementação.

Este trabalho propõe o algoritmo PTB, uma heurística que busca simultaneamente
alocar (P)áginas, (T)hreads e (B)anda por todos os nós de uma arquitetura NUMA.
Ao contrário de abordagens alternativas, a solução integrada PTB procura, ao mesmo
tempo, distribuir o trabalho de maneira uniforme entre todos os nós e limitar a demanda
aos controladores de memória de cada nó. Além disso, o algoritmo aborda questões de
assimetria presentes na infraestrutura de comunicação de máquinas NUMA modernas.

Resultados experimentais utilizando benchmarks das suítes Parsec, NAS e Metis re-
velam que PTB produz média geométrica de speedup 1.16x em relação ao escalonador
padrão do Linux. Além disso, para um grande conjunto de programas, PTB produz
speedups entre 1.6x e 2.0x, enquanto a solução para balanceamento NUMA do Linux
mantém-se abaixo de 1.2x ou até mesmo os desacelera.



Abstract

In a NUMA machine, a program’s execution time can be significantly impacted by how
data and tasks are distributed between nodes. Thus, correctly assigning threads and
memory pages is paramount. The correct assignment should match the demand for re-
mote data transfers with the available communication bandwidth and memory controller
capacity.

Such assignment typically requires dealing with four simultaneous goals: (a) keep
threads close to the memory pages they access; (b) evenly distribute the workload among
nodes; (c) maintain memory demand below memory controllers’ bandwidth; and (d) re-
assign threads and pages to follow changes in the memory access pattern of the program.
However, most solutions to this problem address only a subset of these goals, mainly
because they seek to avoid complex solutions or expensive implementation overheads.

This work proposes PTB, a heuristic-based algorithm that simultaneously allocates
(P)ages, (T)hreads and (B)andwidth to each node of a NUMA architecture. In contrast
to alternative approaches, PTB integrated solution seeks both to uniformly distribute
workload and to limit memory demand to the controllers’ bandwidth while also addressing
asymmetry issues found in the communication paths of modern NUMA architectures.

Experimental results using Parsec, NAS and Metis benchmarks reveal that PTB pro-
duces geometric mean speedups of 1.16x when compared to Linux’s default scheduler. In
particular, for a number of programs, PTB speedups ranged from 1.6x to 2x while Linux’s
automatic NUMA balancing either stayed below 1.2x. or resulted in slowdowns.



List of Figures

1.1 Topology of an asymmetric machine . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Bandwidth with different thread distributions . . . . . . . . . . . . . . . . 15
1.3 DRAM samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Thread migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Page migration (adapted from [52]) . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Task grouping (adapted from [52]) . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Bandwidth between all processors and nodes . . . . . . . . . . . . . . . . . 29
4.2 Bandwidth graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 The experimental platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Congestion-locality tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 A memory histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Profiling hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Memory accesses: equivalent representations . . . . . . . . . . . . . . . . . 38

6.1 PTB overhead (separated by phase) . . . . . . . . . . . . . . . . . . . . . . 45
6.2 PTB overhead (heatmap) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Conflicts in the hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 Speedup and comparison to other techniques . . . . . . . . . . . . . . . . . 50
6.6 Speedup and number of pages migrated per cycle . . . . . . . . . . . . . . 51



List of Tables

1.1 Thread configurations used in Figure 1.2 . . . . . . . . . . . . . . . . . . . 14

5.1 Algorithms’ Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Programs and parameters/input size used . . . . . . . . . . . . . . . . . . 44



Contents

1 Introduction 11
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Why is this a relevant problem? . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 A motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Related Work 18
2.1 Possible Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Programmer control . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Allocation Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.5 Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 OS-related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Thread clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Congestion-aware scheduler . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Bandwidth Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Memory access pattern . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Linux’s NUMA Scheduler 24

4 Modeling NUMA Architecture Performance 27
4.1 Performance characterization . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 The Bandwidth Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Congestion/remote access tradeoff . . . . . . . . . . . . . . . . . . . . . . . 32

5 The PTB Algorithm 34
5.1 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Thread distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Page distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 A Performance Study of PTB 43
6.1 What is PTB overhead? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 How hash conflicts impact accuracy and performance? . . . . . . . . . . . . 47
6.3 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 How does PTB compare to alternative solutions? . . . . . . . . . . . . . . 50

7 Conclusion 53

Bibliography 55



Chapter 1

Introduction

Non-Uniform Memory Access (NUMA) architectures are machines containing a large num-
ber of cores organized in nodes ; each node has its own physical memory and nodes are
linked together using a fast interconnect network [46]. Although physical memory is
distributed among nodes, NUMA hardware and OS provide a mechanism that enables
a single memory address space programming model. This mechanism detects the node
where the accessed data is located and forwards the access to that node’s physical mem-
ory. Given that accesses to the memory of a local node (local memory) are faster than
those to a remote node memory (remote memory), assigning threads and memory pages to
NUMA nodes in a way that leads to reduction in program execution time is an important
research problem.

A solution to this problem requires a careful evaluation of the tradeoff among four
conflicting goals. First, a thread should be allocated to the node that contains the pages
that the thread accesses so that it can benefit from fast local memory accesses. Second,
given that typical parallel programs share data, it is often not possible to both evenly
distribute the thread’s workload amongst the nodes and keep all accesses local; hence the
allocation algorithm has to determine which pages should stay local and which pages will
be accessed remotely. Third, memory controllers have limited bandwidth and thus the
algorithm must distribute pages in a way that does not exceed the memory throughput of
each controller; if the memory demand for a specific node goes above its memory controller
supported bandwidth, memory accesses are delayed thus reducing performance. Finally,
programs have execution phases; memory accesses change during a program execution
and thus require the migration of pages and threads to avoid performance degradation.
In general, any solution to the NUMA thread/page allocation problem requires addressing
all the above mentioned goals together.

Figure 1.1, which is adapted from a NUMA machine documentation [12], shows a
typical NUMA configuration with four nodes, and a partial communication interconnect.
A detailed description of such architecture is available in Chapter 4. This machine exhibits
asymmetric features that typically are not taken into consideration in the design of NUMA
performance optimizers. For example, as shown in Figure 1.1, not all nodes are directly
connected to memory, thus optimizing for locality is not enough to improve performance.
Moreover, although not shown in the figure, it is not uncommon to find architectures
for which the interconnection links are asymmetric, i.e. the bandwidth available for

11



CHAPTER 1. INTRODUCTION 12

communication in each direction of a link is different [29].
Writing a NUMA-aware computer program is not an easy task. Although libraries [44],

runtimes [10] and compiler support [42] have been proposed to assist developers, the
allocation of threads and pages to nodes is complex and is typically left to the scheduler or
operating system. Existing strategies attempt to increase data locality [45, 30, 55] and/or
to minimize congestion [32, 17, 8]. For example, Linux has a NUMA-aware scheduler that
seeks to co-locate threads that share data [16]. However, most of these approaches do
not simultaneously take into consideration the interplay between page accesses, thread
and bandwidth allocation and the existing asymmetry in the links of modern NUMA
computers [29].

P1

P0

P5

P4

P3

P2

P7

P6

DRAM

DRAM DRAM

DRAM

8-bit link

16-bit link

Node 0

Node 2 Node 6

Node 4

Figure 1.1: Topology of an asymmetric machine (adapted from [12])

This work proposes PTB, an approximation algorithm that simultaneously allocates
(P)ages, (T)hreads and (B)andwidth to each node of a NUMA architecture. It seeks to
minimize memory access latency while balancing memory bandwidth usage and taking
architectural asymmetries into consideration. A key insight in the design of PTB is an
empirical procedure that measures actual machine parameters such as memory-controller
and interconnect bandwidths so as to build an architecture performance model. PTB uses
this model, and an online execution profiling, to dynamically assign threads and pages to
computing nodes. The experimental evaluation, described in Chapter 6, shows that for
NPB, Parsec and Metis benchmarks PTB can result in speedups of up to 2.0x, with a
geometric mean of 1.16x when compared to the default Linux NUMA-aware scheduler.



CHAPTER 1. INTRODUCTION 13

1.1 Contributions

This work makes the following contributions:

• An experimental analysis of the tradeoff between increasing the number of local
accesses and reducing congestion in memory controllers. As detailed in Section 4.3,
this analysis reveals that minimizing controller congestion after saturating its band-
width is more important than prioritizing local accesses.

• A new architectural performance model of the actual hardware called Bandwidth
Graph (BG) that summarizes the key features of a real machine. NUMA architec-
tures can have a very large number of possible configurations resulting from the
combination of: processor types, interconnect topologies, number and distribution
of memory modules, interconnect bandwidth and routing algorithms, etc. It can
be difficult for any page/thread allocation algorithm to take all these features into
consideration without a model to summarize them. Section 4.2 describes how BG
empirically models the architectural configuration thus abstracting the underlying
hardware.

• PTB, a page, thread and bandwidth allocation algorithm for NUMA machines that
uses BG to guide allocation decisions. PTB, described in Chapter 5, works in three
steps that execute periodically: (a) online profiling of memory accesses performed
by threads to pages; (b) calculation of thread similarity indexes, followed by the
corresponding thread migrations; and (c) memory pages redistribution based on
bandwidth estimation.

The rest of this work is organized as follows. Chapter 2 discusses the literature in the
area putting this work in perspective. Chapter 3 explains how Linux’s NUMA scheduler
works. Chapter 4 describes the key features of a NUMA architecture and the machine
used in this work. Chapter 5 details the PTB allocation algorithm proposed herein.
Chapter 6 describes the experimental results of applying PTB to Parsec, NPB and Metis
benchmarks while Chapter 7 concludes the work.

1.2 Why is this a relevant problem?

The memory system is often the bottleneck in computer systems [41]. The NUMA archi-
tecture was created and is used to minimize the overhead of memory accesses. However,
a careful distribution of both data and threads between nodes is paramount in order to
extract the maximum possible performance.

To illustrate why a correct placement is required, consider Figure 1.2. This figure shows
the memory bandwidth of a memory-intensive application that access pseudo-random
memory positions (described in further details on Section 4.1). All of this application’s
data is allocated in only one node (or distributed between all nodes, as in the last graph)
and the experiment is repeated each time with a different thread distribution. Table 1.1
shows all the tested thread configurations used. Each of the top four graphs shows the
bandwidth obtained when allocating memory exclusively in one of the four available nodes.



CHAPTER 1. INTRODUCTION 14

Table 1.1: Thread configurations used in Figure 1.2

Id Distribution Id Distribution Id Distribution

0 0 1 2 3 4 5 6 7 36 0 1 8 9 16 17 24 25 72 8 9 16 17 24 25 40 41
1 8 9 10 11 12 13 14 15 37 0 1 8 9 16 17 32 33 73 8 9 16 17 24 25 48 49
2 16 17 18 19 20 21 22 23 38 0 1 8 9 16 17 40 41 74 8 9 16 17 24 25 56 57
3 24 25 26 27 28 29 30 31 39 0 1 8 9 16 17 48 49 75 8 9 16 17 32 33 40 41
4 32 33 34 35 36 37 38 39 40 0 1 8 9 16 17 56 57 76 8 9 16 17 32 33 48 49
5 40 41 42 43 44 45 46 47 41 0 1 8 9 24 25 32 33 77 8 9 16 17 32 33 56 57
6 48 49 50 51 52 53 54 55 42 0 1 8 9 24 25 40 41 78 8 9 16 17 40 41 48 49
7 56 57 58 59 60 61 62 63 43 0 1 8 9 24 25 48 49 79 8 9 16 17 40 41 56 57
8 0 1 2 3 8 9 10 11 44 0 1 8 9 24 25 56 57 80 8 9 16 17 48 49 56 57
9 0 1 2 3 16 17 18 19 45 0 1 8 9 32 33 40 41 81 8 9 24 25 32 33 40 41
10 0 1 2 3 24 25 26 27 46 0 1 8 9 32 33 48 49 82 8 9 24 25 32 33 48 49
11 0 1 2 3 32 33 34 35 47 0 1 8 9 32 33 56 57 83 8 9 24 25 32 33 56 57
12 0 1 2 3 40 41 42 43 48 0 1 8 9 40 41 48 49 84 8 9 24 25 40 41 48 49
13 0 1 2 3 48 49 50 51 49 0 1 8 9 40 41 56 57 85 8 9 24 25 40 41 56 57
14 0 1 2 3 56 57 58 59 50 0 1 8 9 48 49 56 57 86 8 9 24 25 48 49 56 57
15 8 9 10 11 16 17 18 19 51 0 1 16 17 24 25 32 33 87 8 9 32 33 40 41 48 49
16 8 9 10 11 24 25 26 27 52 0 1 16 17 24 25 40 41 88 8 9 32 33 40 41 56 57
17 8 9 10 11 32 33 34 35 53 0 1 16 17 24 25 48 49 89 8 9 32 33 48 49 56 57
18 8 9 10 11 40 41 42 43 54 0 1 16 17 24 25 56 57 90 8 9 40 41 48 49 56 57
19 8 9 10 11 48 49 50 51 55 0 1 16 17 32 33 40 41 91 16 17 24 25 32 33 40 41
20 8 9 10 11 56 57 58 59 56 0 1 16 17 32 33 48 49 92 16 17 24 25 32 33 48 49
21 16 17 18 19 24 25 26 27 57 0 1 16 17 32 33 56 57 93 16 17 24 25 32 33 56 57
22 16 17 18 19 32 33 34 35 58 0 1 16 17 40 41 48 49 94 16 17 24 25 40 41 48 49
23 16 17 18 19 40 41 42 43 59 0 1 16 17 40 41 56 57 95 16 17 24 25 40 41 56 57
24 16 17 18 19 48 49 50 51 60 0 1 16 17 48 49 56 57 96 16 17 24 25 48 49 56 57
25 16 17 18 19 56 57 58 59 61 0 1 24 25 32 33 40 41 97 16 17 32 33 40 41 48 49
26 24 25 26 27 32 33 34 35 62 0 1 24 25 32 33 48 49 98 16 17 32 33 40 41 56 57
27 24 25 26 27 40 41 42 43 63 0 1 24 25 32 33 56 57 99 16 17 32 33 48 49 56 57
28 24 25 26 27 48 49 50 51 64 0 1 24 25 40 41 48 49 100 16 17 40 41 48 49 56 57
29 24 25 26 27 56 57 58 59 65 0 1 24 25 40 41 56 57 101 24 25 32 33 40 41 48 49
30 32 33 34 35 40 41 42 43 66 0 1 24 25 48 49 56 57 102 24 25 32 33 40 41 56 57
31 32 33 34 35 48 49 50 51 67 0 1 32 33 40 41 48 49 103 24 25 32 33 48 49 56 57
32 32 33 34 35 56 57 58 59 68 0 1 32 33 40 41 56 57 104 24 25 40 41 48 49 56 57
33 40 41 42 43 48 49 50 51 69 0 1 32 33 48 49 56 57 105 32 33 40 41 48 49 56 57
34 40 41 42 43 56 57 58 59 70 0 1 40 41 48 49 56 57 106 0 8 16 24 32 40 48 56
35 48 49 50 51 56 57 58 59 71 8 9 16 17 24 25 32 33

The last graph shows the bandwidth when memory is allocated interleaved. The labels
on the x axis show the processors in which the threads were running: cores 0-7 are on P0
(node 0), cores 8-15 are on P1 (node 0), . . . , cores 56-63 are on P7 (node 6). The red
dashed line is the average.

As one can see, the bandwidth can range from as low as 1.6 GB/s to as high as 4
GB/s, depending on where threads and data are allocated. Thus, in memory-bounded
applications, the different bandwidths translate into different waiting times for memory



CHAPTER 1. INTRODUCTION 15

 1

 1.5

 2

 2.5

 3

 3.5

 4

B
a

n
d

w
id

th
 (

G
B

/s
)

Node 0

 1

 1.5

 2

 2.5

 3

 3.5

 4

B
a

n
d

w
id

th
 (

G
B

/s
)

Node 2

 1

 1.5

 2

 2.5

 3

 3.5

 4

B
a

n
d

w
id

th
 (

G
B

/s
)

Node 4

 1

 1.5

 2

 2.5

 3

 3.5

 4

B
a

n
d

w
id

th
 (

G
B

/s
)

Node 6

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

 9
0

 9
5

 1
0

0

 1
0

5

B
a

n
d

w
id

th
 (

G
B

/s
)

Thread configuration (check Table 1.1)

Interleaved

Figure 1.2: Bandwidth with different thread distributions



CHAPTER 1. INTRODUCTION 16

requests. Because the application is halted waiting for the memory request, its total
running time is also impacted. Hence, this shows the importance of maximizing memory
bandwidth usage.

An interesting observation from this experiment is that there is neither an universal
optimal thread distribution nor an universal optimal data allocation: a thread distribution
that works well for a particular data allocation may not necessarily yield high bandwidth
with another data allocation. For example, for thread distribution 24-25-26-27-28-
29-30-31, the optimal bandwidth is obtained when all data is on node 2 (3.32 GB/s),
whereas the worst bandwidth happens when data is on node 6 (1.56 GB/s). Node 2,
however, is not always the optimal choice for data allocation – actually, it the worst choice
for thread configuration 56-57-58-59-60-61-62-63 (1.55 GB/s). Thus, one can see that
no particular memory or thread allocation is guaranteed to sustain high bandwidth on all
configurations.

On average, interleaved allocation performs better than the other allocations (3.20
GB/s for interleaved vs. 2.87-2.97 GB/s for the other nodes). This is not difficult to
explain, as the pressure on memory controllers and the traffic on interconnection links is
distributed, increasing parallelism and decreasing congestion. While this is true for the
average, it is easy to see that there is often a better thread allocation than interleaving. For
instance, consider thread distribution 16-17-18-19-24-25-26-27. For this distribution,
interleaved allocation has bandwidth of 2.94 GB/s. Allocation on nodes 0, 2, 4 and 6,
has, respectively, 2.35, 3.47, 3.12 and 2.36 GB/s. This happens because cores 16-19 are on
node 2 and cores 24-27 are on node 4. In this case, even though allocating data exclusively
either on node 2 or on node 4 increases contention, it also increases data locality. The
latter, however, has a more significant impact on bandwidth than the former (in this
particular case, at least), thus increasing bandwidth.

This simple experiment shows that correctly assigning threads and data is important
for performance on NUMA machines.

1.3 A motivating example

Fluidanimate is a Parsec benchmark [7] that simulates a fluid’s motion over time, for
animation purposes. It discretizes the fluid into 3-dimensional particles and interpolates
intermediate results. Parallel threads simultaneously simulate multiple particles and each
particle only interacts with neighboring cells. Therefore, a thread operates mostly within
its set of private memory pages, with low sharing (at boundaries).

Canneal, another Parsec benchmark, minimizes the routing cost of chip design. It is
a lock-free implementation of an application that tries to swap pseudo-random elements
from two arrays. It runs for a fixed number of iterations (input-dependent), also with
multiple parallel threads. The pseudo-random memory access pattern represents a worst-
case scenario in terms of memory accesses, as caches and memory prefetchers are not very
effective. Unlike fluidanimate, it is a much more regular program, in the sense that it
has a single kernel that is repeated multiple times.

Figures 1.3a and 1.3b respectively show the memory profile of fluidanimate and



CHAPTER 1. INTRODUCTION 17

canneal, as the number of memory accesses per second that miss all cache levels and are
supplied by the main memory (DRAM samples). The different phases of fluidanimate
can be clearly seen, as the number of samples changes considerably during program ex-
ecution. The samples on canneal, on the other hand, follow a more constant pattern,
result of its single phase.

(a) fluidanimate (b) canneal

Figure 1.3: DRAM samples

These programs reflect very distinct behaviors and memory profiles. Both are, how-
ever, very sensitive to inefficient memory affinity choices. For example, both store most of
their data in large C++ vectors, which are initialized by a single thread. Thus, Linux’s de-
fault first-touch policy allocates all memory on a single node. Remember that canneal’s
memory access pattern is random, that is, all threads may access any position in the
vector. Hence, a congestion effect occurs. Simply by changing allocation to an interleave
pattern reduces running time by half. Fluidanimate also benefits from an interleaved
allocation, although not as much. This happens because fluidanimate does not have as
much sharing as canneal. For this benchmark, the optimal choice is to migrate all data
to the node where the threads that access it are.

The performance degradation due to poor placement choices shows the importance of
matching the program’s memory access pattern to a correct allocation. Since it is not
always easy to identify and/or manage what the pattern is (from the programmer’s per-
spective), it is very rare to see programs that exploit NUMA machine’s intrinsic memory
layout.

PTB is a Linux kernel module that automatically monitors what memory pages are
being used by a parallel program, cluster and migrate threads that have similar memory
access patterns and migrates memory pages in order to increase data locality and decrease
congestion on memory controllers. The rationale behind PTB is that bandwidth is limited
and that an improper thread/memory distribution can create unnecessary bottlenecks
on memory controllers and interconnect links. PTB produces a speedup of 1.45x for
fluidanimate and of 1.84x for canneal over the default Linux scheduler.



Chapter 2

Related Work

Several techniques and models have been proposed in the literature to try to deal with the
problem of page distribution in NUMA machines, many of which are available in current
systems. In this section, we present some alternatives and comment their applicability.

2.1 Possible Approaches

2.1.1 Programmer control

The most straightforward way to control the memory layout in NUMA machines is to
pass control to the programmer, through libraries [2]. Clearly, this technique has great
flexibility and, if used by an experienced programmer that understands in detail the
application’s memory access pattern and the available hardware, can obtain significant
performance gains. However, this practice demands expertise from the programmer and
can lead to performance losses if used wrongly.

Library functions empower the programmer to set memory policies program-wide or
to specific memory ranges [2]. These policies include: determining how memory should
be allocated: on a particular node (numa_alloc_onnode()), on the current local node
(numa_alloc_local()) or interleaved (numa_alloc_interleaved()); moving memory
pages for specific nodes (numa_move_pages()); migrating all of a processor’s memory
to another node (numa_migrate_pages()); pinning the execution of a process to a set
of nodes (numa_run_on_node_mask()) and setting from which nodes memory can be
allocated (numa_set_membind()).

The combination of these functions gives the programmer great flexibility. However,
not only does it impacts development and maintenance, it also compromises portability.
Hence, they are recommended for developers who have great architectural knowledge and
for applications designed to run on specific hardware.

2.1.2 Allocation Policies

An allocation policy is a set of guidelines passed to the operating system that determines
how memory should be allocated. Modern operating systems support various policies [28,
5], including:

18



CHAPTER 2. RELATED WORK 19

Local Allocate memory on the node that requested it.

Binded Allocate memory only in a predetermined set of nodes, regardless of which node
requested it. If there is not enough memory in the specified nodes, return an error.

Preferred Allocate memory preferably in a set of nodes. If there is not enough memory
in the specified nodes, try using other nodes.

Interleaved Allocate memory in round-robin fashion in a predetermined set of nodes.

First touch Allocate memory on the node that first touches (read or write) the data.

Next-touch Migrate data to the next node to touch the data.

Allocation policies remove from the programmer the responsibility for memory distri-
bution and can give significant performance gains. Majo and Gross [34] exemplify this
with an application in which a thread allocates and initialize all memory and then all
other threads, running on multiple nodes, process on this data. This is a common design
in parallel applications. A local policy would allocate all memory on only one node, while
the interleaved policy would distribute it to all nodes. In the first case, a few threads
would have only local accesses, while the rest would only have remote accesses. In the
second case, all threads will have both remote and local access, generating a performance
gain of 35%. On the other hand, a program in which each thread allocates its own memory
and has no memory sharing would benefit from a local allocation policy.

The next-touch migration policy is useful when the application changes the mem-
ory access pattern [51]. Lof and Holmgren show that the next-touch policy, when used
appropriately, can produce a speedup of up to 64% [31].

Allocation policies can be defined at various levels. There is a global policy (local
allocation by default), policies that can be specified at the time of invocation of a program
(through tools such as numactl [28]) or for specific ranges of memory, as explained in
Section 2.1.1.

Even though allocation policies require less from the developer, its usefulness is still
limited because it also requires knowledge of the program’s memory access patterns.
Furthermore such policies are static, meaning that changes in memory access patterns
within the program can not be accommodated, except for direct programmer intervention.
Finally, memory migration is not possible with these techniques.

2.1.3 Compilers

Compilers are very powerful tools and are capable of performing rich analysis that can be
used to address the problem of memory locality.

Frameworks such as OpenMP provide a wealth of information that an application’s
runtime can use to make informed decisions on where to schedule threads [10]. In addition,
the compiler can assist an application to discover where to allocate or migrate memory.
Piccoli et al. have shown a technique like this that is able to accelerate the execution
of a program by up to four times [42]. However, it is only applicable to a restrict set of
applications.



CHAPTER 2. RELATED WORK 20

Another field explored in compiler-assisted NUMA data placement is that of directive
pragmas, hints passed on to the compiler by the programmer. These can and have been
used to help the compiler distribute data more efficiently [22, 4]. Even though performance
gains have been reported and its use is fairly simple, this approach presents problems
similar to those shown in Section 2.1.1 because they require the programmer to possess a
detailed knowledge of the available hardware and the application’s memory access pattern.
Furthermore, it compromises portability, as different platforms may perform better with
different distributions.

On the other hand, if no directive pragmas are used, the compiler’s job gets much more
complicated. In this scenario, the parallelization goals and data locality may have different
and conflicting requirements. While the first attempts to distribute data and computation
between all nodes (for effective parallelization), the latter would favor having everything
in one single node (for smaller latency) [39].

2.1.4 Programming Languages

To ease the burden of developing efficient parallel code, several programming languages
have been developed in the last decades. These include Charm++ [25] and Cilk [9] (and
later Cilk Plus). In common, they provide abstractions to threads and cores and include
automatic load balancing. However, they are not natively NUMA-aware, although some
research has been done to include such support [43].

These languages are extensions to existing popular languages (such as C++) and they
claim that it is easy to port existing code to their new languages. This claim only applies
to code that was originally written in the popular programming language in which the new
language was built on. Thus, this approach, even if they eventually become NUMA-aware,
would be limited to a subdomain of programs and would require programmer intervention.

2.1.5 Operating System

In common to the techniques explained in Sections 2.1.1 and 2.1.2 is the fact that they are
both unfeasible to complex large-scale applications because they require detailed knowl-
edge of the application. A viable alternative approached by several authors to achieve an
abstraction for this problem is to delegate distribution to the operating system.

To this extent, the operating system should be able to comprehend the memory usage
pattern of each program. A reliable source for this information is the rate of each core’s
page-faults to each memory page [16]. With this data, the operating system can act to
minimize the average latency to memory.

To accomplish lower memory access latency, operating system developers make use of
two techniques or a combination of them, namely:

• Page migration: a page that was deemed ill-located can be migrated to another
node. This technique involves several operations that introduce overhead: allocating
a new page, updating pointers to the new physical address in the TLB, removing
replicas and copying the old data to the new address [54].



CHAPTER 2. RELATED WORK 21

• Process migration: instead of moving memory pages, one can move the process
to a core closer to the data. This approach implies the loss of the “affinity” created
between the core and the task because the cache content that had been filled is lost.
However, Vaswani et al. show that the affinity loss is a smaller problem and can be
compensated if done in a controlled manner [53]. Care must also be taken not to
overload any core, while leaving others idle.

This approach’s main advantage is its ability to adapt to different phases during a
program execution. Moreover, it removes from the programmer and from the user any
need to worry about underlying hardware characteristics.

There has been extensive work (both in industry and in academia) on Operating
System-based automatic page migration. One of the earliest works was on the Stanford
DASH, a cache-coherent multiprocessor [11]. Chandra et al. compare several scheduling
policies [11]. Because their experimental platform required excessive locking to perform
page migrations, they followed a trace-based approach to show the potential benefit of
page migrations. Furthermore, they compare policies based on cache misses and TLB
misses and show that they can be almost as effective.

Another early approach was featured in the SGI Origin 2000 [13, 24], whose IRIX op-
erating system had an automatic page-migration mechanism. This machine had hardware
counters that could keep track of the ratio between remote and local accesses. When a
threshold is reached, an interrupt is generated to inform the operating system; the ac-
tual migration depends on several filters, including an algorithm to prevent a page from
ping-ponging.

More recently, the Linux kernel community saw an intense debate on whether page
and/or process’ migration should be adopted [14]. Metrics and basic algorithms to dy-
namically understand a processes memory access patterns and to control their migration
were introduced in the Linux kernel [16], including both thread and page migrations.
Tests performed by the Linux community showed that this approach works very well in
programs with fairly regular access patterns [21]. However, as will be shown in Chapter 3,
experiments show that the automatic balancing produces performance loss of more than
60% under certain situations.

A more thorough explanation of how Linux’s NUMA scheduler works and how it
balances page and thread migrations is provided on Chapter 3.

2.2 OS-related work

PTB is an Operating System approach to the NUMA distribution problem. In this section,
a literature review of previous contributions related to this approach is presented. Such
work includes the collocation of threads that share data into the same node, the design
of schedulers that are aware of congestion, the maximization of of asymmetric bandwidth
usage, and the detection of memory access patterns.



CHAPTER 2. RELATED WORK 22

2.2.1 Thread clustering

Kamali shows the benefit of collocating threads that share data in the same processor
to take advantage of shared caches [26]. They use cache-related hardware events (snoops
and cache misses) to estimate how much data sharing there is between two threads and
whether there would be a benefit to migrating threads (considering contention effects).
Their approach, however, can only cluster a small number of threads (equal to the number
of nodes in the machine), because the events that they used are associated to chips and do
not provide information per thread. PTB, on the other hand, as described in Section 5.1,
uses a special set of hardware events that provides the addresses of memory operations
and allows for a finer-grained control for programs executing with many threads.

Tam et al. also use hardware events to capture accessed memory addresses and they
also use a thready similarity index similar to PTB, the difference is that their index is not
normalized [49]. Non-normalized indexes may cause threads with similar access patterns,
but with lower access counts, not to be co-located in the same node. By normalizing the
index when comparing different threads, PTB favors memory access patterns rather than
their absolute number of accesses. Furthermore, Tam et al. use a clustering algorithm
that can split similar threads into different nodes. By using a partition algorithm, PTB
guarantees that similar threads are co-located.

2.2.2 Congestion-aware scheduler

Majo et al. perform an evaluation of the impact of bandwidth sharing on multicore
computers [34]. By measuring the bandwidth for different numbers and combinations of
local/remote threads, they show that in parallel applications, optimizing for data locality
not always yields best performance, as memory controllers bandwidth limitations are also
important. Thus, they recommend that not only software developers, but also operating
systems and compiler (runtime) developers investigate the balance between data locality
and congestion alleviation.

Dashti et al. introduced a congestion-aware memory placement algorithm [17] that
uses precise hardware events to track memory accesses. Their algorithm is composed of
four mechanisms: thread clustering, page co-location, page replication and page inter-
leaving. For thread clustering, they use Kamali’s algorithm. The fate of each page is
determined locally. The first option is co-location: this happens when a memory page
is accessed by a single thread or by a set of threads co-located in the same node. By
migrating the page to that node, they reduce remote accesses. If a page is accessed by
threads in different nodes, they evaluate if the page is a good candidate for replication,
which happens only if it is rarely written to. Unfortunately, the synchronization overhead
required by each write would be too big. Replication, when done correctly, decreases
remote accesses. Finally, the page is marked for interleaving. Their interleaving approach
favors migrating pages to lightly loaded nodes. Unlike PTB, their solution does not con-
sider the asymmetry in NUMA architectures. As detailed in Section 5.1, PTB uses a
modified version of their profiling tool in its application profiling phase.



CHAPTER 2. RELATED WORK 23

2.2.3 Bandwidth Asymmetry

Lepers et al. show that not only are NUMA machines non-uniform, but they are also
asymmetric [29]. They show the benefit of scheduling threads and placing memory in a
way that maximizes bandwidth usage between nodes. Their solution tackles the problem
of applications running with less threads than there are cores available. It tries to predict
which subset of nodes would be optimal for the program. PTB, on the other hand, is an
approximated solution for the harder problem of scheduling an application that uses as
an arbitrary number of threads.

2.2.4 Memory access pattern

Detecting the memory access pattern is fundamental to any algorithm that attempts
page and/or thread migration. Common solutions include a modified page table [18, 16]
or hardware events [17, 29]. Modified page tables require a special kernel but they are
independent of the hardware while hardware events are specific to each hardware but do
not require a custom kernel. PTB uses a hardware-event-based approach.

Modified page tables work by intercepting page faults. At every time step, the
“present” bit is cleared from the page table. When a page fault occurs, the modified
kernel intercepts it and stores the ID of the thread that generated it. This is not a
true page fault, and the addresses translation can be quickly returned to the application,
keeping the overhead low.

The hardware-based approach used to detect memory access patterns uses modern
hardware events, such as Intel PEBS[23] and AMD IBS [3]. Traditional hardware events
work only as counters and do not provide any more information about who or what caused
the event. Modern events, on the other hand, are more precise, in the sense that they
provide more information about the event. Of relevance to this work, the information
of which memory address was accessed and which core generated it (instead of which
node). This enables developers to build a detailed memory access map. Dashti et al. [17]
created and released a profiling tool that uses IBS to create a map of threads’ accesses
to pages, which they use in Carrefour, their congestion-aware scheduler. The profiling
mechanism used in PTB is a variation of that tool. Section 5.1 explains how PTB uses
the hardware-based approach.



Chapter 3

Linux’s NUMA Scheduler

Until version 3.8, Linux’s support for NUMA was deficient [15]. There were competing
solutions under development and there was little code integrated in the Linux develop-
ment tree [14]. On that version, the foundations for automatic NUMA balancing were
introduced by Mel Gorman [16], including the first policy to be merged in the main de-
velopment tree: Migrate on Reference Of pte_numa Node (MORON), which the author
himself described as “a very stupid greedy policy”, but also noted that “it can be faster
than the vanilla kernel and the expectation is that any clever policy should be able to
beat MORON”.

On version 3.13, further support and better algorithms were merged into the tree,
including an algorithm that tracks which pages a process is accessing and groups threads
that share data into “NUMA groups” [16]. Page tracking is done with the modified
page table described in Section 2.2.4 (“false page-faults”). Because page migrations are
expensive, a page is only migrated if it is accessed twice from the same NUMA node or
by the same task. Grouping threads that share data involve a complex set of rules, which
requires tracking the last thread to access each page. When two threads access the same
page, they are put into the same group; the scheduler will favor co-locating threads in the
same group.

The kernel developers were aware that the algorithm should be able to adapt to dif-
ferent situations. For that, they included a set of variables, configurable by the machine
administrator, that control how often and how much memory is invalidated in each cy-
cle [1]. Furthermore, the kernel is able to automatically adapt its invalidation frequency,
given how many local and remote faults happened in the last cycle. If there were many
local accesses, then probably the balancing is already correct and thus the interval be-
tween each cycle is increased. On the other hand, if remote accesses dominate, then this
is an indication that there is still a considerable imbalance, and therefore the interval is
decreased, in order to accelerate pages/processes migration.

The kernel is flexible and can apply either a CPU-follows-memory or a memory-follows-
CPU policy, or a mixture of both, as the next examples show.

24



CHAPTER 3. LINUX’S NUMA SCHEDULER 25

Thread migration

The simplest scenario happens when threads and data are in different nodes and both can
be migrated (migration limitations are discussed in the next examples). To test which
strategy the kernel favors, the following simple experiment was performed: allocate a
large array on a remote node and access it with a single thread until either the thread is
migrated or the pages are migrated, as Figure 3.1 shows. The experiment showed that,
given the choice, the NUMA scheduler will migrate the thread. This is the obvious and
correct choice, as page migrations is much more expensive than thread migration [33].

Tasks

Node 0 Node 1

Data

(a) Before

Tasks

Node 0 Node 1

Data

(b) After

Figure 3.1: Thread migration

Page migration

However, not always is thread migration desirable. A simple scenario in which this is
true is if there are more threads sharing data than there are cores in a node, because this
would cause threads to compete for CPU time, hindering the application.

In this case, page migration may help to improve performance. For simplicity, suppose
there are 2 NUMA nodes, each with the same number of cores, as Figure 3.2 shows. All
cores in both nodes are occupied by threads that share data and there are not enough
available cores in neither node to receive all threads. Hence, thread migrating is not
desirable. Additionally, there is an imbalance between the number of pages in each node,
as Figure 3.2a shows. The scheduler migrates pages from the more heavily used node
(Node 0) to the less heavily used node (Node 1) to try to balance them and consequently
increase bandwidth availability, as Figure 3.2b shows.

Thread and Page migration

Finally, a case in which both threads and pages are migrated is shown in Figure 3.3. In
this scenario, there are two NUMA groups, that is, two sets of threads that share data
inside the set but not between sets (threads and data from the same group have the same
color in the figure). There are threads and pages from both NUMA groups distributed
between the two nodes (Figure 3.3a). The algorithm moves all threads and pages of
each NUMA group to a single node, increasing locality (Figure 3.3b). Simply put, the



CHAPTER 3. LINUX’S NUMA SCHEDULER 26

Tasks

Node 0 Node 1

Data

(a) Before

Tasks

Node 0 Node 1

Data

(b) After

Figure 3.2: Page migration (adapted from [52])

algorithm works by comparing the ratio of local/remote accesses of each thread T in the
current node (C) to a desired target node (D). If T has more accesses to D than to C,
the algorithm tries to find a thread T ′ from D that would benefit from moving to C (or
whose downside would be smaller than moving T to N). This process is repeated until
there are no more potentially beneficial swaps.

Tasks

Node 0 Node 1

Data

(a) Before

Tasks

Node 0 Node 1

Data

(b) After

Figure 3.3: Task grouping (adapted from [52])

Issues with Linux’s NUMA scheduler

According to the algorithm’s main developer “some reports indicate that the performance
is getting close to manual bindings for some workloads but your mileage will vary”. How-
ever, it was found that for several applications, not only did Linux’s NUMA automatic
balancing failed to speed applications up, but it actually decreased performance. For in-
stance, applications is and cg from the NPB benchmark suite had a speedup of 0.6x and
0.75x, respectively. Others had a marginal speedup, far from the possible performance of
manual binding.

These results alone mean that the problem was far from solved. Additionally, the
algorithm is agnostic to heterogeneous NUMA topologies [52], an aspect present in the
machine used in this work.



Chapter 4

Modeling NUMA Architecture
Performance

Given its large configuration space, NUMA architectures are inherently complex [46].
Thus, understanding a NUMA architecture memory and interconnect model is not triv-
ial. Furthermore, architectural designs are in constant evolution and their details are not
always publicly available. In addition, intercommunication links can have asymmetric
bandwidths mainly due to three causes. First, nodes usually do not form a fully con-
nected graph, thus the number of hops required to reach a remote node can vary. Second,
interconnect links’ width and bandwidth may be different [3]. Finally, the link’s band-
width might be different for both directions [29]. As a result, bandwidth information
available in the machine’s manual is often not enough to build a precise model of the
intra and inter node’s communication.

Experimental platform

Consider, for example, Figure 1.1 that shows the topology of the machine used in this
work: an AMD Interlagos 6272 computer containing 4 NUMA nodes. Each node has 2
processors and each processor has 8 cores. At each node, one processor is located in the
upper plane (P1, P3, P5 and P7) while the other is in the lower plane (P0, P2, P4 and
P6). Processors in the same node (e.g. P0 and P1 @ Node 0) are connected with a 16-bit
link, while all other connections are 8-bit wide. In addition, memory distribution across
the machine’s nodes is asymmetric, i.e. there are only 4 memory banks (16 GB each),
one attached to each lower-plane processor (P0, P2, P4 and P6). Therefore, cores from
different processors of the same node (e.g. P2 and P3 @ Node 2) might have different
memory latencies and bandwidths. For the sake of simplicity, memory attached to one
of the lower-plane processors (P0, P2, P4, P6) is regarded as memory attached to the
nodes containing the corresponding processor (N0, N2, N4 and N6, respectively), without
specifying to which processor it is directly connected to.

27



CHAPTER 4. MODELING NUMA ARCHITECTURE PERFORMANCE 28

4.1 Performance characterization

PTB uses a simple profile-based characterization procedure to capture the performance of
the underlying hardware into an architecture model. To do so, intra-node and inter-node
bandwidths of the machine are experimentally and automatically determined once through
a per-thread STREAM-like program [37], that performs pseudo-random memory accesses
to estimate local and remote node bandwidth. Pseudo-random memory accesses are used
to avoid prefetching mechanisms and their impact in the measured bandwidth. However,
traditional pseudo-random generation functions might impose important overheads on
the execution of the profiling. Thus, a simpler method based on the remainder of prime-
number multiplication is used. The use of an appropriate prime numbers minimizes
resonance [40] and, as far as the prefetcher is concerned, memory accesses generated by
this method are very similar to random accesses. An algorithmic view of the method is
shown in Algorithm 1.

Algorithm 1: Pseud-random memory accesses
1 void kernel()
2 {
3 #pragma omp parallel
4 {
5 t = omp_get_thread_num() + 1;
6 prime = 302400041;
7 for (i = 0; i < LENGTH; i++) {
8 p = ((i + LENGTH/NTHREADS * t) * prime) % LENGTH;
9 A[p] = B[p] + scalar * C[p];

10 }
11 }
12 }

The empirical characterization of the machine’s performance requires two measure-
ments. The first experiment estimates the memory bandwidth between processors of
all nodes when only one processor is running the characterization experiment. In the
second experiment, all nodes are running the experiment. The difference between these
experiments is that while the first captures the processor’s maximum bandwidth without
interference from other processors, the second experiment measures the bandwidth in a
stressed scenario, with all processors competing for resources. It is important to remem-
ber that it is not enough to profile each one of the 4 nodes because processors in the same
node have different inter-node connections and thus routing and/or number of hops are
different.



CHAPTER 4. MODELING NUMA ARCHITECTURE PERFORMANCE 29

Bandwidth with one active processor

Algorithm 1 was executed with a different number of threads (always in the same proces-
sor) and the results are shown in Figure 4.1. Data is allocated exclusively in one node, as
identified in the figures’ caption. The curves in the figure corresponding to the lower-plane
processors are in blue and those from the upper-plane processors are in green. Also, data
points corresponding to processors belonging to the same NUMA node are represented
by the same symbol.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8

B
a
n
d
w

id
th

 (
G

B
/s

)

Number of threads

P0
P1

P2
P3

P4
P5

P6
P7

(a) Allocated on node 0

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8

B
a
n
d
w

id
th

 (
G

B
/s

)

Number of threads

P0
P1

P2
P3

P4
P5

P6
P7

(b) Allocated on node 2

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8

B
a
n
d
w

id
th

 (
G

B
/s

)

Number of threads

P0
P1

P2
P3

P4
P5

P6
P7

(c) Allocated on node 4

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8

B
a
n
d
w

id
th

 (
G

B
/s

)

Number of threads

P0
P1

P2
P3

P4
P5

P6
P7

(d) Allocated on node 6

Figure 4.1: Bandwidth between all processors and nodes



CHAPTER 4. MODELING NUMA ARCHITECTURE PERFORMANCE 30

For all nodes and processors, the highest bandwidth is achieved with 3-4 threads,
after which there is a plateau. Local accesses achieve the maximum specified bandwidth,
roughly 4 GB/s, independent of the plane where the processor is located. But processors
in the lower plane have slightly higher bandwidth for a lower number of threads. For
instance, in Figure 4.1a the curve for P0 (lower plane) raises faster than the curve for
P1 (upper plane). For some remote nodes, the sustained bandwidth of the processor in
the lower plane is higher than that of the processor in upper plane. For example, in
Figure 4.1c, Processor P6 (lower plane @ N6) has a higher sustained bandwidth than
processor P7 (upper plane @ N6). Both results are expected because a processor in the
lower plane require one less hop to access any memory bank the than a processor on the
upper plane.

Some interesting insights on the performance of the machine are revealed when com-
paring the multiple graphs of Figure 4.1. By examining the topology of the machine shown
in Figure 1.1 it would appear that the bandwidth to access memory allocated in Node
0 from a thread running in processor P2 should be similar to the bandwidth to access
memory in Node 2 from a thread running in processor P0. However, the experimental
data in Figure 4.1 shows that this is not the case. P2 bandwidth to Node 0 is 2.82 GB/s
while P0 bandwidth to Node 2 is 3.93 GB/s. This unexpected asymmetric bandwidth can
be due to a number of factors, including routing algorithms, difference in link speeds for
each direction, software delays, queue contention, among others. The advantage of the
above characterization approach is that the end-to-end characterization will capture all
such complex effects in a single number. The downside is that the characterization has
to be repeated whenever the hardware operation changes, e.g. after adding new memory
banks, although this is an infrequent event. PTB uses the above described architectural
model to guide its bandwidth allocation heuristic.

4.2 The Bandwidth Graph

The machine’s maximum bandwidths can be summarized by means of the Bandwidth
Graph (BG) shown in Figure 4.2a. The directed edges in this graph flow from the source
of a memory access to its destination. Two numbers are associated to each directed edge:
the first is the lower plane’s processor bandwidth and the second is the upper plane’s
processor bandwidth. For example, in edge N0 → N4 the maximum bandwidth available
from accesses in a thread running at P0@N0 to the memory in N4 is 2.80 GB/s while from
P1@N0 to memory in N4 the maximum bandwidth is 1.86 GB/s. Finally, it is important
to observe that this graph shows all connections between processors and memory, even
though a physical connection might not exist. For example, there is no physical connection
from P7@N6 to the memory in N0, but the characterization procedure estimates a 3.47
GB/s bandwidth. Since they are not directly linked to memory, accesses must make at
least two hops to reach any memory bank, thus impacting performance, which is captured
in the BG.



CHAPTER 4. MODELING NUMA ARCHITECTURE PERFORMANCE 31

Bandwidth with multiple active processors

For the experiments reported in Figure 4.1, only one of the eight processors was active.
This is an optimistic scenario. Programs use multiple processors and often multiple pro-
grams are running simultaneously and competing for memory bandwidth. The second
experiment measures bandwidth under such conditions. This experiment also allocates
all memory in only one node, but now all cores from all processors execute the memory-
intensive code of Algorithm 1, stressing the memory system. The result of this experiment
is shown in Figure 4.2b.

N0 N2

N6N4

3.93/3.59

2.82/1.87

3.89/3.47

2.83/1.87

2.69/1.80

3.96/3.57

2.85/1.88

2.85/1.89

3.95/3.55 2.8/1.86

2.82/1.87 2.82/1.87

4.26/4.26 4.28/4.25

4.27/4.254.28/4.26

(a) Bandwidth graph

N0 N2

N6N4

0.89/0.18

1.09/0.15

0.88/0.08

1.12/0.10

1.10/0.10

0.90/0.10

0.90/0.10

0.90/0.18

0.89/0.08 1.10/0.10

0.91/0.10 0.90/0.18

3.94/0.72 3.94/0.75

3.96/0.753.95/0.74

(b) Bandwidth graph with full load

Figure 4.2: Bandwidth graph

P1

P0

P5

P4

P3

P2

P7

P6

DRAM

DRAM DRAM

DRAM

8-bit link

16-bit link

Node 0

Node 2 Node 6

Node 4

Figure 4.3: Experimental platform (adapted from [12])1

1Figure 4.3 (same as Figure 1.1) is repeated for reader’s convenience.



CHAPTER 4. MODELING NUMA ARCHITECTURE PERFORMANCE 32

Similar to the previous experiment, asymmetry is present. Also, as expected, the
measured bandwidth results were lower than those of the previous experiment. While
the results reported in Figure 4.2a are the bandwidths’ upper bound, the results from
Figure 4.2b can be seen as their lower bound, i.e., the bandwidth that can result when
the memory controller and interconnect links are being stressed.

The Bandwidth Graph is a simple, but not simplistic model: it captures several fea-
tures into one number. It is obtained through a mix of loads and stores and it incor-
porates routing and memory access overheads, TLB misses, local/remote latencies, etc.
The Bandwidth Graph aims at being a generic and experimentally-obtainable bandwidth
representation of any machine. Hence, incorporating other numbers into the model would
make it too complex and defeat its generality purpose.

The main goal of PTB is to maximize bandwidth utilization while minimizing con-
tention and memory access latency. Running the machine with bandwidth utilization
close to those in Figure 4.2b could be very harmful to any memory-bound program. Dur-
ing page/thread allocation, PTB seeks to reach the maximum bandwidth from Figure 4.2a
while minimizing congestion from that point on. To that end, it uses the results from the
optimistic measured upper-bound bandwidth to guide the allocation of pages and threads
across NUMA nodes. Using the pessimistic lower-bound estimation could preclude PTB
from adequately use all the potential available bandwidth, as it could diagnose congestion
before it actually happened or when it did not happen at all.

4.3 Congestion/remote access tradeoff

If memory bandwidth to a given node reaches peak performance with accesses from a few
threads and the machine has several memory channels, it may be interesting to distribute
memory pages across all nodes, even if it means paying the cost of a remote access [32].
The following experiment assesses this tradeoff. Assign 8 threads to a single processor (the
number of cores in each processor), allocate all memory in that processor’s home node
and measure the application’s memory bandwidth (similar to the previous experiments).
Then, repeat the experiment but now with part of the memory allocated interleaved in
the 3 other nodes (which initially had no other memory allocated). Repeat this process
until all memory is allocated exclusively on remote nodes.

Figure 4.4 shows that the bandwidth increases as memory pages are moved away from
the home node. Trading higher remote memory access latency for lower congestion in the
memory controller pays off until around 60-70% of memory is remote. From this point
on, the remote latency cost starts to be the dominant factor on the overall bandwidth.
The different bandwidth between lower-plane and upper-plane processors shown in the
graph can be accredited to their physical distribution, which requires from lower-plane
processors one less hop to reach memory than from upper-plane processors. Thus, they
enjoy higher bandwidth.

As Chapter 5 will show, PTB uses this knowledge to guide its data distribution in
two manners. First, it uses a bandwidth estimation to distribute memory pages, favoring
congestion alleviation instead of data locality (however, if two nodes are similarly loaded,



CHAPTER 4. MODELING NUMA ARCHITECTURE PERFORMANCE 33

 4

 5

 6

 7

 8

 9

 0  20  40  60  80  100

8 threads in:

B
a
n
d
w

id
th

 (
G

B
/s

)

% Remote accesses

P0
P1

P2
P3

P4
P5

P6
P7

Figure 4.4: Congestion-locality tradeoff

the node with the highest number of accesses to the page will receive the page, to increase
locality). Second, when PTB guesses that the memory subsystem is saturated, it uses
interleaved allocation to equally distribute the load between all nodes.



Chapter 5

The PTB Algorithm

PTB is built as a Linux kernel module. Since modules can be added and removed from a
running system, PTB does not require the user to compile a custom kernel.

PTB works in cycles and each cycle is composed of three phases: application profil-
ing, thread migration, and page distribution. The duration of the profiling phase is an
algorithm parameter. For the experimental evaluation this parameter was arbitrarily set
to one second. Further studies of PTB may explore this parameter and determine if it
is program dependent. During the profiling phase, the number of accesses per thread to
each one of the pages is recorded in a memory histogram, where each bucket corresponds
to a memory page, as Figure 5.1 illustrates. Based on this information, threads are mi-
grated to available nodes and then memory pages are distributed to the nodes. A general
overview of PTB can be seen in Algorithm 2 and detailed descriptions of each phase are
presented in the following sections.

p0 p1 p2 p3 p4 p5 pn-2 pn-1

...

N
u
m

b
e
r 

o
f 
a
c
c
e
s
s
e
s

Figure 5.1: A memory histogram

Algorithm 2: Overview of PTB
1 while True do
2 Run profiler for specified time to build memory histogram
3 Distribute threads
4 Distribute pages
5 end

34



CHAPTER 5. THE PTB ALGORITHM 35

Notation and Definitions

Throughout this and the next sections and in the algorithms that describe PTB, several
symbols and definitions are used. They are described below and summarized in Table 5.1.

ttt and TTT a thread and a set of threads;

ppp and PPP a page and a set of pages;

nnn and NNN a node and a set of nodes;

At[p] the total number of accesses of thread t to page p. It is bin p of thread’s t memory
histogram.

bn[p] the estimated bandwidth from all threads running in node n to page p in the current
PTB cycle. It is formally defined in Algorithm 6;

Bn[n
′] available bandwidth from node n to node n′. As PTB distributes threads and
pages between nodes, it “consumes” bandwidth. Initially, it is set to the values from
the Bandwidth Graph and is decremented by bn′ [p] as p is allocated in n;

Bn[p] cost function that evaluates how appropriate would be to allocate page p in node
n. It is called NodeScore and is formally defined in Algorithm 7;

M a similarity matrix between threads. PTB defines a metric to compare how much the
memory accesses of a pair of threads resembles. Similar threads are clustered and
migrated to the same node;

s = {t|t ∈ T} and SSS A cluster of threads and a set of cluster of threads;

Dt = {(t, n)|t ∈ T,n ∈N} as PTB decides that thread t should stay in node n, this
tuple is added to this set. After all threads have been assigned a node, PTB iterates
through this set and migrates all threads.

Dp = {(p,n)|p ∈ P,n ∈N} Similar to Dt, but for pages.

C1, C2 are multiplicative constants used in the similarity index calculation and NodeScore
function (Algorithm 7), respectively. Both have the objective of dealing with sam-
pling’s intrinsic inaccuracy and to avoid migrating due to small imbalances. The
larger the value, the less likely is a thread/page to be migrated, as the difference be-
tween the current configuration and sampled configuration must be higher to force
migration.

Min_Acc to prevent pages with few accesses from being migrated, it is required that it
has a minimum number of hits. If it does not reach this threshold, it is ignored;

τ controls how long sampling takes place until an interrupt is generated to reorganize
threads and pages. It is the profiling cycle duration;

ls the cache line size;



CHAPTER 5. THE PTB ALGORITHM 36

Table 5.1: Notation

Symbol Meaning

t Thread
p Page
n Node

T, P,N Set of {threads, pages, nodes}
At[p] Number of accesses by thread t to page p
bn[p] Bandwidth from node n to page p

Bn[n
′] Available bandwidth from node n to node n′

Bn[p] Cost function for page p and node n
M Similarity matrix (between threads)
s, S Thread cluster and set of thread clusters
Dt Distribution of threads over nodes
Dp Distribution of pages over nodes

C1,C2 Correctional factors (threads and pages, respectively)
Min_Acc Threshold for considering a page

τ PTB profiling cycle duration
ls Cache-line size

5.1 Profiling

AMD Instruction Based Sampling (IBS) [19] is a profiling technique for AMD machines
that provides detailed information about hardware events during program execution1.
In particular, IBS provides the memory address accessed by a tagged instruction. As
explained in Section 2.2.4, Dashti et al. developed an IBS-based tool to monitor page
accesses, which is used in Carrefour, a congestion-aware scheduler [17]. PTB uses a
modified version of that tool.

The thread distribution algorithm in PTB requires a histogram of memory-page ac-
cesses per thread, and the page distribution algorithm in PTB requires one histogram
for each node (for the newly assigned thread affinities). Thus, PTB needs a fast way
to aggregate threads histograms into node histograms. In Carrefour, the profiler used a
Red-Black tree (per core) to record memory accesses that worked very well for their ap-
proach because they did not need to aggregate results. However, using this data structure
with PTB required several traversals of the RB trees each time a histogram of accesses
per node was needed because the algorithm had to find each page in every RB tree. An
alternative solution would have been the use of a global RB tree. However, this solution
would required locks, which made profiling too expensive.

To address this problem, the profiler was modified to use a hash table instead. The
hash table is organized as follows and is shown in Figure 5.2. Every slot in the hash table
corresponds to a memory page and contains a 64-position (parameterizable) array, one
position for each core (and running thread). Slots are indexed by the page’s base address
and each slot keeps track of its corresponding address. Every time a memory access is
recorded, PTB updates the slot’s address of the corresponding page, without erasing the

1Intel-based machines have an equivalent feature called Precise Event Based Sampling.



CHAPTER 5. THE PTB ALGORITHM 37

corresponding array entry – thus, if two pages get mapped to the same bucket (collision),
they will both increase the number of accesses in the same array, and it will seem that
only one page (the last to record an event) was responsible for all the accesses. Slots are
cache-aligned and updated without any synchronization mechanism. Obtaining the node
memory histograms is then a simple matter of summing the correct indexes from the hash
table.

...
...

...

...

...

...

Addr c0 c1 c2 c3 c63c62

...

Page 0

Page 1

Page 2

Page 3

Page N-1

Figure 5.2: Profiling hash table

A synchronization-free data structure with a very simple hash collision strategy trades
accuracy for performance: the hash table has constant-time insertion, update and lookup.
Concurrent unsynchronized accesses to the hash table means that some updates might
be lost. However, these losses do not change the output of the algorithm considerably
because the sampling mechanisms employed are already inherently imprecise, and PTB
does not need an exact representation of the memory access pattern. Thus the use of
synchronization-free updates reduced the overhead of PTB considerably by reducing the
profiling and thread/page distribution recalculation execution times.



CHAPTER 5. THE PTB ALGORITHM 38

5.2 Thread distribution

The placement of threads that operate on the same memory pages onto the same processor
has at least two advantages. The first is that one can move all the relevant pages to the
node in which these threads are executing. However, a simple compact thread distribution
strategy can be limited by congestion (cf. Section 5.3). The second advantage is that,
because these threads are executing on the same processor, expensive inter-node cache
line invalidations can be avoided therefore improving the efficiency of the caches.

To select which threads should run in the same processor, information gathered in
the profiling step is used to calculate a similarity index between all pairs of threads. A
thread’s memory histograms can be thought of as multi-dimensional vectors, in which each
dimension is represented by the number of accesses to a particular page. For example,
consider Figure 5.3, in which a simplified 3-page histogram is shown in Figure 5.3a and
the equivalent vector representation is displayed in Figure 5.3b. Two threads that access
the same pages with similar frequencies have similar orientations (in the vector sense) and
thus a high similarity.

 0

 1

 2

 3

 4

 5

p0 p1 p2

N
u

m
b

e
r 

o
f 

a
c
c
e

s
s
e

s

(a) Histogram representation

p0

p1

p2

(b) Vector representation (adapted from [47])

Figure 5.3: Memory accesses: equivalent representations

The cosine similarity [50] captures that property. It judges how similar the orientation
of two vectors is and is very used in the field of data clustering [48] and information
retrieval [38].

The cosine similarity between any two threads t1 and t2 is given by Equation 5.1.

CosineSim(t1, t2) =

∑
p∈P

At1 [p] · At2 [p]√∑
p∈P

(At1 [p])
2 ·

√∑
p∈P

(At2 [p])
2

(5.1)

The cosine similarity falls in the range [0, 1]. Values close to 0 indicate low similarity
between the threads’ page access patterns, whereas values close to 1 indicate a high simi-
larity. The rationale behind this approach is that a term in the numerator summation will



CHAPTER 5. THE PTB ALGORITHM 39

only be high if the same page is highly used by both threads.Thus, a high cosine similarity
indicates a similar angle between two vectors, regardless of the vectors’ magnitude.

Sampling, however, is, by nature, inaccurate. This means that even if the memory
access pattern is exactly the same in two PTB sampling steps, the memory histogram
could not be; consequently, neither will be the Cosine Similarity. To avoid creating
an imbalance that unnecessarily migrates threads, the Cosine Similarity is multiplied
by a correctional factor C1 if two threads are already in the same node, which promotes
conserving the current thread distribution (a description on how this and other parameters
were chosen is given in Section 6.3). Hence, the similarity index between a pair of threads
t1 and t2 is given by Equation 5.2.

Mt1t2 =

{
C1 · CosineSim(t1, t2) if t1, t2 are in the same node

CosineSim(t1, t2) otherwise
(5.2)

The next step is to determine which threads should be co-located in the same node.
PTB strives to prioritize the placement of threads with high similarities close to each
other. To that end, it uses a graph-based approach. Let G = (V,E) be a full graph where
V is the set of all threads, and each edge in E is weighted by the similarity index of the
threads it connects. Let G be the similarity graph. Consequently, thread assignment can
be reduced to a minimum-cut graph partitioning problem, i.e. find a partitioning of the
graph in which the sum of the weights of the edges between crossing partitions is minimal.

Unfortunately, the minimum-cut partitioning problem is NP-complete for an arbitrary
number of cuts greater than two and is prohibitively expensive even for small fixed number
of cuts [20]. The Kernighan-Lin algorithm [27], however, is an efficient heuristic when one
wishes to partition the set in only two subsets. This algorithm partitions a set in two
subsets of equal-size and with minimal cut. A simple heuristic is applied to obtain all the
necessary partitions, as Algorithm 3 shows. The heuristic initially applies the Kernighan-
Lin algorithm to the graph G. It then recursively applies the Kernighan-Lin algorithm on
the subsets, until all the |T | threads have been partitioned in equally sized |N | subsets,
where |T | and |N | represent the number of threads in the application and the number of
nodes in the machine respectively. This method does not guarantee that the sum of the
weights of the edges crossing the |N | components will be minimal. Fortunately the optimal
solution is not needed: given that the similarity graph is already based on approximate
measurements (due to sampling), a compromise is made by using this approximate method
as a heuristic to what would be the optimal partitioning.

Algorithm 3: Recursive Kernighan-Lin
Input: G = (V,E), a similarity graph

1 if |V | == |N | then return ;
2 G1, G2 ← Kernighan-Lin(G)
3 Recursive-KL(G1)
4 Recursive-KL(G2)



CHAPTER 5. THE PTB ALGORITHM 40

After threads have been partitioned, PTB must decide in which node each partition
will be allocated. The goal is to keep as many threads as possible with their current node
affinity and thus avoid unnecessary migrations. To do that the greedy algorithm shown
in Algorithm 4 is employed. This heuristic works by, for each unallocated thread cluster
s, finding an available node n that already has as many threads of s as possible. It then
migrates all threads of s that were not already in n to this new node and restart, with a
new s, until all thread clusters have been migrated.

Algorithm 4: Thread cluster allocation
Input: N,S

1 N ′ ← N
2 forall s ∈ S do
3 max_counter← −1
4 max_node← undef
5 forall n ∈ N ′ do
6 counter← 0
7 forall t ∈ s do
8 if CurrentNode(t) == n then
9 counter++

10 end
11 end
12 if counter > max_counter then
13 max_counter← counter
14 max_node← n

15 end
16 end
17 N ′ ← N ′ \ {n}
18 end

5.3 Page distribution

The third phase of PTB is page distribution. This is done immediately after threads have
been migrated. A naive approach could migrate pages to the node that contains threads
that access them the most. However, this is not optimal because it could considerably
increase the congestion to node’s memory controllers and NUMA interconnections, as
detailed in Section 4.3. To avoid that, PTB uses a strategy that keeps track of the
bandwidth usage at each node as pages are allocated. When the bandwidth usage reaches
the maximum bandwidth allowed for the nodes, the remaining pages are interleaved across
the other nodes to allow for an even congestion distribution. This approach is detailed
below.

PTB’s page distribution algorithm (Algorithm 5) works at the node level. Its first
step is to estimate a node’s bandwidth to each page (lines 7-10 and Algorithm 6). Then,
it iterates over all pages, until either every page has been assigned to a node or until
the bandwidth of all nodes has been “consumed” (line 13) – in which case interleaved



CHAPTER 5. THE PTB ALGORITHM 41

Algorithm 5: Page distribution algorithm
Input: P,N,Dt

Output: Dp

1 forall n ∈ N do
2 forall n′ ∈ N do
3 Bn[n

′]← MaxBandwidth(n, n′)
4 end
5 end
6 Dp ← ∅
7 forall p ∈ P do
8 forall n ∈ N do
9 bn[p]← BandwidthFromNodeToPage(n, p)

10 end
11 end
12 forall p ∈ P do
13 if P == ∅ or

∑
n

∑
n′ Bn[n

′] == 0 then
14 Break;
15 end
16 if

∑
t∈T At[p] ≤ Min_Acc then

17 skip page;
18 end
19 n∗ ← undef
20 Bn∗ [p]← −∞
21 forall n ∈ N do
22 Bn[p]← NodeScore(n, p)
23 if Bn[p] > Bn∗ [p] then
24 n∗ ← n
25 Bn∗ [p]← Bn[p]
26 end
27 end
28 Dp ← Dp ∪ {(p, n∗)}
29 forall n ∈ N do
30 Bn∗ [n]← max(Bn∗ [n]− bn[p], 0)
31 end
32 P ← P \ {p}
33 end
34 forall p ∈ P do
35 Dp ← Dp+ interleaved distribution
36 end



CHAPTER 5. THE PTB ALGORITHM 42

distribution will take place (lines 34-36). To prevent pages with only a few accesses from
being migrated, a page is skipped if it has less than Min_Acc accesses (total) from all
threads (lines 16-18).

Each page can potentially be migrated to any node. A score (Algorithm 7) is computed
for each node and the node with the highest score is chosen as the page’s destination (lines
21-27). The algorithm then adds this (page, destination_node) pair to a set for later
migration (line 28). The final step is to deduct the estimated used bandwidth for that
page from all nodes (lines 29-31).

If all nodes’ bandwidth is exhausted but there are still pages to be processed, it uses
a simple interleave policy to minimize congestion (lines 34-36).

Algorithm 6 shows how bandwidth is calculated: node n’s bandwidth to page p is
estimated as the total number of accesses from threads in n to p, multiplied by the size of
each access (the cache line size ls) and divided by the time spent in the last PTB cycle
(τ).

Algorithm 6: BandwidthFromNodeToPage(n, p)
Input: p, n, τ, A,Dt

Output: bn[p]
1 bn[p]←

∑
(t,n)∈Dt

At[p]

2 bn[p]← bn[p] · ls/τ
3 return bn[p]

A node is a good candidate to receive a page if it has enough spare bandwidth available
to all nodes that try to access that page frequently. Function NodeScore (Algorithm 7)
attempts to capture that. Consider deciding if n is a good placement for page p. If node
n′ does not access page p much (low bn′ [p]), then n′ should not dictate whether n is a
good candidate or not (it would be irrelevant for n′). If n does not have much bandwidth
left to n′ (low Bn[n

′]), then placing p in n would risk congesting n. Thus, this metric
would favor configurations in which both Bn[n

′] and bn′ [p] are high, that is, node n has
bandwidth to spare available to n′ and n′ accesses p frequently. Finally, page migration is
an expensive operation, and thus a mechanism to minimize page bouncing between nodes
is employed. To do that, the score Bn[p] is multiplied by a correctional factor C2 if n is the
page’s current node. This correction mechanism, just like the one used in the thread case,
has the goal of overcoming small imbalances that would otherwise lead to a competition
for that page, and thus bouncing.

Algorithm 7: NodeScore(n, p)
Input: n, p, b, B
Output: Bn[p]

1 Bn[p]←
∑

n′∈N Bn′ [n] · bn′ [p]
2 if CurrentNode(p) == n then
3 Bn[p]← C2 · Bn[p]
4 end
5 return Bn[p]



Chapter 6

A Performance Study of PTB

This experimental evaluation of PTB was performed on the machine described in Chap-
ter 4 and it uses benchmarks from the Parsec version 3.0 [7], NAS Parallel Benchmark
(NPB) version 3.3.1 [6] and Metis [35] suites. The evaluation uses all programs, except
for the following programs from the Parsec suite: dedup, which failed to compile; vips,
which crashes under the default Linux scheduler; and x264, whose execution time is too
short and no parameterization on the input size was possible. Some programs in the
benchmark suites execute too fast even with the largest available dataset. Therefore,
for this experimental evaluation, whenever possible execution parameters were changed
to increase execution time. All programs and parameter/input sizes used are listed in
Table 6.1. For each experimental data point in the study the program was run at least
10 times and always with 64 threads.

The execution of each benchmark is divided into an initialization phase, a Region Of
Interest (ROI) and a termination phase. The ROI is the part of the benchmark that is
timed and used to evaluate speedups. A program’s initialization phase sometimes has a
similar behavior to its ROI, but this part of the program is not timed in the evaluation.
The issue is that if PTB were to be enabled during initialization, the program could
enter the ROI with threads and pages already placed in optimal nodes, which would hide
PTB’s migration costs. Thus, to make the measurement fair, the programs are modified
to communicate to PTB when they enter/exit the ROI. Benchmarks from the Parsec
suite already specify the ROI explicitly. For all other benchmarks, the code was manually
inspected to identify the timer’s start/stop calls that define the ROI, after which a call
to PTB’s enable/disable function was inserted. There is a single continuous ROI in each
benchmark.

For the rest of this chapter a list of questions is provided to guide the reader through
the main results of the experiments and their corresponding analyses.

6.1 What is PTB overhead?

The overhead of PTB comes from three different sources: profiling overhead, calculation
overhead and migration overhead. The profiling overhead is the cost of stopping the
program to obtain a measurement and depends on the sampling rate. The calculation

43



CHAPTER 6. A PERFORMANCE STUDY OF PTB 44

Table 6.1: Programs and parameters/input size used

Program Suite Parameters/Input

blackscholes Parsec native, with 100M input
bodytrack Parsec native
canneal Parsec native
facesim Parsec native
ferret Parsec native
fluidanimate Parsec native
freqmine Parsec native
raytrace Parsec native, with -frames 1000
streamcluster Parsec native
swaptions Parsec native, with -sm 10000000
bt NPB C
cg NPB C
ep NPB C
ft NPB C
is NPB D
lu NPB C
mg NPB C
sp NPB C
ua NPB C
wrmem Metis -q -s 1000
kmeans Metis 30 256 50000000 80 -q
pca Metis -R 2048 -C 100 -q
matrixmult Metis -l 8192 -q
wc Metis 106 keys
wr Metis 800 MB

overhead is mostly the cost of accessing the hash table and is dependent on the size of
that table. The migration overhead is the cost of migrating pages and threads.

The profiling and calculation overheads are measured by running a program with the
PTB module loaded, but with migrations disabled. Thread migration, on one hand, is
relatively cheap, other than for potential cache effects. Page migration, on the other
hand, can be expensive [33]. Measuring the migration overhead is tricky because it is
hard to separate the overhead of doing the migration from the speedup that results from
migrating. Since PTB uses standard system calls to perform page and thread migrations,
this evaluation does not measure the migration overhead.

Different profiling rates and hash sizes were tested to measure the profiling and cal-
culation overheads. The results of these experiments are illustrated in Figure 6.1 and in
the heatmap of Figure 6.2 for the benchmark mg.

Figure 6.1 shows how much overhead can be accredited to the following: profiling,
the thread phase and the page phase. The x-axis shows different profiling rate-hash
size configurations. The program bar corresponds to the program running without PTB.
Each of the three other bars represent the time increase due to adding the corresponding
feature. As one can see, profiling (in purple) has a low overhead with different profiling



CHAPTER 6. A PERFORMANCE STUDY OF PTB 45

 0

 20

 40

 60

 80

 100

2
1

5-1
0
0
0
0

2
1

5-1
5
0
0
0

2
1

5-2
0
0
0
0

2
1

5-2
5
0
0
0

2
1

5-3
0
0
0
0

2
1

5-3
5
0
0
0

2
1

5-4
0
0
0
0

2
1

5-4
5
0
0
0

2
1

5-5
0
0
0
0

2
1

6-1
0
0
0
0

2
1

6-1
5
0
0
0

2
1

6-2
0
0
0
0

2
1

6-2
5
0
0
0

2
1

6-3
0
0
0
0

2
1

6-3
5
0
0
0

2
1

6-4
0
0
0
0

2
1

6-4
5
0
0
0

2
1

6-5
0
0
0
0

2
1

7-1
0
0
0
0

2
1

7-1
5
0
0
0

2
1

7-2
0
0
0
0

2
1

7-2
5
0
0
0

2
1

7-3
0
0
0
0

2
1

7-3
5
0
0
0

2
1

7-4
0
0
0
0

2
1

7-4
5
0
0
0

2
1

7-5
0
0
0
0

2
1

8-1
0
0
0
0

2
1

8-1
5
0
0
0

2
1

8-2
0
0
0
0

2
1

8-2
5
0
0
0

2
1

8-3
0
0
0
0

2
1

8-3
5
0
0
0

2
1

8-4
0
0
0
0

2
1

8-4
5
0
0
0

2
1

8-5
0
0
0
0

%
 o

f 
to

ta
l

PTB configuration (profiling rate-hash size)

program profiling thread phase page phase

Figure 6.1: PTB overhead separated by phase (for benchmark mg)

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

2
15

2
16

2
17

2
18

H
a

s
h

 S
iz

e

Profiling Rate (in number of instructions per hardware event)

3.1 ± 1.3 

5.9 ± 1.6 

11.4 ± 1.9 

14.5 ± 1.4 

19.1 ± 1.1 

23.0 ± 0.8 

27.6 ± 0.7 

31.1 ± 0.5 

35.3 ± 0.7 

2.9 ± 1.3 

5.9 ± 1.7 

10.8 ± 1.7 

13.5 ± 1.2 

18.2 ± 0.9 

22.4 ± 1.0 

27.4 ± 0.9 

30.7 ± 0.7 

34.5 ± 0.5 

2.7 ± 1.5 

5.9 ± 1.7 

10.7 ± 1.1 

14.2 ± 1.2 

18.0 ± 0.9 

22.4 ± 0.8 

26.4 ± 1.0 

30.6 ± 0.6 

34.2 ± 0.5 

2.3 ± 1.4 

6.4 ± 1.6 

10.1 ± 1.6 

12.6 ± 1.0 

17.9 ± 1.1 

21.6 ± 0.8 

26.1 ± 0.7 

30.1 ± 0.4 

33.6 ± 0.3 

 0

 5

 10

 15

 20

 25

 30

 35

O
v
e

rh
e

a
d

 (
%

)

Figure 6.2: PTB overhead for mg (in % of running time)



CHAPTER 6. A PERFORMANCE STUDY OF PTB 46

rate and hash sizes. The page phase (in light blue) has a higher impact, but it is also
constant with different configurations. The thread phase, on the other hand, increases
considerably as the hash size increases. This can be easily explained by looking back at
Equation 5.1: cosine similarity has complexity O(|P |) and it has to be calculated for all
pairs of threads (which means traversing the memory histograms multiple times).

Figure 6.2 shows the overhead in a different manner, as a heatmap. In this figure, both
the number in each cell and its shade are the profiling and calculation overheads, given
as a percentage of the program’s running time under Linux’s default scheduler. Darker
backgrounds indicate higher overhead.

As expected, for a given hash size, the overhead decreases as the number of instructions
between hardware events increases (profiling less often). However, the difference is nu-
merically small and not statistically significant. Thus, the remainder of the experimental
evaluation uses a profiling rate that samples every 215 instructions.

On the other hand, the overhead increases significantly as the size of the hash table
increases, thus indicating that the calculation overhead is dominant. The size of the hash
table directly influences the accuracy of the estimations of bandwidth use in PTB — a
larger hash is better. Hashes with sizes greater or equal to 20000 have over 10% of over-
head, which is too large. A hash of size 15000 keeps the overhead at 6%, which is a good
compromise between accuracy and speed. Thus, for the remainder of the experimental
evaluation, this was the hash size chosen.



CHAPTER 6. A PERFORMANCE STUDY OF PTB 47

6.2 How hash conflicts impact accuracy and perfor-
mance?

As stated in Section 5.1, the hash table used to store accesses trades accuracy for speed.
To evaluate this tradeoff, the number of slots in which there was a conflict and the total
number of conflicts, per cycle, were measured. Results are in Figure 6.3. The first graph
shows the number of slots that had at least one conflict per cycle. The second graph (notice
the logarithmic scale) shows the total number of conflicts per cycle. In all programs, all
hash slots were occupied (recorded at least one access).

Correlating the data in Figure 6.3 with the speedups reported in Section 6.4 reveals
that benchmarks with low number of conflicts usually have good speedups (wr, wc, pca
and facesim). However, sp, wrmem and canneal, that also had good speedups with PTB,
had a relatively high number of conflicts. The majority of programs with high number of
conflicts (cg, ua, lu, freqmine, mg, bt and is) do not perform as well. Therefore a potential
improvement for PTB would be to attempt different hashing strategies to reduce conflicts
or to reevaluate the handling of conflicts in the hash data structure.

 0

 3000

 6000

 9000

 12000

 15000

 18000

cg ua lu freqm
ine

m
g

bt is stream
cluster

ferret

blackscholes

raytrace

sw
aptions

ft bodytrack

m
atrixm

ult

ep km
eans

fluidanim
ate

sp w
r

w
c

w
rm

em

canneal

pca
facesim

H
a

s
h

 s
lo

ts
 t

h
a

t 
c
o

n
fl
ic

t 
p

e
r 

c
y
c
le

(a) Hash slots that conflict per cycle

 0

 100000

 200000

 300000

 400000

 500000

cg ua lu freqm
ine

m
g

bt is stream
cluster

ferret

blackscholes

raytrace

sw
aptions

ft bodytrack

m
atrixm

ult

ep km
eans

fluidanim
ate

sp w
r

w
c

w
rm

em

canneal

pca
facesim

H
a

s
h

 c
o

n
fl
ic

ts
 p

e
r 

c
y
c
le

(b) Hash conflicts per cycle

Figure 6.3: Conflicts in the hash table



CHAPTER 6. A PERFORMANCE STUDY OF PTB 48

6.3 Parameter tuning

Besides hash size and sampling frequency, PTB uses three other parameters, namely C1,
C2 and Min_Acc. These parameters may need to be tuned if PTB is to be used in different
machines. This section discusses how the values were chosen in the experiments and what
should be kept in mind when adjusting them.

C1 and C2 are the multiplicative constants used in the similarity-index calculation and
NodeScore function, respectively. The higher their values, the higher is the incentive given
to keep threads/pages on their current nodes. Thus, in machines with high migration
overheads, to minimize migrations and to only do so when there is a notorious improper
placement larger values of C1, C2 should be used.

Min_Acc is the minimum total number of accesses that a page must receive to be
considered for migration. In machines in which page migration overhead is higher and/or
remote latency is not much higher than local latency, using higher values of Min_Acc is
advisable.

To select appropriate values for these parameters, several numbers in a wide range
were tested, for a select group of benchmarks. Parameters were tested individually, i.e.
two parameters were fixed while the third was varied. C1 and C2 were tested in the range
[0.1, 32] and Min_Acc was tested in the range [1, 32]. Results are shown in Figure 6.4 (note
that, for each benchmark, a different scale is used).

Benchmark raytrace (Figure 6.4a) shows no sensibility to any of the parameters and
its speedup remains very close to 1 in all parameter configurations.

In benchmark canneal (Figure 6.4b) despite the numerical difference in speedup in
the graphs for C1 (6.4b.i) and Min_Acc (6.4b.iii), no trend can be observed and the error
bars make all results statistically equivalent – except for value 32 of Min_Acc, which shows
performance loss. As for C2, values closer to 1 perform better.

cg (Figure 6.4c) is C1-insensitive, but it shows opposite behavior than canneal re-
garding C2 and Min_Acc: values equal or higher than 2 for C2 and Min_Acc = 32 perform
better (note, however, that for all configurations, cg loses performance).

Finally, mg (Figure 6.4d) shows similar behavior to cg: Values of 2 or higher for
C2 perform better, and equivalent performance regardless of the values used for C1 and
Min_Acc.

This analysis indicates that PTB is insensitive to the thread coefficient C1. Hence, the
value 1 is used in the experimental evaluation.

C2 shows conflicting behavior, as benchmarks have opposing trends. A value between
1 and 2 seems to be the turning point between the tested benchmarks – thus, a value of
1.5 is used.

Min_Acc also shows opposing results between benchmarks, although not as prominent
as in C2. A midway compromise is made by using 16.



CHAPTER 6. A PERFORMANCE STUDY OF PTB 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.5 1 2 4 8 16 32

S
p
e
e
d
u
p

Thread Coefficient (C1)

(a.i) C1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.5 1 2 4 8 16 32

S
p
e
e
d
u
p

Page Coefficient (C2)

(a.ii) C2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

S
p
e
e
d
u
p

Min_Acc

(a.iii) Min_Acc

(a) raytrace

 0

 0.5

 1

 1.5

 2

0.1 0.5 1 2 4 8 16 32

S
p
e
e
d
u
p

Thread Coefficient (C1)

(b.i) C1

 0

 0.5

 1

 1.5

 2

0.1 0.5 1 2 4 8 16 32

S
p
e
e
d
u
p

Page Coefficient (C2)

(b.ii) C2

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

S
p
e
e
d
u
p

Min_Acc

(b.iii) Min_Acc

(b) canneal

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.1 0.5 1 2 4 8 16 32

S
p
e
e
d
u
p

Thread Coefficient (C1)

(c.i) C1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.1 0.5 1 2 4 8 16 32

S
p
e
e
d
u
p

Page Coefficient (C2)

(c.ii) C2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 4 8 16 32

S
p
e
e
d
u
p

Min_Acc

(c.iii) Min_Acc

(c) cg

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.5 1 2 4 8 16 32

S
p
e
e
d
u
p

Thread Coefficient (C1)

(d.i) C1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.5 1 2 4 8 16 32

S
p
e
e
d
u
p

Page Coefficient (C2)

(d.ii) C2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 4 8 16 32

S
p
e
e
d
u
p

Min_Acc

(d.iii) Min_Acc

(d) mg

Figure 6.4: Parameter tuning



CHAPTER 6. A PERFORMANCE STUDY OF PTB 50

6.4 How does PTB compare to alternative solutions?

This evaluation compares PTB with three other techniques. The baseline for comparison
is the default Linux 3.9 scheduler. The second solution is a pinned-thread version of
the 3.9 Linux kernel (Fixed Affinity). Pinning thread by affinity can increase cache-
sharing and program performance [36]. For OpenMP-based benchmarks, pinning is done
by setting the GOMP_CPU_AFFINITY environment variable to 0-63: thread 0 is pinned to core
0, thread 1 to core 1, etc. For pthreads-based benchmarks, the applications were modified
to manually set thread affinities. The third source for comparison is Linux’s automatic
NUMA balancing in kernel version 3.11 [16] (NUMA Balancing). Unfortunately, it was
not possible to test alternative solutions presented in the literature, as there was no access
to the required source code. In some cases, only part of the required code was available.
In others, paper authors were contacted but they replied that the code was not available.
Since previous work was evaluated on different experimental platforms, reported results
can not be directly compared.

While PTB is only enabled when the application enters the ROI, all alternative tech-
niques are enabled since program startup. Thus, in their cases, migrations may take place
during program initialization and these migrations costs are hidden from the measured
speedup.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

cg ua lu freqm
ine

m
g

bt is stream
cluster

ferret

blackscholes

raytrace

sw
aptions

ft bodytrack

m
atrixm

ult

ep km
eans

fluidanim
ate

sp w
r

w
c

w
rm

em

canneal

pca
facesim

geom
ean

S
p

e
e

d
u

p

Fixed Affinity
NUMA Balancing

PTB

Figure 6.5: Speedup and comparison to other techniques

Figure 6.5 shows the speedups for all benchmarks, as well as the geometric mean. PTB
produces (statistically significant) speedups in 10 applications, while slowing down 6 – the
remaining 10 benchmark speedups are statistically equivalent to 1. For the 25 benchmarks,
Fixed Affinity was better than the other two competing solutions (NUMA Balancing and
PTB) only in one of them (cg) – still, with a speedup of 1 (the other solutions slowed
this application down). NUMA Balancing “won” on 6 benchmarks and PTB was the
best choice in 7 others. The remaining 11 benchmarks had two or more solutions with
statistically equivalent speedups. On 7 applications, PTB produces speedups ranging



CHAPTER 6. A PERFORMANCE STUDY OF PTB 51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

cg ua lu freqm
ine

m
g

bt is stream
cluster

ferret

blackscholes

raytrace

sw
aptions

ft bodytrack

m
atrixm

ult

ep km
eans

fluidanim
ate

sp w
r

w
c

w
rm

em

canneal

pca
facesim

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

S
p

e
e

d
u

p

P
a

g
e

s
 m

ig
ra

te
d

 p
e

r 
c
y
c
le

Speedup Pages migrated per cycle

Figure 6.6: Speedup and number of pages migrated per cycle

from 1.6x to 2x when NUMA Balancing stayed below 1.2x. or resulted in slowdowns.
The slowdowns produced by PTB can be partially explained by Figure 6.6, which shows

the average number of pages migrated per PTB cycle. For most benchmarks that have
a slowdown with PTB, the number of pages migrated is high, whereas applications with
good speedups usually had a small number of page migrations. Because page migration is
an expensive task, too much time is being spent on this task, thus slowing the application
down.

Another explanation for the slowdowns can be made by correlating the speedups with
the graphs shown in Section 6.2. In all benchmarks in which PTB had a slowdown, all
hash slots conflicted in every PTB cycle. These conflicts reduce accuracy and could be
causing wrong migrations.

However, it is important to note that a high number of conflicts not necessarily means
that there will be performance loss – in some cases, it is quite the opposite: benchmarks
canneal, sp, fluidanimate, kmeans and matrixmult had significant speedups even with
100% of hash conflicts. Some possible explanations for this phenomenon are:

(a) the number of hits in each slot was not high enough to pass the Min_Acc threshold
for all hash slots. Notice, on Figure 6.3b, that the total number of conflicts for some
of these benchmarks is smaller.

(b) Pages that conflict are accessed by the same (few) threads. Hence, even though the
count on each page is not correct, the set of threads that access them is. Thus,
there would be no migrations done to the wrong node.

(c) Pages are shared by all threads – thus, interleaved allocation is indicated and con-
flicts would lead to interleaving.

The execution time of some benchmarks (blackscholes, swaptions, kmeans, bt, ft, is,
lu and ua) had significant variability (greater than 10%) even when running with Linux’s



CHAPTER 6. A PERFORMANCE STUDY OF PTB 52

default scheduler, hence their larger standard deviation on Figure 6.5. This variability
may be due to the use of random methods (such as in swaptions) and/or because of
different initial allocations: remember that Linux, by default, uses first touch allocation,
so if threads were created in different nodes, the memory layout will also be different.



Chapter 7

Conclusion

This work introduces PTB, a page, thread and bandwidth allocation approach that seeks
to balance bandwidth utilization by dynamically migrating threads and memory pages
between processors. PTB combines an automatic (offline) profile machine characterization
procedure with application online profiling. The experimental evaluation has confirmed
intuitions that motivated the design of PTB: matching the traffic generated by remote
memory page accesses with the available bandwidth in the machine is important, and
so is alleviating congestion in memory controllers. A surprising insight of this work is
that creating a memory page and thread distribution that favors local access actually
comes third in the list of priority for such algorithms. For a number of benchmarks
PTB produces speedups ranging from 1.6x to 2x that, when compared to Linux NUMA
Balancing (limited to speedups of 1.2x), demonstrate the effectiveness of this approach.

Future research for PTB include:

• The tradeoff between clustering threads based only in their orientations vs.
based on the amount of shared accesses
Using cosine similarity clusters threads based only on the orientation of their mem-
ory accesses (in the vector representation). This could induce threads with a small
amount of memory accesses, but with similar distributions, to be clustered together,
instead of threads that share a high number of accesses to a few pages, but not to
all (and thus have very different orientations). The question thus, is: what is more
important, similar memory access patterns or the amount of shared accesses?

• Dynamically turning PTB on/off
If the program has a regular behavior and if pages and threads have already been
migrated and are in their optimal placements, PTB could be dynamically turned
off or adjusted to incur less overhead.

• Dynamically adjust PTB’s parameters
As shown in Section 6.3, there is no universally optimal value for parameters C2 and
Min_Acc. Thus, an improvement on PTB would be a metric that automatically and
dynamically sets the appropriate value for these parameters.

• Relationship between page migrations and slowdown
As shown in Section 6.4, benchmarks that lost performance with PTB had a high

53



CHAPTER 7. CONCLUSION 54

count of pages migrated, an expensive operation. Thus, a technique that decrease
these migrations should yield a positive impact on such benchmarks;

• Offline distribution
For the set of applications that have a regular access pattern and whose memory
layout is the same regardless of input, an offline distribution algorithm would be a
good improvement. Using PTB’s thread clustering and page distribution heuristics,
it would be possible to determine an optimal initial allocation, so that there would
be no migration overhead – in fact, PTB could actually be disabled after the initial
allocation.

• Different hashing strategies
As shown in Section 6.2, there is a correlation between a program losing performance
and a high number of conflicts in the hash table. Hence, strategies that reduce
conflicts or reevaluating the handling of conflicts in the hash data structure could
lead to improved results.



Bibliography

[1] Documentation for /proc/sys/kernel/*. https://git.kernel.org/cgit/linux/
kernel/git/torvalds/linux.git/tree/Documentation/sysctl/kernel.txt?
id=refs/tags/v3.17-rc7#n428.

[2] Linux Programmer’s Manual: numa - NUMA policy library. http://web.archive.
org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm.

[3] Advanced Micro Devices. Bios and Kernel Developer’s Guide (BKDG) for AMD
Family 15h Models 00h-0Fh Processors, January 2013.

[4] Jennifer Anderson and Monica Lam. Global optimizations for parallelism and locality
on scalable parallel machines. In Special Interest Group on Programming Languages
(SIGPLAN), pages 112–125, Albuquerque, New Mexico, USA, 1993.

[5] Joseph Antony, Pete Janes, and Alistair Rendell. Exploring thread and mem-
ory placement on NUMA architectures: Solaris and linux, ultrasparc/fireplane and
opteron/hypertransport. In High Performance Computing (HiPC), pages 338–352,
Bangalore, India, 2006.

[6] David Bailey, Eric Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-
nan, and S. Weeratunga. The NAS parallel benchmarks. Technical report, 1994.

[7] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[8] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A case
for NUMA-aware contention management on multicore systems. In Parallel Ar-
chitectures and Compilation Techniques (PACT), pages 557–558, Vienna, Austria,
September 2010.

[9] Robert Blumofe, Christopher Joerg, Bradley Kuszmaul, Charles Leiserson, Keith
Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. Journal
of Parallel and Distributed Computing, 37(1):55 – 69, 1996.

[10] François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André Wacrenier, and
Raymond Namyst. ForestGOMP: An efficient OpenMP environment for NUMA
architectures. International Journal of Parallel Programming (IJPP), 38(5):418–439,
2010.

55

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/sysctl/kernel.txt?id=refs/tags/v3.17-rc7#n428
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/sysctl/kernel.txt?id=refs/tags/v3.17-rc7#n428
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/sysctl/kernel.txt?id=refs/tags/v3.17-rc7#n428
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm


BIBLIOGRAPHY 56

[11] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Scheduling and page migration for multiprocessor compute servers. Special Interest
Group on Programming Languages (SIGPLAN), 29(11):12–24, November 1994.

[12] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill
Hughes. Cache hierarchy and memory subsystem of the AMD Opteron processor.
IEEE Micro, 30(2):16–29, March 2010.

[13] Julita Corbalan, Xavier Martorell, and Jesus Labarta. Evaluation of the memory
page migration influence in the system performance: The case of the sgi o2000. In
International Conference on Supercomputing (ICS), pages 121–129, San Francisco,
CA, USA, 2003.

[14] Jonathan Corbet. A potential NUMA scheduling solution. https://lwn.net/
Articles/522093/, October 2012.

[15] Jonathan Corbet. NUMA in a hurry. https://lwn.net/Articles/524977/, Novem-
ber 2012.

[16] Jonathan Corbet. NUMA scheduling progress. https://lwn.net/Articles/
568870/, October 2013.

[17] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quéma, and Mark Roth. Traffic management:
a holistic approach to memory placement on numa systems. In International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 381–394, Houston, Texas, USA, March 2013. ACM.

[18] Mathias Diener, Eduardo Cruz, and Philippe Navaux. Communication-based map-
ping using shared pages. In International Parallel & Distributed Processing Sympo-
sium (IPDPS), pages 700–711, Boston, Massachusetts, USA, May 2013.

[19] Paul Drongowski. Instruction-based sampling: A new performance analysis technique
for AMD family 10h processors. Technical report, Advanced Micro Devices, Inc.,
2007.

[20] Olivier Goldschmidt and Dorit Hochbaum. Polynomial algorithm for the k-cut prob-
lem. In Foundations of Computer Science, pages 444–451, October 1988.

[21] Mel Gorman. Basic scheduler support for automatic NUMA balancing v8. http:
//thread.gmane.org/gmane.linux.kernel/1568976, September 2013.

[22] Lei Huang, Haoqiang Jin, Liqi Yi, and Barbara Chapman. Enabling locality-aware
computations in openmp. Scientific Programming, 18(3-4):169–181, 2010.

[23] Intel Corporation. Intel 64 and IA-32 Architecture Software Developer’s Manual,
Volume 3B, April 2016.

https://lwn.net/Articles/522093/
https://lwn.net/Articles/522093/
https://lwn.net/Articles/524977/
https://lwn.net/Articles/568870/
https://lwn.net/Articles/568870/
http://thread.gmane.org/gmane.linux.kernel/1568976
http://thread.gmane.org/gmane.linux.kernel/1568976


BIBLIOGRAPHY 57

[24] Dongming Jiang and Jaswinder Singh. Scaling application performance on a cache-
coherent multiprocessors. In International Symposium on Computer Architecture
(ISCA), pages 305–316, May 1999.

[25] Laxmikant Kale and Sanjeev Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In Conference on Object-oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 91–108, Washington, D.C.,
USA, 1993.

[26] Ali Kamali. Sharing aware scheduling on multicore systems. Master’s thesis, Simon
Fraser University, 2010.

[27] Brian Kernighan and Shen Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(2):291–307, February 1970.

[28] Andi Kleen. A NUMA API for LINUX. Technical report, April 2005.

[29] Baptiste Lepers, Vivien Quema, and Alexandra Fedorova. Thread and memory
placement on NUMA systems: Asymmetry matters. In USENIX Annual Techni-
cal Conference, pages 277–289, Santa Clara, California, USA, July 2015. USENIX
Association.

[30] Hui Li, Sudarsan Tandri, Michael Stumm, and Kenneth Sevcik. Locality and loop
scheduling on NUMA multiprocessors. International Conference on Parallel Process-
ing (ICPP), 2:140–147, 1993.

[31] Henrik Löf and Sverker Holmgren. Affinity-on-next-touch: Increasing the perfor-
mance of an industrial pde solver on a CC-NUMA system. In International Confer-
ence on Supercomputing (ICS), pages 387–392, Cambridge, Massachusetts, 2005.

[32] Zoltan Majo and Thomas Gross. Memory system performance in a NUMA multicore
multiprocessor. In International Systems and Storage Conference (Systor), pages
12:1–12:10, Haifa, Israel, 2011.

[33] Zoltan Majo and Thomas Gross. Matching memory access patterns and data place-
ment for NUMA systems. In International Symposium on Code Generation and
Optimization (CGO), pages 230–241, San Jose, California, 2012.

[34] Zoltan Majo and Thomas Gross. (Mis)Understanding the NUMA Memory System
Performance of Multithreaded Workloads. In IEEE International Symposium on
Workload Characterization (IISWC), pages 11–22, 2013.

[35] Yandong Mao, Robert Morris, and Frans Kaashoek. Optimizing mapreduce for mul-
ticore architectures. Technical report, MIT, 2010.

[36] Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, and Denis Barthou. Performance evalu-
ation and analysis of thread pinning strategies on multi-core platforms: Case study
of spec omp applications on intel architectures. In International Conference on High
Performance Computing & Simulation (HPCS), pages 273–279, July 2011.



BIBLIOGRAPHY 58

[37] John McCalpin. Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Computer Society Technical Committee on Computer Ar-
chitecture (TCCA) Newsletter, pages 19–25, December 1995.

[38] Rada Mihalcea, Courtney Corley, and Carlo Strapparava. Corpus-based and
knowledge-based measures of text semantic similarity. In National Conference on
Artififical Intelligence (AAAI), volume 6, pages 775–780, Boston, Massachusetts,
USA, 2006.

[39] Ozcan Ozturk. Data locality and parallelism optimization using a constraint-based
approach. Journal of Parallel and Distributed Computing, 71(2):280–287, February
2011.

[40] Stephen Park and Keith Miller. Random number generators: Good ones are hard to
find. Communications of the ACM, 31(10):1192–1201, October 1988.

[41] David Patterson and John Hennessy. Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, San Francisco, CA, USA, 5th edition,
2013.

[42] Guilherme Piccoli, Henrique Santos, Raphael Rodrigues, Christiane Pousa, Edson
Borin, and Fernando Quintão Pereira. Compiler support for selective page migra-
tion in NUMA architectures. In Parallel Architectures and Compilation Techniques
(PACT), pages 369–380, Edmonton, AB, Canada, 2014.

[43] Laércio Pilla, Christiane Pousa Ribeiro, Daniel Cordeiro, and Jean-François Mehaut.
Charm++ on NUMA Platforms: the impact of SMP Optimizations and a NUMA-
aware Load Balancing. In Workshop of the INRIA-Illinois Joint Laboratory on Petas-
cale Computing, Urbana, United States, 2010.

[44] Christiane Ribeiro, Márcio Castro, Jean-François Méhaut, and Alexandre Carissimi.
Improving memory affinity of geophysics applications on NUMA platforms using
minas. In High Performance Computing for Computational Science (VECPAR),
pages 279–292, Berkeley, CA, 2011. Springer-Verlag.

[45] Kenneth Sevcik and Songnian Zhou. Performance benefits and limitations of large
NUMA multiprocessors. Performance Evaluation, 20(1–3):185 – 205, May 1994.

[46] Per Stenström, Truman Joe, and Anoop Gupta. Comparative performance evaluation
of cache-coherent NUMA and COMA architectures. In International Symposium on
Computer Architecture (ISCA), pages 80–91, Queensland, Australia, 1992.

[47] Jorge Stolfi. Coord system ca 0.svg. https://commons.wikimedia.org/wiki/File:
Coord_system_CA_0.svg, May 2009.

[48] Alexander Strehl, Er Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of
similarity measures on web-page clustering. In National Conference on Artififical
Intelligence (AAAI), pages 58–64, Austin, Texas, USA, 2000.

https://commons.wikimedia.org/wiki/File:Coord_system_CA_0.svg
https://commons.wikimedia.org/wiki/File:Coord_system_CA_0.svg


BIBLIOGRAPHY 59

[49] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: Sharing-aware
scheduling on SMP-CMP-SMT multiprocessors. In EuroSys, pages 47–58, Lisbon,
Portugal, 2007.

[50] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.
Pearson, Boston, MA, USA, 1st edition, 2005.

[51] Christian Terboven, Dieter an Mey, Dirk Schmidl, Henry Jin, and Thomas Reich-
stein. Data and thread affinity in openmp programs. In International Conference on
Computing Frontiers, pages 377–384, Ischia, Italy, May 2008.

[52] Rik van Riel. Automatic NUMA Balancing. http://events.linuxfoundation.
org/sites/events/files/slides/summit2014_riel_chegu_w_0340_automatic_
numa_balancing_0.pdf, April 2014.

[53] Raj Vaswani and John Zahorjan. The implications of cache affinity on processor
scheduling for multiprogrammed, shared memory multiprocessors. Special Interest
Group - Operating Systems Review (SIGOPS), 25(5):26–40, September 1991.

[54] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating
system support for improving data locality on CC-NUMA compute servers. In Inter-
national Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 279–289, Cambridge, Massachusetts, USA, 1996.

[55] Kenneth Wilson and Bob Aglietti. Dynamic page placement to improve locality in
CC-NUMA multiprocessors for TPC-C. In ACM/IEEE SC Conference, pages 33–33,
Denver, Colorado, November 2001.

http://events.linuxfoundation.org/sites/events/files/slides/summit2014_riel_chegu_w_0340_automatic_numa_balancing_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/summit2014_riel_chegu_w_0340_automatic_numa_balancing_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/summit2014_riel_chegu_w_0340_automatic_numa_balancing_0.pdf

	Introduction
	Contributions
	Why is this a relevant problem?
	A motivating example

	Related Work
	Possible Approaches
	Programmer control
	Allocation Policies
	Compilers
	Programming Languages
	Operating System

	OS-related work
	Thread clustering
	Congestion-aware scheduler
	Bandwidth Asymmetry
	Memory access pattern


	Linux's NUMA Scheduler
	Modeling NUMA Architecture Performance
	Performance characterization
	The Bandwidth Graph
	Congestion/remote access tradeoff

	The PTB Algorithm
	Profiling
	Thread distribution
	Page distribution

	A Performance Study of PTB
	What is PTB overhead?
	How hash conflicts impact accuracy and performance?
	Parameter tuning
	How does PTB compare to alternative solutions?

	Conclusion
	Bibliography

