
Optimizing Task Distribution and Shared-Variable Accesses in an
Asynchronous-Partitioned-Global-Address-Space Programming

Model

by

Jeeva S. Paudel

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Jeeva S. Paudel, 2015

Abstract

High-performance programming systems employ a wide range of techniques to im-

prove the performance of parallel and distributed applications on large-scale ma-

chines. Such techniques include load balancing to reduce machine idle times, co-

locating tasks and related data to leverage data locality, and optimizing shared-

variable accesses to reduce communication costs. These goals result in complex

performance trade-offs that typically require programming systems to prioritize one

over the others, thereby limiting opportunities for optimization.

This dissertation identifies a novel opportunity for load balancing, proposes a new

approach for workload distribution, and presents a profiling-based framework to

automatically select coherence protocols aimed at specific patterns of shared-variable

accesses. These approaches strike a balance between the tight budgets for run-time

optimization and the exposition of new opportunities to improve the running time

of applications. A prototype designed to evaluate these ideas is integrated into

the X10 programming system. An empirical evaluation of these ideas, using large

applications with diverse patterns of parallelism and communication, indicates that

they can be applied widely and that they have significant performance merits.

ii

Preface

Parts of Chapter 3, 4, and 5 have previously appeared in workshop, conference and

journal publications. These are collaborative work with authorship shared among
myself, José Nelson Amaral, Olivier Tardieu, and Levi H. S. Lelis. I did most of
the artifact implementation, experimental evaluation, data analysis, and writing

for the papers. The other co-authors provided significant inputs for designing the
experimentations, for developing the algorithms, and for improving the presentation

of the papers.

This research was conducted over a period of five years, during which the X10 pro-
gramming system went through several changes. The quality of the code generated
by the X10 compiler and the ability of the X10 runtime to harness the comput-

ing power also evolved significantly. Therefore, the execution time for the baseline
execution of several benchmarks and applications used in this thesis vary across

different implementations used in different chapters. However, the baseline for the
experiments within each chapter is consistent.

iii

To my parents.

iv

Acknowledgements

This dissertation is an outcome of continued support from many people. I express

my sincere gratitude to you all.

1. My wife and my family, for your warm love and invaluable inspiration.

2. CDOL members Paul, Matthew, You, Ricardo, Carolina, Iain, Arnamoy, and
Xunhao, for your lively paper discussions.

3. Steve Sutphen, for your substantial effort in setting up the computing platform
for my experimental evaluations.

4. Christopher Dutchyn, for instilling in me the love of compilers and program-

ming systems.

5. Levi Lelis, for your collaboration on the idea of workload distribution. Thank
you for helping me design the experiments, validate the results, and refine the

writing.

6. Olivier Tardieu, for your excellent insights that form the mainstay of the
research ideas investigated herein.

7. Keshav Pingali, Duane Szafron, Paul Lu, and Bruce Cockburn, for agreeing
to be on my examining committee and for your support in completing and

delivering this dissertation.

8. Last and most important, my advisor, José Nelson Amaral, for your excellent
mentorship. Thank you for teaching me the rigorous process of scientific re-

search. Your questions and insights have been instrumental in producing this
dissertation.

Funding for parts of this work have been provided by the Natural Sciences and
Engineering Research Council of Canada, Alberta Innovates: Technology Futures

(formerly iCORE and Alberta Ingenuity), and by the IBM Center for Advanced
Studies at the IBM Toronto Software Laboratory.

v

Contents

1 Overview 1
1.1 Research Goals . 2
1.2 Contributions . 3

1.3 Outline . 4

2 Preliminaries 5

2.1 The APGAS Model . 5
2.2 X10 . 5

2.2.1 Places . 6
2.2.2 Activities . 6
2.2.3 Global References . 6

2.2.4 Distributed Arrays . 7
2.2.5 Load Balancing . 7

2.3 Shared-Variable Coherence . 7
2.3.1 The X10Protocol . 8

2.4 Related APGAS Languages . 8

3 Locality-Aware Task Migration 10
3.1 Selection of Tasks for Migration . 10

3.1.1 Locality-Flexible Tasks in Applications 11
3.2 Migration of Locality-Flexible Tasks 13

3.2.1 Work Dealing . 14

3.2.2 Work Stealing . 15
3.3 Experimental Evaluation . 17

3.3.1 Experimental Setup . 17
3.3.2 Results and Discussion . 18

3.4 Limitations . 23

3.5 Related Work . 24
3.6 Summary . 25

4 Optimizing Shared-Variable Accesses 26
4.1 Shared-Variable Access Patterns . 26
4.2 Directory-based Coherence Protocol for X10 28

4.2.1 Directory and Shared-Variable States 28
4.2.2 DirCoPX Optimization Strategies 29

4.2.3 DirCoPX Protocol Operation 30
4.2.4 Augmented DirCoPX for Migratory Data 31

vi

4.3 Framework for Pattern Detection and Optimization 32
4.3.1 Profiling Variable Accesses 32

4.3.2 Coherence-Policy Manager . 33
4.3.3 Switching Between Coherence Protocols 33
4.3.4 Relieving Programmers from the Coherence Burden 34

4.4 Experimental Evaluation . 34
4.4.1 Experimental Setup . 34

4.4.2 Results and Discussion . 35
4.5 Related Work . 40
4.6 Summary . 41

5 Stratified Sampling for Even Workload Partitioning 42
5.1 Preliminaries . 43

5.1.1 Problem Formulation . 43
5.1.2 Chen’s Stratified Sampling 44

5.2 WPS: Workload Partitioning & Scheduling 46

5.2.1 Sampling . 46
5.2.2 Estimating . 47

5.2.3 Partitioning . 47
5.2.4 Distributing . 48

5.3 WPS Accuracy . 49

5.4 Application Problem: An Example 49
5.5 Experimental Evaluation . 50

5.5.1 Experimental Setup . 50
5.5.2 Results and Discussion . 52
5.5.3 Asynchronous IDA* . 57

5.6 Related Work . 58
5.7 Summary . 59

6 Conclusions and Future Work 60

Bibliography 62

vii

List of Figures

2.1 An example using GlobalRef. 6
2.2 Activities, places and global references. 7

3.1 Pseudocode for the Turing Ring problem. 12
3.2 Deques for locality-flexible and locality-sensitive tasks. 16

3.3 Sequential execution time using X10WS. 19
3.4 Speedup over sequential execution time. 20

3.5 Speedup on applications with small task granularities. 22
3.6 Messages transmitted across network. 22
3.7 Speedup on 15-Puzzle and UTS applications. 23

3.8 An example illustrating the use of the at statement. 24

4.1 States maintained in distributed directories. 29
4.2 DirCoPX operations. 30

4.3 Shared variables in different applications. 36
4.4 Sequential execution time using the X10Protocol. 36
4.5 Speedup over the X10Protocol. 37

4.6 Messages transmitted across the network. 38
4.7 Speedup on N-Body and DMR applications. 40

5.1 (3×3)-Sliding-Tile Puzzle. 43

5.2 Sequential execution time. 52
5.3 Execution times of 24-Puzzle at 128 workers. 52
5.4 Speedup over sequential execution time. 53

5.5 WPS performance using different stratifications 54
5.6 Breakdown of total execution time. 55

5.7 Average node utilization. 56
5.8 WPS and AIDA* performance on 15- and 24-Puzzles. 57

viii

List of Tables

3.1 Task granularities (in ms). 21

4.1 Applications and their input data set. 35
4.2 Optimizations for hand-tuned applications. 37
4.3 Memory overhead of the CoMX coherence-policy manager (in %). . . 39

5.1 Instances of 24-Puzzle solved optimally. 50

5.2 Messages transmitted across network. 56

ix

List of Acronyms

PGAS Partitioned Global Address Space
APGAS Asynchronous Partitioned Global Address Space
UPC Unified Parallel C
MPI Message Passing Interface

IDA* Iterative Deepening A*
UTS Unbalanced Tree Search
AMD Advanced Micro Devices
DMG Delaunay Mesh Generation
DMR Delaunay Mesh Refinement
MCP Matrix Chain Multiplication
RA Random Access
SLAW Scalable Locality-Aware Work-Stealing Scheduler

DirCoPX Directory Based Coherence Protocol for X10
CoMX Coherence-Policy Manager for X10
GR GlobalRef

X10RT X10 Runtime
API Application Program Interface
HPC High Performance Computing
STM Software Transactional Memory
AMR Adaptive Mesh Refinement

WPS Workload Partitioning and Scheduling
WIT Work-item Tree
StraSa Stratified Sampling
BLDM Balanced Largest-First Differencing Method
AIDA* Asynchronous Iterative Deepening A*
TDS Transposition-table-driven Scheduling

x

Chapter 1

Overview

Efficient execution of data and compute-intensive applications on large-scale par-
allel and distributed machines is challenging. Tasks and data referenced by the
tasks must be co-located in a node to localize data accesses. Tasks spawned by

an application must be evenly partitioned to ensure even utilization of available
nodes. Efficient data-access policies are essential to minimize communication across

the nodes. Manually orchestrating data layout, task execution and communica-
tion, to address such challenges, hampers programming productivity. To this end,
high-performance programming systems, such as Partitioned Global Address Space

(PGAS) and Asynchronous PGAS (APGAS), provide a uniform programming model
for local, shared and distributed-memory computing machines. They provide mech-

anisms to distribute data across address partitions, to create parallel tasks, to map
the tasks to the address partitions, and to manage the consistency of shared data.
The address partitions may belong either to the shared-memory nodes or to the

distributed-memory nodes.

Existing PGAS and APGAS models bind parallel tasks, or threads, of computation
to programmer-specified address partitions in order to exploit affinity between tasks

and data allocated at the address partitions. However, not all tasks benefit from

such a binding because they may be agnostic to the location of data. A good ex-
ample is a task that encapsulates the data necessary for its execution. The tasks

that are sensitive to the location of data are called locality-sensitive tasks and tasks
that are either agnostic or that do not bear strong affinity to the location of data

are called locality-flexible tasks. The lack of a distinction between locality-sensitive
and locality-flexible tasks enforces a one-to-one mapping between tasks and address
partitions. Such a mapping over-constrains the execution of tasks and precludes op-

portunities for balanced distribution of work across address partitions. This inherent
limitation of PGAS and APGAS models is evident in languages, such as UPC, X10,
Chapel and Habanero-Java. The lack of load-balancing mechanisms across address

partitions in these languages further compounds the problem of even utilization of
computing resources.

Many applications recursively process different data elements to generate additional

data of substantially different sizes. A good example is state-space search. A mech-

anism for evenly partitioning data in such applications must account for the size

1

of dynamically generated data. Both modern and conventional high-performance
programming models, such as the Message Passing Interface (MPI) programming

models, PGAS and APGAS, lack such a mechanism, and cause unbalanced distribu-
tion of data. Techniques to dynamically alleviate load imbalances do exist in PGAS
and APGAS systems. However, they initiate actions only after the occurrence of a

load imbalance and operate only within address partitions. The motivation for this
restriction is in part to encourage tasks to exploit their affinity to data allocated

within the address partitions.

Shared variables are fundamental abstractions in high-performance programming
systems. They typically encapsulate a significant amount of frequently accessed
data. Efficient coherence protocols are essential to ensure consistency of shared-

variable accesses. Implementations of popular PGAS and APGAS languages, such
as UPC, X10, and Chapel, typically maintain a single global copy of each shared

variable at the site of allocation. The tasks co-located with the shared variables in
the same address partition can access the variables directly. However, such a pro-
tocol incurs the overhead of message transfers for all accesses to shared variables in

remote address partitions. Alternative coherence protocols that employ replication
of shared variables across address partitions are known to address this limitation.

Although such protocols have been extensively studied in traditional distributed-
memory systems, they have not been investigated in PGAS and APGAS systems.

1.1 Research Goals

A preliminary investigation offered us insights into these limitations inherent in the
PGAS and APGAS models. These insights led us to pursue the research questions
listed below in the context of interesting real-world applications. This study inves-

tigates the problems in the context of a specific programming system, i.e., X10 —
a popular realization of the APGAS model.

• Would a flexible mapping between locality-flexible tasks and address parti-

tions yield performance gains by enabling task migration across address parti-

tions? Task migration for load balancing entails identifying tasks to migrate,
the timing of migration, and the remote node that is starving for work. Mi-

grating locality-sensitive tasks hinders locality of data access and only adds
to these overheads, potentially leading to serious performance degradations.

Therefore, an efficient task-migration strategy must selectively migrate only
locality-flexible tasks, and must amortize these overheads through improved

utilization of computing resources.

• By accounting for the variances in the size of dynamically generated data,

can a domain decomposition yield an even distribution of data throughout
program execution? A static partitioning scheme specified at the start of pro-

gram execution may soon result in largely imbalanced data across address par-
titions. Dynamically re-distributing data after each phase of data generation
incurs large execution-time overheads. Thus, an efficient distribution mecha-

nism must be able to predict the amount of data generated upon processing

2

initial data elements with reasonable accuracy without actually running an
application. If the prediction is feasible, can such a strategy be encoded into

the programming system for use in a diverse range of applications?

• Can replication of data across address partitions yield better performance than
maintaining a unique copy of the data at the site of allocation? Replication
enables concurrent reads and local accesses to data, but requires complex

mechanisms to ensure consistency. Maintaining a unique copy of data does
not require coherence mechanisms, but incurs expensive message transfers for

all remote data accesses. Therefore, an efficient data-management technique
must adaptively employ one or more of these strategies depending upon how
the data is accessed.

1.2 Contributions

The primary contributions of this dissertation include:

• A careful study of the interplay between parallel tasks and the scheduling
framework in the X10 programming system leading to the key observation

that locality-flexible tasks are key to efficient inter-node load balancing in
distributed-memory systems. We investigate two orthogonal strategies for

load balancing. The first is a work-stealing strategy where a node starving for
work attempts to steal work from a node with surplus work. The second is a
work-dealing strategy where a node with surplus work spreads work to nodes

searching for work. We devised an effective heuristic to identify a node that
is starving for work and also to determine the timing of task migration. This

heuristic approximates the work-load status of a node by analyzing its history
of searching for work among its peers. Experimental evaluation indicates that
permitting only locality-flexible tasks for work stealing and work dealing sig-

nificantly alleviates load imbalances while minimizing the performance penalty
of migration itself.

• A novel adaptation of an existing approach to sampling for partitioning data.

This technique systematically accounts for data recursively generated upon
processing initial data. This approach processes a small amount of data to
predict, with reasonable accuracy, the amount of data that will be generated

by an application at runtime. Programmers do not need to manually code
this solution for individual applications. A prototype implementation in X10

demonstrates that the approach can be integrated into the runtime of a pro-
gramming system to support diverse applications. The even data distribution
resulting from this approach yields significant performance gains.

• A practical framework for the automatic selection of a high-performing proto-

col among available ones to manage accesses to shared data. The framework

underlying this study monitors and analyzes reads and updates of each shared
data in an application to make the selection. We incorporate a directory-based

protocol into the runtime system of X10. The protocol replicates shared data
at the accessing nodes and maintains consistency of data copies. This pro-

3

tocol complements the existing protocol in X10 that keeps a unique copy of
shared data and relies on message transfers for all remote accesses. Empiri-

cal evidence suggests that coordinating strategies that replicate data with the
one that maintains a unique copy of the data is essential to improve the per-
formance of shared data exhibiting diverse access behaviours. Experimental

evaluation also suggests that this approach yields performance comparable to
that of carefully hand-tuned applications.

1.3 Outline

The rest of this dissertation is organized as follows: Chapter 2 presents a primer on
the Asynchronous-Partitioned-Global-Address-Space model, the X10 programming

system, and the coherence of shared variables in multiprocessor systems. Chapter 3
proposes selective locality-aware task migration and investigates its feasibility and

performance merits. Chapter 4 describes a framework for the selection of augmented
coherence protocols for optimizing different patterns of shared-variable accesses.
Chapter 5 presents a novel adaptation of an existing statistical technique of stratified

sampling for workload partitioning. Chapter 6 summarizes the contributions and
presents avenues for future work.

4

Chapter 2

Preliminaries

This chapter discusses important concepts underlying the Asynchronous-Partitioned-
Global-Address-Space model, the X10 programming language, and the coherence of
shared variables in multiprocessor systems.

2.1 The APGAS Model

The Partitioned-Global-Address-Space (PGAS) model offers a unified concurrency
mechanism for both intra- and inter-node parallelism. It allows distribution of data

and mapping of tasks to different address partitions. It also offers mechanisms to
encode affinity between tasks and location of data. However, the PGAS model suf-

fers from two major drawbacks. First, all existing languages in the PGAS family
— Titanium [39], UPC [30], and Co-Array Fortran [57] — follow the Single Pro-
gram Multiple Data model of execution, where all tasks execute the same program

across machines. They implicitly assume that all processes run on similar hard-
ware. Second, they lack support for dynamically spawning multiple parallel threads

of computation. Consequently, handling non-data-parallel applications, which re-
quires dynamic load balancing, is difficult in the PGAS model.

The Asynchronous PGAS (APGAS) model addresses such limitations by extending
the PGAS model with the notions of asynchronous parallel tasks and abstractions

for location of data. The work underlying this dissertation is in the context of
X10 [22] — a popular realization of the APGAS model. Therefore, the next section

discusses the core APGAS concepts of the X10 programming system.

2.2 X10

X10 is a high-performance, high-productivity programming system developed at

IBM as part of the “Productive, Easy-to-use, Reliable Computing System” project.
The X10 programming model is organized around the notions of places and activities.

5

2.2.1 Places

A place is an abstraction of shared, mutable data and threads operating on the

data. It encodes the affinity between tasks and memory partitions. The number n
of places available to an X10 program (0 to n− 1) and the mapping from places to

nodes is specified by the user at launch time. The program starts by executing its
main method at Place(0). Other places are initially idle.

2.2.2 Activities

Every computation in X10 is an asynchronous activity, akin to a light-weight task,
and runs in a place. The activities running in a place may access data located at

that place with the efficiency of local access. An access to a remote place may take
orders of magnitude longer and is performed using the at (p) S statement. An at

statement shifts the control of execution of the current activity from the current

place to place p, copies any data that is required by the statements S to p, and, at
the end, returns the control of execution to the original place. The necessary data
copying is done through runtime system calls inserted by the compiler.

X10’s finish statement identifies the bounds of concurrency. All activities en-

closed by a finish statement, including all nested activities, must complete before
any statement subsequent to the finish can execute. X10’s atomic blocks coordi-

nate the mutation of shared data. The statement atomic S executes S in a single
uninterrupted step. The conditional form of atomicity, when(c) S, executes S atom-
ically when the condition c evaluates to true. X10 also supports dynamic barriers,

called clocks, for synchronizing different phases of computation.

Figure 2.1 shows a snippet of X10 code. The statement at (p) async creates a new
activity at place p to execute statements 4 and 5. The for loop ensures the creation

of activities in all available places, as shown in Figure 2.2. The finish construct
ensures termination of all activities before execution can proceed to statement 6.

S1: val g = GlobalRef[Cell[Double]](new Cell[Double](0));

S2: finish for (p in Place.places ())

S3: async at (p) {

S4: val x = computeLocal ();

S5: at (g) atomic g()() += x;

S2: }

S6: val y = g()();

Figure 2.1: An example using GlobalRef.

2.2.3 Global References

An X10 variable resides in a single location: the place where it was allocated. A
place cannot use or even directly refer to a variable in a different place. A special

type, GlobalRef[T], allows explicit cross-place references. The data encapsulated

in GlobalRef is intended to be shared by all threads of computation across different

6

S2: !
startFinish!

S2: !
stopFinish!

Place 0!

S6!

S1!

Place 1! Place n-1!

S3: async! S3: async! S3: async!

S4!

S5!

S4!

S5!

S4!

S5!

g!

...!

Figure 2.2: Activities, places and global references.

places. In Figure 2.1, g (line 1) is a GlobalRef containing a reference to a value a of
type Cell[Double]. GlobalRef[T] is the only way to produce or manipulate cross-

place references in X10. The atomic construct guarantees isolation from concurrent
activities through a mutually exclusive access to g.

2.2.4 Distributed Arrays

X10 provides DistArrays to partition arrays across places. An underlying Dist

object specifies which elements, or a range of elements should be allocated at dif-

ferent places. Dist uses subsidiary Region objects to abstract over the shape and
dimensionality of arrays.

2.2.5 Load Balancing

X10 employs a work-stealing scheduler to address any runtime load-imbalances
within places. The work-stealing scheduler uses a pool of threads, called workers,

to run programs. Each worker maintains a private double-ended queue – a deque

– of pending tasks. A worker primarily operates on its own deque, pushing one

activity to the bottom of the deque for each async construct it encounters. When
a worker completes one activity, it pops the next activity to run from its deque. If
the deque is empty, the worker attempts to steal a pending activity from the deque

of a randomly selected worker. Since each worker primarily interacts with its own
deque, contention is minimal and only arises with load imbalance. Moreover, a thief

tries to grab an activity from the top of the deque whereas the victim always pushes
and pops from the bottom, further reducing contention.

Available X10 releases do not yet support work stealing across places.

2.3 Shared-Variable Coherence

Shared memory is integral to many high-performance programming systems. In a

shared-memory system, processors may read and write to a single shared variable.

7

Unless care is taken, a processor may read a stale value of a variable, if multiple
processors have access to multiple copies of the shared variable and at least one

access is a write. Programming systems provide a set of rules, called coherence
protocols, to ensure that multiple cached copies of shared variables are kept up-to-
date. A read (or a write) access to a shared variable by a processor is referred to as a

read hit (or a write hit) if the variable is available in the processor’s local memory. If
a processor cannot find the variable in its local memory, then the accesses is referred

to as a read miss or a write miss.

Coherence protocols come in many variants but follow one of the following two
policies when a processor writes to a shared variable.

Write Invalidate In the write-invalidate policy, a processor attempting to write

to a shared variable initiates a coherence transaction to invalidate the copies in all
other processors. Once the copies are invalidated, the requestor writes to the shared

variable without the possibility of another processor reading the variable’s old value.
If another processor wishes to read the variable after its copy has been invalidated,
it must initiate a new coherence transaction to obtain the variable, and it will obtain

a copy from the processor that wrote it, thus preserving coherence.

Write Update In the write-update policy, a processor attempting to write to a

shared variable initiates a coherence transaction to update the copies in all other
processors to reflect the new value it wrote to the variable.

2.3.1 Coherence Protocol for X10’s Global References

The X10 coherence protocol that manages accesses to shared data in GlobalRefs
is herein called the X10Protocol. Values protected in GlobalRefs are retrieved by

the application operation g(). The X10Protocol maintains a unique copy of a
GlobalRef and dictates guarded access to g(); it can only be called when g.home

== here, where here is the id of the referencing place. The GlobalRef g, shown

in Figure 2.2, is directly accessible to activities in Place 0 as shown by the solid

black arrow.

Any operation, other than passing around a global reference or comparing two of

them for equality, requires a place shift back to the home place of g, often with

at(g.home), or simply at(g) (line 5). For instance, all accesses to g in Figure 2.2
from places 1 to n−1 requires shifting the activity to shift to Place 0, as indicated

by the dashed arrows. For all remote accesses that occur as a result of place-shifting
at-clause, the X10Protocol exchanges messages between places.

2.4 Related APGAS Languages

Habanero-Java [17] and Chapel [19] belong to the same family of APGAS languages
as X10. These languages differ in terms of their syntax and their support for differ-

ent programming constructs. For instance, the syntax of Habanero-Java and X10

8

explicitly distinguish accesses to remote data from accesses to local data in order to
keep the programmer aware of the costs involved. However, Chapel tends to make

this distinction less explicit. If a Chapel task running on locale 0 (akin to a place in
X10) wants to access a variable stored on locale 1, it can do so simply by naming the
variable, relying on the compiler and runtime to provide the communication neces-

sary to implement the remote reference. In contrast, X10 and Habanero-Java require
programmers to explicitly specify the place of the remote data while accessing them.

Despite such differences, the fundamental mechanisms for mapping tasks, for man-

aging the consistency of shared variables, and for workload partitioning are similar
in these languages. They all suffer from the three fundamental limitations identi-
fied in this dissertation. Namely, the lack of a distinction between locality-flexible

and locality-sensitive tasks limiting opportunities for load balancing, the support for
näıve workload distribution resulting in a dynamic load imbalance, and the failure

to employ augmented coherence-protocols to manage shared variables with differ-
ent access patterns. As such, the conclusions drawn in this dissertation should be
equally applicable to Chapel and Habanero-Java in addition to X10.

9

Chapter 3

Locality-Aware Task Migration

Balancing the computational workload of an application amongst available proces-
sors is critical for performance. A popular technique used to balance workload is
task migration. Task migration assigns work to threads that are in idle or under-

loaded states for lack of work. An even distribution of workload reduces the number
of processor cycles that are wasted on idle threads and improves performance. The

resulting performance improvements are especially pronounced for tasks that per-
form significant amounts of computations and recursively generate more work for
peer workers in a processor.

Task migration may have an adverse impact on performance. Migrating tasks may

incur significant overhead. This overhead is due to bookkeeping and computation
needed to determine the timing of task migration, the most favourable tasks for

migration, and the best node to which a task should migrate [12, 29, 46]. The state
explorations needed to make these decisions often require expensive data movement
across the network and synchronization among multiple workers. Furthermore, task

migration may also disrupt the affinity between tasks and data by launching tasks
at idle or underloaded nodes rather than at nodes to which the tasks bear affinity.

Therefore, many programming systems, including PGAS and APGAS, restrict task

migration within shared-memory nodes to prioritize locality over load balance, and
to minimize these overheads.

This chapter describes a novel insight that is key for the implementation of scal-

able task-migration strategies in distributed-memory systems: selective migration of
tasks that are agnostic to the location of data strikes a balance between locality and
load balance. We demonstrate this idea by implementing distributed work-stealing

and work-dealing approaches to task migration in the X10 programming system.

3.1 Selection of Tasks for Migration

Completely avoiding the overheads of task migration in distributed-memory systems
is impractical. However, there are measures that can help reduce and mitigate these
overheads and thereby reduce the amount of time that processors are idle. The

10

processors may remain idle because of memory or input-output operations, or for
lack of work. Migration of some tasks contributes more toward minimizing these

idle times than others. This section describes a task model to identify such tasks.
A task is favourable for migration to a remote processor if the task meets any of the
following conditions:

i) The processor’s cache is warm for that task because the related data is already

in its local memory. Therefore, there is no additional overhead in reloading a
cold cache, or in copying the data from the remote processor.

ii) The task is local to the remote processor because it is a subtask of some task
migrated to that processor. Thus, no extra cost needs to be paid.

iii) The task is coarse enough to overcome the cost of migration by keeping the

target node busy for sufficient time to prevent frequent migrations.
iv) The task encapsulates the data necessary for its computation.

A task that qualifies for migration is a locality-flexible task. A task that bears strong

affinity to a processor is a locality-sensitive task. This distinction frees a runtime
scheduler from making load-balancing decisions for expensive locality-sensitive tasks
and focus only on locality-flexible tasks. The designation of tasks as sensitive or

flexible can be done in multiple ways: by an optimizing compiler, or by a runtime
based on execution histories of similar tasks. It can also be done by a programmer

using the algorithmic details and the semantic knowledge of the application, which
may not be readily available through static or dynamic program analyses.

The proposition that locality information is beneficial is agnostic as to where such
annotations come from. The prototype for the evaluation of this idea, presented in

this chapter, relies on programmer-specified locality hints to identify locality-flexible
tasks. This approach requires minimal changes to the X10 programming system.

3.1.1 Locality-Flexible Tasks in Applications

Following is a description of two parallel applications, Delaunay Mesh Generation
and Turing Ring. These applications illustrate the existence of locality-flexible tasks
in applications and the need for distinguishing such tasks from locality-sensitive

tasks. Then a discussion of Iterative Deepening A* (IDA*) and Unbalanced Tree

Search (UTS) provides examples of applications where all tasks are locality-flexible.

A task’s designated node, as specified in its source code, is herein called the source

node. The node where the task is launched after migration is called the target node.

Delaunay Mesh Generation A Delaunay mesh generator creates a mesh of De-
launay triangles from a given set of points. The algorithm starts by initializing a

work-list with the points to be processed, and by initializing the mesh with a single
large triangle encompassing all the points. A triangulation procedure then picks a
new point from the work-list, determines the triangle containing the point, creates

a cavity by splitting the triangle into three new triangles that share the point, and
performs re-triangulation until all the new triangles are valid Delaunay triangles.

Initially, there is only one large triangle. However, as the triangulation process
unfolds, the mesh gets populated with several new triangles. The points in these

11

newly formed triangles can be processed in parallel because the final mesh is the
same regardless of the order in which the points are processed. Thus, the interme-

diate triangles can be distributed among different nodes for parallel and distributed
processing. The triangles allocated in each node create other Delaunay triangles
using the points they enclose. Therefore, allocating triangles and their encapsulated

points at the same node is crucial to minimize remote memory references.

An even distribution of the initially generated triangles among nodes does not guar-
antee a balanced workload throughout the mesh-generation process. The number

of points encapsulated by different triangles, and the number of re-triangulations
needed for processing different points could be different. Some nodes might have to
perform more triangulations than others. Therefore, a natural question arises: If a

node is idle after processing all the points in its work-list, then would it be beneficial,
performance-wise, to migrate a triangle with unprocessed points from other nodes?

The triangulation procedure is a task with the following properties: i) it encapsulates

all the data necessary for its computation, eliminating the need for repeated remote
memory references; ii) copying of the triangle and its points from the source node
to the target node is necessary only once; iii) all the new triangles created by the

target node have local access to other points in the triangle because they are already
copied to the target node’s local memory; and iv) it is coarse enough to keep the

target node busy for sufficient time because it spawns several new tasks to process
its points in parallel. Therefore, such a task is locality flexible and is favourable for
migration to remote nodes.

Turing Ring The Turing ring problem simulates the interactions between preda-
tors and preys in a ring of cells. The algorithm (shown in Figure 3.1) initializes

each cell with a number of predators and preys, and evenly distributes the ring
across nodes. The algorithm iteratively updates the predator and prey populations
accounting for their death, birth and migration. The population of predators and

preys in each cell can be processed in parallel using async activities as shown in
lines 5 and 7.

S1: /* wl is a distributed ring of cells */

S2: Worklist wl ← DistArray <Cell >

S3: wl.initialize ();

S4: finish {

S5: for each Cell c in wl async at (c.place) {

S6: finish {

S7: async c.updatePreyPop ();

S8: c.updatePredatorPop ();

S9: }

S10: BodiesToMigrate mBodies = c.updateCellIDs ();

S11: wl.update(mBodies);

S12: }

S13: }

Figure 3.1: Pseudocode for the Turing Ring problem.

The populations of the cells can change by as much as two orders of magnitude in a

12

single iteration resulting in a load imbalance. There are two types of tasks that can
be migrated to alleviate the load imbalance: i) the task that updates predator or prey

populations (lines 7 or 8). Migration of such tasks requires copying all information
about predators/preys in the cell — including their birth, death and migration rates
— to the target node to compute the new population. The new population must

then be copied back to the source node to permit re-distribution of bodies; ii) the
outer task that performs all operations in a cell, including population update and

migration of predators and preys. Migration of such tasks requires copying of entire
cells to the target node. However, once the cell is copied, there is no need to copy
the results back to the source node because all other operations (lines 5 – 8) on the

cell are now local to the target node. Hence, no more remote memory references will
be needed. Further, the migrated task makes work available for other co-located

workers in the target node. Thus, the outer async that processes an entire cell is a
locality-flexible task that is suitable for migration during load balancing.

The costs of executing async (line 7), and async at(p) (line 5) are different. The
async construct works on data that is already in the place where the task is created

and does not need to create data copies. However, the execution of async at (p)

creates copies of all the values used in S to the place p. The locality-flexible approach

applies to async at (p), i.e., the scheduler is meant to migrate tasks operating on
copies of data rather than place-resident data. Such tasks are precisely the ones
that have poor locality, and hence, are annotated as locality flexible.

IDA* and UTS Not all applications possess easily distinguishable locality-flexible
and locality-sensitive tasks. Consider IDA* and UTS algorithms for example. IDA*

performs a cost-bound depth-first search of a state-space from a given start state
using a heuristic function and finds the optimal solution path to a goal state. The
disjoint parts of the state space in IDA* can be searched in parallel. The expansion

of a state in IDA* requires only the cost-bound and can occur independent of expan-
sions of other states. Thus, all parallel tasks in IDA* are locality flexible. Similarly,
all tasks processing the nodes in UTS are also locality flexible because they do not

bear affinity to data allocated at any single processor. However, the size of the
subtrees generated upon expansion of different states in IDA* and different nodes

in UTS can vary significantly. Thus, it is difficult to statically identify such tasks
and decide a priori whether migration of the task in hand can offset the associated

overheads to yield performance benefits.

In such applications, the runtime system may migrate any randomly selected tasks.

Experimental evaluations show that the proposed scheduling algorithms do not de-
grade performance on such applications as well, which are not particularly suited to

locality-aware scheduling.

3.2 Migration of Locality-Flexible Tasks

This work investigates the merits of locality-aware task migration by implementing

distributed work-dealing and work-stealing schedulers. Under work dealing, the

runtime scheduler dynamically adjusts the mapping of tasks to nodes to alleviate

13

any load imbalance. Under work stealing, an idle worker in a node steals tasks
from other co-located or remote workers. Both of these schedulers employ the same

policy for task migration. A locality-flexible task may be migrated to an idle or an
underloaded node only if the locality-flexible task’s designated place is not idle or
underloaded. These schedulers complement the existing work-stealing scheduler in

X10 that operates only within shared-memory nodes.

3.2.1 Work Dealing

The work-dealing scheduler maps all locality-sensitive tasks to their designated
places. The scheduler must decide if task migration is both necessary and bene-
ficial only for locality-flexible tasks.

A common approach to make these decisions is to compare the number of tasks

assigned, the number of tasks pending, or the expected completion times of the
tasks in different places. Such an approach entails several runtime explorations and

computations across all places. This work relies on a simple heuristic that a place
must be underloaded if any worker in the place fails to successfully steal work after n
consecutive attempts. In the prototype implementation, n is the number of workers

per node. The idea is to exploit the principle that if an idle worker fails to retrieve
work from its co-located workers in n attempts, then it is most likely that most of

the workers in the node are either idle, and thus also searching for surplus work, or
do not have any extra work to be stolen. Thus, it would be beneficial, in terms of
load distribution, to map a dynamically spawned locality-flexible task to this node.

By uniquely learning from the stealing operations to initiate task migrations to
underloaded nodes, this work prevents expensive book-keeping operations.

Migrating a task to a remote node by starving workers in the task’s designated

place is counter-productive – it incurs the overhead of task migration and that of
unnecessary work stealing within a place. Therefore, the scheduler maps a locality-
flexible task async(p) to the task’s designated place p if p is underloaded. Only if

p is not underloaded, the scheduler proceeds to identify an underloaded node in the
cluster. Using this strategy, the work-dealing algorithm prioritizes the utilization of
cores over the utilization of nodes.

Control-Logic for Work-Dealing

Algorithm 1 describes the control logic for work dealing. The work-dealing scheduler
checks the boolean variable initiateWD – initially set to false – to determine if there

is any load imbalance in the system. An idle worker in a place sets initiateWD to
true if it fails to steal successfully in n consecutive attempts. Multiple workers in
multiple nodes may be attempting to steal in their home places. The scheduler

tracks all such underloaded or idle places using targetNode – a boolean array.

The scheduler scans the targetNode to find the first underloaded place, say q, in
the cluster, and deals out work to that place. In preparation for sending a task

to the chosen underloaded place q, the scheduler first sets targetNode(q.id) to
false to indicate that the place will no longer be underloaded because it is about to

14

Algorithm 1: Control logic for work dealing.

Require: A sequence of place-sensitive and place-flexible tasks
〈async1(p), async2(p), . . . , asyncn(p), 〉.

Ensure: Locality-aware mapping of tasks asynci(p), and work dealing.
1: for each place pi in the Program do
2: if local steal fails n times consecutively then
3: atomic initiateWD ← true
4: atomic targetNode(i) ← true
5: for each asynci(p) in the Program do
6: if isPlaceFlexible(asynci(p)) && !isTargetNode(p.id) && initiateWD

then
7: for id in targetNode \ targetNode(p.id) do
8: if (atomic targetNode(id)) then
9: atomic targetNode(id) ← false

10: initiateWD ← targetNode.reduce(Or)
11: create closure using body of asynci(p) activity
12: prepare closure for remote execution
13: create an async to run the closure at place(id); break
14: else
15: perform locality-guided mapping of asynci(p)

receive a task for execution. To decide whether work dealing needs to be employed

on subsequently arriving asynci(p) tasks, the targetNode array is scanned to see if
there are other places searching for surplus work and the initiateWD variable is set

accordingly. Then, using the asynci(p)’s body, a closure is created. The closure is
marked for remote execution and finally an async activity is created at the chosen
place q to run the closure. A worker in the idle or the underloaded place performs

the book keepings to minimize interruptions on the operation of busy places.

3.2.2 Work Stealing

Under distributed work-stealing, local and remote workers may attempt to retrieve

tasks from deques at the same time. Frequent steal requests from remote nodes
may interfere with the operation of local workers in a node, thereby, significantly

degrading the performance of the local workers. Thus, the key to scaling distributed
work-stealing implementations is to use data structures that minimize the contention
among local and remote workers. This work maintains separate deques for locality-

flexible and locality-sensitive tasks, and permits remote workers to steal only from

the deques of locality-flexible tasks. Using multiple deques or specialized deques

to reduce contention is a standard practice in scheduling [2, 3, 54]. The proposed

distributed work-stealing algorithm maintains a shared deque and per-worker private
deques in each place, as shown in Figure 3.2.

Tasks that bear affinity to a place are mapped to its private deque, while locality-

flexible tasks are mapped to the shared deque. Under this scheme, each worker
can operate on its private deque without interruptions from remote workers. The

15

Place 1 Place 2

shared Deques

pr
iv

at
e

D
eq

ue
s

Distributed
stealing

Figure 3.2: Private deques offer a place-local view of locality-sensitive tasks and a
shared deque offers a global view of locality-flexible tasks.

last-in-first-out access policy of a worker’s private deque leads the local worker to
execute the most recently created task and thus, offers a higher chance of exploiting
cache locality. The shared deque, in contrast, is manipulated in a first-in-first-out

manner to ensure that any steal operation, whether local or remote, receives the
oldest task in the deque. Older tasks potentially contain the largest amount of work
in the task graph leading thieves to remain busy for a longer period of time and

reducing the overhead of frequent steals.

Control-Logic for Distributed Work-Stealing

Algorithm 2 shows the control-logic for distributed work-stealing. Load imbalances

within a place are managed by X10’s intra-place work-stealing scheduler. The al-
gorithm first attempts to steal from other co-located workers, then from the local
shared deque, and finally from the remote shared deque. A worker attempts dis-

tributed work-stealing only when: i) all the other co-located workers are either busy
executing their own activity and do not posses surplus work to be stolen, or are

themselves attempting to steal work; and, ii) the local shared deque is empty. The
algorithm checks the boolean variable active determine whether there are any run-
ning activities in a place. The variable is set to true when a worker starts processing

work from its deque. An idle node has the variable set to false. The algorithm checks
the number of spare workers and the total number of workers (i.e., size) in a node

to determine if the node is underloaded.

Under distributed work-stealing, the thief — worker attempting a steal operation

— holds a lock on the remote shared deque, retrieves an activity, creates a closure
using the stolen activity, marks this closure for remote execution, and creates a new

async activity at its home place to execute the closure. If the thief’s attempt to steal
from a remote worker fails, the thief first probes the network to see if any remote

task has spawned tasks at its home place before continuing to explore other places.

This approach eliminates unnecessary steal operations and also prevents polluting

other place’s caches. The thief continues this process until it finds work or until it

has explored all available places.

16

Algorithm 2: Async mapping & distributed work stealing

Require: A sequence of locality-sensitive and locality-flexible tasks
〈async1(p), async2(p), . . . , asyncn(p), 〉.

Ensure: A mapping of tasks asynci(p) to private or shared deques, task
execution strategy and distributed work stealing.

1: for each asynci(p) in the Program do
2: if !isPlaceFlexible(asynci(p)) then
3: map asynci(p) to a private deque of place p

4: else if !isActive(p) || spares>0 || size(p)<max threads then
5: map asynci(p) to a private deque of place p

6: else
7: map asynci(p) to the shared deque of place p

// Control logic for local and distributed work-stealing policies
8: activity ← poll the private deque
9: while !activity and !terminated do

10: activity ← probe the network for incoming tasks
11: if !activity then
12: activity ← steal from co-located workers
13: if !activity then
14: activity ← steal from the shared deque in its place
15: if !activity then
16: remoteVisits++
17: activity ← steal from remote place’s shared deque
18: pvisited.add(remotePlaceVisited)

// Distributed Work-stealing
19: for pj in places \ pvisited ∧ pi do
20: activity ← atomically poll from the shared deque of pj
21: if !activity then
22: create closure using the body of activity
23: annotate activity to prepare it for remote execution
24: async at (pj) closure

25: else
26: break

3.3 Experimental Evaluation

This section describes the experimental setup and discusses the main findings from
the performance evaluation.

3.3.1 Experimental Setup

Platform: Our performance measurements use a blade server with 16 nodes, each
featuring two 2 GHz Quad-Core AMD Opteron processors, with 8 GB RAM, 64KB

L1 cache, 512KB L2 cache, 2MB L3 cache, and 20 GB of swap space, running
CentOS GNU/Linux version 6.0.

17

Compiler and Runtime: The x10c++ compiler version 2.2 is used for measurements
and the command-line arguments -O -NO CHECKS are passed to the compiler to

enable optimizations and disable array bounds, null pointer, and place checking.
The nodes in the cluster are connected by an InfiniBand network with a bandwidth
of 10 Gbit/s and use the MVAPICH2 library for communication. The experimental

runs set X10 NTHREADS=8 to create eight worker threads per place and vary the
number of places from 1 to 16 so that the number of threads is the same as the total

number of cores available.

Applications: The experimental evaluation uses applications with unstructured data
and irregular parallelism because they present significant opportunities for load bal-
ancing. These include the following applications from the Cowichan suite [59, 76]:

i) Quicksort sorts an array of 100M elements using quick-sort; ii) Turing ring solves
a set of coupled differential equations modelling system dynamics using 1M bodies;

iii) k-Means implements a k-means clustering algorithm resulting in four clusters
and using 1000 iterations; and iv) n-Body simulates the forces acting on a system of
220K bodies using the Barnes-Hut algorithm. The evaluation also uses the following

applications from the Lonestar suite [44], that we ported from the Galois framework
to the X10 language for distributed-memory systems: v) Agglomerative clustering

performs clustering of 2M points by building a hierarchical tree in a bottom-up
manner; vi) Delaunay mesh generation (DMG) deals with 2D Delaunay triangular
mesh generation using 80,000 points; and vii) Delaunay mesh refiner (DMR) refines

a Delaunay mesh of 550K triangles such that no angle in the mesh is less than 30◦.

Methodology: Each application is run 10 times to account for variances, such as
work-stealing in the runtime, and scheduling policies in the operating system. The

performance charts do not show the 95% confidence intervals because they are small.

3.3.2 Results and Discussion

The evaluation compares the performance of eight different schedulers:

i) X10WS is X10’s existing intra-node work-stealing scheduler.

ii) WD combines X10WS with the distributed work-dealing scheduler.
iii) Eager-WD proactively maps each locality-flexible task in a load-balance-aware

manner rather than waiting until the occurrence of a load-imbalance.
iv) DistWS combines X10WS with the distributed work-stealing scheduler.

The relative merit of DistWS is justified only if it consistently outperforms dis-
tributed work-stealing that unconditionally permits any task to be stolen, and also

does not incur the overhead of maintaining a shared deque per place. Thus, we
compare performance of DistWS against:

v) DistWS-NS-ND allows a worker to steal any task directly from a remote worker’s
private deque and avoids the need for a shared deque per place.

vi) DistWS-NS also permits any task to be stolen, but maintains separate deques
for locality-flexible and locality-sensitive tasks similar to DistWS. Making all

tasks locality-flexible would mean mapping all tasks in an application to the

shared deque. Such an approach incurs high overhead because local workers

18

must retrieve tasks only from the shared deque by competing with local and
remote workers, instead of retrieving tasks from their private deques. Thus, for

a fair comparison, DistWS-NS maps tasks to their designated place’s per-worker
deque until all workers are busy. A task is mapped to the place’s shared deque
if and only if all workers in the place are busy and its shared deque is empty.

vii) DistWS-RS is similar to DistWS, but permits stealing of randomly chosen tasks
without any concern for the tasks’ locality flexibility or sensitivity.

viii) DistWS-PS is similar to DistWS, but permits stealing of only a subset of locality-
flexible tasks because not all locality-flexible tasks are annotated as such in the
program source code.

An evaluation of these algorithms on applications with parallel tasks of varying gran-

ularities and communication patterns, using a varying number of worker threads,
helps us understand:

The impact of thread and node count on speedup Figure 3.3 shows the
sequential execution times of the applications, and Figure 3.4 shows the application
speedups with different scheduling approaches relative to the sequential execution

time. Execution over a single node present no opportunities for inter-node load
balancing, but incurs extra costs to maintain separate deques, to schedule locality-

flexible and locality-sensitive tasks separately, and to explore the runtime load-
status to decide on a deque for the locality-flexible tasks. Thus, all algorithms
except DistWS-NS-ND exhibit slowdown compared to X10WS at 1 – 8 worker counts.

DistWS-NS-ND is an exception because it does not maintain a shared deque per place.
When using multiple nodes, WD and DistWS outperform X10WS. DistWS outperforms

WD for all cases except n-Body at 16 threads where they exhibit similar performance.

15	

123	

174	

310	

210	

269	

169	

0	

50	

100	

150	

200	

250	

300	

350	

Q
ui
ck
So
rt
	

Tu
rin

g	

Ri
ng
	

k-­‐
M
ea
ns
	

Ag
gl
om

	

DM
G	

DM
R	

n-­‐
Bo

dy
	
 Se
qu

en
&a

l	
 E
xe
cu
&o

n	

Ti
m
e	

(s
)	

Figure 3.3: Sequential execution time using X10WS.

WD and DistWS exhibit larger impact at higher number of workers because the appli-

cations process, create or destroy work items — such as triangles and points — at a

faster and a varied rate resulting in an imbalanced workload across different nodes.
The best speedups achieved with DistWS over X10WS on Quicksort, Turing ring, k-

Means, Agglom, DMG, DMR and n-Body are 14%, 12%, 18%, 28%, 32%, 28%, and

19

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	
 8	
 16	
 32	
 64	
 128	

Quick	
 Sort	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	
 8	
 16	
 32	
 64	
 128	

Turing	
 Ring	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

1	
 8	
 16	
 32	
 64	
 128	

k-­‐Means	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

1	
 8	
 16	
 32	
 64	
 128	

Agglom	

0	

5	

10	

15	

20	

25	

30	

35	

1	
 8	
 16	
 32	
 64	
 128	

DMG	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

1	
 8	
 16	
 32	
 64	
 128	

DMR	

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	
 8	
 16	
 32	
 64	
 128	

n-­‐Body	

Number of workers

S
pe

ed
up

 o
ve

r s
eq

ue
nt

ia
l

DistWS
DistWS-PS
DistWS-RS
DistWS-NS

WD
Eager-WD

DistWS-NS-ND

X10WS

Figure 3.4: Speedup over sequential execution time.

20

26% respectively. Similarly, the best speedups achieved with WD over X10WS on these
applications are 8%, 7%, 8.5%, 10%, 13%, 14%, and 13% respectively.

i) Proactive and Reactive Work Dealing: Instead of triggering distributed work-

dealing after the occurrence of a load imbalance, the evaluation also investigates
whether proactive work-dealing (Eager-WD) improves performance. While WD uses
the knowledge of stealing to identify an underloaded or an idle node, Eager-WD must

perform extra work to identify idle or underloaded nodes. Eager-WD must first scan
all available nodes to identify the idle nodes so that it can send work from locality-

flexible tasks to such nodes. If all nodes are busy, Eager-WD must compare the
amount of surplus activities in each node to identify an underloaded node. These
status checks and runtime explorations critically affect the performance of Eager-WD.

Thus, it performs poorly compared to WD, and exhibits similar or marginal speedups
(< 4%) compared to X10WS.

The impact of the amount of work migrated on performance The amount
of work transferred during migration is determined by the granularity of the tasks
migrated, measured as the time that it takes for a single thread to execute that task,

and by the number and granularity of tasks spawned by the migrated tasks. Task
granularity affects the performance of DistWS by influencing how long a thief node

will perform useful work before requiring another steal.

A separate experimental evaluation investigated the performance impact of task
granularities using smaller benchmarks: i) skyline solves a system of linear equa-
tions with 5000×5000 skyline matrix coefficients, ii) montepi computes Monte-Carlo

estimation of π using 1M points, iii) mcp finds an optimal order for multiplying a
chain of 5000 matrices, iv) random access (RA) updates integers at random memory

locations in a distributed table; and v) n-Queens finds all different ways of placing
n queens on a n x n board such that none of the queens hit any other queen in one
move. The tasks in these applications are substantially finer-grained than the tasks

in larger applications used in the experimental evaluation as shown in Table 3.1.
The largest speedup relative to X10WS achieved on these smaller applications using
different scheduling approaches is less than 6%, as shown in Figure 3.5. This sup-

ports the claim that only tasks that perform significant computation are suitable
candidates for distributed work-stealing.

Table 3.1: Task granularities (in ms).

Q
u

ic
k
so

rt

T
u

ri
n

g
R

in
g

k
-M

ea
n

s

A
gg

lo
m

.

D
M

G

D
M

R

n
-B

o
d

y

S
k
y
li

n
e

M
o
n
te

P
i

M
C

P

R
A

n
-Q

u
ee

n
s

1.1 1.86 383 529 732 899 623 0.93 0.005 0.09 0.006 0.97

WD did not exhibit significant sensitivity to the granularity of tasks, hence, it is not
discussed in this evaluation section.

21

0	

10	

20	

30	

40	

50	

60	

Skyline	
 MontePi	
 MCP	
 RA	
 n-­‐Queens	

Sp
ee
du

p	

ov
er
	
 	
 s
eq

ue
n-

al
	
 a
t	
 1

28
	
 w
or
ke
rs
	
 	

X10WS	
 Eager-­‐WD	
 WD	

DistWS-­‐NS-­‐ND	
 DistWS-­‐NS	
 DistWS-­‐RS	

DistWS-­‐PS	
 DistWS	

(a) Speedup over sequential at 128 workers.

-­‐8	

-­‐6	

-­‐4	

-­‐2	

0	

2	

4	

6	

Sk
yl
in
e	

M
on

te
Pi
	

M
CP

	

RA
	

n-­‐
Q
ue

en
s	

%
	
 C
ha

ng
e	

in
	
 E
xe
cu
n.

on
	
 T
im

e	

Re

la
.v

e	

to
	

X1
0W

S	

at
	
 1
28
	
 w
or
ke
rs
	
 	

Eager-­‐WD	
 WD	

DistWS-­‐NS-­‐ND	
 DistWS-­‐NS	

DistWS-­‐RS	
 DistWS-­‐PS	

DistWS	

(b) Speedup relative to X10WS.

Figure 3.5: Speedup on applications with small task granularities.

The merit of migrating only locality-flexible tasks DistWS performs consid-
erably better than DistWS-NS-ND, DistWS-NS and DistWS-RS as shown in Figure 3.4.

DistWS strives to migrate only tasks that require minimum data transfer between
the victim and thief nodes or the tasks that do not require frequent access to the re-
mote data. DistWS-NS-ND, DistWS-NS and DistWS-RS in contrast, choose tasks for

migration without such considerations. As a result, DistWS-NS transmits a signifi-
cantly larger amount of data across the nodes than DistWS, as shown in Figure 3.6.

0	

5	

10	

15	

20	

25	

30	

35	

Q
ui
ck
so
rt
	

Tu
rin

g	

Ri
ng
	

k-­‐
M
ea
ns
	

Ag
gl
om

	

DM
G	

DM
R	

n-­‐
Bo

dy
	
 M

es
sa
ge
s	
 t
ra
ns
m
i,
ed

	
 a
cc
ro
ss
	

ne
tw

or
k	

	
 w
ith

	
 X
10
W
S	

(M

ill
io
ns
)	

(a) Messages Transmitted with X10WS

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

Q
ui
ck
so
rt
	

Tu
rin

g	

Ri
ng
	

k-­‐
M
ea
ns
	

Ag
gl
om

	

DM
G	

DM
R	

n-­‐
Bo

dy
	

%
	
 In

cr
ea
se
	
 in
	
 m

es
sa
ge
s	
 t
ra
ns
m
i.
ed

	

ac
ro
ss
	
 n
et
w
or
k	

co
m
pa

re
d	

to
	
 X
10
W
S	
 DistWS-­‐NS-­‐ND	
 DistWS-­‐NS	

DistWS-­‐RS	
 DistWS-­‐PS	

DistWS	

(b) Messages Transmitted Relative to X10WS

Figure 3.6: Messages transmitted across network at 128 workers.

The performance of proposed algorithms when only a sub-set of available
locality-flexible tasks are exposed to the scheduler DistWS-PS represents

the case where a programmer may annotate only some of the available locality-

flexible tasks as such. The speedup graphs in Figure 3.4 show that DistWS-PS

achieves at least the same performance as X10WS on all applications at 8 and 16

22

workers. At higher worker counts, DistWS-PS outperforms X10WS by a considerable
margin. However, the performance gains are lower than that achieved with DistWS.

This occurs because DistWS offers more scheduling freedom than DistWS-PS by
exposing all available locality-flexible tasks to the load-balancing scheduler.

The performance impact of proposed algorithms on applications that

are not suited to selective locality-aware scheduling All tasks in IDA* and
UTS applications are locality-flexible but encapsulate significantly varying amounts

of work. To evaluate the performance impact of locality-aware scheduling, IDA*
was applied to solve the 15-puzzle problem, and UTS was used to expand nodes
in a binomial tree of size 157 billion nodes generated on the fly using a split-table

random number generator. In these applications, DistWS and WD permit migration
of all tasks, and DistWS-NS permits migration of randomly chosen tasks. Both

approaches yield similar speedups of up-to 10x over X10WS as seen from Figure 3.7.
These results indicate the merit of the proposed approach even on applications that
are not well suited for selective locality-aware scheduling.

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	
 8	
 16	
 32	
 64	
 128	

Sp
ee
du

p	

ov
er
	
 se

qu
en

-a
l	

Number	
 of	
 workers	

15-­‐Puzzle	

X10WS	
 Eager-­‐WD	

WD	
 DistWS-­‐NS-­‐ND	

DistWS-­‐NS	
 DistWS-­‐RS	

DistWS-­‐PS	
 Dist-­‐WS	

(a) 15-Puzzle

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

110	

1	
 8	
 16	
 32	
 64	
 128	

Sp
ee
du

p	

ov
er
	
 se

qu
en

-a
l	

Number	
 of	
 workers	

UTS	

X10WS	
 Eager-­‐WD	

WD	
 DistWS-­‐NS-­‐ND	

DistWS-­‐NS	
 DistWS-­‐RS	

DistWS-­‐PS	
 DistWS	

(b) UTS

Figure 3.7: Speedup over sequential execution time at different worker counts.

3.4 Limitations

The proposed task-migration strategies must ensure that: i) all migrated tasks di-

rectly access only co-located data, and ii) results from the computation of migrated

tasks are properly returned to the original place of the migrated tasks.

Ensuring Place-local Data Accesses Accesses to non-final variables in X10 are

permitted only for objects residing at the same place as the asyncs. For instance, the
code in Figure 3.8 creates a distributed array of one hundred elements distributed

over all places via a block distribution with each element initialized to 0. The

23

accesses to distArray in lines 8 and 11 of Figure 3.8 are valid for place p1 because
the array elements and their enclosing async (line 6) are co-located at place p1. If

the async activity is launched at a remote place, say p2, after migration, then those
accesses will no longer be valid. Fortunately, the X10’s type system checks and
identifies such non-local data accesses that may occur as a result of migration. An

easy way to ensure that data accesses are local even after migration is to explicitly
type-cast the array accesses using the at construct as shown in lines 9 and 12.

S1: val arrayDist:Dist = Dist.makeBlock (1..100 as Region);

S2: val distArray:DistArray[Int] = DistArray.make[Int](arrayDist ,0);

S3: finish {

S4: for (p in arrayReg) {

S5: val p1 = arrayDist(p); val p2 = p1.next ();

S6: async (p1) {

S7: // async (p2) {

S8: val newVal = distArray(p) + x;

S9: // val newVal = at(p1) distArray(p) + x;

S10: Console.OUT.println (" Array val at " + p.toString () + " "

S11: + distArray(p));

S12: // + at(p1) distArray(p)); }}}

Figure 3.8: An example illustrating the use of the at statement.

Returning Results from Migrated Tasks A side-effect of the copying seman-

tics of the at statement is that all computations by tasks shifted to a new place
occur on copies of the data within the scope of the at statement. Therefore, the

expressions evaluated at remote nodes by migrated tasks must be returned to the
original place by using the at statement.

3.5 Related Work

Our approach to task migration differs from prior work in the selection of tasks and

nodes for migration, and the locality information used to guide migration.

Selection of Nodes Prior approaches use system state information [29], the pro-

cessing speeds and relative workloads of the sender and receiver nodes [46], and the

number of processes allocated to nodes [12] to select destination nodes for launching

migrated tasks. Collecting such information may require communication among sev-

eral nodes, and expensive synchronization operations. To the best of our knowledge,
the idea of relying on work-stealing events to trigger task migration is original.

Selection of Tasks Several prior approaches support locality-aware scheduling.

The COOL programming model allows programmers to specify locality hints for

scheduling tasks and distributing objects [21]. The Scioto framework categorizes

tasks based on their affinity to processors and encourages distributed steals of low-
affinity tasks [27]. The Legion programming model permits user-guided placement

of tasks [10]. Unlike DistWS, these approaches either forsake statically specified

24

or derived locality-information during task migration or require the scheduler to
migrate all tasks in a region if any task in the region is stolen.

Majo and Gross use execution histories to identify favourable tasks for migra-

tion [50]. In contrast, DistWS analyzes task granularities and the number of remote
memory references to identify favourable tasks for migration.

Locality Information SLAW [36] and HotSLAW [54] use hardware topology

to guide migration of tasks. Stealing from the nearest processor in the memory
hierarchy is the key to their performance. Cong et al. and Guo et al. rely on the

rate of work-stealing to coordinate multiple task-migration strategies [25, 35]. Unlike
these approaches, this work uses application-level locality to guide task migration.

Task-migration strategy optimized specifically for an application also exists. The
lifeline-graph-based load-balancing approach outperforms our approaches on the Un-

balanced Tree Search (UTS) benchmark [70]. This is expected because they use a
dedicated load balancer for UTS that first performs random stealing, followed by

lifeline-based load balancing. When a node fails to steal, it quiesces and informs
the outgoing edges in the lifeline graph. A failed attempt to distributed stealing
in our approach does not help future steals. However, by remaining in a quiescent

state after a failed steal and also by informing other nodes in its outgoing edges,
lifeline graphs help reduce the overheads of failed steals. However, the authors do

not consider how lifeline graphs could be made locality-aware.

Distributed Work-Stealing and Task Suspension Tardieu et al. demonstrate
the applicability of work-stealing scheduling principles to X10’s task parallelism with

suspension [73]. Although their work-stealing engine supports multi-place programs,
it balances the computations only inside places. They do not consider load balanc-
ing across places. This work indicates the potential for extending their recipes to

distributed work-stealing as well.

3.6 Summary

This chapter argued that the selection of locality-flexible tasks is important for ef-
ficient load balancing. An experimental evaluation revealed that the coordination
between X10’s intra-node work-stealing and the proposed distributed task-migration

approaches yields upto 32% speedup. The evaluation also revealed that the perfor-
mance gains are more pronounced on applications with larger task granularities.

Even applications that are not best suited for selective task-migration strategies do
not lose performance with the proposed approaches. Another important contribu-
tion in this chapter is a heuristic based on intra-node work-stealing that cheaply

detects dynamic load-imbalances.

25

Chapter 4

Optimizing Shared-Variable
Accesses

Shared variables are fundamental abstractions for communication in high-performance
programming systems. They encapsulate a significant amount of frequently accessed
data. Efficient coherence protocols are essential to ensure consistency of shared-

variable accesses. Prior studies employ caching [71], communication coalescing [24],
and task-localization [7] techniques to improve the access performance of shared

variables. However, they hinder productivity by only supporting programs writ-
ten in specific ways, or by requiring programmers to annotate the access patterns of
shared variables. Such approaches also fail to coordinate multiple protocols aimed at

optimizing different patterns of accesses. As a result, they degrade the performance
of applications that are not suited to the employed optimizations.

The key principle guiding the work in this chapter is that a coordination among mul-
tiple low-overhead coherence protocols is crucial for delivering a consistent and a

scalable performance of shared-variable accesses. To this end, this chapter describes
a novel framework for profile-directed selection of a high-performing coherence pro-

tocol, among available ones, for optimizing accesses to each shared variable in an
application. This framework, incorporated atop X10, improves the performance of
several applications by coordinating: i) the X10Protocol that maintains a single

copy of shared variables, and ii) the Directory-based Coherence Protocol for X10
(DirCoPX) that replicates shared variables.

4.1 Shared-Variable Access Patterns

Some patterns of shared-variable accesses are prevalent in several applications. This
section characterizes such commonly occurring patterns, and describes the tech-

niques used in this work for detecting and optimizing them.

• Migratory Pattern Under the migratory access pattern, a variable is read
and modified, in turn, by different nodes. Accesses to a shared variable fit the

migratory pattern if: i) during a write-hit, the variable appears in a shared

26

state with exactly two copies and the current writer is not the same as the
last writer, or ii) during a write-miss on the shared variable, there is a single

cached copy. In a write-invalidate coherence protocol, an access to a migratory
variable causes a read-miss followed by an invalidation request to the node that
last updated the variable. To reduce network contention, a run-time system

can combine the read miss with the invalidation request (see section 4.2).

• Producer-Consumer Pattern Under the producer-consumer access pat-
tern, a variable is updated by one node (producer) and subsequently read by

an arbitrary number of other nodes (consumers). Accesses to a shared variable
fit the producer-consumer pattern iff: i) the variable is written multiple times,
ii) there is only one write sharer, and iii) there are multiple read sharers. The

idea is that if a node repeatedly writes to a shared variable that is being read
by multiple nodes, then the data accesses follow a producer-consumer pattern.

The run-time system can eagerly copy such variables to the consumers. In the
best case, the consumers never wait to receive the current values.

• Stencil Pattern Under the stencil pattern, each variable in a multidimen-
sional grid is updated with weighted contributions from a subset of its neigh-

bouring variables. Accesses to a shared variable fit the stencil pattern iff: i) the
variable is organized as an array or rail [69], ii) there are accesses to multiple el-

ements of the variable, iii) there are writes to each element of the variable, and
iv) the variable’s home node is in the read-sharers vector of adjacent nodes. In
a stencil pattern the elements of the array are called points in the stencil. The

idea is that if the stencil points are updated using neighbouring points, then
that access to the array exhibits the stencil pattern. Replication of shared

portions of remote arrays at the referencing nodes localizes the accesses and
also avoids fine-grained data transfers across nodes. Such a strategy should
update the local copy before a local read in the event of a write to the remote

copy and vice-versa.

• Read-Mostly Pattern Under the read-mostly pattern, a variable is initial-
ized once and subsequently only read, either sequentially or concurrently, by

many threads. Accesses to a shared variable fit the read-mostly pattern iff:
i) its sharing pattern does not fit the migratory, producer-consumer or stencil
patterns, and ii) its read count is equal to or more than 1.5x its write count.

A replication-based strategy that creates copies of the variables in each lo-
cal node can leverage spatial and temporal locality to efficiently manage such
variables.

• Accumulator Pattern Under the accumulator pattern, a variable is updated

in a commutative and an associative manner using local values generated at
each node. Unoptimized accumulator variables often entail repeated updates

using values from other nodes. Such variables can be optimized using a col-
lective reduction operation. Identifying the commutativity and associativity

of operations on variables entails expensive data-flow analysis and cannot be

guaranteed through profiling alone. Therefore, based on an empirical evalua-

tion, this work employs the X10Protocol to manage such variables.

27

• General read-write variables Under the general read-write pattern, vari-
ables are read from and written to by multiple threads. Accesses to a shared

variable that do not fall into any of these patterns are categorized as the
general-write pattern. Replicating such variables reduces the read latency,
but increases the write latency due to the added expense of updating or inval-

idating all their remote copies. Empirical evidence suggests that they benefit
most from the X10Protocol.

4.2 Directory-based Coherence Protocol for X10

Directory-based Coherence Protocol for X10 (DirCoPX) is a new implementation
of a traditional distributed directory-based coherence protocol for X10. To the best

of our knowledge, this is the first implementation of a distributed protocol for X10.
DirCoPX relies on replicating shared variables, allowing concurrent reads at many

nodes, and reducing the number of coherence messages transmitted over the network
to improve performance. A key ensuing challenge is to maintain consistency of the
copies and to ensure that a read returns the most-recent value stored by a write.

DirCoPX achieves consistency of variables using a write-invalidate policy.

4.2.1 Directory and Shared-Variable States

DirCoPX maintains an auxiliary data structure, called directory entry, for each
shared variable to record one of the following states: i) clean: a coherent copy of
the shared variable at its home; ii) modified: one and only one coherent copy of

the shared variable that has been modified; and, iii) shared: a coherent copy of
the shared variable that may be shared with one or more other nodes. Unlike an
invalidation-based cache-coherence protocol, a shared variable cannot be invalid at

the home node.

Directory entries in DirCoPX are distributed, with each node maintaining the entries
for the shared variables allocated to its local memory. This distribution avoids a

single hot spot in the machine. A directory entry comprises of:

i) a bit vector of n bits, where n is the number of nodes in the system. Each bit
in this vector indicates whether or not the corresponding node has a copy of
the shared variable in its local memory.

ii) state bits to indicate the state of the variable. A variable in the modified state,

should have only one bit in the bit vector set because this is a write-invalidate

protocol.

iii) a lock bit, which indicates, when set, that a coherency operation is pending and

prevents other coherency operations. This synchronization is critical to avoid
races.

A directory entry indicates the state of a shared variable globally. However, each
node that has a copy of the shared variable must also record the state of the copy.

The DirCoPX protocol requires that each shared variable copy be in one of the

28

following possible states: i) invalid: the copy allocated in this node has been invali-
dated; ii) shared: there is one, or more, copies of the shared variable in the system

and they all have the same value; and, iii) modified: the copy is the single valid copy
in the system, a.k.a dirty.

This work is in the context of X10, thus the terms shared variable and GlobalRef

(GR) are used interchangeably in further discussions.

Figure 4.1 illustrates directory entries for GRs allocated across nodes 0 to n − 1,

along with the states for GRs and directories. The directory entry for GR1 signifies
that GR1 is in the clean state in node 0; thus, the bit n=0 in the bit-vector is set

and the state of GR1 in its home node is clean. The entry for GR2 indicates that
it is shared between node 0 and node n − 1 and is in the shared state. A shared
variable is created in the clean state with only the bit corresponding to its home

node set.

0 1

1 1 1 0 0

1 0 1

…

…

n-bit vector GR state

GR states: 00: invalid, 01: shared, and 10: modified
Directory states: 11: clean, 01: shared, and 10: modified

Directory Entries

GR1

GR2 0 1

0 0 0 0 0

1 0 1

…

…

n-bit vector GR state
Directory Entries

GRx

GRy

N
od

e
0

N
od

e
n-

1

…

Figure 4.1: States maintained in distributed directories.

4.2.2 DirCoPX Optimization Strategies

DirCoPX employs two distinct strategies to optimize shared-variable accesses.

• When a shared variable is accessed by a single remote node Ni, DirCoPX first

establishes that Ni has the variable in the modified state. Then, DirCoPX
allows Ni to execute an indefinite number of reads and writes to the variable
without any communication with other nodes. When multiple nodes make

read-only accesses to a shared variable, DirCoPX requires each node to com-
municate with the variable’s home node only once — to obtain a copy —

and then, permits the nodes to complete an indefinite number of reads to the
shared variable. This strategy achieves the desired optimizations (section 4.1)

for read-mostly, producer-consumer, and stencil variables.

• When a shared variable is accessed by different nodes, and at each node the

variable is used exclusively, each node experiences a read miss followed by
an invalidation request. DirCoPX merges the invalidation request with the

preceding read-miss request to reduce the number of coherence messages. This
strategy achieves the desired optimizations for migratory variables.

29

Directory State

Clean Modified Shared

Read Hit Do Nothing Do Nothing Do Nothing

Write Hit

Do Nothing

Read Miss

Write Miss

! !"#!!"# !!
! !"#!!"# !∗
!∗ !"#!
! !"# !!

!∗: !ℎ! ↦ !"#$%
!: !ℎ! ↦ !"#
!:! ! ← 1
!:!! !∗ ← 0
!: !ℎ! ↦ !"#

!

! !"#!
!! !"#$!

!: !"#$% ↦ !ℎ!
!: !"#$% ↦ !ℎ!
!:! ! ← 1

!

!! !"#!
!! !"!!"# !
!! !"!
!! !"#$!

!: !"#$%! ↦ !ℎ!
!:!"#! ↦ !ℎ!
!:!"# ↦ !ℎ!
!:! ! ← 1!

!
!! !"#!
!! !"#$!

!: !"#$% ↦ !ℎ!
!:! ! ← 1

!

!"#$%!$"&:! = !!!

!! !"#!
! !"/!"#!!!"# !

! !"!
! !"#$!

!:!"# ↦ !"#$%
!: !"#$% ↦ !"#
!:! ! ← 1
!:! ! ← 0

!
!! !"#!
!! !"# !

!: !"#$% ↦ !"#
!:! ! ← 1

!: !"#$% ↦ !"#

!

!! !"#!
! !"#!!"# !∗
!∗ !"#!
! !"#$!

!∗: !ℎ! ↦ !"#$%
!: !"#$% ↦ !"#
!: !ℎ! ↦ !"#
!:! !∗ ← 0
!:! ! ← 1

!

Figure 4.2: Actions taken by each local operation on a node that is not the home
place of the GR. inval, shd, mod and wb are short forms for invalid, shared, modified,
and writeback, respectively. An req is a request.

4.2.3 DirCoPX Protocol Operation

DirCoPX is a fairly standard distributed coherence-protocol implemented in soft-

ware. For completeness, this section describes the actions and state changes in the
directory and the shared variables in the event of a write hit. Figure 4.2 then sum-

marizes the actions and necessary state changes for other events on shared variables.
The node where the shared variable is allocated by the X10 program will be hence-
forth referred to as the home node, and any other node that stores its copy as the

remote node for that variable.

Protocol Table Figure 4.2 shows the actions and necessary state changes when

a given event takes place. The table uses the following naming conventions: A is
a remote node where an event occurs, H is the home node, C is a remote node
that contains a copy of the GR, C∗ indicates multiple remote nodes that have a

copy of the GR. Above the horizontal line are the actions that occur when a given
event takes place according to the state of the local copy in node A and the state

30

of the GR in the directory. For instance, when a read miss occurs in node A and
the state of the GR is clean, then A sends a request to H, and H responds by

sending a copy of the GR to A. Below the horizontal line are the changes to the
states. A : inval 7→ shd indicates that the state in A changes from invalid to shared.
H : V [A]← 1 indicates that the bit corresponding to node A is set in the bit vector

of the GR in the home node H.

As an example, we describe the protocol actions for a Write Hit. A write hit to a
variable in the clean state can only occur in the home node H, and there is no need

for any state change because a variable in the clean state remains in the same state
when modified by the home node itself. A write hit to a variable in the modified
state does not require any protocol action because the remote node A is already the

sole owner of the shared variable. A write hit to a shared variable requires that the
remote node A send an invalidation request to the home node H. If the Lock bit of

the GR is set, then the request must wait for that bit to be reset. The home node
H will then i) set the lock bit of the GR to prevent other protocol operations from
occurring until this one is completed; ii) send an invalidation message to all nodes

C∗ that have a shared copy; iii) wait for acknowledgment from all nodes C∗; iv) send
an acknowledgement of the invalidation to the requesting node A; v) update the GR

state to modified; vi) set the bit corresponding to the node that has the variable in
modified state; and, vii) release the GR lock. Upon receiving the acknowledgement of
the invalidation, the requesting node A transits this shared variable to the modified

state.

4.2.4 Augmented DirCoPX for Migratory Data

For a GR that follows a migratory access-pattern, distinct nodes read and write
the data in turn. When a new remote node accesses the GR, the last node that
accessed the same GR has a copy in the modified state. Thus, under the base

DirCoPX protocol, the read-modify-write access to the migratory data results in
a read-miss followed by a read-exclusive request resulting in several request and

acknowledgement messages over the network. The augmented DirCoPX protocol
converts these two transactions into a single read-invalidate request initially sent to
the home node. The following description of the extended protocol uses the same

notations as in DirCoPX description.

When it is known that a GR follows a migratory access pattern, upon a read miss in
the local cache of node A, the runtime of A can issue a read-invalidate request, which

is sent to the home node H. H forwards the read-invalidate request to C, which
holds a modified copy of the data, indicating that A is the new owner. To give up

ownership of the GR, C sends the GR current value to A, sends an acknowledgement

to H, and changes the status of the GR to invalid. H sends an acknowledgement
to A indicating that the directory state has been updated. A changes its status to

modified and proceeds with the read and write operations.

This optimization improves performance through: i) reduced write-stall time be-
cause the data is available at the requesting node before writing to it, and ii) reduced
network contention because fewer invalidations are sent over the network.

31

4.3 Framework for Pattern Detection and Optimization

This work uses a profiling framework to detect the patterns of shared-variable ac-
cesses. The profiling framework operates in two phases. In the first phase, the

framework monitors the access patterns of shared variables; and in the second phase,
it analyzes the access pattern and annotates the variables with semantic hints for
the runtime to select an available augmented protocol. The framework allows inde-

pendent selection of a protocol for each shared variable.

An important related question is: how long should an application be profiled? Re-
peated profiling runs of the applications used in this study under different inputs

indicated that their underlying behaviour of shared-variable accesses is independent
of the input workload. Such applications can be profiled for the entire duration of
their execution in the first phase and later, executed in the optimized mode using

the annotations obtained from the profiles. The framework supports offline-profiling
for such applications. The shared variables in such applications can be annotated

using a single offline profiling run because the same coherence protocol yields the
best performance for all inputs.

Some applications, however, exhibit different patterns of shared-variable accesses
under different inputs. For example, a convex-hull computation exhibits different

communication patterns for different input shapes, such as rectangles and triangles.
Therefore, the framework also support online profiling. Online profiling for the

entire duration of an application’s execution may incur significant overheads. An
empirical evaluation using the applications used in this study suggest that collecting
profiling information until 5% of reads are processed ensures that: i) the execution

of an application is past its initialization phase, ii) most of the shared variables have
been accessed, and iii) widely spread apart reads and writes to a shared variable are

also captured.

For the twelve applications used in the evaluation, the total number of reads corre-
sponds directly to the number of particles, bodies, elements, triangles and iterations
that is specified as input to the applications. The profiling framework, therefore,

uses the values of such inputs to control the duration of online profiling.

4.3.1 Profiling Variable Accesses

The profiler gathers the following metrics: number of read accesses, number of
write accesses, last writer, set of readers, and the set of writers to identify the usage
pattern of a shared variable and then to annotate it with an appropriate protocol

for coherence management. For each variable, the profiler maintains: i) a counter

for the number of read and a counter for the number of write accesses, ii) bit vectors

for read and write sharers – each bit indicating whether the nth node reads or writes

the variable, and iii) the last writer – an integer that stores, for every access to the
variable, the identity of the node issuing a read-invalidate request.

32

4.3.2 Coherence-Policy Manager

With three different coherence policies – X10Protocol, DirCoPX, and augmented

DirCoPX – available, the runtime system must decide which policy to use. A dif-
ferent policy may be selected to manage each individual GR. We designed and im-

plemented a new coherence-policy manager, herein called CoMX, into the runtime
system of X10 to switch between these policies to manage the coherence of shared
variables. If new protocols or policies are introduced in the future, it will be trivial

to extend CoMX to include them in its selection.

The X10 Runtime, called X10RT, provides various functions to declare, allocate, and
update GRs. It offers apply() operators to return the pointer to a GR and also to
return the value encapsulated in the GlobalRef type. Each GR has a home property

indicating the node where it is allocated. CoMX extends the GlobalRef X10RT
API to support additional properties for monitoring a GR’s access pattern. CoMX

updates the associated properties for each event corresponding to an allocation, a
read, a write or an apply. CoMX also maintains a protocol field for each variable to
indicate which protocol to use. At startup, each GR’s protocol field is initialized to

the X10Protocol.

The profiler analyzes the statistics gathered about each GR (in both offline and
online mode) to identify its underlying sharing pattern and sets the protocol field

in each shared variable with the suitable choice of the protocol.

We define functors — function-object classes — for X10Protocol, DirCoPX, and
augmented DirCoPX in the C++ implementation of the GlobalRef struct. Guided
by the value in the protocol field, the runtime creates a temporary instance of an ap-

propriate functor object and passes it to the GR access functions. Depending upon
the pattern denoted by a variable’s property, the runtime manages the GR accesses

and performs coherence actions using the suitable functor instance. Function-objects
are as efficient as in-place code as they are usually expanded inline. An accumulator
variable can be optimized with a reducible implementation only if it performs oper-

ations that are both commutative and associative. Partial runtime profiling alone
is insufficient to correctly identify such operations. Therefore, CoMX currently em-

ploys the X10Protocol on accumulator variables. Overall, CoMX employes DirCoPX

protocol for only four kinds of variables. Thus, the implementation needs to identify
only these variables and fall back to the X10Protocol for all other cases.

4.3.3 Switching Between Coherence Protocols

Switching the coherence protocol from X10Protocol to DirCoPX or its augmented

version is straightforward because there are no directory entries, GR states or ad-
ditional properties to maintain in the X10Protocol. X10Protocol only manages a
single copy of the GR allocated at its home.

In DirCoPX, and its augmented version, the home property is irrelevant because

a GR may be accessible at non-home (i.e., remote) nodes as well. However, while
switching from DirCoPX to the X10Protocol, it is necessary to ensure that the
home node has the most recently updated value and that other copies maintained

33

by remote nodes are no longer accessible to any other nodes. This condition can
be reached within DirCoPX by the actions required for the home node to be the

exclusive owner of the GR. This design ensures X10Protocol’s principle of location-
constrained access.

For all the applications used in the evaluation, there was no need to change back the
state of a GR from DirCoPX to X10Protocol, only from X10Protocol to DirCoPX.

4.3.4 Relieving Programmers from the Coherence Burden

Other partitioned-global-address-space languages, such as Chapel, also require ex-

plicit locality-constrained access to shared variables. While accessing shared-variables,
programmers must bear the onus of explicitly specifying the address partition where
the shared variable is allocated and also of ensuring its node-local access. The CoMX

framework shifts such a burden from programmers to the compiler and the runtime,
which collaborate to offer location-agnostic accesses to the shared variables. Under

the location-agnostic scheme, a node may also directly access remote data indepen-
dent of any location constraints — the compiler will consider such accesses properly
type-checked and the runtime will perform the actions required to provide coherence

guarantees for the remote accesses.

This approach works out-of-the-box to optimize accesses to shared variables in X10
and precludes the need for programmers to understand and use specialized data

structures or annotations. It is a more natural approach to optimizing accesses to
shared variables than retrofitting GlobalRefs using Pragmas [34] or optimization
approaches targeted at manually identified data-access patterns.

4.4 Experimental Evaluation

This section describes the experimental setup and discusses the main findings from
the performance evaluation.

4.4.1 Experimental Setup

Platform: This evaluation uses a blade server with 16 nodes, each featuring two 2

GHz Quad-Core AMD Opteron processors, with 8 GB of RAM and 20 GB of swap
space, running CentOS GNU/Linux version 6.2.

Runtime and Compiler: The nodes in the cluster are connected by an InfiniBand
network with a bandwidth of 10 Gbit/s and use MVAPICH2 library for communica-

tion. The experimental runs create eight threads per place and vary the number of
places from 1 to 16 so that the number of threads is the same as the number of cores.

The x10c++ compiler version 2.3.1 is used for all measurements and the command-
line arguments -O -NO CHECKS are passed to the compiler to enable optimizations

and disable array bounds, null pointer, and place checking.

34

Table 4.1: Applications and their input data set.

Programs Description Input

Stream-EP Embarrassingly parallel HPC Stream 5MB, 10K iters
k-Means Distributed Lloyd’s clustering (1000 iters) 8K pts, 8 centroid
MontePi Monte-Carlo approximation of π 10 billion points
LinearReg Best-fitting straight line through 2D points 10M points
Jacobi Solution to finite diff. Helmholtz equation 10K*10K grid
Stream HPC Stream Benchmark 2048*2048 array
Moldyn Lennard-Jones potential on bodies 8788 bodies
UTS Unbalanced Tree Search 156 billion nodes
N-Body Force calculation using Barnes-Hut algo. 1M bodies
Agglom Clustering 2D points (bottom-up manner) 10 M points
DMG a Delaunay Mesh Generator 100K points
DMR a Delaunay Mesh Refiner (30 ◦ minimum) 680K triangles

Applications: Table 4.1 shows the applications and input data used in the exper-
imental evaluation. The applications use shared variables of different types and

exhibit diverse communication patterns as shown in Figure 4.3.

Methodology: Each application is run twenty times to account for variances, such as
work-stealing in the X10 runtime, and scheduling policies in the operating system.
The variations are very small leading to 95% confidence intervals also very small,

hence not shown in the performance charts for execution times and speedups.

The versions of the Operating System and the X10 Compiler used in this evaluation
are different from the ones used in the evaluation in Chapter 3. Therefore, the

baseline performance of the benchmarks differ across these two evaluations.

4.4.2 Results and Discussion

The premise of this work is that automatically identifying the shared-variable access

patterns in applications will allow a compiler and its runtime to dynamically switch
between the coherence protocols to improve performance. Thus, this experimental

evaluation examines:

Performance gains from DirCoPX and CoMX The sequential execution
times of the applications used in this study are shown in Figure 4.4. Sequential

execution of UTS for very large trees requires excessive machine time, therefore,
its sequential performance was measured using smaller trees. The command-line

parameters used to generate the trees for sequential benchmarking of UTS are:

binomial tree, t=0, r=559, b=2000, m=2, and tree size=57354859 resulting in a
node expansion rate of 2.104 MNodes/sec. Olivier et al. describe the UTS input

parameters in detail [58].

Table 4.2 shows the code restructurings used for hand-tuning, and Figure 4.3 shows
the techniques used in each application. The hand-tuned applications leave the

35

Hand	

Optimizations	

Programs	
 GR	
 Reads	
 Writes	
 Pattern	
 S/	

Ag	

A B C D E F

Stream-­‐EP	
 a	
 iter	
 2	
 Read	
 S	
 ✓

K-­‐Means	
 a	
 iter*clusters*2	
 Same	
 General	
 Ag	
 ✓

b	
 iter*cluster*2	
 ½	
 Reads	
 Read	
 Ag	
 ✓

MontePi	
 a	
 points	
 Same	
 Accum	
 S	
 ✓

LinearReg	
 a	
 nodes	
 *	
 4	
 ½	
 Reads	
 Read	
 Ag	
 ✓ ✓

b	
 nodes	
 Same	
 Accum	
 Ag	
 ✓ ✓

Jacobi	
 a	
 nodes*gridSize*2	

=	
 iter_space*2	

Same	
 Producer	

Consumer	

Ag	
 ✓ ✓

b	
 nodes*gridSize	
 1/5	
 Reads	
 Stencil	
 Ag	
 ✓

Stream	
 a	
 nodes*iters	
 2	
 Read	
 S	
 ✓

Moldyn	
 a	
 nodes*points*	

mdsize	

0	
 Read	
 Ag	
 ✓ ✓

UTS	
 a,b,c	
 ½	
 nodes	
 nodes	
 Write	
 S	
 ✓

d	
 nodes*	

tasksPerPlace	

Same	
 General	
 Ag	
 ✓

N-­‐Body	
 a	
 treeLevels	
 Same	
 General	
 Ag	
 ✓

b	
 bodies	
 bodies*3	
 Write	
 Ag	
 ✓

c	
 treeLeaves	
 Same	
 Write	
 Ag	
 ✓

d	
 tree(Level+Leaves)	
 treeLeaves	
 Read	
 Ag	
 ✓ ✓

e	
 treeLevels	
 treeLevel	
 Stencil	
 Ag	
 ✓ ✓

Agglom	
 a,b	
 iters*clusters*2	
 Same	
 General	
 Ag	
 ✓

c	
 iters*clusters*2	
 None	
 Read	
 Ag	
 ✓ ✓

DMG	
 a	
 conWlictingPoints
<<	
 points	

Same	
 Accum	
 Ag	
 ✓

b,c	
 affectedTriangles	
 None	
 Read	
 Ag	
 ✓

DMR	
 a	
 affectedTriangles	
 Same	
 Producer	
 	

Consumer	

✓ ✓

b,c	
 overlapTriangles	
 nodes	
 Read	
 Ag	
 ✓

Figure 4.3: Shared variables in different applications. iter, clusters, points, nodes,
bodies, gridSize refer respectively to number of iterations, clusters, points, nodes,
bodies, and the size of grid allocated to each node. S and Ag refer to scalar and
aggregate types. In N-Body, treeLevels, and treeLeaves are the number of levels and
leaves in the oct tree. In DMG and DMR, affectedTriangles are the triangles that
need to be re-triangulated and overlapTriangles are the triangles that overlap and
cannot be processed in parallel.

0	

100	

200	

300	

400	

500	

600	

St
re
am

-­‐E
P	

k-­‐
M
ea
ns
	

M
on

te
Pi
	

Li
ne

ar
Re

g	

Ja
co
bi
	

St
re
am

	

M
ol
dy
n	

N
-­‐B
od

y	

Ag
gl
om

	

DM
G	

DM
R	

Se
qu

en
Ha

l	
 E
xe
cu
Ho

n	

Ti
m
e	

(s
ec
s)
	

Figure 4.4: Sequential execution time using the X10Protocol.

36

migratory variables intact because DirCoPX’s runtime policy of combining invali-
dation signals into read-miss requests could not be applied statically. Note that one

code-transformation on a variable can lead to additional optimization opportunities.
For example, an array of elements can be split into individual objects to reduce false
sharing. The individual objects can be then replicated to localize accesses.

Table 4.2: Optimizations for hand-tuned applications.

Access Patterns Restructurings

A Read mostly Replicate node-local copies to reduce remote accesses
B Producer Consumer Eager copying to reduce synchronization time
C Accumulator Collecting Sum Reducer to reduce remote writes
D Stencil Replicate stencil arrays to reduce remote reads
E General Read-Write Keep variables intact to localize write accesses
F Aggregate data Split into smaller aggregate/scalar data to reduce

false sharing

In Figure 4.5, the five bars corresponding to each application show normalized

speedups relative to the X10Protocol at 128 workers obtained when using DirCoPX,
random selection of protocols, CoMX, offline profiling, and the best hand-optimized

implementation of the application.

0.6	

0.7	

0.8	

0.9	

1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

St
re
am

-­‐E
P	

k-­‐
M
ea
ns
	

M
on

te
Pi
	

Li
ne

ar
Re

g	

Ja
co
bi
	

St
re
am

	

M
ol
dy
n	

U
TS
	

N
-­‐B
od

y	

Ag
gl
om

	

DM
G	

DM
R	

Sp
ee
du

p	

ov
er
	
 X
10
Pr
ot
oc
ol
	
 DirCoPX	
 RandAnn	
 CoMX	
 OfflineProf	
 HandTuned	

Figure 4.5: Application speedup over X10Protocol at 128 workers.

DirCoPX performs far superior than the X10Protocol for some applications (Stream-
EP, k-Means, LinearReg, Jacobi, Stream, Moldyn). For others (UTS, N-Body, Ag-

glom, DMG, DMR), it is necessary to combine both DirCoPX and the X10Protocol
through CoMX to achieve a higher performance than the X10Protocol alone. For

some (Jacobi, Moldyn), the overhead of the online CoMX leads to a marginally
inferior performance compared to using DirCoPX exclusively. However, switching
to Offline Profiling recovers the performance. For MontePi, exclusive use of the

X10Protocol is the most performant solution. The hand-tuned versions have supe-
rior performance because this version applies optimizations that are not performed

by CoMX: i) splitting aggregate variables to reduce false sharing; and ii) using sum
reducers to reduce frequent remote accesses.

37

Source of Performance Gains Figure 4.6 shows the number of messages trans-
mitted across the network when using the X10Protocol, the DirCoPX, CoMX, and

the hand-tuned versions of the applications. For applications with write-dominant
and general read-write variables, DirCoPX transmits the largest number of messages
across the network in comparison to other versions. This increase in message traf-

fic is expected because applications with a large write-to-read ratio suffer from the
write-invalidate scheme of DirCoPX – DirCoPX sends several invalidation messages

to read-only copies before a write can occur. However, when operating DirCoPX
in tandem with X10Protocol, the applications send significantly fewer messages and
achieve overall performance improvement.

0	

10	

20	

30	

40	

50	

60	

St
re
am

-­‐E
P	

k-­‐
M
ea
ns
	

M
on

te
Pi
	

Li
ne

ar
Re

g	

Ja
co
bi
	

St
re
am

	

M
ol
dy
n	

U
TS
	

N
-­‐B
od

y	

Ag
gl
om

	

DM
G	

DM
R	

#	

M
es
sa
ge
s	
 T

ra
ns
m
iI
ed

	
 A
cc
ro
ss
	

N
et
w
or
k	

(M

ili
on

s)
	

X10Protocol	
 DirCoPX	

CoMX	
 HandTuned	

Figure 4.6: Messages transmitted across network at 128 workers.

Need for an automated pattern identifier Random selection of coherence pro-
tocols for managing accesses to shared variables significantly worsened performance

of the applications studied, as indicated by the third bars in Figure 4.5, labelled Ran-
dAnn. The differences in speedups achieved using CoMX, which correctly employs

the desired coherence protocol, and the random selection of protocols are stark:
they range from 15% to 80%. These results justify the merit of the automated
coherence-policy manager – CoMX.

CoMX’s ability to identify access patterns Figure 4.3 shows the number of
shared variables in each application, their access types and the number of reads

and writes. With offline profiling, CoMX correctly identifies the access patterns of
all variables in all applications. For the sake of comparison, we also employ online

profiling. With online profiling, CoMX makes an incorrect decision about one shared

variable in N -Body. The initial stage of N -Body computation is dominated by reads
to the variable storing information about the bodies, but its later stages periodically

rebuild the octree of bodies. Limiting the profiling duration to 5% of total reads
precludes the profiler from observing writes to the variable in the later stage, thereby,
incorrectly identifying the variable’s access pattern as read-mostly instead of general

read-write. CoMX employs DirCoPX to manage that variable instead of the more
suitable X10Protocol. Even with this inaccuracy, CoMX outperforms X10Protocol
by 30% by correctly identifying the patterns of other variables in N -Body (see

Figure 4.5).

38

Need for coordinating DirCoPX and X10Protocol Employing DirCoPX
instead of the X10Protocol improved performance of six of the twelve applications

evaluated. Unfortunately, this approach also worsened performance of other six
applications: MontePi, UTS, N-Body, Agglom, DMG, and DMR. These applications
use variables with general read-write or write-dominant patterns (see Figure 4.3),

which suffer from the replication-based strategy of DirCoPX.

Coordination between DirCoPX and the X10Protocol using CoMX improves perfor-
mance of eleven out of twelve applications over the X10Protocol alone. MontePi’s

performance remains the same with both protocols because CoMX employs the
X10Protocol to manage the only shared variable in MontePi. Although the variable
exhibits the accumulator access pattern, CoMX chooses the X10Protocol for lack of

enough information to prove the commutativity and associativity of the operations
on the variable. Overall, the consistent performance gain over a wide range of ap-

plications, with no degradation on any of them, points to the merit of coordinating
the two coherence protocols.

Online Profiling Overhead in CoMX Table 4.3 shows the memory overhead

incurred by CoMX. The overhead is expressed in terms of the additional memory
required per shared variable for storing: i) shared-variable access history. This in-

cludes the number of read/write accesses and patterns of accesses that are identified
by the source and destination for each shared variable access; and ii) directory entry
for each shared variable — that is, the bit vector. This overhead is acceptable (i.e.,

< 40%) for most applications when collecting profiling statistics until 5% of total
read accesses to shared variables have occurred. The overhead is as high as 63%

for N-Body because it periodically creates new shared variables in different address
partitions, which leads to greater number of copies and directory entries.

Table 4.3: Memory overhead of the CoMX coherence-policy manager (in %).

S
tr

ea
m

-E
P

k
-M

ea
n

s

M
on

te
P

i

L
in

er
R

eg
.

J
ac

ob
i

S
tr

ea
m

M
ol

d
y
n

U
T

S

n
-B

o
d

y

A
g
gl

om

D
M

G

D
M

R

19 22 13 21 26 19 14.9 39 63 27 33 39

For applications that benefit from DirCoPX, the overheads incurred by CoMX lead

to marginally shorter speedup bars for CoMX compared to that for DirCoPX, as seen

from Figure 4.5. The overheads of online profiling in maintaining data structures to

monitor usage of variables and in instrumenting their accesses can be avoided with
offline profiling. The applications perform marginally better with offline profiling
(see OfflineProf in Figure 4.5) compared to CoMX that employs online profiling.

Figure 4.7 shows that the overheads incurred by DirCoPX and CoMX do not inhibit

the speedups achieved on N-Body and DMR applications at higher worker counts
as well. Other applications too exhibit similar trend but are not shown for lack of

space. This speedup trend bodes well for similar performance of our approach on
larger clusters as well.

39

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	
 8	
 16	
 32	
 64	
 128	

Sp
ee
du

p	

ov
er
	
 S
eq

ue
n5

al
	

X1
0P

ro
to
co
l	

X10Protocol	
 DirCoPX	

RandAnn	
 CoMX	

Offline	
 Hand-­‐tuned	

(a) N-Body

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

1	
 8	
 16	
 32	
 64	
 128	

(b) DMR

Figure 4.7: Performance of different versions of N-Body and DMR at different worker
counts (shown along x-axis).

4.5 Related Work

Prior work on optimizing access to shared data can be categorized as follows.

Distributed Shared-Memory Systems (DSMs) -IVY [49], TreadMarks [5],
Munin [11], and DASH [48] – employed weakened memory model [41], distributed

directory, and object-variable directory with multiple strategies – such as software
release consistency, write-shared protocol and update-with-timeout mechanism – to
reduce consistency-related communication [16]. They either supported a single co-

herence policy or required programmers to understand complex consistency models
or to annotate shared variables with their access behaviour, and worsened perfor-
mance for incorrect annotations.

Software Coherence Protocols PGAS languages, such as Chapel, maintain a

unique copy of a shared variable and rely on one-sided communication for remote

accesses. The XL UPC compiler uses a distributed symbol table, called Shared
Variable Directory [9], and caches the remote addresses of shared objects to overlap
communication and computation [31]. These approaches deliver good performance

for some access patterns, but do not ensure low-latency for diverse patterns.

Transactional Memories Chapel and Fortress improve the performance of shared-

data accesses through Software Transactional Memories (STMs) that (i) move data
to a local node to localize write accesses [14, 38], and (ii) expose data accesses of
parallel tasks to the scheduler to better manage conflicts [13]. This work is different

in that it aims to reduce communication and latency through coherence protocols
rather than using STMs to efficiently manage the conflicts.

Specialized Data Structures such as Multiphase Shared Arrays [26] and spe-
cialized variables [40] in Charm and Global Arrays [55] encode data-management

40

policies into the data structures [74] and allow variable accesses in specific modes,
such as read only, write once and accumulator. The restricted set of operations

on variables simplifies consistency management and enables targeted optimizations.
However, designing specific policies for data structures with diverse access patterns
hinders productivity and requires programmers to use alternative mechanisms, such

as message passing, for unsupported modes of accesses.

Optimization Techniques such as communication coalescing [4, 80], prefetch-

ing [15, 32, 72], and ghost zones [52] help reduce the overhead of shared variable
accesses. However, efficient coalescing and prefetching techniques require addresses
of the memory locations to be read a priori. Improper ghost zone sizes or prefetch-

ing from inaccurate addresses negatively impact overall performance. Our technique
does not degrade the performance of any of the applications studied.

Application-Centric Approaches Wen et al. implement ghost regions in Tita-
nium for Adaptive Mesh Refinement (AMR) [75]. They suggest that their approach
may transfer to X10, but no implementation work has been undertaken. Claridge

et al. implement exchange of irregular ghost regions for AMR in Chapel [20].

Hardware Cache Coherence Protocols are widely used to manage shared

data accesses [1, 6, 18, 79]. For brevity, we consider two closely related works:
Zebchuk et al. [79] propose tagless directory-based protocol that uses bloom filters
to reduce space overhead. Unfortunately, false positives from the bloom filter lead to

erroneous behaviours. For example, a write request for a shared variable can return
a stale value if the owner does not yet hold a valid copy of the data because of
false positives in the bloom filter. Acacio et al. [1] explore a directory protocol that

uses prediction to find the current owner of the data during read and write misses.
Locating an owner is easy in DirCoPX because the home property of GlobalRef

identifies its home node.

4.6 Summary

Employing optimized coherence protocols for targeted patterns of shared-variable

accesses improves application performance. The key underlying challenge is to au-
tomatically identify the patterns of communication that shared-variable accesses

follow, without any explicit semantic hints from programmers. This work used
offline profiling to automatically annotate variables with one of the two desired
coherence-protocols — an existing static protocol and the directory-based proto-

col. Coordinating these protocols led to speedups on the applications studied in the

range of 15% to 40% over the static protocol. These performance improvements,

along with the productivity benefits resulting from this approach, should encourage

other programming systems, such as Chapel, to invest effort in designing similar
coherence protocols and protocol managers.

41

Chapter 5

Stratified Sampling for Even
Workload Partitioning

State-space exploration is a fundamental algorithm in the domains of Artificial Intel-
ligence and Combinatorial Optimization. A state-space exploration algorithm — or
simply a state-space algorithm, such as A* [37] and IDA* [43], typically consists of

a start state and a transition function that processes each state to generate a set of
child states. The set of states, including the start state, generated by an application

represents its state space. A state-space algorithm processes an application’s state
space to find a goal state, or a specific state that minimizes an objective function.

One way to achieve high performance in state-space algorithms is to process disjoint
portions of states in different processing nodes of a cluster. However, it is difficult

to foresee how many states will be processed to solve a given problem because
state-space algorithms usually operate on an implicitly-defined state space. When
an implicit definition of the state space is used, the current state produces a list of

child states and each state in this list, in turn, recursively produces other child states
as the algorithm progresses. Such algorithms also use techniques to reduce the effort

of state-space exploration by avoiding processing of states deemed as unfruitful —
e.g., the algorithm uses heuristic functions to guide the search. The difficulty in
predicting the number of states processed by such algorithms in each region of the

state space leads to potential load imbalances in parallel-processing solutions.

This chapter presents a technique, called Workload Partitioning and Scheduling

(WPS), for evenly partitioning the computational workload in an application. WPS

samples a small portion of the application’s state-space using the statistical tech-

nique of stratified sampling [23] to estimate the total number of states that will
be processed by the application. WPS then uses such an estimate for partitioning

the state-space of the application into sub-partitions with the goal of producing
partitions whose sizes are as similar as possible.

Chapter 3 discussed generic work-stealing and work-dealing techniques for alleviat-

ing dynamic load imbalances. This chapter focusses on a class of applications —
namely, recursive data parallel — and leverages their underlying algorithmic prop-
erties to minimize the dynamic load imbalances. As such, the proposed technique

42

applies to a specific class of applications. This proposed technique yields better
performance for such applications when compared to the task-migration strategies

discussed in Chapter 3.

5.1 Preliminaries

This chapter refers to a state in an application’s state-space as a work item, or
simply an item. Let S(n∗) = (N,E) be a Work-Item Tree (WIT) rooted at item n∗,

representing the set of items processed by an exploration algorithm while solving
n∗. N is a set of items and E is the set of edges in the tree. A WIT is formed by

the items reachable from n∗. For each n ∈ N , child(n) is the set of items generated
when n is processed: child(n) = {ni|(n, ni) ∈ E}. We call child(n) the children of
n, and we call the edges (n, ni) ∈ E the actions available from n. In contrast with

the Artificial Intelligence literature, a node refers to a processing node in a cluster,
and not to a vertex in the WIT. Also, S is used to refer to S(n∗) whenever n∗ is

clear from context. An item n is expanded when a computer node processes n. This
work deals with implicitly-defined WITs, as described next.

Figure 5.1 shows the (3×3)-Sliding Tile Puzzle (8-puzzle), an example of a state-
space exploration problem. For each state of this puzzle, there is a set of available

actions. For instance, the state shown in Figure 5.1 (left) has three available actions:
move tile 5, 6, or 7 onto the blank space. Moving a tile onto the empty space

generates another state. The objective in this puzzle is to find the shortest sequence
of actions that transform the given state to the goal state shown in Figure 5.1 (right).

Figure 5.1: A random state (left), and the goal state (right) of the (3×3)-Sliding-Tile
Puzzle, also known as the 8-puzzle.

The WIT of the 8-sliding-tile puzzle (as the other WITs we deal with in this chapter)

is implicitly defined. That is, the WIT is not available a priori, but items in the

WIT can be generated by applying actions from the initial item. WIT s of the

8-sliding-tile puzzle have at most 181,440 different states, which could be stored
explicitly in memory. However, we are interested in problems that are too large to

be stored explicitly in memory. For example, one of the application domains we use
is the (4×4)-Sliding-Tile Puzzle, which has 16!

2 different states.

5.1.1 Problem Formulation

Given M processing nodes in a computer cluster and an implicitly defined WIT, the
Work-Load Distribution Problem consists in partitioning the items in the WIT into

43

M partsW1,W2, · · · ,WM of similar size. The goal is to minimize
∑

i,j∈{1,··· ,M} |Wi|−
|Wj |, where |Wi| is the size of Wi. All items in the WIT s of the applications used

in this study take approximately the same amount of time to process. However, the
proposed algorithm could be easily adapted to deal with items that have different
processing times.

In addition to being implicitly defined, the tree representing the WIT is often un-

balanced, which poses a significant challenge for an even workload partitioning. The
WIT is usually unbalanced because exploration algorithms use enhancements, such

as a heuristic function [64], to guide the exploration to more promising parts of the
state space (details in Section 5.4). As a result, the tree grows more quickly toward
the directions deemed as promising by the algorithm.

Consider, for example, that an initial item produces two items i1 and i2, and that the

computing cluster has two processing nodes. Given that the WIT is unbalanced,
the size of the subtree rooted at i1 might be very different from the size of the

subtree rooted at i2. A trivial solution of assigning i1’s subtree to one node and
i2’s subtree to another node will lead to workload imbalance. The lack of a priori
information about the sizes of the subtrees rooted at i1 and i2 further complicates

the Work-Load Distribution Problem.

The WPS algorithm presented in this chapter uses the statistical technique of strati-
fied sampling introduced by Chen [23] for quickly partitioning the WIT into parts

of similar size.

5.1.2 Chen’s Stratified Sampling

Knuth [42] presents a technique to estimate the size of the tree expanded by a search

algorithm such as chronological backtracking. His technique repeatedly performs a
random walk from the root of the tree. When all branches have the same structure,

a random walk down one branch is enough to estimate the size of the entire tree.
Knuth observed that his technique was not effective when the tree is imbalanced.
Chen [23] addressed this problem by stratifying the search tree to reduce the vari-

ance of the sampling process. Chen’s technique is herein referred to as Stratified
Sampling (StraSa). WPS uses StraSa to estimate the WIT size and, based on such

an estimation, it finds a partition of the items in the WIT.

Definition 1 (Stratification) Let S = (N,E) be a WIT. T = {t1, . . . , tn} is a

stratification for S if it is a disjoint partitioning of N . If n ∈ N , ti ∈ T and n ∈ ti,
then T (n) = ti states that the stratum of n is ti.

StraSa is a general approach for approximating any function of the form ϕ(n∗) =∑
n∈S(n∗) z(n) , where S(n∗) is a WIT rooted at n∗ and z is any function assigning

a numerical value to an item. ϕ(n∗) represents a numerical property of the search

tree rooted at n∗. For instance, if z(n) = 1 for all n ∈ S(n∗), then ϕ(n∗) is the size
of the WIT. Instead of traversing the entire WIT and summing all z-values, StraSa
assumes that subtrees rooted at items of the same stratum have equal values of ϕ and

thus only one item of each stratum, chosen randomly, is expanded. This selective

44

expansion is the key to StraSa’s efficiency because trees of practical interest are too
large to be examined exhaustively.

Given an item n∗ and a stratification T , StraSa estimates ϕ(n∗) as follows. First,

it samples the WIT rooted at n∗ and returns a set A of representative-weight pairs,
with one such pair for every unique stratum seen during sampling. Given a pair
〈n,w〉 ∈ A for stratum t ∈ T , n is the unique item of stratum t that was expanded

during sampling and w is an estimate of the number of items of stratum t in the
WIT rooted at n∗. ϕ(n∗) is then approximated by ϕ̂(n∗), defined as

ϕ̂(n∗) =
∑
〈n,w〉∈A

w · z(n) . (5.1)

Algorithm 3 shows our adaptation of StraSa in detail.

Algorithm 3: StraSa, a single probe

Require: root n∗ of a tree and a stratification T
Ensure: a sampled tree ST represented by an array of sets A, where A[i] is

the set of pairs 〈n,w〉 for the items n expanded at level i, and an array of
sets C, where C[i] is the set of items generated at level i but not expanded.

1: A[0]← {〈n∗, 1〉}
2: i← 0
3: while stopping condition is false do
4: for each element 〈n,w〉 in A[i] do
5: for each child n̂ of n do
6: if A[i+ 1] contains an element 〈n′, w′〉 with T (n′) = T (n̂) then
7: w′ ← w′ + w
8: with probability w/w′, replace 〈n′, w′〉 in A[i+ 1] by 〈n̂, w′〉 and

insert n′ in C[i+ 1]; insert n̂ in C[i+ 1] otherwise
9: else

10: insert new element 〈n̂, w〉 in A[i+ 1]
11: i← i+ 1

The set A is divided into subsets, one for every layer in the search tree; A[i] is the

set of representative-weight pairs for the strata encountered at level i. In StraSa,
the strata must be partially ordered such that an item’s stratum is strictly greater
than that of its parent in the WIT. Chen suggests that this constraint can always be

guaranteed by adding the depth of an item in the WIT to the stratification and then
sorting the strata lexicographically. In this implementation of StraSa the depth of

exploration is implicitly added to the stratification: strata at each tree level are
treated separately by the division of A into the A[i]. If the same stratum occurs on
different levels, the occurrences are treated as though they were of different stratum.

A[0] is initialized to contain only the root of the WIT to be probed, with weight

1 (line 1). In each iteration (lines 4 – 10), all the items from A[i] are expanded to
get representative items for A[i+ 1] as follows. Every item in A[i] is expanded and

its children are considered for inclusion in A[i + 1]. If a child n̂ has a stratum t
that is already represented in A[i + 1] by another item n′, then a merge action on

45

n̂ and n′ is performed. A merge action increases the weight in the corresponding
representative-weight pair of stratum t by the weight w(n) of n̂’s parent n (from

level i) since there were w(n) items at level i that are assumed to have children of
stratum t at level i+ 1. n̂ will replace the n′ according to the probability shown in
line 8. Chen [23] proved that this probability reduces the variance of the estimation.

Once all the states in A[i] are expanded, StraSa expands the items in A[i+1]. This
process continues until it reaches a level i∗ where A[i∗] is empty.

One run of the StraSa algorithm is called a probe. ϕ̂(p)(n∗) is the p-th probing result

of StraSa. StraSa is unbiased, i.e., the average of the ϕ̂(n∗)-values converges to
ϕ(n∗) in the limit as the number of probes goes to infinity.

Chen [23] states the following theorem:

Theorem 1 Given a stratification T and a set of p independent probes ϕ̂(1)(n∗),
· · · , ϕ̂(p)(n∗) from a WIT S(n∗), 1

p

∑p
j=1 ϕ̂

(j)(n∗) converges to ϕ(S) as p grows

large.

Each StraSa probe outputs a subtree of the WIT called sampled tree (ST). In
contrast with Chen’s version of StraSa, our version of the algorithm also outputs

an array of sets C containing the items encountered during sampling which were not
expanded. C is organized by levels, e.g., C[i] is the set of items StraSa encountered
but did not expand at level i of the WIT. The WPS algorithm uses C to evenly divide

the workload among different processing nodes, as described next.

5.2 WPS: Workload Partitioning & Scheduling

Algorithm 4 shows a high-level description of WPS. WPS operates in four phases:

sampling, estimating, partitioning, and distributing.

Algorithm 4: Workload Partitioning and Scheduling

Require: starting item n∗ of the WIT and a stratification T
Ensure: solution for the problem represented by n∗

1: [A,C]← StraSa(n∗, T) // see Algorithm 3
2: χ← ComputeSubtreeSizes(A, T) // see Algorithm 5
3: {W1,W2, · · · ,WM} ← BLDM(χ,C) // see [53]
4: for i ∈ {1, · · · ,M} do
5: asynchronously copy Wi to node i

5.2.1 Sampling

In the Sampling phase, WPS employs StraSa on the WIT to selectively process only

one among several items of the same stratum at each level of the WIT. Following
this technique, this phase produces a sampled tree ST and a set C of items that

were encountered but not expanded. The subtree ST is used to estimate the size of
subtree rooted at items of different strata (see Section 5.2.2 below), while the items

46

in C are partitioned amongst the available processing nodes according to the size of
the subtrees provided by ST (see Section 5.2.3 below).

WPS offers programmers a customizable labelling system to define properties that

constitute two items to be similar. For instance, in an Iterative Deepening A*
(IDA*) search tree, two items may be considered to belong to the same stratum if
their h-values, i.e., their estimated cost to the goal node are equal.

Typically, increasing the number of StraSa probes will improve the accuracy of

the tree size prediction. In WPS we use multiple probes to improve the prediction
accuracy of the size of the subtrees rooted at items of different strata. In the

partitioning phase, for stratum t encountered at level i, instead of using the Y i
t

value produced in a single probe, we use the average of the Y i
t -values computed

across multiple probes.

An important question is: how many probes are sufficient to yield best performance?

An empirical evaluation indicates that a larger number of probes improves the accu-
racy of estimation, but incurs large sampling overhead. Likewise, a smaller number

of probes with lower overhead may lead to poor estimates of the workload metric.
This study used manual tuning to determine the number of probes that yields the
best performance (details in Section 5.5.2).

The findings from this study establish the significant performance merit of the

sampling-based workload distribution technique. Future studies may use automatic
techniques to identify the optimal number of probes for high performance. For in-

stance, they could use profile-guided tuning, where WPS could continue the probing
process until the execution time stops improving.

5.2.2 Estimating

In this phase, WPS computes the estimated size of the subtrees rooted at each item
n ∈ ST . To compute this estimate, WPS traverses the ST bottom up and uses

dynamic programming, as shown in Algorithm 5. In Algorithm 5 the values of Y i
u

represent the estimated size of the subtree rooted at the node of stratum u at level

i of the WIT. The traversal of the ST , represented by the structure A, starts at the

deepest level and moves toward the root (line 2). The values of Y i+1
u are used to

compute the values of Y i
u (line 6). In this phase WPS produces a collection χ of Y i

u

values for every u and i encountered in the ST .

5.2.3 Partitioning

In the Sampling phase, WPS processes a small subset of the items in the WIT through

StraSa. In this phase WPS partitions the remaining items in the WIT — the items

not processed by StraSa — into M groups, where M is the number of processing
nodes available. The items not processed by StraSa are the items in C as well as

the items reachable from the items in C.

StraSa ensures that for each item n′ in C[i] there is a unique item n in A[i] with
T (n) = T (n′). Moreover, given Chen’s assumption that items of the same stratum

47

Algorithm 5: ComputeSubtreeSizes

Require: sampled tree A and stratification T
Ensure: a collection χ of the estimated subtree sizes Y i

t

for each level i and stratum t in A.
1: χ← {}
2: for i← tree depth to 1 do
3: for each item n in A[i] do
4: Y i

T (n) ← 1

5: for each child n′′ of n in the WIT do
6: Y i

T (n) ← Y i
T (n) + Y i+1

T (n′′)

7: insert Y i
T (n) in χ

8: i← i− 1

root subtrees of the same size, Y i
T (n) in χ is an estimate of the number of items

in the subtree rooted at n′ (number of items reachable from n′). Thus, at this

point, the problem of evenly partitioning the workload reduces to the NP-Hard
multi-way number partitioning problem [33]: the algorithm must partition the items

n′ in C into M parts W1,W2, · · · ,WM such that the sum of the Y i
T (n′) values in

each part Wj and Wk with j, k ∈ {1, 2, · · · ,M} are as similar as possible to each

other. WPS employs the Balanced Largest-First Differencing Method (BLDM) [53]
to compute an approximated solution to the number partitioning problem. BLDM

is a widely used, and effective, algorithm that performs k-way partitioning for k ≥ 2
in O(n log n) time.

This work uses the number of items rooted at each given item as a workload metric
for even distribution. It assumes that the time required to process an item is constant

throughout the WIT — an assumption that holds in all the applications studied in
this chapter. WPS could be easily adapted to use other workload metrics as well. For

example, in applications where work items have different processing times, StraSa
could estimate the total processing time of subtrees as opposed to estimating the size
of the subtrees. Then, BLDM would be used to partition the items not processed

by StraSa into parts of similar processing time.

5.2.4 Distributing

In this phase, WPS stores one subset W1 in local memory for processing in the current
processing node and distributes the remainingWj|j=2..M subsets of items to theM−1
remaining processing nodes. The items are copied to the nodes asynchronously to

ensure that a processing node does not need to wait for completion of data transfer

to any other nodes. Multiple independent threads can be used to parallelize the

copying operations across the processing nodes. In the applications used in this

study, the work-items in different Wj subsets can be processed in any order as the
applications generate valid results for all orders of processing of the items.

In applications where the work items must be expanded in an orderly fashion, pro-

cessing of parent items first may be necessary to ensure that their children do not

48

wait for a prolonged time. Work items in such applications can be processed in a
monotonically increasing order of A[i] because the parent items are stored at higher

levels of the ST than their children. Optimizing the scheduling and distribution
strategy for applications that exhibit irregular dependencies among the work items
is beyond the scope of this work.

5.3 WPS Accuracy

WPS is intended to evenly distribute the workload among different processing nodes

in a cluster, thus minimizing the need for load-balancing operations. An empirical
evaluation (Section 5.5.2) indicates that WPS performs a good partitioning of the
work list and consequently requires infrequent load-balancing operations. However,

the approximations of the stratified sampling technique and of the multi-way num-
ber partitioning algorithm may leave room for some load imbalance both inside and

across multiple nodes in a cluster. Therefore, WPS is intended to operate in coordi-
nation with existing load-balancing schedulers, such as work stealing, that manage
intra- and inter-node load imbalances, and not to replace them completely. For

the applications studied in this chapter, there was limited scope for inter-node load
balancing. Nonetheless, coordinating WPS with existing load-balancing schemes in
runtimes of programming systems is beneficial because: i) there is no load-balancing

overhead if there is no load imbalance in the system; and ii) the infrequent load-
balancing operations that may be necessary will be handled by the existing load-

balancing techniques.

5.4 Application Problem: An Example

We apply WPS to parallelize three algorithms: IDA*, Delaunay Mesh Generation,

and Delaunay Mesh Refinement. As a demonstration, this section describes how
WPS can be applied to the IDA* algorithm.

IDA* is a fundamental algorithm in Artificial Intelligence for solving state-space

search problems. Given a start state s∗, IDA* expands a tree while performing a
Depth-First Search from s∗ with cost bound d in the state space. IDA* uses a cost
function defined as f(n) = g(n) +h(n), where g(n) is the cost to reach state n from

s∗, and h(n) is the estimated cost-to-go from n. The value of the cost bound d is
initially set to the heuristic value of s∗.

In each iteration, IDA* expands all states n that it encounters such that f(n) ≤ d.
If a goal is not found, then d is increased by setting it to the lowest f -value larger

than d observed in the previous iteration. If IDA* uses an admissible heuristic — a
heuristic that never overestimates the optimal solution cost for any state n — then

IDA* is guaranteed to return a path from s∗ to the goal state, if one exists, with

the optimal solution cost.

49

Parallelizing IDA*

The tree IDA* expands during search with a given cost bound is WPS’s WIT, and the

states in the tree represent the items. In each IDA* iteration, WPS partitions the WIT
into M parts of similar size. The M processors detect termination of each iteration

and compute an estimate of the cost for the next iteration. WPS is used once again
to partition the new WIT defined by the new cost bound. If a processor finishes
its part of the search, it tries to steal items from other processors. All processors

stop once the solution is found. Processor idling leads to substantial performance
degradation because an iteration of IDA* does not start until the previous one is
completed. Therefore, a balanced workload partitioning scheme is crucial for agent-

search domains such as IDA*.

5.5 Experimental Evaluation

This section describes the experimental setup and discusses the main findings from

the performance evaluation. Preliminary results from this evaluation were published
in the Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (2014) [61].

5.5.1 Experimental Setup

Platform: Performance measurements use a blade server with 16 nodes, each fea-
turing two 2 GHz Quad-Core AMD Opteron processors, with 8 GB of RAM and

20 GB of swap space, running CentOS GNU/Linux version 6.2. All binaries were
compiled with GCC version 4.4.3 using the -O3 flag.

Compiler and Runtime: The x10c++ compiler version 2.3.1 is used for all measure-

ments. The nodes in the cluster are connected by an InfiniBand network with a
bandwidth of 10 Gbit/s and use MVAPICH2 library for communication. The ex-
perimental runs create eight worker threads per node and vary the number of nodes

from 1 to 16 so that the number of threads is the same as the total number of cores.

Start States for WPS: This evaluation uses Korf’s [43] one hundred instances of 15-

puzzle and 3 random instances of 24-puzzle (shown in Table 5.1). The start states
for the puzzles can be generated through random valid permutations of the tiles.

There is only one valid start state for DMG — the triangulation that encapsulates
the given points. For DMR, triangulation of any given bad triangle is a valid start

state. DMG uses 10M points and DMR uses 68M triangles as inputs.

Table 5.1: Instances of 24-Puzzle solved optimally.

13 14 17 22 9 21 8 10 6 7 5 16 0 24 1 15 2 23 4 3 18 19 12 11 20
2 0 10 19 1 4 16 3 15 20 22 9 6 18 5 13 12 21 8 17 23 11 24 7 14
9 6 15 10 0 20 17 16 5 24 2 3 21 14 7 18 13 19 4 12 11 22 8 23 1

Stratification: This evaluation uses a stratification that labels items n1 and n2 with
the same stratum if three conditions are met: (1) h(n1) = h(n2); (2) n1 and n2

50

generate the same number of children and grandchildren; and (3) the children and
grandchildren have the same heuristic values. Lelis et. al [47] first introduced this

stratification and showed that StraSa produces good estimates of the IDA* WIT
size using such a stratification. For DMG and DMR, two items are said to have
the same stratum if they generate the same number of children and grandchildren.

Unless stated otherwise, WPS employs five probes of StraSa on 15-Puzzle, DMG, and
DMR, and 25 probes on 24-Puzzle. Section 5.5.2 discusses the performance impacts

of different stratifications and number of probes.

Methodology: Applications are run twenty times to account for variances, such as
work-stealing in the X10 runtime, and scheduling policies in the operating sys-
tem. The performance charts include 95% confidence intervals for execution times,

speedups, and steals-to-tasks ratios.

The versions of the Operating System and the X10 Compiler used in this evaluation
are different from the ones used in the evaluation in Chapter 3. Also, the input

workload for the benchmarks used in this evaluation are different from the input
workload used in the evaluations in Chapters 3 and 4. Therefore, the baseline
performance of the benchmarks reported in this Chapter differ from those reported

in previous chapters.

Workload Distribution Algorithms: The idea of performing state-space exploration
to generate enough parallel tasks for distribution amongst processing nodes is not

new. WPS provides a systematic way to do this without requiring programmers to
code this solution. Unlike other existing techniques, WPS estimates the number of
tasks that will be generated after processing the initial tasks to evenly divide the

total workload in an application. This evaluation compares the performance of WPS
against the following workload-distribution algorithms:

i) X10WS: X10’s default intra-node work-stealing scheduler

ii) WD scheduler complements X10WS with task migration across nodes. WD migrates
tasks to a node whose worker repeatedly fails to steal task from its co-located
peers [60, 62].

iii) Eager-WD scheduler is similar to WD but proactively maps tasks in a load-
balance-aware manner rather than waiting until the occurrence of a load-imbalance.

iv) DistWS scheduler complements X10’s intra-node work-stealing with inter-node

work-stealing [60, 63].

The evaluation also investigates the implications of operating WPS in isolation and

in tandem with these schedulers:

v) WPS*: WPS operating without coordination with any other scheduler;

vi) WPS: WPS operating in coordination with X10WS; and
vii) WPS+DistWS: WPS operating in coordination with both X10WS and DistWS.

A closely-related algorithm intended specifically for IDA* also exists, it is called
AIDA*. Section 5.5.3 compares the performance of WPS against AIDA*.

Initial Partitioning of Work-List: WPS partitions the WIT based on the predicted

size of the children reachable from each item in the WIT. X10WS and DistWS employ

the following approach to partitioning. The sliding-tile and DMG applications start

51

with a single state and generate several states during the course of their execution.
Therefore, in 15- and 24-Puzzles, the algorithms perform an iterative-deepening

search for a few levels until there are at least 10 × M items in the search fron-
tier, where M is the number of available processing nodes. This initial exploration
produces a sufficient number of subtree roots — about 1,300 nodes — while not

overflowing the memory resources of the evaluation platform. Similarly, in DMG,
the algorithms perform triangulation until 10×M triangles are formed in the mesh.

These triangles and their encapsulated points are then distributed among M pro-
cessing nodes. In DMR, the implicitly-defined worklist of triangles to be refined is
distributed amongst M processing nodes. Unlike WPS, X10WS and DistWS are unable

to account for the dynamically generated items during workload distribution.

5.5.2 Results and Discussion

The sequential execution times of 15-puzzle, DMG and DMR are shown in Fig-
ure 5.2. The sequential execution times of the three instances of 24-puzzle are long
and they significantly differ from one another. Therefore, the parallel execution time

for each instance at 128 workers is reported separately in Figure 5.3. The speedup
results for other applications are shown in Figure 5.4.

0	

200	

400	

600	

800	

15
-­‐

Pu
zz
le
	

DM
G	

DM
R	
 Se

qu
en

&a
l	
 E
xe
cu
&o

n	

Ti
m
e	

(s
)	

Figure 5.2: Sequential execution time.

0	

2000	

4000	

6000	

8000	

10000	

24-­‐Puzzle(1)	
 24-­‐Puzzle(2)	
 24-­‐Puzzle(3)	

Ex
ec
u&

on
	
 T
im

e	

at
	
 1
28
	
 th

re
ad

s	
 (
s)
	
 X10WS	
 EagerWD	
 WD	

DistWS	
 WPS*	
 WPS	

WPS+DistWS	
 AIDA*	

Figure 5.3: Execution times of 24-Puzzle at 128 workers.

The results from the experimental evaluation help us understand:

52

The performance benefits of WPS* For each application, Figure 5.4 shows the
speedups achieved using different workload-distribution strategies at different worker

counts. The speedups are relative to the sequential execution time using X10WS.

0	

20	

40	

60	

80	

100	

1	
 8	
 16	
 32	
 64	
 128	

Sp
ee
du

p	

O
ve
r	
 S

eq
ue

n,
al
	
 15-­‐Puzzle	

X10WS	
 EagerWD	

WD	
 DistWS	

WPS*	
 WPS	

WPS+DistWS	

1	
 8	
 16	
 32	
 64	
 128	

DMG	

0	

20	

40	

60	

80	

100	

1	
 8	
 16	
 32	
 64	
 128	

Sp
ee
du

p	

O
ve
r	
 S

eq
ue

n,
al
	
 DMR	

Figure 5.4: Application speedup over sequential execution time using different sched-
ulers at different worker counts.

WPS* consistently outperforms Eager-WD, WD, and DistWS. For instance, the 86x
speedup on DMR at 128 workers achieved using WPS* represents 23%, 20%, and

18% improvements over Eager-WD, WD, and DistWS, respectively. Eager-WD and WD

yield relatively small speedups over X10WS. Eager-WD yields 11%, 10%, and 14%
speedups on 15-puzzle, DMG and DMR respectively. WD exhibits better speedups

— 14%, 16%, and 19% on the same applications. DistWS performs much better. It
yields speedups of 22%, 32% and 29%. The algorithms exhibit similar trend on 24-

Puzzles too. DistWS outperforms X10WS by 26%, 27%, and 28% on three instances of
24-Puzzle. WPS* outperforms X10WS by 29%, 29%, and 31% on the same instances.

The performance impact of coordinating WPS* with other schedulers

WPS* aims to evenly distribute the workload among processing nodes, but not among
multiple threads within a processing node. Therefore, WPS scheduler coordinates
WPS* with X10WS. WPS yields significant speedups over X10WS on 15-Puzzle, DMG,

and DMR — 38%, 45%, and 43% respectively. WPS outperforms DistWS— the best
performing scheduler among X10WS, Eager-WD, WD, and DistWS— by 21%, 18%, and

20% on 15-Puzzle, DMG, and DMR respectively. WPS outperforms DistWS by 34%,
35%, and 40% on three instances of 24-Puzzle.

53

80	

84	

88	

92	

96	

100	

104	

W
PS
(1
)	

W
PS
(5
)	

W
PS
(1
0)
	

W
PS
(1
5)
	

W
PS
(2
0)
	

W
PS
(1
)+
	

W
PS
(1
5)
+	

W
PS
(2
0)
+	

W
PS
(1
)	

W
PS
(5
)	

W
PS
(1
0)
	

W
PS
(1
5)
	

W
PS
(2
0)
	

W
PS
(1
)+
	

W
PS
(1
5)
+	

W
PS
(2
0)
+	

W
PS
(1
)	

W
PS
(5
)	

W
PS
(1
0)
	

W
PS
(1
5)
	

W
PS
(2
0)
	

W
PS
(1
)+
	

W
PS
(1
5)
+	

W
PS
(2
0)
+	

15-­‐Puzzle	
 DMG	
 DMR	

Sp
ee
du

p	

ov
er
	
 S
eq

ue
n,

al
	
 X
10
W
S	

at
	
 1
28
	
 w
or
ke
rs
	

Stra<fica<on1	
 Stra<fica<on2	

Figure 5.5: WPS performance using different stratifications. The number of probes
used are indicated in the parentheses, and the ‘+’ sign in the x-axis labels indicate
WPS+DistWS.

WPS+DistWS does not yield significant speedup over WPS. This is a result of the even

workload distribution generated by WPS, which leaves little opportunities for DistWS
to migrate items between nodes for load balancing.

Further evaluations do not discuss WPS* and WPS+DistWS because they are not

interesting in terms of overall speedups.

The impact of the precision of stratification on WPS performance The
quality of the stratification guiding the sampling process may substantially impact

the accuracy of the tree-size predictions. Ideally, a stratification would determine
that two items are of the same stratum iff they root subtrees of the same size, which

would allow StraSa to produce a perfect estimate of the tree size in a single probe. A
trivial example of such a stratification is one in which every item belongs to its own
stratum. In this case, there would be far too many strata to sample from and the

approach would not be effective. In practice one should use a compact stratification
(i.e., a stratification with a small number of strata) that has a low variance on the
subtree sizes rooted at items of the same stratum. Multiple StraSa probes can be

used to improve the accuracy of predictions when using low-quality stratifications.

Figure 5.5 shows the performance impact of different stratifications and of differ-
ent numbers of StraSa probes on WPS. Stratification1 (S1) is the stratification

described in Section 5.5.1, while Stratification2 (S2) is a version of S1 with fewer
strata. Namely, S2 considers two items to be of different stratum if the number of
children and grandchildren they produce differ by more than two. The numbers in

parentheses in Figure 5.5 represent the number of probes used. WPS performs worse

in all domains when using one probe (see WPS(1)). With a single probe, the perfor-

mance does not improve even when coordinating WPS with DistWS (see WPS(1)+).

WPS yields best performance under S1 and S2 at five and ten probes of StraSa,
respectively. This difference in the number of probes in which each stratification

yields the best performance is because S1 has more strata than S2. Thus, a StraSa

54

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

X1
0W

S	

Di
st
W
S	

W
PS
-­‐T
S1
(5
)	

W
PS
-­‐T
S2
(1
0)
	

W
PS
-­‐T
S1
(1
)	

W
PS
-­‐T
S2
(1
)	

W
PS
-­‐T
S1
(2
0)
	

W
PS
-­‐T
S2
(2
0)
	

X1
0W

S	

Di
st
W
S	

W
PS
-­‐T
S1
(2
5)
	

W
PS
-­‐T
S2
(2
5)
	

W
PS
-­‐T
S1
(1
)	

W
PS
-­‐T
S2
(1
)	

W
PS
-­‐T
S1
(4
0)
	

W
PS
-­‐T
S2
(4
0)
	

X1
0W

S	

Di
st
W
S	

W
PS
-­‐T
S1
(5
)	

W
PS
-­‐T
S2
(1
0)
	

W
PS
-­‐T
S1
(1
)	

W
PS
-­‐T
S2
(1
)	

W
PS
-­‐T
S1
(2
0)
	

W
PS
-­‐T
S2
(2
0)
	

X1
0W

S	

Di
st
W
S	

W
PS
-­‐T
S1
(5
)	

W
PS
-­‐T
S2
(1
0)
	

W
PS
-­‐T
S1
(1
)	

W
PS
-­‐T
S2
(1
)	

W
PS
-­‐T
S1
(2
0)
	

W
PS
-­‐T
S2
(2
0)
	

15-­‐Puzzle	
 24-­‐Puzzle(1)	
 DMG	
 DMR	

%
	
 o
f	
 T

ot
al
	
 E
xe
cu
.o

n	

Ti
m
e	

at
	
 1
28
	
 w
or
ke
rs
	

Stealing	
 ComputaFon	
 ParFFoning	
 CommunicaFon	

Figure 5.6: Breakdown of total execution time.

probe using S2 will tend to be faster than a StraSa probe using S1. Increasing

the number of probes beyond five for S1 and ten for S2 is not beneficial. In fact,
the performance worsened at larger number of probes because of the overhead of
sampling. The loss in performance is regained by coordinating WPS with DistWS.

The 24-Puzzles exhibit best performance under both stratifications at 25 probes,
and exhibit similar trends overall.

The sources of performance gains Fig. 5.6 shows the breakdown of execution
times of applications using X10WS, DistWS, and WPS. The performance gains arise
from three major sources:

i) Reduced Work-stealing Operations: WPS reduces the execution time spent on work

stealing in the range of 10% to 16% over X10WS and in the range of 7% to 12% over
DistWS. The work-stealing time also accounts for the machine idle times — when
workers are unsuccessfully searching for surplus work to steal — because an idle

worker may continuously try to steal work from other workers. The reduced need
for work-stealing operations means that the nodes will be mostly performing useful

computations. Thus, actual computations in applications contribute more to the
total execution time with WPS – in the range of 7% to 13% over DistWS and in the

range of 14% to 16% over X10WS. These performance gains are achieved at the cost

of 1% to 2% of the total execution time spent on workload partitioning using WPS.

ii) Reduced Communication over the Network: An even distribution of workload
using WPS necessitates fewer message transmissions across the network. This reduced

communication stems from fewer steal operations, fewer synchronized access to the

shared deques of remote workers, and fewer accesses to data required to process
stolen tasks. Table 5.2 shows the average number of messages transmitted across

the network obtained from twenty runs of each application using X10WS, DistWS,
and WPS at 128 threads. As expected, WPS requires fewer message transmissions

across the network compared to X10WS and DistWS.

55

Table 5.2: Messages transmitted across network at 128 workers (in millions).

Applications
of Messages Transmitted

X10WS DistWS WPS

15-Puzzle 12.43 10.49 3.40
24-Puzzle(1) 86.39 81.78 69.58
DMG 42.68 36.84 26.03
DMR 37.92 32.29 22.89

50	

75	

100	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	
 DMR	

50	

75	

100	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	
 DMG	

50	

75	

100	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	
 15-­‐Puzzle	

50	

75	

100	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	
 24-­‐Puzzle	

WPS DistWS X10WS

Figure 5.7: Average node utilization (128 threads). The figure shows the node
utilizations starting from 50% for better clarity.

iii) Improved Node Utilization: Through an improved workload distribution, reduced
work-stealing operations, and reduced machine idle times, WPS achieves an increased

and uniform CPU utilization compared to X10WS and DistWS. The radial axes and
the points in the circumference of the circles in Fig. 5.7 respectively indicate the

average CPU utilization of eight cores in a node and a node in the cluster.

With X10WS, the standard deviations of average node utilization for 15-Puzzle, DMG
and DMR are 12.45, 18.37, and 17.5, respectively. With DistWS, the standard
deviations are 9.71, 11.49, and 10.2, respectively. With WPS, the standard deviations

are 2.32, 3.12, 3.09 respectively. The lower standard deviations of average node-

utilizations with WPS point to an improved load-distribution achieved with WPS.

DistWS permits workers in a processing node to steal tasks from remote processing

nodes if all the co-located workers lack surplus work. Thus, DistWS performs more
work compared to X10WS, which operates only within a node, resulting in an in-

creased CPU utilization over X10WS. However, DistWS still exhibits a non-uniform

CPU utilization because a large number of tasks stolen for load-balancing incur
overheads of remote data accesses that are necessary for processing the stolen tasks.

56

0	

20	

40	

60	

80	

100	

1	
 8	
 16	
 32	
 64	
 128	

Sp
ee
du

p	

ov
er
	
 S
eq

ue
n,

al
	
 X
10
W
S	

15-­‐Puzzle	

AIDA*	

WPS	

0	

5	

10	

15	

20	

25	

30	

35	

40	

15
-­‐P
uz
zle

	

24
-­‐P
uz
zle

(1
)	

24
-­‐P
uz
zle

(2
)	

24
-­‐P
uz
zle

(3
)	
 %
	
 Im

pr
ov
em

en
t	
 o

ve
r	
 A

ID
A*

	
 	

at
	
 1
28
	
 w
or
ke
rs
	

Figure 5.8: WPS and AIDA* performance on 15- and 24-Puzzles.

Hence, some nodes show heavy utilization while the others show lighter utilization.

WPS reduces the need for work stealing across processing nodes, thereby, enabling
workers to perform useful computations. Thus, the node utilization circles for WPS

are larger and more uniform compared to those for X10WS and DistWS.

5.5.3 Asynchronous IDA* (AIDA*)

Similar to WPS, AIDA* combines a data-partitioning scheme with work stealing for

parallel and distributed implementation of IDA* [67]. AIDA* operates in three
phases: i) in the data-partitioning phase, each processor redundantly expands the
tree to generate enough frontier nodes; ii) in the distributed node-expansion phase,

each processor expands its portion of the nodes generated in the preceding phase to
generate additional finer-grained nodes; and, iii) in the asynchronous search phase,

processors perform IDA* on their subtrees until a solution is found. All processors
search to the same threshold. After completion of an iteration, the processors begin
a new search pass through the same set of subtrees using a larger threshold.

This implementation of AIDA* uses the following constraints to closely match the

original algorithm: i) selects neighbouring processors as the victims for work steal-
ing; ii) partially re-orders the nodes in the local work list and only allows nodes

of average size to be stolen; iii) steals in chunk sizes of five nodes; and iv) permits
stealing of at most half of a victim’s items. The cluster used in this evaluation is
fully connected, where stealing from a randomly selected victim has the same effect

as trying to steal from a neighbour in terms of communication latency. Nevertheless,
we modify our load-balancer to mimic the original AIDA* algorithm.

AIDA* differs from WPS as follows: i) unlike AIDA*, WPS expands the search tree
on a single processor to generate enough frontier items for distribution among pro-

cessors; ii) while AIDA* relies on a robust distributed load balancer to mitigate the
imbalance in subtrees distributed to the processors, WPS rarely needs load balancing

across processing nodes. WPS relies only on intra-node load balancer to mitigate load
imbalance among workers co-located in a processing node.

57

For the three instances of 24-Puzzle, Figure 5.3 shows the execution time perfor-
mance using AIDA* and WPS. For the 15-Puzzle, Figure 5.8 shows the speedups

achieved with AIDA* and WPS at different worker counts. Figure 5.8 also shows the
performance gains with WPS relative to AIDA* at 128 workers. AIDA* does not ac-
count for the variability in the subtree sizes during initial distribution of the frontier

nodes. Consequently, processing nodes often suffer from frequent load imbalances
and require several expensive load-balancing operations. In addition, AIDA* also

needs to perform expensive item sorting and coalescing to support efficient migra-
tion of items. As a result, WPS outperforms AIDA* by 17%, 29%, 31% and 36% on
15-Puzzle, and the three instances of 24-Puzzle.

5.6 Related Work

A popular task-distribution strategy in agent-search domains is to expand the search
tree until there are enough states in the search frontier for distribution among proces-

sors [45, 66]. Such a strategy does not account for the size of dynamically generated
states, thereby, causing a load imbalance. Parallel Window Search is another ap-

proach for load balancing where multiple worker threads search the same tree in
parallel using different cost bounds [65]. The demerit of this approach is that some
processors may search the tree with a search bound that is too high and result in

wasted work if the optimal solution is found at lower depths by some other workers.

Transposition-table-driven scheduling (TDS) uses hash-function-indexed transpo-
sition table for uniform workload distribution [68]. The demerit of TDS is that it

relies on robust dynamic optimizations, such as message coalescing, and requires: (i)
dynamically identifying states with identical source and destination processors; (ii)
coalescing them into a single message of appropriate granularity; and (iii) migrating

the coalesced message packets at precise control-flow points. Efficient implementa-
tion of such operations often requires expensive data and control flow analyses.

Niewiadomski et al. [56] present a sampling-based approach for workload distribu-

tion in implicit graphs. Unlike their approach, WPS selectively samples only items of
unique stratum and therefore does not require application programmers to manually
identify the best sampling size for each application.

Frameworks, such as PREMA [8], Scioto [28], and Turbine [77], also aim to support

automatic load balancing in irregular parallel applications. These framework require

programmers to expose parallelism, and migratable data and objects in applications

using special runtime libraries. Unlike these approaches, WPS does not require re-

writing existing X10 applications, and only requires users to specify stratifications
during program execution.

Mendéz-Lojo et al. [51] exploit high-level algorithmic structure and amorphous data-

parallelism to optimize irregular applications. In particular, they focus on three
optimizations: exploiting cautious operator implementations, one-shot implementa-
tions, and iteration coalescing. Similar to their work, WPS also systematically exploits

the algorithmic structure, i.e., recursive data-parallelism, of applications to improve
their runtime performance. However, here the focus is on workload partitioning. As

58

a future work, it would be interesting to investigate techniques for extending WPS

for optimizing a range of applications with amorphous data-parallelism.

5.7 Summary

This chapter presents an algorithm for evenly partitioning workload in distributed
shared-memory machines. The distribution relies on a sampling-based prediction

of the size of the sub-tree rooted at a given item. An experimental evaluation of
this approach on IDA*, Delaunay Triangulation and Delaunay Mesh Refinement

algorithms yields substantial speedups compared to state-of-the-art approaches, in-
cluding ones that are specifically targeted at individual applications.

The main strength of the algorithm is that its workload distribution strategy applies
to a range of iterative work-list-based data-parallel irregular applications and does

not require manual tuning of sampling strides. Another strength of the algorithm is
its ability to integrate well with mainstream load-balancers, such as work-stealing

schedulers. Although not necessary for applications studied in this evaluation, the
algorithm may benefit from coordination with work-stealing schedulers, but it does
not require a complete overhaul or removal of the existing schedulers.

59

Chapter 6

Conclusions and Future Work

The work underlying this dissertation investigates techniques for task distribution
and for shared-variable management to improve the performance of parallel and dis-
tributed applications. The investigation leads to three observations about APGAS

programming systems:

• First, not all parallel tasks are locality sensitive. All tasks are nonetheless
bound to one address partition, thereby, restricting opportunities for load

balancing. This work provided evidence that the migration of locality-flexible
tasks alleviates dynamic load-imbalance to improve application performance.
An important observation from the empirical evaluation is that coarse-grain

tasks benefit more from this technique than fine-grain tasks.

• Second, a single coherence protocol does not yield consistent performance
gains for diverse patterns of shared-variable accesses. We offer a framework

that automatically identifies the access pattern of each shared variable in an
application and employs a high-performing coherence protocol among three
available protocols. The resulting performance gains are comparable to the

best hand-tuned applications.

• Third, in recursive data-parallel applications, a näıve data partitioning scheme
does not yield an even workload distribution. Using the statistical technique

of stratified sampling to predict the amount of work that will be generated
by an application dynamically improves workload partitioning. The approach
is quasi-dynamic because it does not require executing the entire application

to make the prediction. Through the integration of this approach into the

X10 programming system, this research demonstrates that programmers do

not need to manually code this solution for individual applications.

Future Work

This research establishes the significant promise of selective locality-aware task-

migration strategy. The prototype implemented in this research to evaluate this idea
uses manual annotations to identify locality-flexible tasks. The manual approach

60

may not be practical in applications that are written in languages that do not require
programmers to specify the affinity preferences for all parallel tasks. Therefore,

a key future investigation is to use program analyses — static or dynamic — to
automatically identify locality-flexible tasks.

The selection of coherence protocol uses end-to-end profiling in the offline mode. It
also relies on the correlation between the input parameters and the access patterns

of shared-variables to control the duration of online profiling. Identifying such a
relationship between input parameters and shared-variable access patterns requires

a keen understanding of the applications. In the worst case, the input parameters
may have an irregular or non-linear impact on the access patterns. An interesting
line of future research is to use sampling-based profiling techniques to determine the

access patterns of shared variables. Sampling unavoidably introduces inaccuracies
in the collected profiles, which may in turn lead to incorrect decisions about access

patterns, but it also reduces the cost of profiling and may make it viable to profile
for a larger fraction of the execution time. Prior research has shown that applying
statistical correction techniques can reduce the bias incurred by the sampling, and

thereby, yield reasonably accurate profiles [78].

The prototype implementation of the workload-partitioning algorithm uses manual
tuning to determine the number of probes for different stratifications that yield

the best performance. Manual tuning is tedious because it requires exploring a
large space of possible combinations of these two parameters. Consequently, it is
difficult to ensure the best confluence of stratifications and number of probes that

yield accurate predictions while minimizing the overheads of sampling. Machine-
learning and profiling techniques could be used to better explore the large space of

stratifications, the number of probes, and their combinations.

61

Bibliography

[1] M. Acacio, J. Gonzalez, J. Garcia, and J. Duato. Owner Prediction for Accel-
erating Cache-to-Cache Transfer Misses in a CC-NUMA Architecture. In In-
ternational Conf. for High Performance Computing, Networking, Storage and
Analysis(SC), pages 49–49, 2002.

[2] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The Data Locality of Work
Stealing. In ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA), pages 1–12, Bar Harbor, Maine, United States, 2000.

[3] U. A. Acar, A. Chargueraud, and M. Rainey. Scheduling Parallel Programs
by Work Stealing with Private Deques. In Principles and Practice of Parallel
Programming (PPoPP), pages 219–228, Shenzhen, China, 2013.

[4] M. Alvanos, M. Farreras, E. Tiotto, J. N. Amaral, and X. Martorell. Improving
Communication in PGAS Environments: Static and Dynamic Coalescing in
UPC. In International Conference on Supercomputing (ICS), pages 129–138,
Eugene, Oregon, USA, 2013. ACM.

[5] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of
Workstations. Computer, 29(2):18–28, Feb. 1996.

[6] J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a
Multiprocessor Simulation Model. ACM Transactions on Computer Systems,
4(4):273–298, Sept. 1986.

[7] R. Barik, J. Zhao, D. Grove, I. Peshansky, Z. Budimlic, and V. Sarkar. Commu-
nication Optimizations for Distributed-Memory X10 Programs. In Internationl
Parallel Distributed Processing Symposium (IPDPS), pages 1101–1113, May
2011.

[8] K. Barker, A. N. Chernikov, N. Chrisochoides, and K. Pingali. A Load Bal-
ancing Framework for Adaptive and Asynchronous Applications. IEEE Trans.
Parallel Distrib. Syst., 15:2:183–192, Feb. 2004.

[9] C. Barton, C. Casçaval, G. Almási, Y. Zheng, M. Farreras, S. Chatterje, and
J. N. Amaral. Shared Memory Programming for Large Scale Machines. In
Conference on Programming Language Design and Implementation, pages 108–
117, Ottawa, Ontario, Canada, 2006.

[10] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing Locality
and Independence with Logical Regions. In International Conf. for High Per-
formance Computing, Networking, Storage and Analysis(SC), pages 66:1–66:11,
Salt Lake City, Utah, 2012.

[11] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed Shared
Memory Based on Type-Specific Memory Coherence. In Principles and Practice
of Parallel Programming (PPoPP), pages 168–176, Seattle, Washington, USA,
1990.

62

[12] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali. Supporting Task
Migration in Multi-processor Systems-on-Chip: A Feasibility Study. In Con-
ference on Design, automation and test in Europe: Proceedings, pages 15–20,
3001 Leuven, Belgium, Belgium, 2006.

[13] M. J. Best, S. Mottishaw, C. Mustard, M. Roth, A. Fedorova, and
A. Brownsword. Synchronization via Scheduling: Techniques for Efficiently
Managing Shared State. In Conference on Programming Language Design and
Implementation, pages 640–652, San Jose, California, USA, 2011.

[14] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software Transactional
Memory for Large Scale Clusters. In Principles and Practice of Parallel Pro-
gramming (PPoPP), pages 247–258, Salt Lake City, UT, USA, 2008.

[15] B. Cahoon and K. S. McKinley. Data Flow Analysis for Software Prefetching
Linked Data Structures in Java. In Parallel Architectures and Compilation
Techniques, pages 280–291, 2001.

[16] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques for Reducing
Consistency-related Communication in Distributed Shared-Memory Systems.
ACM Transactions On Computing Systems, 13(3):205–243, Aug. 1995.

[17] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: The New Adven-
tures of Old X10. In Principles and Practice of Programming in Java (PPPJ),
pages 51–61, New York, NY, USA, 2011. ACM.

[18] L. M. Censier and P. Feautrier. A New Solution to Coherence Problems in
Multicache Systems. IEEE Transactions on Computers, 27(12):1112–1118, Dec.
1978.

[19] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and
the Chapel Language. International Journal of High Performance Computing
Applications, 21(3):291–312, 2007.

[20] B. Chamberlain, S.-E. Choi, T. Hildebrandt, V. Litvinov, G. Titus, J. Lewis,
K. Maschhoff, and J. Claridge. Chapel HPC Challenge Entry, Nov. 2011.

[21] R. Chandra, A. Gupta, and J. L. Hennessy. Data Locality and Load Balancing
in COOL. In Principles and Practice of Parallel Programming (PPoPP), pages
249–259, San Diego, California, United States, 1993.

[22] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: An Object-oriented Approach to Non-
uniform Cluster Computing. In Object-Oriented Programming Systems, Lan-
guages and Applications, pages 519–538, San Diego, CA, USA, 2005. ACM.

[23] P.-C. Chen. Heuristic Sampling: A Method for Predicting the Performance of
Tree Searching Programs. SIAM Journal on Computing, 21:295–315, 1992.

[24] W.-Y. Chen, C. Iancu, and K. Yelick. Communication Optimizations for Fine-
Grained UPC Applications. In Parallel Architectures and Compilation Tech-
niques, pages 267–278, Washington, DC, USA, 2005.

[25] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen. Solv-
ing Large, Irregular Graph Problems Using Adaptive Work-Stealing. In Inter-
national Conference on Parallel Processing, pages 536 –545, Portland, Oregan,
USA, 2008.

[26] J. DeSouza and L. V. Kale. MSA: Multiphase Specifically Shared Arrays. In
R. Eigenmann, Z. Li, and S. P. Midkiff, editors, Languages and Compilers for
High Performance Computing, volume 3602, pages 268–282. 2005.

[27] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sadayappan.
Scioto: A Framework for Global-View Task Parallelism. In International Con-
ference on Parallel Processing, pages 586–593, Washington, DC, USA, 2008.

63

[28] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sadayappan.
Scioto: A Framework for Global-View Task Parallelism. In International Con-
ference on Parallel Processing, pages 586–593, Washington, DC, USA, 2008.

[29] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive Load Sharing in Homo-
geneous Distributed Systems. IEEE Transactions on Software Engineering,
SE-12(5):662–675, May 1986.

[30] T. El-Ghazawi and L. Smith. UPC: Unified Parallel C. In International Conf.
for High Performance Computing, Networking, Storage and Analysis(SC),
Tampa, Florida, 2006. ACM.

[31] M. Farreras, G. Almasi, C. Cascaval, and T. Cortes. Scalable RDMA Per-
formance in PGAS Languages. In Internationl Parallel Distributed Processing
Symposium (IPDPS), pages 1–12, 2009.

[32] M. Ferdman and B. Falsafi. Last-Touch Correlated Data Streaming. In Intern.
Symp. on Performance Analysis of Systems and Software, pages 105–115, 2007.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San
Francisco, 1979.

[34] D. Grove, O. Tardieu, D. Cunningham, B. Herta, I. Peshansky, and
V. Saraswat. A Performance Model for X10 Applications: What’s Going on
Under the Hood? In ACM SIGPLAN X10 Workshop, pages 1:1–1:8, San Jose,
California, 2011.

[35] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and Help-first Schedul-
ing Policies For Async-finish Task Parallelism. In Internationl Parallel Dis-
tributed Processing Symposium (IPDPS), pages 1–12, Washington, DC, USA,
2009.

[36] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. SLAW: A Scalable Locality-Aware
Adaptive Work-stealing Scheduler for Multi-core Systems. In Principles and
Practice of Parallel Programming (PPoPP), pages 341–342, Bangalore, India,
2010. ACM.

[37] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost paths. IEEE Transactions on Systems Science
and Cybernetics, SSC-4(2):100–107, 1968.

[38] M. Herlihy and Y. Sun. Distributed Transactional Memory for Metric-Space
Networks. In Conference on Distributed Computing, pages 324–338, Cracow,
Poland, 2005.

[39] P. N. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike, and
K. Yelick. Titanium Language Reference Manual. Technical report, Berkeley,
CA, USA, 2006.

[40] L. V. Kale and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System based on C++. In Object-Oriented Programming Systems,
Languages and Applications, pages 91–108, Washington, D.C., USA, 1993.

[41] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Soft-
ware Distributed Shared Memory. In International Symposium on Computer
Architecture, pages 13–21, Queensland, Australia, 1992.

[42] D. E. Knuth. Estimating the Efficiency of Backtrack Programs. Mathematics
of Computation, 29:121–136, 1975.

[43] R. E. Korf. Depth-First Iterative-Deepening: An Optimal Admissible Tree
Search. Artificial Intelligence, 27(1):97–109, 1985.

64

[44] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali. Lonestar: A Suite
of Parallel Irregular Programs. In Intern. Symp. on Performance Analysis of
Systems and Software, Boston, MA, USA, 2009.

[45] V. Kumar and V. N. Rao. Parallel Algorithms for Machine Intelligence and
Vision. chapter Scalable Parallel Formulations of Depth-first Search, pages
1–41. Springer-Verlag Inc., New York, NY, USA, 1990.

[46] S.-M. Lau, Q. Lu, and K.-S. Leung. Adaptive Load Distribution Algorithms
for Heterogeneous Distributed Systems with Multiple Task Classes. Journal of
Parallel and Distributed Computing, 66(2):163 – 180, 2006.

[47] L. H. S. Lelis, S. Zilles, and R. C. Holte. Predicting the Size of IDA*’s Search
Tree. Artificial Intelligence, pages 53–76, 2013.

[48] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-based Cache Coherence Protocol for the DASH Multiprocessor. In
International Symposium on Computer Architecture, pages 148–159, Washing-
ton, USA, 1990.

[49] K. Li. IVY: A Shared Virtual Memory System for Parallel Computing. In
International Conference on Parallel Processing, pages 94–101, 1988.

[50] Z. Majo and T. R. Gross. Memory Management in NUMA Multicore Systems:
Trapped Between Cache Contention and Interconnect Overhead. In Intern.
Symp. on Memory Management (ISMM), pages 11–20, San Jose, California,
USA, 2011.

[51] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M. A. Hassaan, M. Kulka-
rni, M. Burtscher, and K. Pingali. Structure-driven Optimizations for Amor-
phous Data-parallel Programs. In Principles and Practice of Parallel Program-
ming (PPoPP), pages 3–14, Bangalore, India, 2010. ACM.

[52] J. Meng and K. Skadron. Performance Modeling and Automatic Ghost Zone
Optimization for Iterative Stencil Loops on GPUs. In International Conference
on Supercomputing (ICS), pages 256–265, NY, USA, 2009.

[53] W. Michiels, J. Korst, E. Aarts, and J. Leeuwen. Performance Ratios for the
Differencing Method Applied to the Balanced Number Partitioning Problem.
In STACS 2003, volume 2607 of Lecture Notes in Computer Science, pages
583–595. Springer Berlin Heidelberg, 2003.

[54] S.-J. Min, C. Iancu, and K. Yelick. Hierarchical Work Stealing on Manycore
Clusters. In Partitioned Global Address Space (PGAS) Programming Models,
2011.

[55] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà.
Advances, Applications and Performance of the Global Arrays Shared Memory
Programming Toolkit. Int. J. of High Performance Computing Applications,
20(2):203–231, May 2006.

[56] R. Niewiadomski, J. Amaral, and R. Holte. A Parallel External-Memory Fron-
tier Breadth-First Traversal Algorithm for Clusters of Workstations. In Inter-
national Conference on Parallel Processing, pages 531–538, Aug 2006.

[57] R. W. Numrich and J. Reid. Co-Array Fortran for Parallel Programming.
SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[58] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W. Tseng.
UTS: An Unbalanced Tree Search Benchmark. In Workshop on Languages and
Compilers and Parallel Computing (LCPC), pages 235–250, LA, USA, 2007.

[59] J. Paudel and J. N. Amaral. Using Cowichan Problems to Investigate the Pro-
grammability of X10 Programming System. In ACM SIGPLAN X10 Workshop,
San Jose, CA, USA, 2011.

65

[60] J. Paudel and J. N. Amaral. Hybrid Parallel Task Placement in Irreg-
ular Applications. Journal of Parallel and Distributed Computing, 2014.
doi:10.1016/j.jpdc.2014.09.014.

[61] J. Paudel and J. N. Amaral. Stratified Sampling for Even Workload Parti-
tioning. In Parallel Architectures and Compilation Techniques, pages 503–504,
Edmonton, AB, Canada, 2014. ACM.

[62] J. Paudel, O. Tardieu, and J. N. Amaral. Hybrid Parallel Task Placement in
X10. In X10 Workshop, pages 31–38, Seattle, Washington, USA, 2013.

[63] J. Paudel, O. Tardieu, and J. N. Amaral. On the Merits of Distributed Work-
Stealing on Selective Locality-Aware Tasks. In International Conference on
Parallel Processing, pages 100–109, Lyon, France, 2013.

[64] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Addison & Wesley, 1984.

[65] C. Powley and R. Korf. Single-Agent Parallel Window Search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 13(5):466–477, May 1991.

[66] V. N. Rao, V. Kumar, and K. Ramesh. A Parallel Implementation of Iterative-
Deepening-A*. In National Conference on Artificial Intelligence - Volume 1,
AAAI’87, pages 178–182. AAAI Press, 1987.

[67] A. Reinefeld and V. Schnecke. AIDA* – Asynchronous Parallel IDA*. In
Canadian Conference on Artificial Intelligence, pages 295–302, 1994.

[68] J. Romein, H. Bal, J. Schaeffer, and A. Plaat. A Performance Analysis of
Transposition-Table-Driven Work Scheduling in Distributed Search. IEEE
Transactions on Parallel and Distributed Systems, 13(5):447–459, May 2002.

[69] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. X10 Language
Specification. http://x10.codehaus.org/x10/documentation.

[70] V. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krishnamoorthy.
Lifeline-based Global Load Balancing. In Principles and Practice of Parallel
Programming (PPoPP), pages 201–212, San Antonio, TX, USA, 2011.

[71] J. Savant and S. Seidel. MuPC: A Runtime System for Unified Parallel C.
Technical Report CS-TR-02-03, Michigan Tech University, MI, USA, Sep 2002.

[72] E. Speight and M. Burtscher. Delphi: Prediction-Based Page Prefetching to
Improve the Performance of Shared Virtual Memory Systems. In Conference on
Parallel and Distributed Processing Techniques and Applications, pages 49–55,
2002.

[73] O. Tardieu, H. Wang, and H. Lin. A Work-stealing Scheduler for X10’s Task
Parallelism with Suspension. In Principles and Practice of Parallel Program-
ming (PPoPP), pages 267–276, New Orleans, Louisiana, USA, 2012. ACM.

[74] B. K. Totty and D. A. Reed. Dynamic Object Management for Distributed Data
Structures. In International Conf. for High Performance Computing, Network-
ing, Storage and Analysis(SC), pages 692–701, Minneapolis, Minnesota, USA,
1992.

[75] T. Wen, J. Su, P. Colella, K. Yelick, and N. Keen. An Adaptive Mesh Re-
finement Benchmark for Modern Parallel Programming Languages. In Interna-
tional Conf. for High Performance Computing, Networking, Storage and Anal-
ysis(SC), pages 40:1–40:12, Reno, Nevada, 2007.

[76] G. Wilson. Assesing the Usability of Parallel Programming Systems: The
Cowichan Problems. In IFIP Working Conference on Programming Envi-
ronments for Massively Parallel Distributed Systems, pages 183–193, Basel,
Switzerland, 1993.

66

[77] J. M. Wozniak, T. G. Armstrong, K. Maheshwari, E. L. Lusk, D. S. Katz,
M. Wilde, and I. T. Foster. Turbine: A Distributed-memory Dataflow Engine
for Extreme-scale Many-task Applications. In Workshop on Scalable Workflow
Execution Engines and Technologies, pages 5:1–5:12, Scottsdale, Arizona, 2012.

[78] B. Wu, M. Zhou, X. Shen, Y. Gao, R. Silvera, and G. Yiu. Simple Profile
Rectifications Go a Long Way - Statistically Exploring and Alleviating the
Effects of Sampling Errors for Program Optimizations. In European Conference
on Object Oriented Programming, pages 654–678, 2013.

[79] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. A Tagless Coher-
ence Directory. In Symposium on Microarchitecture, pages 423–434, New York,
NY, USA, 2009.

[80] Y. Zhu and L. J. Hendren. Communication Optimizations for Parallel C Pro-
grams. In Conference on Programming Language Design and Implementation,
pages 199–211, Montreal, Quebec, Canada, 1998.

67

	Overview
	Research Goals
	Contributions
	Outline

	Preliminaries
	The APGAS Model
	X10
	Places
	Activities
	Global References
	Distributed Arrays
	Load Balancing

	Shared-Variable Coherence
	The X10Protocol

	Related APGAS Languages

	Locality-Aware Task Migration
	Selection of Tasks for Migration
	Locality-Flexible Tasks in Applications

	Migration of Locality-Flexible Tasks
	Work Dealing
	Work Stealing

	Experimental Evaluation
	Experimental Setup
	Results and Discussion

	Limitations
	Related Work
	Summary

	Optimizing Shared-Variable Accesses
	Shared-Variable Access Patterns
	Directory-based Coherence Protocol for X10
	Directory and Shared-Variable States
	DirCoPX Optimization Strategies
	DirCoPX Protocol Operation
	Augmented DirCoPX for Migratory Data

	Framework for Pattern Detection and Optimization
	Profiling Variable Accesses
	Coherence-Policy Manager
	Switching Between Coherence Protocols
	Relieving Programmers from the Coherence Burden

	Experimental Evaluation
	Experimental Setup
	Results and Discussion

	Related Work
	Summary

	Stratified Sampling for Even Workload Partitioning
	Preliminaries
	Problem Formulation
	Chen's Stratified Sampling

	WPS: Workload Partitioning & Scheduling
	Sampling
	Estimating
	Partitioning
	Distributing

	WPS Accuracy
	Application Problem: An Example
	Experimental Evaluation
	Experimental Setup
	Results and Discussion
	Asynchronous IDA*

	Related Work
	Summary

	Conclusions and Future Work
	Bibliography

