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Abstract

In the last few years, Transactional Memories (TMs) have been shown to be a parallel
programming model that can effectively combine performance improvement with ease of
programming. Moreover, the recent introduction of (H)TM-based ISA extensions, by ma-
jor microprocessor manufacturers, also seems to endorse TM as a programming model for
today’s parallel applications. One of the central issues in designing Software TM (STM)
systems is to identify mechanisms or heuristics that can minimize contention arising from
conflicting transactions. Although a number of mechanisms have been proposed to tackle
contention, such techniques have a limited scope, because conflict is avoided by either in-
terrupting or serializing transaction execution, thus considerably impacting performance.
This work explores a complementary approach to boost the performance of STM through
the use of schedulers. A TM scheduler is a software component that decides when a partic-
ular transaction should be executed. Their effectiveness is very sensitive to the accuracy
of the metrics used to predict transaction behaviour, particularly in high-contention sce-
narios. This work proposes a new Dynamic Transaction Scheduler — DTS to select a
transaction to execute next, based on a new policy that rewards success and an improved
metric that measures the amount of effective work performed by a transaction.

Hardware TMs (HTM) are an interesting mechanism to implement TM as they inte-
grate the support for transactions at the lowest, most efficient, architectural level. On the
other hand, for some applications, HTMs can have their performance hindered by the lack
of scalability and by limitations in cache store capacity. This work presents an extensive
performance study of the implementation of HTM in the Haswell generation of Intel x86
core processors. It evaluates the strengths and weaknesses of this new architecture by
exploring several dimensions in the space of TM application characteristics. This detailed
performance study provides insights on the constraints imposed by the Intel’s Transaction
Synchronization Extension (Intel’s TSX) and introduces a simple, but efficient, serializa-
tion policy for guaranteeing forward progress on top of the best-effort Intel’s HTM which
was critical to achieving performance.
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Resumo

Nos últimos anos, Memórias Transacionais (Transactional Memories — TMs) têm-se
mostrado um modelo de programação paralela que combina, de forma eficaz, a melhoria
de desempenho com a facilidade de programação. Além disso, a recente introdução de ex-
tensões para suporte a TM por grandes fabricantes de microprocessadores, também parece
endossá-la como um modelo de programação para aplicações paralelas. Uma das questões
centrais na concepção de sistemas de TM em Software (STM) é identificar mecanismos ou
heuŕısticas que possam minimizar a contenção decorrente dos conflitos entre transações.
Apesar de já terem sido propostos vários mecanismos para reduzir a contenção, essas
técnicas têm um alcance limitado, uma vez que o conflito é evitado por interrupção ou
serialização da execução da transação, impactando consideravelmente o desempenho do
programa.

Este trabalho explora uma abordagem complementar para melhorar o desempenho de
STM através da utilização de escalonadores. Um escalonador de TM é um componente de
software que decide quando uma determinada transação deve ser executada ou não. Sua
eficácia é muito senśıvel às métricas usadas para prever o comportamento das transações,
especialmente em cenários de alta contenção. Este trabalho propõe um novo escalonador,
Dynamic Transaction Scheduler — DTS, para selecionar a próxima transação a ser ex-
ecutada. DTS é baseada em uma poĺıtica de “recompensa pelo sucesso” e utiliza uma
métrica que mede com melhor precisão o trabalho realizado por uma transação.

Memórias Transacionais em Hardware (HTMs) são mecanismos interessantes para im-
plementar TM porque integram o suporte a transações no ńıvel da arquitetura. Por outro
lado, aplicações que usam HTM podem ter o seu desempenho dificultado pela falta de
escalabilidade e transbordamento da cache de dados. Este trabalho apresenta um extenso
estudo de desempenho de aplicações que usam HTM na arquitetura Haswell da Intel.
Ele avalia os pontos fortes e fracos desta nova arquitetura, realizando uma exploração das
várias caracteŕısticas das aplicações de TM. Este estudo detalhado revela as restrições im-
postas pela nova arquitetura e introduz uma poĺıtica de serialização simples, porém eficaz,
para garantir o progresso das transações, além de proporcionar melhor desempenho.
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Chapter 1

Introduction

The introduction of multicore architectures has renewed the search for programming mod-
els that can simplify the creation of efficient parallel applications. Among the various
models proposed so far, Transactional Memory (TM) [29] is expected to enable parallel
programming at lower programming complexity, while delivering improved performance
over traditional lock-based systems. However, there are certain situations where transac-
tional memory systems could actually perform worse. TM systems can outperform locks
only when the executing workloads contain enough parallelism. When the workload lacks
inherent parallelism, launching excessive transactions can adversely degrade performance.
One of the central issues in designing Software TM (STM) systems is to identify mecha-
nisms or heuristics that can minimize the contention arising from conflicting transactions.
Although a number of mechanisms has been proposed to tackle contention [3, 16, 48],
such techniques have a pessimistic approach, with respect to conflicting transactions, as
they either interrupt or serialize their execution, thus impacting performance [17].

Hardware TMs (HTM) are an interesting option to implement TM because they in-
tegrate the support for transactions at the lowest, most efficient, architectural level. On
the other hand, for some applications, HTMs can have their performance hindered by
the lack of scalability and cache capacity overflow [44]. Software Transactional Memories
(STMs) [26], in contrast to HTMs, tread in the opposite design direction. STMs are
implemented atop the processor and, thus, allow more flexible designs as they do not
limit the size of their critical data structures to the hardware constraints. Eventually,
as research evolves, the combination of HTM and STM systems could lead to the best
solution for a larger range of applications.

This thesis is organized as follows. Section 1.1 details the problem statement and
Section 1.2 describes the contributions to improve the design of STMs, the recommen-
dations on how to best use the new Intel HTM support as well the contributions on

1



2 Chapter 1. Introduction

forward-progress policies to this architecture. Chapter 2 provides background on STM
(Section 2.1) and HTM (Section 2.2), and introduces the Intel’s Transactional Synchro-
nization Extensions — TSX, for HTM support, with a brief description of transactional
abort’s causes and the various sources of data conflicts. The thesis is then divided into
two parts: The first part, described in Chapter 3, details our contributions to STM and
the second part, described in Chapters 4 and 5, details our contributions to HTM. On the
first part, Section 3.1 proposes Dynamic Transaction Scheduler — DTS, a new scheduler
to decide which transaction to execute next. Then, Section 3.2 introduces Best Alter-
native Transaction — BAT, a heuristic that guided the scheduler to switch a conflicting
transaction by another with a lower conflicting probability; it defines Percentage of Ef-
fective Work — PEW, a new metric that measures the progression of each transaction,
and presents the Success-Rewarding Policy — SRP, which is based on PEW and can be
used by a scheduler to guide the scheduler choices. Following, Section 3.3 explains the ex-
perimental infrastructure and methodology for BAT and SRP and analyzes the proposed
heuristics, while comparing then to other similar approaches from the literature (e.g.,
ATS [48] and Shrink [17]). Section 3.4 discusses related work of the first part. On the
second part of the thesis, Section 4.1 describes the policies generally used on the evalua-
tions of HTMs, and also introduces SerControl, a simple and effective serialization policy
that is more efficient for TM on Intel’s TSX than policies used so far [47, 45]. Section 4.2
describes our experimental setup, a detailed assessment of Intel’s TSX and recommenda-
tions on how to best use the new Intel HTM support. Section 4.2.4 presents an evaluation
of Intel’s TSX using the STAMP benchmark suite [36] and Section 4.3 discusses related
work. Finally, Chapter 5 explores, with the aid of a new tool called htm-pBuilder, the
performance of Intel’s TSX for various fall-back policy tunings and transaction properties;
it also discusses future work. We conclude the work of the thesis on Chapter 6.

Some of the material used in this thesis has been published in the following papers:

Pereira M. M., Baldassin A., Araujo G., Buzato L. E. Transaction Scheduling using Con-
flict Avoidance and Contention Intensity. In 20th International Conference on High
Performance Computing (HiPC), 2013 DOI: 10.1109/HiPC.2013.6799126 Publica-
tion Year: 2013, Page(s): 236 - 245

Marcio Pereira, José Nelson Amaral and Guido Araújo. Measuring Effective Work to
Reward Success in Dynamic Transaction Scheduling. In 43nd International Con-
ference On Parallel Processing (ICPP), 2014 September 9-12, 2014, Minneapolis,
MN, USA

Marcio Machado Pereira, Matthew Gaudet, José Nelson Amaral and Guido Araujo.
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Multi-dimensional Evaluation of Haswell’s Transactional Memory Performance. In
26th International Symposium On Computer Architecture And High Performance
Computing (SBAC-PAD), 2014 IEEE ; October 22-24, 2014 University Pierre et
Marie Curie, Paris, France

Marcio Machado Pereira, Matthew Gaudet, José Nelson Amaral and Guido Araujo.
Study of Hardware Transactional Memory Characteristics and Serialization Policies
on Haswell. Extended paper submitted to the Special Issue of Parallel Computer
Journal (Ref. No.: PARCO-D-14-00235) as one of the best papers of SBAC-PAD
2014.

1.1 Problem Statement

Although TM systems improve performance, mainly in the presence of a good amount of
parallelism, they may considerably degrade performance for those workloads with high
data contention rates. Contention occurs when more than one transaction access the same
memory location, and at least one transaction writes to that location, causing a conflict.
When a conflict occurs, the system has to decide which action to take.

For instance, consider two transactions tX and tY referencing the same memory loca-
tion m in an ETL–WB1 STM implementation. If tX writes to m and later tY reads from
m, a conflict occurs as illustrated in Figure 1.1(a). In order to deal with such conflict, a
contention manager typically aborts tY and restarts it later.

Deciding which transaction to abort is part of a set of contention policies used by the
Contention Manager — CM [23]. Most contention policies select to abort the transaction
that produces the smallest impact in performance when a conflict occurs [43]. In general,
managers cannot avoid conflicts because they can only select which transaction to abort
and the amount of time to delay the restart of the aborted transaction. The benefits of
delaying the restart of a transaction are not simple to anticipate. If an aborted transaction
restarts too early it may cause new conflicts. If it restarts too late it may preclude the
exploitation of program concurrency to its fullest. Such limitation makes it harder to
effectively increase transaction throughput because managers can only act after a conflict
has been detected.

Scheduling-based research [7, 17] have employed heuristics to predict a conflict before
transaction scheduling. For instance, the conflict history of every transaction pair can be
recorded and used to predict future conflicts [16]. Returning to the example of Figure 1.1,

1ETL–WB is a time-based encounter-time locking system where locks are acquired at the time data
are written with a write-back update strategy that buffers writes until commit time.
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Figure 1.1: Concurrent and ordered scheduling alternatives.

tX

tY

start read V commit

start write V commit

(a) concurrent

tX

tY

start read V commit

start write V commit

(b) rescheduled

tY will not be allowed to start before tX commit, an approach called serialization. An
important research question is whether serialization is the best solution. There are cir-
cumstances where some overlapping is possible, but producing such scheduling is far from
simple. Consider the scheduling shown in Figure 1.1(b). Transaction tY reads variable
V immediately after tX commits and, assuming no other dependencies in the code, this
scheduling is the best attainable. However, arranging the transaction tY to start exactly
at that point is not an easy task and might involve some instrumentation by the STM
system which, in turn, might add a prohibitive overhead.

Approaches like ATS [48] and Shrink [17] do not offer any way to control the real
scheduling of transactions other than yielding the processor and hoping that the operating
system schedules the right thread with the right transaction. CAR-STM explicitly moves
threads between the queues in each core [16]. However, it expects applications to provide
a conflict probability (CP) for each transaction. The CP is generally difficult to determine
because programs have multiple execution phases and the CP may vary over time.

Two research questions addressed in this work are (1) whether a TM scheduler that
aims to avoid TM conflicts could anticipate that a transaction will abort and delay its
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dispatch, thus simulating the situation shown on Figure 1.1(b); and (2) what policies
should be used to guide such a scheduler. The main idea is that a scheduler that has
more information about the transactions’ past behaviour is in a better position to select
which speculative thread to schedule next than the operating system scheduler.

1.2 Contributions

This work makes four contributions to improve the design of STMs. First, it introduces
DTS which implements a fully cooperative transaction scheduler. Second, it defines BAT
heuristic, a proactive heuristic that, combined with DTS, improves STM performance on
high contention scenarios. Third, it introduces PEW, a new metric that measures the
progression of each transaction, and fourth, it presents SRP, a policy which is based on
PEW and can be used by a scheduler to guide the scheduler choices. The new PEW
metric can also be used by Contention Managers to improve the resolution of conflicts. 2

This work also presents a performance evaluation of the HTM capabilities in In-
tel’s Haswell micro-architecture called the Transactional Synchronization Extensions —
TSX [33]. The goal is to study performance from the application perspective, providing
a precise evaluation of the strengths and weaknesses of this architectural feature. To
efficiently exploit the parallelism available through Intel’s TSX, it is important to know
the constraints imposed on software by its hardware design, and the requirements that
must be fulfilled by software support systems.

This study also introduces SerControl, a simple and effective serialization policy that
is more efficient for TM on Intel’s TSX than policies used so far [47, 45] and a new tool
— htm-pBuilder , that acts as a wrapper over Eigenbench [30] to allow fall-back policy
tunings. We are currently integrating the proposed SerControl policy within the libitm,
the TM library of the GCC compiler [1]. Through this integration it will be possible to
achieve an abstraction capable of alleviating the task of developers to understand and deal
with hardware details, through a much more user-friendly interface between the machine
and the TM developer.

Research in TM is very promising because of the great power and simplicity of its
programming model and its performance potential. Thus, this area has attracted increas-
ing interest in recent years, and our contribution has focused on identifying the sorts of
heuristics or techniques that can improve TM applications.

2Contention Managers with PEW is not explored in this work.
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Chapter 2

Background Information

Transactional Memory, a lock-free alternative for shared state concurrency, makes it easier
for programmers to develop parallel programs. With TM, programmers enclose a group
of instructions within a transaction to execute the instructions in an atomic and isolated
way.

Transactions appear as single operations that do not yield inconsistent state while
running but not having committed or aborted yet. They also do not interfere with other
running transactions and their outcome is always persisted. As a consequence of these
properties, namely, atomicity 1, consistency 2 and isolation 3, transactions are serializ-
able. The outcome of transactions can be reproduced by an equivalent sequential exe-
cution of seemingly atomic operations. Concurrency control for transactions can either
be pessimistic or optimistic. Pessimistic concurrency control forces conservative locking
of resources and results in low transaction throughput. Optimistic concurrency control
delays the integrity checks of a transaction to its end. In case of a conflict, the transac-
tion is aborted and gets restarted. When transactions are not long-running and do not
conflict too often, optimistic concurrency control provides a very good performance with
a negligible overhead of retries.

The concept of TM can be implemented in various ways. HTM provides an hardware
implementation of TM, that extends CPU architectures by transactional components

1A transaction is atomic if the changes it makes to storage appear to happen indivisibly: either all
the changes must be seen at once, or none of the changes can be seen.

2The system remains consistent after the execution of a transaction. If a transaction would leave the
system in an inconsistent state, then the transaction is not allowed to complete.

3Transactional isolation is the inability of any component of the system to see partial results from
an in-progress transaction. Isolation is a key part of proving consistency because, without isolation,
invalid results could be produced by using invalid temporary results produced during the execution of a
transaction.

7



8 Chapter 2. Background Information

such as transactional caches and an extended instruction set. All existing transactional
memory systems are ‘best-effort’ because they do not guarantee speculative completion
of all transactions due to capacity and functional limitations. Section 2.2 describes HTM
implementations in more detail.

While TM was initially specified as hardware-supported lock-free data structures,
much research has since gone into STM. STM does not require any hardware changes 4

and supports transaction handling entirely in software. Section 2.1 focus on STM systems.

2.1 Software Transactional Memory

Optimistic concurrency control is preferred by existing STM implementations. Once a
transaction has been started at runtime, the underlying implementation starts to keep a
read set and a write set. Both sets contain all variables and states that the transaction has
read or altered. This is necessary for a later integrity check before committing. Also, as
long as the transaction is pending, changes are not applied to the actual share variables,
but on thread-local copies, often in form of a transaction log. Once the transaction has
been verified as not conflicting, all of its changes are then flushed to the actual shared
states in an atomic step. While this often contains some forms of locking, this behaviour
is entirely transparent for the developer. In order to detect conflicting transactions, the
STM implementation compares the read and write sets of a transaction with the actual
states before committing. When another transaction has already altered a state and
has committed successfully, the STM detects the discrepancy and aborts the transaction.
Instead, the old read and write sets get discarded and refreshed, and the transactions
restarts. To some extent, starvation situations can still occur, especially when a long-
running transaction is steadily outpaced by other transactions that successfully commit
first. Apart from that, STM provides mutual exclusion without explicit locking, and
without the danger of the locking issues so far.

There are important limitations of STM. As TM transactions are limited to memory
operations, they can only be used when coordinating access to shared state, but not to
external resources. Furthermore, the transactional character requires operations to be
irrevocable, so transactions must not have any side effects apart from modifications of
shared state. For example, the usage of I/O operations inside transactions is disallowed.
Furthermore, the length of transactions and the ratio of conflicting transactions have a
lasting effect on the performance of STM deployments. The longer transactions take to
execute, the more likely they cause conflicts and must be aborted, at least in case of many

4Actually, STM requires minimal hardware support, typically an atomic compare and swap operation,
or equivalent.
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contending transactions. When implemented with optimistic concurrency control, STM
provides reasonable performance, as long as there are not many concurrent and conflicting
write operations.

Initial attempts to mitigate the negative effects of conflicts relied on the so-called
contention management — CM, introduced by Herlihy et al. in 2003 as a mean to guar-
antee progress in obstruction-free STM implementations [28]. The idea is very simple
and elegant: when a transaction discovers a conflict, it consults a contention manager
to determine how to proceed (e.g., restart immediately or restart after some delay). De-
spite significant progress on the design of contention managers, STM systems have not
always been able to anticipate conflicts and increase system throughput. On the contrary,
traditional contention managers use a reactive strategy, instead of focusing on avoiding
conflicts.

Scheduling-based contention management approaches have emerged to counter the
limitation exposed in CM [48, 16, 3, 17, 6, 35]. In special, the work by Attiya and Milani [6]
provides a formal description of schedulers targeted at read-dominated workloads. The
basic idea of this new strategy is to use some information about the past history to decide
whether a given transaction should be scheduled for execution or not.

Adaptive Transaction Scheduling — ATS [48] is a transactional scheduler that keeps
a per-thread measurement of contention intensity as a predictor to decide if a transaction
should be allowed to start. In case the contention is too high, transactions are inserted
into a queue and serialized, appropriately avoiding repeated aborts. ATS is very attractive
since it lends itself to simple implementations.

CAR-STM [16] is a transactional scheduler that maintains a queue of transactions
for each core. When a conflict between two transactions arises, the scheduler inserts the
aborted transaction into the aborter’s queue. Therefore, the likelihood of repeated aborts
is decreased since the aborted transaction is serialized after the aborter.

Shrink [17] makes use of past access patterns of a thread to predict whether a trans-
action should be allowed to start in the future, thus preventing conflicts if the prediction
is accurate. When a transaction is about to start, Shrink checks if any address in the
predicted read and write sets is being written by an active transaction. If that is the case,
the transaction is serialized. To avoid unnecessary serialization, Shrink also measures the
contention intensity and serializes only if it is above a certain threshold.

Both ATS and Shrink force two potentially conflicting transactions to execute in se-
quence but do allow them to run concurrently with other non-conflicting transactions.
The serialization is their main contention management mechanism. They keep track of
the likelihood of a transaction to abort and, when its conflict probability reaches a given
threshold, they serialize such transaction.
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The Lightweight User-level Transaction Scheduler — LUTS is based on the assump-
tion that it is better to schedule a different transaction instead of risking serializing the
execution of a transaction with high conflict probability [38]. LUTS implements a fully
cooperative scheduler, and does not rely on the system-level scheduler for the context
switching of speculative threads. LUTS creates exactly as many system-level threads
as the number of available processors and then manages the allocation of transactions to
these threads. Having more information about the potential for conflicts, a scheduler such
as LUTS is better able to do this thread allocation than the operating system. LUTS
uses the concept of contention intensity, proposed in ATS, as a metric to measure trans-
action conflict. However, different from ATS, which is restricted to serializing or yielding
the transaction, the LUTS heuristic finds a more appropriate transaction — with lower
contention intensity — to schedule.

2.2 Hardware Transactional Memory

A Hardware Transactional Memory system uses dedicated hardware to accelerate transac-
tional execution [29, 37, 12]. The HTM system starts a transaction by executing a register
checkpoint with shadow register files. Whenever the transaction writes to memory, the
transactional value produced by the write is stored separately from the original value by
either buffering the transactional data in hardware buffers, such as the cache, or by log-
ging the old value, a process called data versioning. Data versioning can be implemented
by augmenting the cache with additional bits [25] or by using separate hardware struc-
tures, such as Bloom filters [46], to record the memory addresses read and written by the
transaction. A conflict between two transactions is detected by comparing the read sets
and the write sets of both transactions. If a conflict is detected, one of the transactions
is rolled back by discarding its transactional writes, restoring the values in the registers
to the values saved at the checkpoint at the start of the transaction, and discarding any
transactional changes to the state of the program. When there is no conflict, the trans-
action commits the transactional data and discards both the transactional metadata and
the values saved at the register checkpoint.

Software support for HTM systems is limited by the information and control provided
by the hardware-software interface. Typically HTMs offer limited scope to implement
contention management, used to provide forward progress in STM systems, and so must
rely on a lock based fallback policy to provide forward-progress guarantees. For instance,
the TM runtime in the IBM BG/Q machine adopts a policy of performing a certain
number of retries for an aborting transaction before causing the transaction to serialize
through the acquisition of a global lock [44].
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Intel Transactional Synchronizations Extensions — TSX [33] is a recent addition to
the Intel architecture that provides programmers with hardware transactional memory in
the Haswell processor (Haswell processor characteristics are described in Appendix B).
Intel’s TSX provides two software interfaces to programmers: Hardware Lock Elision
— HLE, a legacy-compatible instruction set extension, and Restricted Transactional
Memory — RTM, a new instruction-set interface. HLE provides a prefixed instruction
that indicates that a lock acquisition is to be elided, with the body executed in a trans-
action instead. If the transactional execution fails, the execution falls back to the original
lock. The RTM interface executes code in a transaction, but provides no guarantee that
a transactional execution will eventually commit. Therefore the program must always
provide code to handle a transactional abort that can either restart the transaction or
take a non-transactional path.

A processor can perform a transactional abort for numerous reasons. A primary cause
is conflicting data accesses between transactions executing in different logical processors.
Such conflicting accesses force an abort to ensure the preservation of transactional isola-
tion. Transactional aborts may also occur because of limited transactional resources. For
example, the amount of data accessed in a transactional region may exceed the HTM ca-
pacity limit. Intel’s TSX uses the EAX register to communicate abort status to software.
Causes for abort in TSX include execution overlap of transactional and non-transactional
regions and system events such as system calls and page faults. During startup transac-
tional programs experience a higher rate of aborts due to page faults. They experience
a lower rate of such aborts after reaching steady state. However, in programs with very
short run times, page-fault-induced aborts may appear to dominate.5 A high rate of page-
fault-induced aborts is also observed soon after large regions of memory are allocated.

5This type of abort affects most of the experiments with current benchmarks.
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Chapter 3

STM Scheduling Policies

We have proposed DTS, in the same direction of the LUTS, a fully cooperative transaction
scheduler presented by Nicácio [38], and also take same advantages when compared
with other state-of-the-art TM schedulers [48, 7, 16]. First, both deal with the pseudo
parallelism in an elegant way, by only spawning as many system-level threads as the
number of available processor cores and handling the exceeding threads internally. Second,
they allow the TM subsystem to efficiently access the runnable transaction queues and
switch the execution to any of them. However, DTS is more flexible and scalable than
LUTS because this was designed to work with multiple queues with priority. This allows
the design of more precise proactive scheduling mechanisms, not possible with LUTS and
also with other known approaches, that are restricted to either serialization or yielding.

3.1 Dynamic Transaction Scheduler

DTS is the component that implements policies to condition the execution of transactions
with the sole purpose of increasing the probability of a concerted, frictionless, transac-
tional execution. DTS is in sharp contrast with traditional contention management (CM),
as CMs tend to focus primarily on conflict resolution. The differences between DTS and
traditional CMs can be summarized as:

• CMs work at the moment a conflict among already active transactions is detected.
DTS works before transactions are started.

• CMs are usually implemented inside the TM. DTS is implemented as a separate
component that is logically at the same level as the STM, below the application and
on top of the operating system (OS).

13



14 Chapter 3. STM Scheduling Policies

DTS acts proactively before transactions start. For a given set of transactions the main
goal of DTS is to create a transaction execution schedule that prioritizes transactions
that have done the most effective work. DTS associates a scheduling priority to each
transactional thread. Thus, a scheduling decision takes into account the priority of all
transactional threads in the program. Conceptually, DTS maintains a queue of runnable
threads for each priority value. To determine which thread should run next, the scheduler
looks for a non-empty queue with the highest priority and selects the thread at the head
of the queue.

For a given queue of similar priorities, the DTS scheduling policy determines in which
position in the queue its corresponding thread should be inserted. DTS uses a FIFO (First
in, First Out) policy for the queue of threads. When a thread becomes runnable, it is
inserted at the end of the queue corresponding to its priority. DTS provides a sched yield
interface, similar to the routine provided by UNIX-like operating systems, that forces the
current thread to release the execution. The thread is inserted again at the end of the
queue corresponding to its priority. No other events move a thread scheduled under the
FIFO policy in the wait queue of runnable threads.

The number of queues used in DTS is a configuration parameter. For the prototype
implementation working with the BAT heuristic (see Section 3.2.1) evaluated in this work,
DTS is configured with just one queue and for the SRP policy (see Section 3.2.3), DTS
is configured with ten queues with priority running from 1 to 10, respectively. In this
configuration, the priority queue that a new transactional thread joins is determined by
the PEW metric explained in Section 3.2.2.

Figure 3.1 shows a block diagram of the DTS scheduler. Every time a transactional
thread commits or aborts, it notifies DTS ¶. DTS then calls the dispatcher to traverse
the queues from highest to lowest priority and schedules transactions according to their
priority ·. This scheduling policy avoids starvation of transactions that abort repeatedly
while trying to match the time delay between enemy transactions, which are competing
for the same resources, as shown in Figure 1.1. When a transaction becomes ready to
execute, it is encapsulated in a thread and the dispatcher enqueues the thread in the wait
list of runnable threads according to its priority ¸.

3.2 Scheduling Heuristics

One of the central issues in designing STM systems is to identify mechanisms or heuristics
that can minimize the contention arising from conflicting transactions. Although a number
of mechanisms have been proposed to tackle contention, such techniques have a limited
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Figure 3.1: DTS thread scheduling. The dispatcher selects from the highest to lowest
priority transactional thread and maps them to available cores.
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scope, as conflict is avoided by either interrupting or serializing transaction execution,
thus considerably impacting performance. To deal with this limitation, we have proposed
two new heuristics or policies that work with DTS. DTS implements a fully cooperative
scheduler that switches a conflicting transaction by another one selected according to
the heuristic premisses. The first one, called Best Alternative Transaction — BAT is
described in Section 3.2.1 and the second one, called Success-Reward Policy — SRP, in
Section 3.2.3. Experimental results, obtained using the STMBench7 [24] and STAMP
benchmarks atop TinySTM [19, 18], show that the proposed heuristics produces better
speedups when compared to other solutions.

3.2.1 Best Alternative Transaction

Usually, conflict avoidance mechanisms are implemented by continuously monitoring the
level of transaction contention in the system and triggering the serialization of transactions
while its value exceeds a given threshold [17]. Unfortunately, such techniques have a
limited scope, as they do not try to replace the transaction whose execution has been
delayed by another so as to sustain higher levels of transactional throughput. Instead,
they avoid the conflict by simply serializing the execution of the potentially conflicting
transactions.
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In order to decrease contention, we have developed a new, proactive heuristic, named
Best Alternative Transaction — BAT, which integrates the conflict avoidance mechanism
proposed by Nicácio [38] with the Contention Intensity heuristic proposed by Yoo and
Lee in the ATS system [48]. By doing so, we show that BAT effectively improves STM
performance, mainly on high contention applications. Before introducing BAT, we will
first outline the Contention Intensity — CI heuristic.

The rationale behind CI

The effectiveness of a transaction, that is, the chance that once started it progresses and
commits, is directly related to the competition for shared resources encountered during
its execution. In ATS, each transaction, materialized by a thread, maintains its own
estimate of such competition, by measuring an index, called Contention Intensity — CI.
Equation 3.1 below shows how ATS defines the contention intensity for the n-th activation
of a transaction:

CIn = α ∗ CIn−1 + (1− α) ∗ CC (3.1)

Contention intensity is computed by combining, with different weights, two compo-
nents of the contention experienced by the transaction. The CIn−1 component captures
the contention experienced by the transaction from its first (n = 1) activation up to its
(n − 1)-th activation. The component CC measures the transaction contention, for its
current (n-th) activation. A weight α is used to adjust the importance of the past and
current contention components in the equation. Note that α and its complement are
used in the computation of CIn. By applying competitive learning between these two
predictors, the α can be adjusted automatically. However, throughout our experiments,
we fixed α to 0.30, giving a little more weight to CC, because this value showed the best
performance. Initially, CI is set to 0, and the equation is evaluated at each commit or
abort operation, with CC set to 0 on commits and to 1 on aborts.

When a transaction T is about to be started, the scheduler checks whether the CI of
T is above a given threshold (again, throughout our experiments, we set the threshold at
0.70). If this is the case, the BAT heuristic is enabled to find an appropriate alternative
transaction to take the place of T and a call to the method sched_switch is carried
out to replace T with the newly selected transaction. By contrast, ATS simply serializes
transactions whose CI has surpassed a given threshold. Of course, if the CI of T is below
the threshold, then it is scheduled for execution (re-execution) without further delay.
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The rationale behind BAT

BAT is based on a very simple rationale: maintain a global snapshot of the transactions
active in the STM and select, as the next transaction to be executed, the transaction with
the lowest probability of conflicting with those in the snapshot. The effectiveness of BAT
depends on two factors:

• high accuracy: the transaction chosen by BAT should have a high probability of
commit;

• low overhead: the execution of BAT must have a low impact on the overall execution
of the transactional system.

The accuracy of BAT is highly dependent on the diversity of transactions available in
the application. It is not difficult to see why by examining the extreme case where the
application has only one transaction; the worst case scenario. At any moment, the STM
will execute several instances of the same transaction. These, in their turn, will have the
same structure, same expected duration and compete for the same shared resources. So,
the probability of conflicts happening is going to be very high. In addition, at any moment,
BAT will not be able to find a best alternative transaction to include in the set of active
transactions because there is only one transaction available. In the best case scenario, BAT
will be dealing with an application structured as many different transactions, possibly
reading/writing different locations of the shared data space during their execution. Here,
BAT is going to have at its disposal a diverse set of transactions from which it is going
to pick the transaction the chance of conflict with the ones already in the snapshot, this
is the best alternative transaction.

Suppose an activation and execution of BAT takes on average C cycles. The policy used
to decide whether it is worth imposing the C overhead on the STM to minimize conflicts
among transactions is the following: if the average duration of a transaction is shorter than
k×C, where k has been found by actively monitoring the duration of transactions in the
applications, then an heuristic for short transactions must be activated. Otherwise, the
STM is considered as working mostly with long transactions and BAT for long transactions
must be activated. In summary, the duration k × C splits transactions into the classes
short and long, and in each case BAT chooses an adequate heuristic to keep the overhead
of DTS as low as possible. The factor k is computed using a sliding window average of the
durations of the last window transactions with window set to one hundred (100); for the
experiments the threshold for k × C has been set to 100.000 cycles. During the profiling
carried out to determine the threshold we have also found that an hysteresis should exist
between the computation of the threshold and its use in the activation of each heuristic.
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DTS switches to the heuristic adequate for long transactions only after two successive
values of the sliding window average are above the threshold, and it is switched back to
the heuristic for short transactions as soon as the average falls below the threshold. Next,
we discuss the behaviour of DTS in each of these scenarios.

Scenario for short transactions

As said before, the heuristic chosen to select the next transaction to run in a short trans-
actions scenario should have near-zero runtime overhead and a fair conflict prediction. So,
in this case the best heuristic is to simply let DTS scheduler select as the next transaction
to run the transaction in the FIFO queue different from the current transaction.

Scenario for long transactions

The goal of our heuristic in this scenario is to predict the best candidate transaction for
execution given a set of active transactions. We say that a transaction is the best candidate
when its conflict probability is the lowest one among the competing transactions. During
execution time we record the past conflict history of a transaction in a table. In order to
clarify the concepts of our higher-accuracy heuristic we provide now a detailed example:

Assume a system with 4 cores executing an application containing 3 transactions, rep-
resented by their unique identifiers (IDs) 1, 2 and 3. Besides the contention intensity
(CI) maintained for each transaction, there are three more metadata employed by the
higher-accuracy BAT heuristic: a vector with active transactions (activeTx), a conflict
table (conflictTable), and a summary of the best candidate transactions (bestTx) as
illustrated in Figure. 3.2. The activeTx vector maintains, for each core, the identification
number of the transaction that it is currently running on that core. When no transaction
is assigned to a core we make use of the ID -1. The active transactions in the system
illustrated in Figure. 3.2 is given by the set {-1, 1, 3, 2}. Therefore, core 0 is not exe-
cuting any transaction, whereas cores 1, 2, and 3 are executing transactions 1, 3, and 2,
respectively.

Assume now that core 0 is about to start a transaction. In order to pick a transaction
for execution, the algorithm accesses the conflictTable metadata. Each line in this table
identifies a transaction set; each column quantifies the conflict probability of starting a
specific transaction when that respective set is active. A hash function is responsible to
map each active transactions set to a line index, as illustrated in Figure. 3.2. For this
specific example, the conflict probability of starting transactions 1, 2, and 3 when the
active set is {-1, 1, 3, 2} is 0.5, 0.2, and 0.1, respectively. Therefore, we conclude that
core 0 should choose transaction 3, since it has the lowest conflict probability.



3.2. Scheduling Heuristics 19

activeTx [ ] vector

...

...

...

co
n

flictTa
b

le
[ ] [ ] 

tx1 tx2 tx3

cp1 cp2 cp3

0.5     0.2     0.1

-1        1          3        2

core0 core1 core2 core3

line_index = hash (activeTx [ ])

bestTx [ ] vector

... ...

...

...

...

[ ] [ ] m
a

trix

cp1 cp2 cp3

IC1 IC2 IC3txid 3      txid

contentionTx [ ] vector

==

Figure 3.2: An example illustrating BAT heuristic metadata and how the best candidate
transaction is selected for a given active transaction set.

Note that accessing the conflictTable every time a transaction is about to start
may introduce unnecessary overhead. In order to avoid that we employ a summary
vector. The same index returned by the hash function is used to access the bestTx
vector (see Figure. 3.2), that stores the identifier of the best candidate transaction, in
this case transaction 3. How this vector is updated is discussed below. For clarity, the
pseudo-code for BAT is shown in Listing 4.1.

After a transaction is chosen, we invoke sched_switch and update activeTx, as
described in the start operation (lines 9 to 13 of Listing 4.1). Now suppose that the
selected transaction running on core 0 aborts after detecting a conflict (lines 15 to 29
of Listing 4.1). Initially, activeTx is updated to take into account that no transaction
is running on this specific core anymore (line 16). Because there was a conflict, we
need to increase the conflict probability of running this transaction with the active set of
transactions (lines 17 to 19). Note that the active set is not necessarily the same one that
was active when the transaction started. If we assume it is, then the old conflict probability
(0.1) must be increased. Assume that the constant 0.1 is always added to the old value. In
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this scenario, the new conflict probability for transaction 3 must be increased to 0.2. Recall
from the illustration given in Figure. 3.2 that the conflict probabilities for transactions 1
and 2 are, respectively, 0.5 and 0.2. Therefore, bestTx must be updated because there
are other transactions with lower or equal conflict probability than transaction 3 (in the
example, transaction 2). This action is performed by the lines 20 to 29 in the pseudo-code.

Listing 3.1: Moderate-Overhead High-Accuracy BAT heuristic
0 int act iveTx [ ] , bestTx [ ] ;
1 double contentionTx [ ] ;
2 double c o n f l i t c T a b l e [ ] [ ] ;

4 upon s t m i n i t
5 resetBestTx ( ) ;
6 resetCT ( ) ;
7 for each core i act iveTx [ i ] = INVALID ;

9 upon s t a r t
10 int l i n e i n d e x = hash ( act iveTx ) ;
11 int t x i d = bestTx [ l i n e i n d e x ] ;
12 s ched swi tch ( t x i d ) ;
13 updateActiveTx ( thisCore , t x i d ) ;

15 upon abort
16 updateActiveTx ( thisCore , INVALID ) ;
17 updateContent ionIntens i ty ( act iveTx )
18 int l i n e i n d e x = hash ( act iveTx ) ;
19 increaseProbCT ( l i n e i n d e x , t x i d ) ;
20 i f ( bestTx [ l i n e i n d e x ] == t x i d ) {
21 for each t r a n s a c t i o n tx {
22 i f ( c o n f l i c t T a b l e [ l i n e i n d e x ] [ tx ] <

23 c o n f l i c t T a b l e [ l i n e i n d e x ] [ t x i d ] )
24 or ( c o n f l i c t T a b l e [ l i n e i n d e x ] [ tx ] ==
25 c o n f l i c t T a b l e [ l i n e i n d e x ] [ t x i d ] )
26 and ( contentionTx [ tx ] <= contentionTx [ t x i d ] )
27 bestTx [ l i n e i n d e x ] = tx ;
28 }
29 }

31 upon commit
32 updateActiveTx ( thisCore , INVALID ) ;
33 updateContent ionIntens i ty ( act iveTx )
34 int l i n e i n d e x = hash ( act iveTx ) ;
35 decreaseProbCT ( l i n e i n d e x , t x i d ) ;
36 i f ( c o n f l i c t T a b l e [ l i n e i n d e x ] [ t x i d ] <

37 c o n f l i c t T a b l e [ l i n e i n d e x ] [ bestTx [ l i n e i n d e x ] ] )
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38 or ( c o n f l i c t T a b l e [ l i n e i n d e x ] [ t x i d ] ==
39 c o n f l i c t T a b l e [ l i n e i n d e x ] [ bestTx [ l i n e i n d e x ] ] )
40 and ( contentionTx [ t x i d ] <=
41 contentionTx [ bestTx [ l i n e i n d e x ] ] )
42 bestTx [ l i n e i n d e x ] = t x i d ;

We only need to check if a better transaction exists if the aborted transaction was pre-
viously in bestTx (line 20). In this case, we need to check every column of conflictTable
in order to find the new best value (lines 21 to 28). When two transactions have the same
conflict probability, as in the example, the algorithm makes use of the contention inten-
sity of both transactions, as a tiebreaker. This strategy is based on the fact that the
conflitcTable indicates only the probability of conflict for a specific scenario but does
not give a more precise idea of conflict history of the transaction itself, better shown by
its contention intensity.

If the selected transaction commits instead of aborting we need to decrease its conflict
probability (pseudo code lines 31 to 42). This operation is similar to abort, except that
we do not need to check every column of conflictTable to find a better candidate
transaction. The only way for bestTx to change is if the committing transaction was not
previously the best choice and, as a result of decreasing its conflict probability (line 35),
it became the best choice (lines 36 to 42). For instance, if we picked transaction 2 instead
of 3 during the start operation (assuming there was no transaction 3 to be dispatched)
then, at commit time, we would update its conflict probability to 0.1 and update bestTx
to reflect that transaction 2 maybe now the best candidate, just depending if its CI is less
than or equal to the CI of the transaction 3.

Contrary to the low-overhead heuristic suitable for short transactions, where we might
only use one variable by transaction to hold its contention intensity, this high-accuracy
heuristic is more elaborated and, consequently, results in a higher runtime overhead. This
is because such a heuristic can capture information about which transactions conflict with
others. Once this information is collected it can be viewed in the context of global data
structures named conflictTable, activeTx and bestTx in order to predict what is the
best transaction to execute given a set of running transactions. BAT is constructed by
combining these heuristics into a transaction predictor that can be dynamically controlled.

3.2.2 PEW Metric

Reducing the number of aborting transactions is an effective way to improve the efficiency
of a TM system. Aborting a transaction can be costly. First, all the completed work done
by an aborted transaction is wasted and has to be re-done. If an aborted transaction
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has aborted another transactions earlier, the total amount of work lost is even larger.
Secondly, the cost to rolling back a transaction may require large memory footprint and
bandwidth.

To prevent costly abortions, DTS uses the new Success-Rewarding Policy — SRPthat
associates, to each transaction, a priority based on the Percentage of the Effective Work —
PEW that the transaction has done so far. An execution slice is formed by k consecutive
attempts to execute an static transaction t. For the experiments reported in this work
k = 20. PEW records, at the end of the execution of each slice, WC(t, n) which is the
sum of the machine cycles executed by a transaction t when it commits during slice n
and WA(t, n) which is the sum of the machine cycles executed by t when it aborts during
slice n. The total work done by transaction t during slice n is computed as follows:

WT (t, n) = WC(t, n) +WA(t, n) (3.2)

The computation of the metric keeps counters to measure the total/effective work
done by t. These counters are defined as follows:

T (t, n) = α× T (t, n− 1) + (1− α)×WT (t, n)
E(t, n) = α× E(t, n− 1) + (1− α)×WC(t, n) (3.3)

where n is the current execution slice and α is a tuneable weight that controls the con-
tribution of the past execution slices to the total/effective work (conversely, 1− α is the
contribution of slice n). T (t, n) is the total amount of work executed by transaction t

at the end of slice n and includes contributions from all previous execution slices, while
WT (t, n) is the work done by transaction t during slice n. The work done by an execution
of t is only effective when that execution commits. E(t, n) is the total amount of effective
work done by t at the end of slice n while WC(t, n) is the amount of effective work done
during slice n.

The weighted percentage of effective work performed by t after n slices of executions
is given by:

PEW (t, n) = E(t, n)
T (t, n) (3.4)

The value of PEW can either be used to dynamically set the scheduling priority of the
thread that is running the current transaction or to resolve conflicts by a conflict manager.
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When PEW is evaluated, the priority of the current transaction is set to a range from
1 to 10, where 10 is the highest priority. Transactions with PEW between 0% and 10%
belong to priority 1, 11% to 20% belongs to priority 2 and so on.

3.2.3 Success-Rewarding Policy

A careful analysis reveals that, under high-contention workloads, scheduling transactions
only according to their PEW value may degrade performance because such strategy can
lead to higher transaction conflict rates among transactions within the same priority
queue. To deal with that, the following policy is proposed to reward success:

• Immediately after a transaction t aborts, compare the value of PEW (t, n), where
n is the current execution slice, against a reward threshold. If PEW (t, n) is below
this threshold, raise a yield flag for t to indicate that t should yield to other, more
successful, transactions at the beginning of its next re-execution.

• If the yield flag of a transaction t, which is ready to execute, is raised, then clear
the flag and place t at the end of its priority queue. Proceed fetching the next
transaction that is ready to execute according to the priority mechanism described
above.

The use of the reward threshold and the yield flag to make a transaction lose a turn
once, after it aborts, changes the FIFO policy for the priority queues. Consider two
transactions tX and tY that conflict; tY gets aborted and restarts. The goal of the DTS
is to delay the restart of tY by an appropriate amount of time, so that tX and tY can still
potentially overlap, but TY will not perform the first conflicting access until tX commits.
With the yield flag, tY misses one scheduling opportunity and DTS achieves this goal.
Although very simple, this policy has shown to be effective on avoiding TM conflicts by
delaying the transaction that has high probability to abort, thus leading to an affirmative
answer to the first research question posed at the end of Section 1.1 as indicated by the
experimental evaluation (see Section 3.3.3).

In general, programs tend to exhibit different execution phases which make it really
difficult to devise a scheduling policy that works effectively all the time. Nevertheless,
a careful experimental evaluation have indicated that the combination of DTS and SRP
improves the STM performance for workloads with high data contention rates.
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3.3 Experimental Evaluation

This section presents an experimental evaluation using a prototype implementation of
DTS with BAT and SRP. The main findings from this evaluation are:

• Scheduling-based contention management approaches — such as DTS, LUTS and
ATS — have the potential to improve the performance of TM applications because
their influence in the execution of a transaction is not limited to a reaction to a
conflict. However, early experimental results indicated that this approach is very
sensitive to the metrics and policies used [38]. TM schedulers that either interrupt
or serialize the execution of transactions may impact performance. For instance,
excessive serialization of memory transactions, as occurs in ATS (see Figure 3.11),
may result in too little concurrency. On the other hand, miss-predictions — for
instance, due to Bloom filter’s false-positive that occur in Shrink (see Figure 3.11)
— serialize transactions unnecessarily and may lead to slowdown of programs.

• Among its competitors, DTS is the scheduler that most successfully explores the full
potential of the new PEW metric and results in the best performance results. The
TM scheduler proposed by Yoo and Lee [48] guided by the PEW metric does not re-
sult in great performance benefits because of serialization. DTS prevent transactions
that are likely to cause a conflict from running even when there are enough CPUs
to run them all. Therefore, when the number of dynamic transactions does not
exceed the number of available processor cores (24 in our experiments), as shown in
Section 3.3.1), all threads have a CPU to run, but applying the SRP policy (see Sec-
tion 3.2.3), the scheduler ends up creating the situation in Figure 1.1(b) by delaying
the transaction that has high probability to abort. With this strategy, the system
retains fairness, only reducing potential conflicts and, consequently, the number of
aborts.

• The BAT heuristic is expected to provide speedup gains when transaction diversity
is reasonably large and contention is high. But similar to the heuristics in ATS,
BAT only counts the number of aborts and commits but does not take into account
the amount of work performed by the transactions. For instance, suppose that there
are two transactions tX and tY that are queuing on the scheduler. Assume that tX
has a history of ten aborts in the last twenty executions, while tY has a history of
only five aborts in the last twenty executions. Hence tX should have a contention
intensity (CI) that is higher than the CI for tY.1 Predictors based on CI, would

1The value of contention intensity also depends on α and its past abort history. The weight α is used
to adjust the importance of the past and current contention components in the CI equation [48].



3.3. Experimental Evaluation 25

thus choose tY to be scheduled, instead of tX. Now assume that the ten aborts of
tX amount to 20% of the total work, measured as the number of execution cycles,
of tX while the five aborts of tY are responsible for 80% of the total work of tY.
Therefore, even though tY had fewer aborts, it is wasting significantly more cycles,
and a good predictor should select tX to be scheduled.

This insight led to the use of effective work as a better metric for the new scheduling
policy presented in this work.

3.3.1 Experimental Infrastructure and Methodology

The experiments were conducted on a machine with two 6-core Intel Xeon E-5645 proces-
sors (24 cores in total, hyper-threading enabled), 32GB of RAM and clocked at 2.40GHz.
The machine runs a standard Ubuntu Server 10.04.3 LTS amd64.

The experiments were based on the prototype of DTS built atop of TinySTM imple-
mentation, version 1.0.0, configured with the write-back and encounter-time locking —
ETL strategy. The contention policy adopted was SUICIDE, which immediately restarts
a transaction on abort. Other approaches, such as full lazy conflict detection [43] are
likely to benefit from this strategy by yielding a more precise estimation of the rate of
progress, but they are orthogonal to the strategy presented here.

This evaluation compares DTS with the prototype implementation of Yoo and Lee,
Adaptive Transaction Scheduling — ATS [48], inside of TinySTM. ATS employs a single
global queue for all transactions. The tuning of the ATS prototype included a sensibility
study on α with values 0.3, 0.5 and 0.75, and on the CI threshold2 with values 0.3, 0.5
and 0.7, which indicated that the combination of 0.75 for α and 0.7 for threshold yields
the best overall performance, and thus was adopted in the experiments.

Another comparison was performed with an implementation of the Shrink scheduler
proposed by Dragojevic et al. [17]. The code for Shrink, for TinySTM version 0.9.5, was
taken from the authors website and adapted to the current version of TinySTM (1.0.0).
The configuration parameters in the code are left unchanged.

The LUTS scheduler with the conflit-avoidance heuristic was used with the experi-
ments aimed at comparing BAT heuristics. In order to predict the conflict beforehand
LUTS was adopted, for the contention police, α = 0.75 and threshold = 0.5.

All applications were compiled using the gcc compiler version 4.4.3. The results pre-
sented in next sessions are average over twenty executions and the graphs show a 95%

2A threshold on the Contention Intensity indicating whether a transaction should be serialized or not.
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confidence interval — in some plots this interval is too small to be visible. All speedup
results are in comparison to a non-thread-safe sequential execution, i.e. the baseline does
not incur any transaction overhead.

Hardware performance counters, available on virtually all modern multiprocessors,
were used to collect timing information to evaluate PEW. The number of attempts to
execute a transaction that forms an execution slice for the PEW heuristic was empirically
determined by running representative programs. Values considered include 10, 20, 50, 100
and 200 executions. The prototype evaluated in this work uses a slice of 20 executions
because it produced the best overall results. Standard tuning techniques can be used to
determine the appropriate slice size, for any TM system that use PEW.

For the experiments with the STAMP applications, the parameters listed in Table 3.1
were adopted [36]. They are the recommended configurations and data set for use in
real machines. For the applications Vacation and Kmeans, only the results for the High
configuration are shown because the results for the Low configuration are very similar.

Table 3.1: STAMP configurations

Application Arguments
bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1
genome -g16384 -s64 -n16777216
intruder -a10 -l128 -n262144 -s1
kmeans -m15 -n15 -t0.00001 -i random-n65536-d32-c16
labyrinth -i random-x512-y512-z7-n512
ssca2 -s20 -i1.0 -u1.0 -l3 -p3
vacation -n4 -q60 -u90 -r1048576 -t4194304
yada -a15 -i ttimeu1000000.2

The well-known and widely accepted STMBench7 [24] benchmark is used to evaluate
DTS in high-contention workloads. STMBench7 that can create realistic transactional
workloads corresponding to a wide variety of applications, such as CAD, CAM and CASE
applications. STMBench7 uses a graph composed of objects (atomic and composite)
as the basis for the implementation of over forty different transactional operations and
thus provides a reasonably large transaction diversity. The configurations used for the
STMBench7 are in Table 3.2:
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Table 3.2: STMBench7 configuration

Attribute Value
Long traversals false
Workload types read dominated,

read-write
Duration 5000ms
Size Small, Medium,

Big and Huge

3.3.2 Evaluating BAT on High-Contention Workloads

DTS configured to working with the BAT heuristic is expected to provide speedup gains
when transaction diversity is reasonably large and contention is high. Higher contention is
obtained by increasing the number of threads, thus transactions, simultaneously active. To
evaluate BAT, we choose STMBench7 because this benchmark uses a graph composed of
objects (atomic and composite) as the basis for the implementation of over forty different
transactional operations. Therefore, it is fair to say that this benchmark provides a
reasonably large transaction diversity.

As shown in the graphs of Figures 3.3a, 3.3b, 3.3c and 3.3d, DTS performance is about
the same as other systems in the interval that goes from 1 to 16 threads given that the
number of threads is relatively small, generating moderate contention. This shows that
DTS does not impose a significant overhead in workloads that do not favor the BAT
heuristic.

The benefits of the BAT heuristic becomes clear as the number of threads as well
the sizes of the data sets increase. For configurations Small (Figure 3.3d) and Medium
(Figure 3.3c) DTS gives better speedups from 64 threads and up. For configurations Big
(Figure 3.3b) and Huge (Figure 3.3a), there is an improvement over the other systems,
as soon as the number of threads reaches 32.

In the STMBench7 Big and Huge scenarios the length of the average transaction
considerably grows (as the transaction length increases with the data size). This confirms
that BAT selects a best transaction alternative for the cases when the cost of an abort is
larger due to long running transactions.
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Figure 3.3: STMBench7: DTS+BAT performance and speedup comparisons
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3.3.3 Comparing PEW with Contention Intensity

One of the claims in this work — which needs to be evaluated — is that the PEW metric
is an improvement over the Contention Intensity metric used in heuristics elsewhere.
To evaluate this claim TinySTM was instrumented to measure the effective work and the
contention intensity every time a transaction starts, commits or aborts. This measurement
used the original TinySTM scheduling and SUICIDE conflict resolution policie. The only
interference is the overhead introduced to collect the data to compute both the PEW
and CI metrics, which affects equally all transactions. While this data was collected for
several applications, it is illustrated here only for a transaction from yada.

Yoo and Lee define the contention intensity (CI) as a dynamic average based on current
available contention information [48] that is related to the percentage of aborts in relation
to the total attempts to commit. PEW measures the percentage of work that was done by
committed attempts in relation to the total work done by all executions of the transaction.
For a visual comparison, Figure 3.4 shows (1 - PEW) which is the amount of wasted work
(in red) and the level of CI (in blue) for 150 slices (3000 executions of the transaction).

Figure 3.4: Percentage of wasted work (1−PEW ) and percentage of contention intensity
for 150 execution slices of a single transaction in yada.
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The first shaded area in the graph of Figure 3.4 illustrates that, without loss of accu-
racy, the percentage of aborts computed by contention intensity can be a poor indicator
of the amount of work that the transaction has wasted. In that region the CI indicates
that more than 75% of the transaction starts may have been aborted, but PEW indicates
that less than 30% of the cycles executed by the transaction were wasted. Several other
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regions of the graph also indicate that, and thus, for this particular transaction, simply
counting the number of aborts and commits over-estimates the resources wasted by the
transaction in unsuccessful attempts to execute.

Comparisons such as the one exemplified by the graph in Figure 3.4 indicate that the
PEW metric gives a more precise estimate of the success of a transaction than the CI
metric. But, does this increased precision leads to better performance? Or perhaps the
new scheduler, DTS, would perform just as well using the CI heuristic? A version of DTS
guided by the CI metric was also created for this evaluation. Results of an experimental
evaluation with the STAMP benchmark suite indicate that PEW is indeed responsible for
some of the performance improvement. For instance, Figure 3.5 indicates that the use of
PEW, as opposed to CI, is responsible for approximately 20% of the speedup of labyrinth
and 14% of the speedup of kmeans. The performance drop of DTS+PEW in kmeans for
more than 16 threads is explained by the high level of contention (see Table 3.1) and by
the increase in conflict rates among transactions (see Section 3.2.3). SRP eliminates this
performance drop as indicated by the experimental results in Section (3.3.3).

Figure 3.5: Comparing DTS with PEW metric and CI metric.
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Is the Yield Flag Necessary?

Section 3.2.3 presented SRP that changes the policy of the priority queues through the
use of the reward threshold and the yield flag. An important question for the evaluation
of the SRP is whether the additional complexity of forcing a transaction to yield, after
an abort, results in performance variations. For this evaluation, the reward threshold
that produced the best overall results, determined empirically, was 50%. Other values
considered were 30%, 70% and 100%.

Figure 3.6 shows the performance of DTS for kmeans and yada using the SRP po-
lice without the yield flag and the PEW metric. These results indicate that rewarding
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successful transactions by forcing the unsuccessful ones to yield tends to improve the per-
formance for higher number of threads when contention is expected to be higher because
more transactions are running simultaneously. In kmeans, the performance drop disap-
peared. Labyrinth did not show this effect and therefore is not shown here. Instead, the
same effect is shown for yada.

Figure 3.6: Comparison of SRP and SRP without the yield flag, used in DTS.
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3.3.4 The Effect of the Scheduler on Performance

This section presents a performance comparison between DTS with SRP, TinySTM, ATS
and Shrink. The first evaluation uses four micro-benchmarks that are common for the
evaluation of STM implementations [20]. These benchmarks randomly insert, delete or
search for elements in an integer set implemented as a Skip Lists (SL), sorted Linked Lists
(LL), Red-Black trees (RB), or a Hashtable (HS). Insertions and deletions alternate in
order to keep the set at an stable size. Each operation is wrapped in a transaction. A
read transaction determines whether an element is in the set, and an update transaction,
adds or removes elements. Contention is controlled by the size of the set, and the ratio
of insertion and deletion operations to read-only searches.

For this experimental evaluation, the sets are initially populated with 212 elements
and the throughput, measured in operations per second, is computed after performing
random insertions and removals for 30 seconds. Figure 3.7 shows the results of update
rates 5%, 50% and 100% for integer sets using Skip Lists. The performance measurements
for update rates of 5%, and 50% in integer sets with Red-Black trees, and for update rate
of 5% in integer sets of sorted Linked Lists, and Hashtable are shown in Figure 3.8.

Skip List and Red-Black use data structures designed to make it possible to access
any element of the set by traversing only a few other elements, and thus may exhibit
high potential parallelism. Skip List operations are characterized by a medium number
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Figure 3.7: Speedup and amount of aborts per second on integer sets implemented with
skip lists – Speedup normalized to the sequential execution
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of reads, and a small number of writes. This ratio between reads and writes results
in medium-length transactions. In all cases, DTS achieves the best scalability and is
followed by ATS. At high contention, Shrink’s scalability is affected by its Bloom filter’s
false positives. This effect is better understood by examining the bar plots on the right
side of Figure 3.7 that show the number of aborts per second. The amount of contention
increases with the percentage of updates as the difference in the abort ratio between
5% updates and 50% updates illustrates. A curious effect appear at 100% updates: the
number of aborts for Shrink for 24 threads or more is slightly lower than for the other
techniques — also observed for 32 threads and 50% updates. This reduction in the number
of aborts reflects the more aggressive serialization in Shrink which, unfortunately, limits
concurrency and does not lead to improved performance as the decreased speedup on the
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left side of Figure 3.7 indicates.
Red-Black tree operations are characterized by a small number of reads, and a small

number of writes. Fewer operations lead to shorter transactions and affects all implemen-
tations equally.

Linked-list operations are characterized by a high number of reads, due to the need to
traverse the list from the head to the required node, and a few writes. This read-to-write
ratio results in long transactions. Moreover, any write to a previously visited element
that occurs before a transaction completes can cause a transaction conflict. DTS achieves
the best scalability for benchmarks with low-update rates but its performance degrades
as the number of threads is increased in benchmarks with high-update rates due to a high
number of aborts. This also occurs with other strategies.

Hash Set operations are characterized by a small number of reads, and a medium
number of writes leading to short transactions. Moreover, transactions suffer from a high
number of aborts due to collisions, linked-list chains, and duplicate inserts that update
the memory. The high abort ratio in this benchmark affects all implementations.

Figure 3.8: Speedup on integer sets implemented with Red-Black trees, sorted Linked
Lists, and Hashtable – Speedup normalized to the sequential execution
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In Figure 3.9 the STAMP benchmark suite is used to compare the performance of DTS
with SRP, TinySTM, ATS and Shrink. Bayes does not provide reproducible behaviour
and displays a large variance. This behaviour has been reported before [11].
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Genome and ssca2 have short transactions, very low contention level, and exhibit no
change in performance based on the different scheduling policies. Besides, short transac-
tions amplify the overhead of the collection of data for the metrics, and do not favor TM
scheduling policies against CM policies.

Yada is composed of both, short and long transactions. Out of five static transactions
in yada, three are extremely short (usually only a single transactional read or write) and
do not scale. DTS has little or no impact on applications that have low contention because
only a small portion of cycles are wasted in aborts.

The results indicate that DTS reduces the total execution time of benchmarks with
high contention (transactional characteristics of each STAMP benchmark were described
by Minh et al. [36]). Labyrinth, for instance, has very long transactions with very large
read and write sets. The amount of contention is very high because of the large number of
transactional accesses to memory [36]. In addition, due to the long transactional execution
delay, there are repeated conflicts with the transactions in other threads. Labyrinth is
very favorable for heuristics whose main goal is to prevent aborts from happening. In this
case, the results achieved by the strategy adopted by ATS is very similar to the results of
DTS.

The algorithm in kmeans groups objects that are placed in an N-dimensional space
into K clusters. The amount of contention among threads depends on the value of K,
with smaller values resulting in more frequent conflicts because the probability that two
threads are concurrently operating on the same cluster is higher [36]. Therefore, even
though kmeans has short transactions, the contention level becomes higher when the
number of threads increases (above 16 threads), providing many scheduling opportunities
that explain the improvement in the performance of DTS.

A comparison between DTS and ATS indicates that when there is a more significant
difference in performance, such as in kmeans and intruder, DTS with SRP outperforms
ATS.

3.3.5 Evaluating SRP on High-Contention Workloads

As seen in Section 3.3.4, DTS scheduling with SRP is expected to provide speedup gains
when transaction diversity (characterized by their workloads) is reasonably large and
contention is high. Higher contention is obtained, for instance, by increasing the number
of transactional threads running simultaneously.

In the read-write workloads, there is too much writing for readers to get a benefit from
optimistic concurrency, so there is not much scalability to be found with TM. None of the
implementations scale well in this experiment (see Figure 3.10). Notice, however, that
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the average performance of DTS is slightly better than ATS and Shrink, mainly between
4 and 16 threads.

In read-dominated workloads (shown in Figure 3.11), DTS delivers good and robust
performance up to 16 threads like TinySTM, and superior performance when compared
with ATS and Shrink.

The benefit of the PEW and SRP becomes clear as the number of threads and the
sizes of the data sets increase. For configurations Small and Medium DTS gives similar
speedups with TinySTM. For configurations Big and Huge the length of the average
transaction considerably grows because the transaction length increases with the data
size. In this scenario, DTS improves over TinySTM, handling with the contention without
any performance pathologies and with relatively low overhead.
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Figure 3.9: STAMP applications – Speedup normalized to the sequential execution.
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Figure 3.10: Throughput on STMBench7 with read-write workloads.
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Figure 3.11: Throughput on STMBench7 with read-dominated workloads.
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3.4 Related Work

There are three areas of work that are related to the contributions in this thesis: contention
managers that decide what to do after a conflict happens, conflict avoidance policies, and
transaction schedulers that decide which transaction to execute next.

3.4.1 Contention Management

A host of policies to resolve contention have been proposed during the past ten years [22,
39, 5, 43, 41]. Still, contention managers have only a few choices to deal with transaction
conflicts. A contention manager decides which of the conflicting transactions can continue
and whether the other transactions involved in the conflict should be aborted or delayed.
The contention manager also decides how long a conflicting transaction must wait before
it can restart or resume execution. All contention managers are limited to act only after
a conflict has happened.

To overcome this limitation, scheduling-based contention management approaches
have emerged [48, 16, 3, 17, 6, 35]. In special, Attiya and Milani [6] offer a formal
description of schedulers that target read-dominated workloads. The new PEW metric is
a natural evolution of this research, that provides better information about the history of
a transaction execution and allows for better decisions about which transactions should
be scheduled next. While this work proposes the use of PEW in DTS to proactively avoid
conflicts, PEW could also be used to improve conflict resolutions by contention managers.

Hardware Transactional Memory (HTM) systems are often limited on the information
that they can glean from transaction execution and also often rely on a fix hardware-based
scheduling policy. Therefore they offer limited scope to implement contention manage-
ment. For instance, the TM system in the IBM BG/Q machine adopts a policy of per-
forming a set number of retries for an aborted transaction before causing the transaction
to serialize, through the acquisition of a global lock, to guarantee forward progress in the
system [44].

3.4.2 Conflict Avoidance

To the best of our knowledge, the first scheduling-based conflict avoidance proposal is
due to Yoo and Lee [48] (see Section 2.1), named Adaptive Transaction Scheduling —
ATS and discussed in Section 3.2.1. Other attempts at scheduling to avoid conflicts
include CAR-STM [16], a transactional scheduler that maintains a queue of transactions
for each core. When a conflict between two transactions arises, the scheduler inserts the
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aborted transaction into the aborter’s queue. Therefore, the likelihood of repeated aborts
is decreased because the aborted transaction can only execute after the execution of the
transaction that caused the conflict is complete. CAR-STM proposes proactive collision
reduction to exploit the probability of a conflict and to serialize those transactions that
are more likely to conflict. However, CAR-STM expects applications to provide a conflict
probability (CP). CP is generally difficult to determine because the programs tend to
exhibit different execution phases and the CP may vary over time. In contrast, DTS uses
the execution history of each transaction to decide which one will execute next and does
not require any specific information from applications.

The same approach, with slight variations, is used by Steal-on-Abort [3]. The variation
concerns where the aborted transaction is inserted into the aborter’s queue (e.g. at the
tail or at the head).

D. Choi et al. [10] propose a method called Conflict Avoidance Scheduling — CAS that
aims at preventing conflicts in high-contention scenarios. In CAS, threads that execute
transactions with high probability of conflicts are grouped together. Based on the group
information, concurrent execution of threads, in the same group, is restricted by means
of serialization.

Maldonado et al. [35] investigate kernel-level support for serializing contention man-
agement, guided by the motivation that user-level implementations are costly as they
require system calls. An inconvenience of this approach is that the OS kernel needs to be
modified.

Recent works have focused on providing more accurate prediction and resorting to
serialization only as the last option. For instance, Atoofian [4] propose a Speculative
Contention Avoidance — SCA to prevent conflicts in TMs. SCA dynamically controls
the number of concurrently executing transactions and serializes those transactions that
are likely to conflict. This technique is built upon the concept of contention locality: the
likelihood that a previously aborted transaction will fail again in the near future. The
premise is that contentions are highly predictable in TMs. SCA exploits history-based
predictors to speculate the chance of conflicts in the future. SCA dynamically adjusts
the number of executing transactions based on feedback received from the predictors. If
there is high confidence that a transaction will conflict then SCA serializes the transac-
tion, reducing the number of concurrent executing transactions. However, performance
improvement is possible only if contentions are predicted accurately by SCA. In the event
of a mis-prediction, SCA serializes transactions unnecessarily resulting in program slow-
down. The new PEW metric could offer a more accurate prediction for a system such as
SCA.
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3.4.3 Transaction Schedulers

Blake et al. [7] propose a prediction mechanism based on the past conflict history of
transactions. Their Proactive Transaction Scheduling — PTS system keeps a conflict
table that stores the likelihood of a conflict between any pair of transactions in the system.
The scheduler relies on this information to decide whether a transaction should proceed
or should be serialized. In PTS a new thread is executed on behalf of an aborted thread
when conflicts occur. However, if the number of conflicts between threads is large, the
thread swapped in place of the aborted thread is also conflicted. On the contrary, DTS
does not perform the swapping operation on aborted threads, but aims at finding the
transaction with the best execution priority of all available transactions.

Excessive serialization of memory transactions may limit concurrency too much and
hurt performance. Herber et al. [27] investigate how serializing CM influences the perfor-
mance of STM systems. Specifically, they have studied serialization’s influence on STM
throughput and efficiency as the workload’s level of contention changes. The character-
istics of TM workloads generated by real applications may vary over time. To achieve
good performance, CM algorithms need to monitor these characteristics and change their
behaviour accordingly.

The approach provided by DTS is in sharp contrast with the majority of the related
work becasuse DTS aims to find the best execution priority of the available transactions
instead of serializing then.
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Serialization Techniques for HTM

On of the goals of this research was to present a performance evaluation of the Intel’s
TSX from the application perspective, providing a precise evaluation of the strengths and
weaknesses of this architectural feature1 followed by well-design serialization techniques to
provide forward progress. These techniques, or policies, are implemented by Serialization
Managers, which plays a similar role to the Contention Manager in an STM, guaranteeing
forward progress and attempting to improve application performance. These techniques
are described in Section 4.1.

The main finding of this performance study is that Intel’s TSX performance is most
sensitive to i) the transaction footprint, defined as the number of shared write accesses
executed inside a transaction; ii) the working-set size, defined as the number of distinct
memory locations accessed — read from or written to — inside a transaction;2 iii) the
transactional write ratio (or pollution), defined as the ratio between the number of shared
writes and the total number of shared accesses in a transaction; and iv) the contention
level in a transactional application. The contention level is the probability that dynamic
transactions will abort due to a conflicting access.

This sensitivity is first demonstrated through an analysis that isolates the effect of each
TM application characteristic on performance using Eigenbench [30] and CLOMP-TM [40]
to identify the constraints imposed by TSX. Next, the study evaluates the performance
of TSX using the more realistic STAMP benchmark suite [36].

Based on the experimental results, the following application features are likely to yield
performance gains when using Intel’s TSX:

1Preliminary performance evaluation for IBM Power8 can be seen on Appendix A
2A more precise metric is the number of distinct cache lines that are occupied by the working set of

a transaction.

41
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• In a low-contention scenario, if the transactional footprint is small, then it is prefer-
able to convert multiple transactions into a single transactional region. This con-
version amortizes the overhead necessary to execute a transaction as long as the
transaction footprint do not exhaust the capacity of cache lines. In high-contention
scenarios, it is preferable to maintain transactions with smaller footprint to reduce
wasted work.

• Transaction footprint and contention are the most important characteristics that
dictate TM performance. These characteristics are strongly influenced by temporal
locality and pollution. To obtain performance gains, a designer should create data
structures that increase temporal locality and reduce pollution. For example, data
structures based on hash often have a better performance than linked lists because
they tend to reduce pollution.

• The performance of Intel’s TSX is also sensitive to the policy applied on the fall-
back path to ensure forward progress. The right choice of fallback policy can avoid
unnecessary serialization thereby allowing more concurrency and improving perfor-
mance.

4.1 Forward-Progress Policies

Due to inherent architectural limitations, Intel’s TSX is known as ’best-effort’ HTM, i.e.,
it does not guarantee that a transactional execution will eventually commit. One possible
reason for a transaction never to succeed is because its data footprint does not fit in the
relatively small L1 data cache. The expectation is that a software fallback handler is
provided by the policies that guide the TM application, mimicking an unbounded TM
system, similar to an STM, while providing forward progress guarantees for transactions
that fail. Generally, the strategy adopted is to retry the execution of the transaction, with
or without a time delay, to attempt to complete the transaction execution speculatively. A
time delay, often called backing-off, can avoid the pathological pattern called Convoy 3 [8].
In the face of persisting failure, a transaction must be completed by running it in a non-
speculative execution mode. A common solution is to acquire a global lock to prevent other
transactions from committing concurrently. The switching to non-speculative execution
is controlled by the Serialization Manager, guaranteeing forward progress and attempting

3A convoy phenomenon occurs when multiple transactions contend repeatedly for the same resource.
Each time a transactional thread attempts to execute and fails, it forces a context switch. The overhead
of repeated context switches degrade overall performance.
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to improve application performance. The experimental prototype in this work implements
three forward-progress policies, namely MaxRetry, Backoff and SerControl.

4.1.1 MaxRetry Policy

MaxRetry is the simplest way to ensure forward-progress. It simply limits the number
of times that a dynamic transaction can be retried to a predefined threshold N . A
transaction that exceeds its retry budget must be executed while holding of a global lock.
An empirical evaluation for values of N produced the best results, for the benchmarks
studied, N equal twenty. MaxRetry is not a policy used in any actual HTM system. It is
included in this study to enable an evaluation of the effect of backing-off in reducing the
Convoy pathology described by Bobba et al. [8].

4.1.2 Backoff Policy

Backoff is a forward-progress policy similar to MaxRetry, except that the aborted trans-
action waits for a time delay before restarting. The delay duration is chosen uniformly
at random from a range whose size increases exponentially with every restart. This is
continuously done up to the limit of (predefined) N consecutive aborts. Experiments
were conducted for different values of N and the best results were obtained for N equal
to twenty. After that, the transaction must be executed under a lock protection.

4.1.3 SerControl Policy

SerControl is a new forward-progress policy that selects one of three actions upon a
transaction abort: retry, backoff or serialize. The SerControl policy examines the return
code provided by the hardware in the EAX register, which contains various status bits
indicating the cause of the abort. If the transaction aborted because of a conflict with
other transactions or because of capacity limitations, the action selected is backoff. This
strategy makes sense because a capacity abort may be caused by competing transactions
vying for the same storage resources. To prevent frequent aborts due to capacity overflow
SerControl serializes a transaction that has suffered two consecutive capacity aborts. 4

If the cause of an abort is other than conflict or capacity, the action is retry for three
consecutive aborts 5 before changing to backoff. The idea is that aborts, such as an abort

4This safeguard is needed because an abort reported as a capacity abort may be due to temporary
competition for resources.

5This threshold was determined through a series of experiments, with the STAMP benchmarks, that
examined performance, serialization rate, and number of aborts due to different causes.
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caused by a page-fault, may not occur again if the transaction is retried immediately. The
SerControl policy limits retries to a threshold of N consecutive aborts. The value of N
used in the evaluation was twenty for a fair comparison with the other two policies. After
N retries, a transaction must be executed under the control of a lock — a serialize action.

Intel’s TSX exhibits lower overhead when compared with STM. The prototype keeps
this overhead low by using the minimum data structure required to manage a transaction.
This data monitors the number of retries and the number of capacity-induced aborts, and
selects the SerControl policy action and the time delay (see the pseudo-code in Listing 4.1).
Henceforth, TM overhead includes the overhead imposed on the transaction management
by the forward-progress policies.

Listing 4.1: Low-Overhead High-Accuracy SerControl Policy
0 upon TM START
1 int backo f f = MIN BACKOFF;
2 int ( t ry = 0 , s t a t u s = 0 ) ;
3 int ( c o n f l i c t = 0 , capac i ty = 0 ) ;
4 long wait = 0 ;

6 upon TM BEGIN
7 i f (++try>=MAX RETRY) s t a t u s = SERIALIZE ;
8 e l s e
9 case ( s t a t u s = xbeg in ( ) )

10 XBEGIN STARTED: ;
11 XABORT CONFLICT:
12 capac i ty = 0 ;
13 s t a t u s = (++c o n f l i c t>=MAX CONFLICT) ? BACKOFF : RETRY;
14 XABORT CAPACITY:
15 s t a t u s = (++capac i ty>=OVERFLOW CAPACITY) ? SERIALIZE : RETRY;
16 othe r s :
17 capac i ty = 0 ;
18 s t a t u s = ( try>=MAX CONTROL) ? BACKOFF : RETRY;
19 esac
20 f i
21 i f ( s t a t u s==SERIALIZE)
22 s t a t u s = g e t s p i n l o c k ( ) ;
23 f i
24 i f ( s t a t u s==IN SPIN LOCK) or
25 ( s t a t u s==XBEGIN STARTED and s p i n l o c k==FALSE)
26 b e g i n t r a n s a c t i o n ( ) ;
27 f i

29 upon TM END
30 i f ( s t a t u s==IN SPIN LOCK)
31 r e l e a s e s p i n l o c k ( ) ;
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32 e l s e
33 commit transact ion ( ) ;
34 f i

36 upon TM ABORT
37 i f ( s t a t u s==BACKOFF)
38 wait = get new t ime de lay ( ) ;
39 while ( wait−−) ;
40 backo f f++;
41 f i

4.2 Experimental Evaluation

This section presents an experimental evaluation using a prototype implementation of
the SerControl, MaxRetry and Backoff forward-progress policies on top of Intel’s TSX
processor to guide TM applications. The main findings about the policies are:

• Simple policies, such as MaxRetry and Backoff, have the potential to deliver perfor-
mance in RTM because of their low overhead to monitor transaction execution and
of their simple approach to decide when to retry an aborted transaction. However,
the experimental results indicate that these policies are also sensitive to the tuning
of the parameters used to decide when to restart or serialize the execution of a
transaction.

• Among the policies evaluated, SerControl is the most successful in delivering per-
formance for transactional applications for RTM due to its strategy of reducing
potential conflicts and, consequently, the number of aborts. Moreover, strict adher-
ence to Bobba’s suggestion of exponential backoff [8] can be detrimental to some
applications.

4.2.1 Experimental Infrastructure and Methodology

This experimental evaluation uses a computer with an Intel Xeon Processor E3-1200 v3
(4 cores with 2 hyper-threads per core, 8 threads in total) clocked at 3.10 GHz with 8 GB
of RAM. Each core has a 32 KB L1 Data Cache and a 256 KB L2 Cache. The operating
system is Ubuntu Server 13.10 amd64.

The results presented in all experiments are averaged over twenty executions and the
graphs show a 95% confidence interval. In the graphs that show an upper-bound speedup,
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this bound represents the case of a multi-threaded execution without the protection of
a TM system. This measurement serves as a hypothetical upper limit for the available
performance and is useful to show the overhead of the TM system when independent
transactions are running (zero contention). In, the experiments that estimate the upper-
bound speedup, the atomic execution of critical sections is not guaranteed and the results
could be incorrect. Therefore, it is said that the system is executing in unprotected mode.
Unless noted, all speedups are normalized to the execution time of the corresponding best
sequential version.

4.2.2 Eigenbench Results

Experiments with the Eigenbench [30] micro-benchmark enable a characterization of In-
tel’s TSX RTM and provide significant insight on its strengths and weaknesses. The
Eigenbench is designed to enable independent exploration of the properties 6 of a TM ap-
plication shown in Table 4.1. Each instance of the Eigenbench benchmark can be thought
of as a point in a multi-dimensional space defined by these properties.

Table 4.1: TM properties

Property Definition Empirical values
Transaction length Number of shared accesses per TX 30 words
Working-set size Size of frequently used memory 32 KB/thread
Pollution Fraction of shared writes to shared accesses 10%
Temporal locality Probability of repeated address per shared access 0 %
Contention Probability of conflict of a transaction 0 %
Predominance Fraction of shared access cycles inside TX (not explored) 100%
Density Fraction of non-shared cycles outside TX (not explored) 100%

The methodology to use Eigenbench to discover characteristics of the Intel’s TSX
RTM implementation consisted of an initial empirical exploration of the space defined by
the values of the properties listed in Table 4.1. This exploration led to the discovery of
a “baseline configuration” where the values listed on the rightmost column of Table 4.1
were used. With these values fixed, a more systematic exploration of the space varied the
value of a single property at a time while maintaining the other values at the baseline
configuration. In occasions where this exploration indicated that there was potential for
better performance when two or more properties were moved away from this baseline,
those combinations were also tried.

The graphs in Figure 4.1 display the trends for each of these experiments using the
three policies: MaxRetry, Backoff and SerControl. The horizontal axis denotes the value

6For the Eigenbench, transaction footprint is a derived property, calculated from transaction length ×
pollution.
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of the property that is being controlled and the vertical axis denotes the speedup results
for four threads, normalized in relation to the sequential execution of the same program.
Except for the experiment reported in the graph in Figure 4.1(g), independent transactions
are used to evaluate the overhead of the TM system. To show the overhead, a curve for a
performance upper bound is also included. This upper bound is estimated by running the
sequential version in parallel “unprotected” with no transactional overhead from fallback-
handling code.

An important limitation of HTM implementations is the amount of speculative state
that the HTM system can store. RTM can only successfully complete speculatively trans-
actions that have a small footprint because all speculative state is stored in the relatively
small L1 data cache. The experiment reported in Figure 4.1(a) demonstrates this limita-
tion. The SerControl policy performs better than MaxRetry and Backoff for a pollution
of 1% thanks to its strategy of reducing potential conflicts and hence imposing a lower
demand on the L1 data cache in comparison with the other policies. However, the Ser-
Control performance degrades quickly for transaction lengths greater than 60 words7 for
a pollution of 10%. The lower performance for smaller transactions (left side of the plots)
indicates that the TM overhead becomes significant. A separate measurement, executing
on a single thread, confirms this observation. For an empty transaction, or a transaction
length equal zero, the transactional execution time is twelve times higher than the sequen-
tial execution that has no overhead. For transaction length equal to 5 words this time
drops to 2 times of the sequential execution. When transaction length reaches 30 words,
this overhead is almost totally amortized. The graph on the left in Figure 4.1(b) shows
that SerControl perform better than Backoff between 60 and 140 words while the graph
on the right in same figure points out that SerControl is dramatically more reluctant
to serialize when capacity aborts occur, confirming one of the payoffs of the SerControl
policy.

The graphs in Figure 4.1(c) show the effect of different working-set sizes for transaction
lengths equals to 30 (left plot) and 50 (right plot) words. MaxRetry is the policy that
suffers most due to the high number of aborts and retries and hence the overhead is
more pronounced in short transactions. There is a dramatic speedup drop starting at
256 KB/thread — even for the upper-bound curve — because the data processed by the
transactions exceed the capacity of the L2 cache. For TX length equal thirty the most
interesting comparisons are the curves for MaxRetry and Backoff on the left of the plot and
the curves for Backoff and SerControl on the right of the plot. To better understand these
performance trends, Figure 4.1(d) reports the ratio between the number of transactions
that abort and the number of transactions that commit on the left, and the ratio between

7One (1) word equals four (4) bytes in the target machine.
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the number of transactions that serialize and the number of transactions that commit
on the right. For smaller working sets, always backing-off is a good policy because it
eliminates the convoy-effect aborts resulting from MaxRetry, as the abort ratios on the
left plot of Figure 4.1(d) indicate. As the working-set size becomes larger, the selective
back off used by SerControl is a better policy. However, with longer transactions and
larger working-sets, selectively backing-off does not prevent the increasing number of
aborts and serializations as shown by the plots on the right of Figures 4.1(c) and 4.1(d).

A study of the effect of temporal locality on performance is shown in Figure 4.1(e).
The probability of address repetition varies between 0 (no address is used twice in a
transaction) and 1 (a single address is used inside each transaction). The initial drop in
performance for both Backoff and SerControl for a transaction length equal 50 occurs as
addresses start being repeated. This may be explained either by the associative effect of
the L1 data cache — the Eigenbench generates random addresses that might cause more
potentially useful data elimination from the cache.

Until the transaction footprint exhausts cache lines, at about 32% of shared writes
for a transaction length of 50 (i.e., 64 bytes), the SerControl strategy of avoiding poten-
tially unproductive retries yields higher speedups than either MaxRetry or Backoff (see
Figure 4.1(f)). The drop in speedup for SerControl for larger transactions is due to the
limited capacity in the cache to store speculative state.

Although critical details are not available, there is sufficient information to speculate
about the nature of Haswell’s TM. Haswell’s TM uses the L1 data cache to track the
write-set. While it stores transactional reads in the L1 data cache, it also uses a separate
mechanism, perhaps Bloom Filters [9], to track speculative reads that have been evicted
from the L1 data cache. The caches and fill buffers are competitively shared by any active
threads. However, store operations only need to write the address (and eventually the
data) into the store buffer while load operations must write into the load buffer and also
probe the store buffer to check for any forwarding or conflicts. It appears that the shape
curve of MaxRetry policy on the left graph in Figure 4.1(f) is due to the difference in the
conflict detection mechanism between read- and write-set and is stimulated by increased
competition due to the Convoy effect.

Finally, how does contention affect performance in the Intel’s TSX? Experiments with
transaction lengths equal to 20, 30 and 40 words — varying the fraction of writes per
transaction between 5% and 100% — help address this question. The x-axis shows the
value of expected contention. The graphs in Figure 4.1(g) indicate that the TM perfor-
mance drops quickly with long or dirty transactions. All three policies are very sensitive
to contention greater than 4%, although the SerControl policy performs better if the
transaction length fit between 30 and 40 words. This level of contention was achieved for
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Figure 4.1: Analysis of RTM using Eigenbench
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write-ratio of 30% to 40%, which implies in a transaction footprint between 48 and 64
bytes. This reveals a severe resource constraint for TSX, limiting the footprint to the size
of the L1 data cache.

4.2.3 CLOMP-TM Results

Section 4.2.2 showed that, to make an effective use of RTM on Intel’s TSX, we need to
define the design space that can be exploited by the TM applications. For this, it is
necessary to complement this study with a more appropriate analysis of the performance
behaviour of RTM at different TM footprints. The CLOMP-TM benchmark [40, 47] is
used for this analysis.

CLOMP-TM is a synthetic memory-access generator that emulates the synchroniza-
tion characteristics of high-performance computing applications. It is specifically de-
signed to expose the range of properties needed to characterize scientific workloads. It
was created to mimic the application characteristics of several large scale, multi-physics
applications used in production at the Department of Energy laboratories in the USA.

CLOMP-TM uses constructs such as atomics or OpenMP-based constructs (omp crit-
ical and omp atomic) to synchronize OpenMP threads with the same level of abstraction.
We adapted CLOMP-TM to use Intel’s TSX RTM with the prototype implementation of
the SerControl policy to evaluate its performance on small and large footprints, and also
to compare the performance obtained with the fine-grained lock implementation in both
low- and high-contention scenarios.

CLOMP-TM resembles an unstructured mesh with a set of partitions. Each partition
holds a linked list of zones. To vary the pressure on the memory system, the size of these
zones were configured with two values: 64 bytes, to fit the size of the cache line, and 128
bytes. Also, two different contention levels were used: low contention and high contention.
Contention occurs when multiple threads update the same zones (for the contention sce-
narios, the memory access patterns used were Adjacent and FirstParts, respectively 8).
Each zone is pre-wired to deposit a value to a set of other zones, called scatter zones,
which involves reading the coordinate of a scatter zone, doing some computation, and de-
positing the new value back to the scatter zone. These value deposits were synchronized
in two ways:

• Fine-Control is a small-footprint transaction with a single scatter zone value up-
date. Fine-Control resembles the case where a lock-prefixed instruction is used to
enforce atomicity on a single variable.

8For more information on memory access patterns [40].
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Figure 4.2: Analysis of RTM using CLOMP-TM
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Upper-bound Atomic Fine-Control Coarse-Control

• Coarse-Control is a large-footprint transaction where all scatter zones are updated
for each zone. Large-TM resembles the update of multiple variables in one critical
section.

Figure 4.2 show the results for 8 threads. Atomic (fine-grained lock) denotes the use
of the OpenMP construction #pragma omp atomic. The X-axis denotes the number
of scatters for each zone, and at each scatter count, the speedup is measured over the
execution time of the corresponding serial version. For clarity, the graphs show only the
results for the SerControl policy for small- and large-footprint transactions (Fine-Control
and Coarse-Control, respectively).

The results in the graph in Figure 4.2(a) lead to the following best-practice guideline:
in a low-contention scenario it is preferable to convert multiple lock acquisitions or critical
sections into a single transactional region, to better amortize the TM overhead, because
the transaction footprint does not exhaust the available cache-line capacity. In high-
contention scenarios, it is preferable to maintain transactions with smaller footprint, as
evidenced by the graph in Figure 4.2(b).

Two additional best-practice guidelines arising from these results are: (i) transaction
footprint and contention are the most important characteristics that dictate the TM per-
formance on Intel’s TSX as evidenced by the graphs on Figures 4.1(a) and 4.1(g). As
shown in the graphs of Figures 4.1(e) and 4.1(f), one can reduce the transaction footprint
by reducing the pollution in transaction or by increasing the temporal locality. These
effects can be achieved by carefully designing the data structures of the application. (ii)
Library-level support for TM matters. Moreover, try to use a serialization policy similar
to the SerControl policy to avoid unnecessary serialization and to improve performance.
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4.2.4 How does TSX perform with a more realistic benchmark?

This section uses the well-known, and widely used, STAMP [36] benchmark suite to
evaluate the behaviour of real applications across the input-size dimension, similar to
how Eigenbench and CLOMP-TM were evaluated previously. This study starts with
the STAMP recommended configurations and data sets for use in real machines (for
detailed information, see Table IV on [36]) and varies the input size to understand if real
applications see the same effects seen in the synthetic benchmarks regarding working-set
and transaction size. This is an unconventional use of the STAMP benchmarks, but it is
very appropriate for this evaluation to understand the constraints that Intel’s TSX creates
for applications and application performance.

Figure 4.3 shows the speedup results of the MaxRetry, Backoff and SerControl policies,
running on four threads, over the sequential execution in the same configuration.

For Kmeans the size of the transaction is proportional to the dimensionality of the
space. Thus, we fixed the number of points (64 Kbytes), and vary the number of di-
mensions. Kmeans in low-contention scenario (the graph in Figure 4.3(a)) showed good
performance results with the recommended parameters. Kmeans also exhibit high tem-
poral locality and this further emphasizes the performance behaviour. However, it falls
with increasing contention, as shown in the high-contention scenario (the graph in Fig-
ure 4.3(b)).

For vacation, we vary the number of records and, therefore the working-set size.
Vacation (the graph in Figure 4.3(c)) showed a poor performance due to large-footprint
transaction, the governing characteristic.

The yada (Yet Another Delaunay Application) benchmark implements Ruppert’s al-
gorithm for Delaunay mesh refinement. In the STAMP benchmark suite, yada does not
come with enough datasets to test the behaviour of the application with different input
sizes. We built a new dataset using the triangle application [42] through successive re-
finements from the data source ladder and we obtained data ranging from 32KB to 4MB
on the number of input vertexes. Yada (the graph in Figure 4.3(d)) has relatively long
transactions and a moderate amount of contention. With the increase of input vertexes,
the transactions lead to large read- and write-sets and do not scale.

For Genome (the graphs in Figure 4.3(e)), we vary the number of gene segments. Even
though the transactions in genome are of moderate length and have moderate read- and
write-set sizes, the performance for Genome is very sensitive to increasing the number
of segments — there is a dramatic performance drop because of longer transactions and
larger working-set. The fraction of capacity-aborts per commit is lower for SerControl
leading to slightly better performance. However, SerControl’s strategy is not effective to
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Figure 4.3: STAMP applications – Analysis on Speedup and fraction of aborts to different
input sizes.
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(b) Kmeans High
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(c) Vacation
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(d) Yada
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(e) Genome
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(f) Intruder
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(g) Labyrinth
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(h) Ssca2
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reduce the convoy effect for genome.
For Intruder (the graphs in Figure 4.3(f)), we vary the number of traffic flows. The

limited performance comes from the large-footprint transaction and moderate-to-high
levels of contention. The change in traffic flows modifies the working-set size, increasing
the fraction of capacity aborts. The selective backing-off strategy of SerControl reduces
the fraction of capacity aborts, as shown at the graph on the right, but is not sufficient
to improve the performance when compared to Backoff .

For labyrinth (the graphs in Figure 4.3(g)), we vary the number of dimensions that
change both working-set size and transaction length. Labyrinth has very long transac-
tions with very large read- and write-sets. The amount of contention is very high because
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of both the large number of transactional accesses to memory and the number of capacity-
induced aborts, even for the Backoff policy. There is no performance gain in labyrinth
for TSX with any of the policies.

For ssca2, we vary the number of nodes in the graph. Short transactions govern the
performance of ssca2 (the left graph in Figure 4.3(h)). The increase in working-set size
has little or no impact on application performance because only a small portion of time is
spent in transactions. Also, differences in capacity-induced aborts over commits among
the policies only appear for small working-set size (the right graph in Figure 4.3(h)).

The results in this section highlight the challenges faced by Intel’s TSX on the STAMP
benchmark suite. An analysis reveals that 70% to 80% of the aborts in STAMP are due
to the architecture, not the application: (e.g., page faults, system calls). In programs
with short run times, these kinds of aborts appear to be have a dominant effect in the
experiments, limiting the scalability of applications.

4.3 Related Work

Yoo et al. presents an evaluation of Intel’s TSX for High-Performance Computing [47] .
They describe that the first implementation of HTM in Haswell processors has significant
performance potential. Through their work with the benchmarks and applications, they
also investigate some preliminary techniques to best utilize Intel’s TSX, in particular,
lockset elision and transactional coarsening, but they do not provide library-level support
for TM. 9

Goel, B. et al. presents a detailed evaluation of RTM performance and energy expen-
diture [21]. They compare RTM behaviour to that of the TinySTM software transactional
memory system, first by running micro benchmarks, and then by running the STAMP
benchmark suite. They conclude that the system which performs better depends heavily
on the workload characteristics. They also conducted a case study of two STAMP appli-
cations to assess the impact of programming style on RTM performance and investigate
what kinds of software optimizations can help overcome RTM’s hardware limitations.

Wang et al. presents an Intel’s TSX performance characterization using a simple array
access micro-benchmark, identifying several important trends, such as, the relationships
between, transaction size, write ratio inside transactions, retry count, and transaction
abort rate and performance [45]. Our own study complements their work, by going into

9We are integrating the proposed SerControl policy within libitm, the TM library of the GCC
compiler. This will allow achieving transparency to developers while preserving ease of use of TM.
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more depth on the limits of TSX, and introducing the SerControl policy that outperforms
a simple MaxRetry or even the backing-off style policy.

Diegues et al. conducted a study on TM comparing different locking techniques,
hardware and software TMs, as well as different combinations of these mechanisms, from
the dual perspective of performance and power consumption [15]. Similar to our results,
but without exploring forward progress policies, they shed a mix of light and shadows
on currently available commodity HTM, identifying workloads in which HTM clearly
outperforms any alternative synchronization mechanism, and showed that current HTM
implementations suffer of restrictions that narrow the scope in which these can be more
effective than state of the art software solutions.

Also, Diegues and Roman showed an approach to self-tuning the number of attempts to
reschedule the transaction to Intel’s TSX motivated by the fact that no single configuration
of the software fallback can perform efficiently in every workload and application [14].
This exploration is orthogonal to the study presented here, showing how online-learning
can be used to adjust at runtime the number of rollbacks before serialization granted
to each transaction based on lightweight profiling. Their policy, Tuner, uses Upper
Confidence Bounds — UCB to select a strategy for adjusting the number of retries given
to a transaction when a capacity abort occurs. The goal is to try to distinguish between
transient capacity failures caused by momentous cache addressing and persistent capacity
failures caused by excessive amounts of required speculative state. The double-check in
SerControl is a simple heuristic that attempts to achieve the same effect. The authors also
used an exploration technique similar to hill climbing/gradient descent search to tuning
the number of attempts, a problem not explored in this work.

As we have seen, most applications of the STAMP benchmark suite performs poorly
in HTM due to the constraints of hardware (see section 4.2.4). Rei Odaira at IBM
Research, in Japan, conducted experiments with a couple of optimizations that they
found beneficial on HTM [32]. For instance, in intruder, to reduce transaction footprints,
concurrent hash maps and red-black trees are used instead of red-black trees and linked
lists, respectively, without changing any semantics. In kmeans, to avoid false sharing,
each cluster occupies dedicated cache lines. In vacation, concurrent hash maps are used
instead of red-black trees, as in intruder. Except for bayes, they have been used the thread-
local memory allocator attached with the original STAMP benchmarks. The thread-local
memory allocator avoids contention in malloc(), but it does not support free(). We have
not had the opportunity to evaluate the proposed optimizations, in addition to runs off a
little in our goal.
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Chapter 5

Multi-dimensional Evaluation with
htm-pBuilder

The previous chapter (Sections 4.2, 4.2.2, 4.2.3, and 4.2.4) presented results from an
extensive experimental evaluation based on Eigenbench, CLOMP-TM, and the STAMP
benchmarks. In Section 4.2.2 transaction properties are varied but the parameters for each
serialization policy, such as the maximum number of retries, are constant. Section 4.2.4
uses the STAMP benchmark for a similar evaluation with fixed policy parameters.

This chapter presents a new tool, called htm-pBuilder. It was initially designed to
act as a wrapper over Eigenbench and allow independent exploration of the parameters
of a given fall-back policy. We used this new tool to explore a range of values for the
parameters of the SerControl policy. Appendix C presents the configuration parameters
used in the experiments reported in this chapter. However, other interesting features,
also presented in Appendix C, gives this tool more expressive power than found in its
predecessor, Eigenbench, and thereby it allows developers to produce a faster and more
accurate assessment of the behaviour of their applications when executed on HTM. For
instance, this tool can be used in the evaluation of the cost/benefit of each alternatives
to improve application performance.

5.1 Tuning the Serialization Polices

Eigenbench was designed to study TM properties and thus does not account for changes
in the parameters of the fall-back policy used in the HTM system to provide forward-
progress guarantee. However, an interesting question is whether the parameters in these
policies affect performance. For instance, what should be the maximum number of retries
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in the SerControl policy used for the experiments described in Section 4.2.2? To address
this question we built htm-pBuilder, which acts as a wrapper over Eigenbench, to allow
independent exploration of the parameters of a given fall-back policy. htm-pBuilder takes
as input a set of values for transaction properties and parameters and tailors fall-back poli-
cies accordingly. The tool then automatically generates code for the various combinations
of transaction properties and policy parameters, executes the code, and report results.
The following sections presents new insights, gained from the experiments performed with
htm-pBuilder, into the tuning of the SerControl policy.

5.2 The Effect on the Maximum Number of Retries

Section 4.2.2 described a systematic exploration of the characteristics of the Intel’s TSX.
That exploration set the TM properties to a baseline configuration and then varied a
single TM property at a time. Those experiments allowed for a maximum of 20 retries
in the SerControl policy. That value was obtained empirically as the best average result
for a series of experiments with the RMS-TM [34] and STAMP benchmarks. Those
experiments are repeated in this section, but this time we use the htm-pBuilder tool to
vary the maximum number of retries. These new experiments revealed that in applications
with low-to-moderate contention a higher threshold value results in better performance
while in applications with high contention this threshold should remain close to 20.

For instance, the experiments reported in Figure 5.1 support this observation. For Fig-
ure 5.1(a) the working-set size is fixed in 32 Kbytes/thread and the write-ratio (pollution)
in 10% — thus the contention level is low. The gradient plot reports the performance
when the transaction length and the number of retries are varied. There is a significant
performance change when the number of retries is greater than 20 for both small and
large transactions. A comparison with Figure 4.1(a) on Section 4.2.2, where the num-
ber of retries was fix at 20, confirms that for that setting better performance is limited
to transaction lengths between 30 and 60 words. For the experiment reported in Fig-
ure 5.1(b) the transaction length is fixed at 50 words and the write-ratio in 10%. The
performance drop for 256 KBytes/thread when the maximum number of retries is equal
20, thus confirming the result in Figure 4.1(c) on Section 4.2.2. However the exploration
with htm-pBuilder reveals that better performance can be obtained for larger work-set
sizes if the maximum number of retries is increased. The exploration reported in Fig-
ure 5.1(d) showed that the write-ratio (or pollution) only affects the performance when
the transaction length increase. The number of retries for this experiment was fixed in
20.

A similar experiment, not reported here, explored the performance for different levels
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Figure 5.1: Two-dimensional Analysis with Eigenbench and SerControl
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of contention when the maximum number of retries varies. This experiment revealed
that, when the contention is high, increasing the number of retries does not improve
performance to the same extent as the low-contention case. This experimental result is
most likely a consequence of the limited data cache line size in Intel’s TSX. Thus, for high
contention it is preferable to keep the retry threshold close to 20, or even less, to reduce
the total number of aborts.
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5.3 The Effect of Serialization on Capacity Aborts

To prevent frequent aborts because of capacity overflow, the SerControl policy serializes a
transaction that has suffered two consecutive capacity aborts. The ideia is that a capac-
ity abort may be caused by competing transactions vying for the same storage resources.
The htm-pBuilder facilitates an experimental evaluation of this strategy. Figure 5.1(c)
shows the performance gradient when varying the transactional length and the number
of consecutive capacity aborts allowed before the aborted transaction is serialized. The
retry threshold utilized was 20, the working-set size was 32 Kbytes/thread and the pollu-
tion was 10%. These transaction properties allow comparisons with the results reported
in Section 4.2.2. The experiment revealed that the strategy was correct but, perhaps,
adjusting this value to 3 or 4 could be a better solution.

5.4 Applying new Findings in the STAMP Bench-
mark Suite

Section 5.2 reported the effect of using the maximum number of retries and section 5.2,
the effect of exploring the number of capacity aborts allowed, before serialization. But
these sections used a set of synthetic programs generated by Eigenbench. A practical
question is whether the finding that a higher value for the maximum number of retries
can be beneficial translates to actual benchmarks. To answer this question, this section
applies those findings to the STAMP benchmarks.

This study varied the maximum number of retries from 20 to 90 in all STAMP bench-
marks. The only benchmark where a significant change in performance is observed is
Genome. The graph in Figure 4.3(e) in Section 4.2.4 indicates that the performance of
genome is sensitive to transaction length. Figure 5.2 compares the speedup over sequen-
tial execution for the maximum number of retries equal 20 and 90. A value of 90 yields
the best performance, but there is no significant difference for values above 70. The shape
on the graph for threshold equals 90 shows that, although the performance had a small
drop for the smallest number of segments, it maintains almost constant, regardless of the
number of segments, confirming what was shown in the graph on Figure 5.1(a).
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Figure 5.2: Study of maximum retries with STAMP

 1

 1.5

 2

 2.5

 3

 3.5

 4

101 102 103 104 105

S
p
e
e
d
u
p
 o

v
e
r 

se
q
u
e
n
ti
a
l

Number of Segments (KB)

Genome w/ 20 Retries
Genome w/ 90 Retries

5.5 Avoiding Lemming Effect

The strategy adopted in the fall-back policy is to retry the execution of the transaction
— with or without a time delay — to attempt to complete the transaction execution
speculatively. In the face of persisting failure, a transaction must be completed by running
it in a non-speculative execution mode. A common solution is to acquire a global lock
to prevent other transactions from committing concurrently. However, the acquisition
of a lock by a transaction causes every other transactions to abort. This can cause a
chain effect, also known as the lemming effect, where the aborted transactions also try to
acquire the lock [13].

An alternative technique to the single global lock strategy is to use an auxiliary lock
to prevent this lemming effect [2]. The idea is to guard the global lock acquisition with
another lock. Aborted transactions have to acquire this auxiliary lock before serializing.
This auxiliary lock is not added to the read set of transactions, thus avoiding the chain
reaction effect.

In this experiment the auxiliary lock is a ticket lock. The ticket lock works as follows.
Two memory locations - a queue ticket and a dequeue ticket — are accessed atomically.
Initially both locations contain the value 0 to indicate that the ticket is not held. When
a transaction needs to serialize its execution, it atomically reads and then increments the
queue ticket. It then atomically compares the queue ticket that it read with the dequeue
ticket’s value. If they are the same, the transaction is permitted to try to obtain the global
lock. If they are not the same, then another transaction must already be acquiring, or
holds, the global lock and this transaction must busy wait or yield. When a transaction
releases the global lock, it atomically increments the dequeue ticket thus allowing the next
waiting transaction to acquire the global lock.

The experiment reported in Figure 5.3 used the SerControl policy with a maximum
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number of retries equals 20. For a transaction length of 30 words the overhead of the use
of the ticket lock resulted in a performance degradation while with a larger transaction
length of 70 words the ticket lock results in a small performance improvement over the
standard single global lock solution.

Figure 5.3: Study of the use of ticket lock to mitigate lemming effect using Eigenbench
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(b) Transaction Length = 70 words
(280 bytes)
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Chapter 6

Conclusions

The experimental evaluation on STM indicates that implementing better scheduling poli-
cies integrated with a dynamic transaction scheduler can yield significant performance
benefits. This work describe the Best Alternative Transaction — BAT and Success-
Rewarding Policy — SRP, two policies motivated by the observation that a global view
of the transactions execution can improve accuracy of the scheduler’s decision, thus min-
imizing aborts, specially for applications with longer executing transactions.

We have proposed and tested the BAT heuristic using two well-known and widely
accepted benchmarks: STMBench7 and STAMP (not showed here) with TinySTM library
as the baseline. We also did some tests with SwissTM and the preliminary results are well
aligned with the results presented in this work. The results obtained with STMBench7,
with emphasis on the Big and Huge data set sizes, show that BAT indeed improves the
speedup of STMBench7 in setups that generated high contention (heavy workload), large
number of threads, and with diverse but long duration transactions.

The Percentage of Effective Work — PEW metric combined with SRP and Dynamic
Transaction Schedule — DTS, built atop of the TinySTM library, was also evaluated
using STAMP and STMBench7. The experimental results indicate that DTS performs
marginally better on most of then and is consistently better than the alternatives. The
results obtained with STMBench7, with emphasis on the Big and Huge data set sizes,
show that SRP indeed improves the speedup of STMBench7 in setups that generate
high contention (heavy workloads), large number of threads, and with diverse- and long-
duration transactions.

The results obtained with STAMP also confirm that the proposed approach points to
the right direction because DTS does well for applications with higher transaction diver-
sity, longer durations, and heavier workloads. For STMs the overhead of any associated
mechanism is critical. The results indicate that it is possible to improve the performance
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of STMs using a transaction scheduler implemented outside the STM, with the combina-
tion of well-designed policies, provided the overheads of the associated mechanisms are
kept under control. By combining DTS, SRP, and PEW the resulting system overcame
the associated overheads and delivered non-trivial performance gains.

The experimental evaluations on HTM shows that the best-effort transactional mem-
ory provided by Intel’s Haswell is simple and capable of improving performance over a
variety of workloads. However, performance can depend strongly on the software support
systems. While transaction footprint and working-set size constraints dictate the range
of effective transactions, choices made in the lock based fallback policy can considerably
affect performance, especially when capacity-limited transactions are executed. The dy-
namic nature of the cache means that the capacity-aborted signal is not a reliable indicator
that a transaction will not complete. This observation is supported by the success of the
SerControl fallback policy, which allows transactions that suffer capacity aborts to retry.

Transactional memory is a natural fit for multi-core architectures, but the success of
transactional memory will be partially determined by the quality of early implementa-
tions. A unique evaluation of transaction footprint and working-set size through input
modification of the STAMP benchmarks shows that the best-effort nature and capacity
limitations of Intel’s HTM underscores that TM is not a parallel synchronization solution
to all applications.
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Appendix A

IBM Power8 Evaluation

This appendix shows the preliminary results of the characteristics and hardware con-
straints presented by IBM’s Power ISA TM Extensions included in the Power8 machine.
The IBM’s Power8 processor architecture comes with up to 12 cores per chip. It uses
Simultaneous Multithreading (SMT) to provide multiple streams of hardware execution.
Power8 provides eight SMT hardware threads per core and can be configured to run in
SMT8, SMT4, SMT2, or single-threaded mode. However, there are some performance
tradeoffs. When you are in SMT mode, there is a trade-off between overall CPU through-
put and the performance of each hardware thread. SMT allows multiple instruction
streams to be run simultaneously, but this concurrency can cause some resource conflict
between the instruction streams. This conflict can result in a decrease in performance for
an individual thread, but an increase in overall throughput.

Power8 systems use 128-byte length cache lines. Compared to Intel Haswell processors
(64-byte cache lines), these larger cache lines have the advantage of increasing the possible
reach with the same size cache directory, and the efficiency of the cache by covering up to
128-bytes of hot data in a single line. However, it also has the implication of potentially
bringing more data into the cache than needed for fine-grained accesses (that is, less than
64 bytes). Another advantage of the fact that Power8 has a larger cache line is that it
can be best benefit from locality (both temporal and spatial). Locality arises from simple
and natural program structures. For example, most programs contain loops, so the data
are likely to be accessed repeatedly, showing high amounts of temporal locality. Access
to data also exhibit a natural spatial locality. For example, access to elements of an array
will naturally have high degrees of spatial locality.

We conducted the performance evaluation on a Power8 machine with CPU op-mode
64-bit (that is, the word equals 8 bytes), 16 sockets, 1 core per socket and 8 threads per
core. The machine also contains 3 NUMA nodes. However, the experiment used only 4
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threads to do a (not so fair) comparison, despite the difference in its architecture with
respect to Intel’s TSX used in our experiments. Threads were pinned to different sockets
and NUMA auto balancing was turned off.

The results presented in all experiments are averaged over twenty executions and the
graphs show a 95% confidence interval. We conducted the following experiments with
the htm-pBuilder. The graphs in Figure A.1 display the trends for transaction length
and working-set size using MaxRetry and SerControl policies configured with maximum
number of retries equals twenty. The experiment reported on Figure A.1 demonstrates
that Power8 is more limited with respect to the transaction footprint then Intel’s TSX
experiments showed. In these experiments we used the write ratio equals 10%. The
graph on Figure A.1(a) shows the performance with the variations on transaction length
while the graphs on Figure A.1(b) and Figure A.1(c)) show the outcomes for abort frac-
tion over commits and capacity-abort fraction over commits, respectively. The graph
in Figure A.1(d) shows the effect of different working-set sizes for transaction length
equals to 10 words. Contrary to Intel’s TSX, which shows a dramatic speedup drop when
the capacity of L2 cache is exceeded (see the graph of Figure 4.1(c), on Section 4.2.2)
the behaviour maintains the same for the Power8. To better understand this new be-
haviour, experiments that stress the Power8 cache sizes are necessary. Again, the graphs
on Figures A.1(e) and A.1(f) points out that SerControl is dramatically more reluctant
to serialize when capacity aborts occur, confirming one of the payoffs of the SerControl
policy.

Finally, to see the effect of the variation on the maximum number of retries, the
graphs on Figure A.2 show the performance when transaction length varies with the
maximum number of retries. One can note that the behaviour of MaxRetry policy is not
affected with the variation on the maximum number of retries while the performance of
SerControl improves at it increases from fifteen (showed on Figure A.2(a)) to twenty, 20
(Figure A.2(b)) and to twenty-five (Figure A.2(c)).
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Figure A.1: Analysis of Power8 TM using htm-pBuilder
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Figure A.2: The effect on the Maximum Number of Retries on Power8

(a) Max Retries equals 15
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(b) Max Retries equals 20
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(c) Max Retries equals 25
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Appendix B

Haswell Processor Characteristics

According to Intel, the Haswell processor has equipped with L1 data cache (L1D) per
core of 32KBytes, 8-way associative and write-back policy. The L2 cache is a 256KB,
8-way associative and write-back design with ECC protection. The L2 is neither inclusive
nor exclusive of the L1 data cache. Haswell’s transactional memory retains the write-set
and read-set of a transaction in the L1 data cache. The L2 cache is non-transactional,
so if a write-set cache line is evicted, the transaction will abort. It appears that in some
circumstances read-set lines can be safely evicted from the L1 and are tracked using
another hardware mechanism. One possibility is a small on-chip transactional victim
buffer, or some sort of storage in memory (e.g., bloom filter). In the case of an abort,
all the write-set lines are flushed from the L1D, while a commit will make all write-set
lines atomically visible. Cache-based systems have potential limits due to associativity,
and certain access patterns will cause transaction aborts due to cache contention. The
caches, TLBs and fill buffers are competitively shared by any active threads, however,
the load and store buffers are statically partitioned. Store operations only need to write
the address (and eventually data) into the store buffer. In contrast, load operations must
write into the load buffer and also probe the store buffer to check for any forwarding or
conflicts.

Intel Transactional Synchronizations Extensions — Intel’s TSX, is a recent addition
to the Intel architecture that provides programmers with hardware transactional memory
in the Haswell processor. We did a series of experiments to determine the primary char-
acteristics of TSX. The first experiment aims to determine how speculative states Intel’s
TSX can sustain on the same set before they cause an abort due the limitations in cache
store capacity. One static transaction was drawn to never ends. The result show that
this only begins to occur with 8 threads (or 8 speculative states) but the most important
observation in the experiment shows that (a) TSX uses eager-conflict detection, and (b)
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the cache is not multi-versioned.
Another experiment that demonstrate the limitations of TSX is showed in the Fig-

ure B.1. The graph on the Figure B.1a , the speculative writes are doing in a sequential
way (y-axis) over the array which size is giving by x-axis. In the graph on the Figure B.1b,
the writes are doing in a random way (y-axis) over the array which size is giving by x-axis.
One can noted that in this second experiment, the L1 cache is exhausted very fast. This
is because in the first experiment, the sequential write fills the cache lines until their ex-
haust while in the second experiment the cache line is filled by useless data due to cache
protocol.

A final experiment comparing the results of both read from and write to on array was
conducted to confirm that TSX uses a separate mechanism, perhaps a Bloom Filters, to
track speculative reads that have been evicted from the L1 data cache.
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Appendix C

htm-pBuilder Configuration

The Figure C.1 shows the block diagram of the htm-pBuilder. Its configuration file can
be conceptually divided into 3 distinct parts. In the first part, one can specify the char-
acteristics of the target machine as the size of data cache and the cache line (L1), the size
of one word (in number of bytes), the number of available cores and processors. In the
second part, one can choose one of the three preconfigured policies (MaxRetry, Backoff
or SerControl, to be used in the experiments as well as the tuning that can be done in
selected policy, or yet, customize a new policy, following some pre-established criteria to
allow, for instance, the benchmark to properly collect statistics information during its
execution. The idea is that the tool can be used for different architectures and policies.
Today, the input files are customized for TSX extensions of Intel Haswell and Power ISA
extensions of IBM Power8 [31].

In the third part, the experimenter can specify the type of data structures (e.g., array,
linked-list, red-black tree) as well the initial size of each data structure (i.e., number of
elements). To better reproduce the behaviour and pathologies found in real TM applica-
tions, and similar to Eigenbench, the experimenter can choose at least one of three kinds
of data: shared, private and exclusive. The shared data are shared among all threads and
accessed transactionally, to enable the experimenter to control the level of contention be-
tween transactions. With the private data each thread has its own private data, but this
data is also accessed transactionally there is competition for the transactional resources
(e.g., speculative states) as well as the probability of the occurrence of false-sharing. The
exclusive data are also private to each thread, but in this case, the data is accessed only
outside of the transactions. This kind of data help to analyse the coexistence between
transactional and non-transactional code and evaluate the density characteristic of TM
applications, defined by the ratio of shared access (shared instructions) to the total num-
ber of instructions (shared and non-shared) inside transactions.
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htm- 
pBuilder 

htm-Bench

Script

Inputs

Outputs

Configuration 
 File

Figure C.1: Schematic view of htm-pBuilder.

After choosing the data structures, the experimenter can select the transaction length,
pollution (i.e., write-ratio), and temporal locality, etc., to explore the TM characteristics
and to evaluate the boundaries of the application space of a HTM machine.

C.1 Multi-Dimensional Configuration examples

This section presents some configuration files that were used in the experiments reported
in Section 5.2 and Section 5.3.

The example below was used in the experiment “Transaction Length versus Num-
ber of Retries” reported on the Graph of Figure 5.1a. This experiment used one type
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of transaction executed by four threads in the Intel Haswell machine configured with 4
cores. The tool does not pin threads to cores (parameter Affinity: no). The data type
used in the experiments is a private array of 8192 elements (or 32768 bytes) per thread
(parameters DS2 and IS2). The transaction footprint is determined by transaction length
(parameter LEN2) and write-ratio (parameter POL2). In the example, POL2 equals 10%.
The tool automatically generates code and executes the generated code 10 times (param-
eter Executions: 10) for each combination of maximum number of retries (specified by
MAX RETRY parameter) and transaction length (parameter LEN2). The parameter Loops:

1000000 controls the duration of the execution of each transaction. The tool captures the
elapsed times and outcomes (e.g., number of aborts, number of commits) and calculates
the average and 95% confidence interval to report the results.

#------------------------
# Machine Characteristics
# -----------------------
Brand: Intel
Cores: 4
Processors: 8
L1S: 64
Affinity: No

#------------------------
# Policy Specification
#------------------------
Policy: SerControl
Ticket: No
Lock: yield
_MAX_RETRY: (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90)

#----------------------------
# Global Execution Parameters
#----------------------------
DS2: Array
IS2: 8192
LEN2: (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150, 160, 170, 180, 200)
POL2: 10
Threads: 4
Transactions: 1
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Loops: 1000000
Executions: 10

The next configuration file was used in the experiment “Working-set size versus Num-
ber of Retries” reported on Graph of Figure 5.1b. This experiment fixes the transaction
length in 50 words and makes pollution equals 10. The omitted parameters use their
default values.

#------------------------
# Machine Characteristics
# -----------------------
Brand: Intel
Affinity: No

#------------------------
# Policy Specification
#------------------------
Policy: SerControl
Ticket: No
Lock: yield
_MAX_RETRY: (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90)

#----------------------------
# Global Execution Parameters
#----------------------------
DS2: Array
IS2: (1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,

524288, 1048576, 2097152)
LEN2: 50
POL2: 10
Threads: 4
Transactions: 1

In the last example below, we varied the combination of transaction length and max-
imum number of capacity aborts before the policy decides to serialize. The result of this
experiment: “Transaction Length versus Max aborts due Capacity Overflow”, appears in
Figure 5.1c.

#------------------------
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# Machine Characteristics
# -----------------------
Brand: Intel

#------------------------
# Policy Specification
#------------------------
Policy: SerControl
_MAX_RETRY: 20
_OVERFLOW_CAPACITY: (1,2,3,4,5,6,7,8)

#----------------------------
# Global Execution Parameters
#----------------------------
DS2: Array
IS2: 8192
LEN2: (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 140)
POL2: 10

C.2 Customizing the Delay function

Policies such as Backoff and SerControl (in one of its three actions) use a time delay
before restarting an aborted transaction. The delay duration in both policies is chosen
uniformly at random from a range whose size increases exponentially with every restart.
With htm-pBuilder, the experimenter can specify a different function to choose the delay
duration. There are two ways to accomplish this. The first one, simple but limited in
terms of alternatives, is by using the inline atribute. The Backoff policy (and also the
SerControl) has two pre-defined constants: MIN BACKOFF and MAX BACKOFF with default
value of 4 and 13, respectively, can be modified. Also, two local variables: backoff and
wait that can be used in the Inline attribute. They are initialized in policies such as

this:

int _backoff = _MIN_BACKOFF;
unsigned long long int _wait = 0;

The desired delay function will be inserted in policies between the code below:

...
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if (_status == BACKOFF) {
/* the delay function will be inserted here */
_backoff++;

}
...

Following is an example of customized delay function using the Inline attribute.
In this example, the usleep() function was used. This function suspends the thread
execution for microsecond intervals specified by its parameter.

# Policy Specifications
Policy: Backoff
Retries: 20
Delay: Custom
_MIN_BACKOFF: 1
_MAX_BACKOFF: 6
Inline: (

if (_backoff > _MAX_BACKOFF) _backoff = _MIN_BACKOFF;
_wait = 1ULL << _backoff;
usleep (_wait);
_backoff++;

)

Another possibility to customize the delay function is to define an external C function.
The example below, uses the instruction PAUSE, that consume 38-40 clocks.

//--------------
// file delay.h
//--------------

#ifndef DELAY_H
#define DELAY_H

#include <immintrin.h>

static inline void _my_delay(int* _backoff) {
unsigned long long int _my_wait = 1ULL << _backoff;
while (_my_wait--) _mm_pause();
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}

#endif

Next the reference to the header file must be included in the configuration file:

# Policy Specifications
Policy: Backoff
Retries: 20
Delay: Custom
Include: "delay.h"
Inline: (

_my_delay (&_backoff);
_backoff++;

)

C.3 Reproducing the Performance Behaviour of Ap-
plications

Applications usually have a mix of various transaction types and exhibit complex mem-
ory access patterns. One of the powers of Eigenbench, and naturally extended to htm-
pBuilder, is to mimic real applications by measuring the appropriate TM values and then
mapping these values to eigen-characteristics. This is normally obtained via instrumentation-
based profilling or simulation and yet, through analysis of the source code.

One goal of this feature is to predict the performance of an application, originally syn-
chronized using with locks when it is re-written to use TM for synchronization. Moreover,
this mimic can help answer questions like: (a) whether it is preferable to convert multiple
lock acquisitions or critical sections into a single transactional region; or (b) if it is better
amortize the overhead necessary to execute a transaction; or (c) whether it is preferable
to maintain transactions with smaller footprint to reduce wasted work.

Another feature that can be developed for htm-pBuilder is to estimate the performance
impact of the proposed modifications to existent TM application without needing to
prototype, thus reducing the cost of the estimation. The first step is to mimic the existing
TM application. It is possible to automate this step through instrumentation of the fall-
back policy. The application is executed with the instrumented policy and guided by
scripts generated by htm-pBuilder. For instance, the fall-back policy can be extended to
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collect the size, measured in number of clock cycles, of dynamic transactions that commit
and scripts clustering the result data can be used to estimate the different types of static
transactions. The same idea can be used to collect the write-ratio and locality, counting
the number and frequency of different locations (or cache lines) touched by the transaction.
The imitating application can then be run to measure the current performance and,
after that, change the parameters to reflect the proposed changes and execute again the
imitating application to estimate the impact on performance.
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