
Efficient Memory Hierarchy Utilization for Matrix
Multiplication and Convolution on CPUs

by

Ivan Korostelev

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Ivan Korostelev, 2022

Abstract

Matrix multiplication is a key operation both in high-performance computing

and in deep-learning applications. Generic building blocks have been introduced

to abstract a matrix-multiplication operation and to enable the generation of

efficient code for multiple architectures. This thesis presents three solutions

to create software stacks that connect user-level code with the use of these

building blocks. The first one uses pattern recognition at the intermediate

representation level to discover matrix routines and replace them with efficient

hand-crafted implementations that exist in numerical libraries. The second

solution is a compiler-only code-generation path for matrix multiplication that

targets multiple platforms. The third one is a novel convolution algorithm that

replaces the traditional image-to-column data transformation with a custom

cache-utilization strategy. Common to all three solutions are the use of generic

building blocks that are target agnostic and the focus on making efficient use

of the memory hierarchy of each machine.

The first solution, KernelFaRer, is a compiler optimization pass that

searches the source code for linear algebra routines, such as matrix multiplica-

tion and rank-2 matrix update, and replaces these occurrences with efficient

library implementations. KernelFaRer operates on the LLVM’s intermediate

representation language which makes the tool source-language agnostic and

granular enough to recognize complex data dependency patterns. In comparison

with other pattern matching approaches, KernelFaRer is more robust and

carries less compilation time overhead.

ii

The second solution brings the ideas for efficient matrix multiplication from

high-performance libraries into a production LLVM compiler. The evaluation

study shows that this approach delivers performance matching that of the high-

performance libraries. This approach allows efficient linear algebra algorithms

before high-performance libraries officially release them, as was the case for

the IBM POWER10™ architecture.

The third solution, YaConv, is a novel convolution algorithm that re-

purposes the building blocks for matrix multiplication from a popular high-

performance library. The custom cache utilization strategy reduces the number

of cache accesses by 5× and achieves mean speedup of 15% over the standard

im2col-based convolution. Moreover, by integrating placement of elements

into cache with their use by vector instructions, the new algorithm requires only

a constant buffer of the size of cache, as compared to huge memory consumption

of the traditional convolution algorithms.

iii

Preface

Chapter 3 of this thesis was published as J. P. L. De Carvalho, B. Kuzma, I.

Korostelev, J. N. Amaral, C. Barton, J. Moreira, and G. Araujo, “KernelFaRer:

Replacing Native-Code Idioms with High-Performance Library Calls”, ACM

Transactions on Architecture and Code Optimization, Volume 18, Issue 3,

September 2021. My role on the project was to reduce false negatives of the

pattern matching tool for GEMM, extend it to SYR2K and find the cause for

false negatives in matcher results from LLVM Polly. The core of the matcher

design was developed by J. P. L. De Carvalho and B. Kuzma. J .N. Amaral

and G.Araujo were the supervisory authors and contributed to guiding the

experimental evaluation and editing the resulting manuscript. C. Barton and J.

Moreira were the IBM collaborators and participated in technical discussions.

Chapter 4 of this thesis has been submitted for publication as B. Kuzma,

I. Korostelev, J. P. L. De Carvalho, J. Moreira, C. Barton, G. Araujo, J.

N. Amaral, “Fast Matrix Multiplication via Compiler-only Layered Data Re-

organization and Intrinsic Lowering”. I was responsible for developing the

matrix multiplication algorithm, together with B. Kuzma, who developed the

target-specific part of the code. I was also responsible for literature review

and helped J. P. L. De Carvalho perform the experimental evaluation and

report the results. C. Barton and J. Moreira were the IBM collaborators and

participated in technical discussions. G.Araujo and J .N. Amaral were the

supervisory authors and contributed to guiding the experimental evaluation

and editing the resulting manuscript.

Chapter 5 of this thesis has been submitted for publication as I. Korostelev,

J. P. L. De Carvalho, J. Moreira, J. N. Amaral, “YaConv: Convolution with Low

Cache Footprint”. I was responsible for designing and developing the algorithm,

iv

performing the experimental evaluation, literature review and drafting the

manuscript. J. P. L. De Carvalho contributed to algorithm design and the

resulting manuscript. J. Moreira provided knowledge on the architectural design

of IBM machines and helped with running the experiments. J .N. Amaral was

the supervisory author and contributed to guiding the experimental evaluation

and editing the resulting manuscript.

v

To my dad, for the discipline.

To my mom, for the unconditional love.

vi

The only way to do great work is to love what you do.

– Steve Jobs

vii

419 > 420

viii

Acknowledgements

I thank my supervisor, Dr. J Nelson Amaral, for teaching me how to speak. I

appreciate the many times he has pushed me to do things the right way and

not cut the corners.

I thank my friend João for the insightful conversations on computers, a

gentle introduction to LLVM and many cool tips and tricks.

I thank Karoĺına for the support she offered during the slow-progressing

periods of my thesis.

I thank my friends Cody, Batyr, Logan, Wilson, Tomas and João who have

always offered a great company to relax from work.

I thank Ford Motor Company for making a great Lincoln Town Car which

let me explore the Canadian Rockies and reset my mind so many times.

Thanks to everyone who joined me outdoors!

I thank my colleague Braedy Kuzma for his help with algorithm develop-

ment.

I thank the IBM collaborators, José Moreira and Kit Barton, for providing

their knowledge of the IBM hardware and infrastructure.

I thank Dr. Guido Araujo and Victor Ferrari for the conversations that

shaped my work on convolution.

This research has been funded in part by the IBM Center for Advanced Stud-

ies (CAS) Canada and Graduate Research Assistantship Fellowship (GRAF).

ix

Contents

1 Introduction 1

2 Background 3
2.1 Outer Product . 3
2.2 Accelerators With Outer and Inner Product 5

2.2.1 Matrix-Multiply Assist in POWER10 5
2.2.2 Accelerators With Inner Product 7

2.3 Convolution Notation . 8

3 KernelFaRer: Replacing Native-Code Idioms with
High-Performance Library Calls 9
3.1 Pattern Matching Idioms . 11

3.1.1 Programming Idioms . 11
3.1.2 Pattern Matching in LLVM IR 12
3.1.3 General Matrix-Matrix Multiplication 13

3.2 An Idiom Recognition and Replacement Pass 15
3.2.1 GEMM Pattern Matching (Phase 1) 16
3.2.2 Data-Dependence Analysis 23
3.2.3 Idiom Rewrite . 26

3.3 Experimental Evaluation . 27
3.3.1 Experimental Setup . 27
3.3.2 Performance Comparison 31
3.3.3 Robustness of Pattern Matching 32
3.3.4 Flexibility . 35
3.3.5 Effect on Compilation Times 36

3.4 Concluding Remarks . 37

4 Fast Matrix Multiplication via Compiler-only Layered Data
Reorganization and Intrinsic Lowering 38
4.1 Code Generation for GEMM . 41

4.1.1 Macro-level Algorithm: blocking, tiling and packing . . 43
4.1.2 Micro-Level Algorithm 47
4.1.3 Other Data Types . 51
4.1.4 Arbitrary Values for nr, mr, kr and Access Order . . . 52

4.2 Experimental Evaluation . 53
4.2.1 Performance Comparison Against Other Compiler-Only

Approaches . 56
4.2.2 Performance Comparison Against High-Performance Li-

braries . 59
4.2.3 MMA intrinsic . 62

4.3 Additional Opportunities . 64
4.3.1 Macro-level strategy for other BLAS kernels 64
4.3.2 Targetting other matrix engines 65

x

4.4 Concluding Remarks . 66

5 YaConv: Convolution with Low Cache Footprint 68
5.1 Cache Inefficiencies of Previous Algorithms 70

5.1.1 Convolution With im2col Transformation 70
5.2 YaConv . 72

5.2.1 Extra Memory Usage 74
5.2.2 Tiling and Block Sizes 75

5.3 Comparing YaConv with im2col on Multiple Machines 76
5.3.1 Experimental Methodology 77
5.3.2 Performance on PyTorch Layers 78
5.3.3 YaConv Performance Varies with Image Sizes 80
5.3.4 YaConv Improves L3 Cache Performance 82

5.4 Concluding Remarks . 84

6 Related Work 86
6.1 A Brief History of Idiom Matching 86
6.2 Compiler Approaches to Memory Access Optimization 89

7 Conclusion 92

References 94

xi

List of Tables

2.1 Matrix Math Assist (MMA) instruction summary. 6

3.1 Access offset expressions for all combinations of column-major
(CM) and row-major (RM) order. 21

3.2 Conditions to determine the access orientation. 22
3.3 Machine configuration used in the evaluation. 27
3.4 Comparison of pattern matching tool robustness to different

patterns. KernelFaRer is the presented method. Cells marked
“X” indicate that the tool recognized and replaced the kernel
idiom. “M” indicates instances where the tool only matched the
kernel but was not able to replace it. 33

3.5 Comparison of time spent in LLVM passes implementing a
GEMM & SYR2K detection method. Times are in milliseconds. 34

4.1 Machine configuration used in the evaluation. 54
4.2 Matrix multiplication extensions comparison. 66

5.1 Clockrate, cache sizes and output tile dimensions of the GEMM
microkernel of the machines used for the experiments. L1 and
L2 cache sizes are per core. L3 size is followed by the number of
cores sharing L3 cache. 76

5.2 Values for selected convolution parameters from 218 layers in
PyTorch, from most to least common. 77

xii

List of Figures

2.1 GEMM as outer product . 4
2.2 Convolution Notation and an Example of Naive Convolution . 8

3.1 (a) Idiom of finding the length of a string and (b) returning the
minimum of 2 numbers. 12

3.2 (a) Double negation example; (b) Tree representation of (a); (c)
Matcher and replacement code; and (d) Pattern matched. . . . 13

3.3 CBLAS interface for double-precision GEMM. 14
3.4 (a) Memory access of GEMM in source code; (b) colum-major

access order; (c) row-major access order; (d) Simplified LLVM
IR code of the innermost loop in (a) (Code in (b) and (c) is in
C/C++). 17

3.5 (a) Matcher of a store of GEMMReduction into matrix C; (b)
GEMMReduction matcher; and (c) Matcher for an array access. 18

3.6 (a) Näıve GEMM; (b) symmetric rank-2k operations (syr2k);
and (c) Multiresolution analysis kernel (doitgen). 25

3.7 The speedup of benchmarks when compared to the same bench-
mark run at -O3 on the respective platform. 30

3.8 The ratio of runtimes of OpenBLAS and vendor libraries . . . 32
3.9 The speedup relative to each hand optimization by replacing

GEMM in each platform. 34

4.1 Outer-product (rank-1 update) operation. 41
4.2 Tiling and packing for llvm.matrix.multiply. 44
4.3 Division of CNewTile into MMA accumulators. 49
4.4 Speedup over PLuTo for small SGEMM in each platform. 57
4.5 Speedup over PLuTo for medium SGEMM in each platform. . . . 57
4.6 Speedup over PLuTo for large SGEMM in each platform. . . . 58
4.7 Execution time of small SGEMM in each platform. 60
4.8 Execution time of medium SGEMM in each platform. 60
4.9 Execution time of large SGEMM in each platform. 61
4.10 (a) Speedup over BLAS of small SGEMM on POWER10 with

MMA; (b) Contrasting VSX and MMA performance of SGEMM
kernel on POWER10. 64

5.1 im2col convolution . 71
5.2 The novel YaConv algorithm 73
5.3 Ratios for L1 cache, branches and GFLOPS between YaConv

and im2col on layers from PyTorch across four machines . . 79
5.4 Varying image size H = W and number of input channels with

fixed M = 200, Fh = Fw = 3, Ph = Pw = 1 on Intel® Cascade
Lake™ . 81

xiii

5.5 L3 cache usage and GFLOPS on PyTorch layers on Intel®

Cascade Lake™ . 83
5.6 Varying the number of input and output channels with fixed

image and filter size on Intel® Cascade Lake™ 84

xiv

List of Acronyms

AI Artificial Intelligence

AMX Advanced Matrix Extensions

BLAS Basic Linear Algebra Subprograms

CNN Convoutional Neural Network

CPU Central Processing Unit

GEMM General Matrix Multiplication

HPC High-Performance Computing

IR Intermediate Representation

LLVM Low-Level Virtual Machine

MLIR Multi-Level Intermediate Representation

MMA Matrix Math Assist

SIMD Single Instruction, Multiple Data

TLB Translation Lookaside Buffer

VSX Vector-Scalar Extension

xv

Chapter 1

Introduction

The Artificial Intelligence (AI) resurgence of the last decade has increased

demand for both server-grade and mobile computing power. Convoutional

Neural Network (CNN) is the central algorithm for pattern recognition tasks,

such as image classification, speech processing and language translation. More

than 95% of the CNN training and inference time is spent in matrix mul-

tiplication of the fully-connected and convolutional layers [55]. Numerous

engineering and data processing algorithms, such as matrix decomposition,

Principal Component Analysis (PCA) and k-Means continue to heavily rely

on matrix multiplication. To meet the surging demand, major chip vendors

integrate new hardware solutions for matrix operations. IBM® POWER10

features MMA units which are intended to accelerate matrix operations on data

of any type stored in vector registers [84]. Intel® introduced Advanced Matrix

Extensions (AMX) designed to work on 8- or 16-bit matrix data stored in

two-dimensional registers, called tiles [61]. The differences in matrix accelerator

unit implementations in the hardware trickle down the software stack. With

more development in specialized hardware for AI, an explosion in the number

of code generation paths will require new approaches.

For several decades, efficient code for the critical computational primitives

has been provided by specialized numerical libraries. With the explosion in the

variety of hardware architectures available on the market, the task of writing

up-to-date assembly code for each platform becomes unsurmountable. This

has spurred advances in the compiler technologies with Low-Level Virtual

1

Machine (LLVM) being the most prominent compiler infrastructure for domain-

specific applications. Polyhedral loop analysis, network graph optimizations

and heterogenous hardware code generation are all now avalaible as part of

LLVM. The flexibility of the project allows to add new architecture targets

promptly and efficiently. Multi-Level Intermediate Representation (MLIR),

a project based on the LLVM infrastructure, has already integrated Intel’s

recently-added Advanced Matrix Extensions and compiler developers have

integrated these changes in the exisiting numerical primitives [32].

2

Chapter 2

Background

General Matrix Multiplication (GEMM) is a standard routine from Basic Linear

Algebra Subprograms (BLAS) that has been optimized for over 40 years and

has close to peak performance implementations in the open-source libraries

such as BLIS and OpenBLAS [70], [94]. In mathematical notation, GEMM is

expressed by the formula:

C = β · C + α · A ∗B (2.1)

where α and β are scalars, AM×K and BK×N are the input matrices, and CM×N

is the output matrix. Most high-performance implementations of GEMM rely

on the seminal work of Goto and Geijn [35]. Peak Central Processing Unit

(CPU) performance for GEMM is achieved by a loop nest that optimizes data

cache and Translation Lookaside Buffer (TLB) locality and leverages an efficient

GEMM microkernel. Throughout the thesis, I refer to this algorithm as the

conventional GEMM algorithm.

2.1 Outer Product

Matrix multiplication is often introduced as the computation of multiple

inner products, as defined by the sum C[i][j] =
∑K

k=1A[i][k] · B[k][j]. Imple-

mentations of GEMM directly using this inner product form suffer from poor

reuse of loaded register values. Instead, the GEMM microkernel in BLAS

libraries is implemented as multiple outer product computations.

3

1

1

(a) One outer product update (b) GEMM microkernel is a rank-k up-
date

Figure 2.1: GEMM as outer product

Figure 2.1a shows one outer product update (rank-1 update) that computes

partial result Cmr×nr += amr×1 ∗ b1×nr . In each update, elements of the vector

amr×1 and elements of the vector b1×nr are loaded into vector registers. Either

elements of a or b are broadcast in registers to produce an operand tile of size

mr × 1 or 1× nr. The values in registers are multiplied and accumulated to

Cmr×nr . To compute the full GEMM, this step is repeated for each column of

Amr×k and each row of Bk×nr , as shown in Figure 2.1b.

Unrolling the loop along k dimension and prefetching the next elements are

commonly implemented to achieve better performance [35], [70], [94]. After

k-loop unrolling, several columns of A and rows of B are used for each update

to maximize vector-register utilization. Sizes mr and nr control the amount of

register reuse by the outer product update [35]. These two parameters depend

on the architecture and define the minimum GEMM size the microkernel will

compute at peak performance. In order to utilize the microkernel for the full

GEMM, a cache-aware strategy must tile the arrays into cache-sized buffers.

Moreover, the elements should be placed in the buffers in the order in which

they will be accessed by the outer-product updates, as shown in Figure 2.1b.

4

2.2 Accelerators With Outer and Inner Prod-

uct

Matrix multiplication and other linear algebra operations can be expressed as

a series of rank-k update operations. These operations compute the product

of an m× k matrix by another k × n matrix, accumulating the result into an

m × n matrix. When k = 1, the operation reduces to an outer product of

two vectors, of m and n elements, respectively as illustrated in Figure 4.1. A

rank-k update can itself be decomposed to a sequence of k outer products.

2.2.1 Matrix-Multiply Assist in POWER10

The MMA instructions were introduced in PowerISA 3.1 [50] as an extension

of the Vector-Scalar Extension (VSX) facility. IBM’s POWER10 processor is

the first to implement these new instructions and functional units that perform

two-dimensional matrix operations. MMA relies on 512-bit accumulator (ACC)

registers to represent matrices, which can be manipulated by BLAS-like rank-k

operations that consume vector registers as inputs. Each accumulator register is

associated with four of the architecture’s 128-bit vector-scalar registers (VSRs).

While an accumulator is being used for MMA instructions, the associated

VSRs are blocked from use. Up to eight of these accumulators can be use

simultaneously, leaving 32 of 64 VSRs available for use as vector registers.

Outer-products have high-computational density since they are two-dimensional

operations that compute mn element-wise operations from m + n input val-

ues. Therefore, they are the standard building block of high-performance

linear algebra frameworks such as OpenBLAS and Eigen. In processors with

one-dimensional vector instructions, the outer products are emulated using a

combination of broadcasting and element-wise multiply-add instructions. MMA

bypasses this emulation step by directly supporting outer product.

In the MMA rank-k update instructions, the updated matrix is stored in

an ACC, while the operand vectors (or matrices) are provided through VSRs.

The result matrix is either a 4× 4 matrix of 32-bit elements (floating-point or

5

Table 2.1: MMA instruction summary.

Input type Computation size Result
m× k · k × n shape and type

4-bit integer (i4) 4× 8 · 8× 4
4× 4
i328-bit integer (i8) 4× 4 · 4× 4

16-bit integer (i16) 4× 2 · 2× 4
brain-float (bf16) 4× 2 · 2× 4

4× 4
f32IEEE half-precision (f16) 4× 2 · 2× 4

IEEE single-precision (f32) 4× 1 · 1× 4

IEEE double-precision (f64) 4× 1 · 1× 2
4× 2
f64

integer) or a 4× 2 matrix of 64-bit floating point elements. The k is a function

of the input data type, which can vary from 4-bit integers (k = 8) to 32- or

64-bit floating-point numbers (k = 1). For all input data types of 32-bit or less,

the multiplying operands are represented by one VSR each. For 64-bit inputs,

one operand is represented by a pair of VSRs (4 × 64-bit elements) and the

other by a single VSR (2× 64-bit elements). A summary of the MMA rank-k

update instructions is shown in Table 2.1.

MMA can operate with several data types that have different sizes. More-

over, a single MMA instruction can accumulate multiple outer products depend-

ing on the size of the data elements. For instance, for a 32-bit data type, each

128-bit VSR contains four elements and the MMA instruction computes and

accumulates a single outer product into the 512-bit accumulator that contains

4× 4 matrix elements [7]. Following BLAS terminology, such an instruction

is called a rank 1 update [29]. However, for a 16-bit data type, each VSR

contains eight elements and the MMA instruction computes and accumulates

two outer products into the 4× 4-element accumulator, thus computing a rank

2 update. For 8-bit data types the instruction computes rank 4 updates and

for 4-bit data types it computes rank 8 updates. Table 2.1 shows the types

supported by MMA. The computation size indicates the size of each operand

and the rank of the update computed by an MMA instruction. For all types

with up to 32 bits the result in the accumulator is 16 32-bit values organized

in a 4× 4 grid. For f64 the accumulator contains 4× 2 elements of the matrix

and performs a rank 1 update.

6

2.2.2 Accelerators With Inner Product

IBM’s POWER10 MMA uses outer product as a base operation, which

allows for reuse of vector registers. In contrast, the Single Instruction, Multiple

Data (SIMD) processing unity of IBM’s Power9™ VSX, and early versions,

only feature inner-product operations. In the POWER10 MMA, after column

elements of a matrix A and row elements of a matrix B are loaded into VSRs,

each outer-product instruction computes a partial product of a piece of A × B.

Each VSR lane of an MMA accumulator holds accumulated partial products of

different cells of the resulting matrix C. Performing the accumulation in place

in MMA eliminates the need for any additional data movement. In contrast,

VSX inner product multiplies rows of matrix A by columns of matrix B which

were loaded into VSRs. Each lane of the resulting inner-product VSR has an

element-wise product. The final value of a cell of C is computed by adding each

VSR lane together, in what is called a horizontal reduction.

Horizontal reductions are more expensive than vertical reductions1 because

their latency is proportional to a SIMD vector length [92]. The across-lane

computation required for a horizontal reduction defeats the goal of parallel

computation on each SIMD lane in vectorization. To make a better usage of

vector instructions, efficient linear-algebra libraries, such as OpenBLAS [93] and

Eigen [38], emulate an outer-product computation by changing how the input

elements are loaded into SIMD vector lanes. This emulation technique consists

in broadcasting a single column element of matrix A over all SIMD lanes of a

vector register to multiply it with a vector register with row elements of B. This

strategy is more performant than direct inner-product matrix multiplication.

However, it wastes vector register space and reduces the utilization of the level

1 cache because neighboring elements that are already in the cache are not

readily loaded into registers.

Both Intel’s AMX [53] and Arm’s ME only support inner-product operations.

AMX computes a block of the resulting matrix C through an inner-product

1Also known as element-wise reductions.

7

1 2 3
4 5 6
7 8 9 17 18 19

14 15 16
11 12 13

822 912 1002

1272 1362 1452

1722 1812 1902

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

11
14
17

12
15
18

13
16
19

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

822 912 1002

1272 1362 1452

1722 1812 1902

...
1
4
7

2
5
8

3
6
9

1 2 3
4 5 6
7 8 9

1
4
7

2
5
8

3
6
9

*
Convolution

Matrix multiplication

Scalar multiplication

Dimension order in memory

(a) Notation

1 2 3
4 5 6
7 8 9

17 18 19
14 15 16
11 12 13

822 912 1002

1272 1362 1452

1722 1812 1902

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 2511

14
17

12
15
18

13
16
19

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

822 912 1002

1272 1362 1452

1722 1812 1902

... =

1
4
7

2
5
8

3
6
9

(b) Naive convolution example

Figure 2.2: Convolution Notation and an Example of Naive Convolution

multiplication of 2D tiles of matrix A and matrix B. Arm’s ME can emulate

outer product using the broadcasting technique used in libraries.

2.3 Convolution Notation

Convolutional neural networks consist of layers, each of which has a fixed

weight tensor. Each convolutional layer can be expressed by the formula:

WFh×Fw×C×M ⊗ IH×W×C = OHout×Wout×M (2.2)

where IH×W×C and OHout×Wout×M are the input and output tensors and

WFh×Fw×C×M is the weight tensor.

Figure 2.2a illustrates the tensor notation and the meaning of symbols ·,

*, ⊗, and × used throughout this thesis. A variable input to each layer is

the tensor IH×W×C that contains an image of height H, width W and the

number of input channels C. Shown in Figure 2.2a, a weight tensor has shape

Fh × Fw × C ×M and consists of M filters. Each filter is a tensor of shape

[Fh×Fw×C], where C is the number of channels, Fh is the height of the filter,

and Fw its width. The output tensor has dimensions [Hout ×Wout ×M], where

Hout and Wout are the output image height and width. Vertical and horizontal

padding Ph, Pw with zero-elements are typically applied to enlarge the input

image so that the output image is of the same size (Hout = H,Wout = W).

8

Chapter 3

KernelFaRer: Replacing
Native-Code Idioms with
High-Performance Library Calls

General matrix-matrix multiplication (GEMM) and symmetric rank-

2k update (SYR2K) are simple to implement naively but complex when

designed to optimize the memory hierarchy [35]. GEMM in particular is

idiomatic because it can be succinctly expressed and it exhibits a direct rela-

tion between implementation complexity and performance [74]. Most generic

compiler loop transformations fail to exploit specific features of programming

idioms such as GEMM [12], [37]. This chapter reaffirms that both sophisticated

programmers and compilers still do not generate code with the performance of

well-tuned libraries [34]. Thus, instead of optimizing an idiom, a compiler may

simply replace it with a call to a library such as the Basic Linear Algebra

Subprograms (BLAS) library [9]. These expertly crafted implementations

efficiently exploit the memory hierarchy and can deliver high throughput on

their target platform [22], [35], [93]. This chapter argues that idiom replacement

must be both robust and safe in order to be an effective solution.

Despite progress in recent research [18], [34], existing approaches for idiom

identification are brittle and fail to recognize minor variants of an idiom.

Existing solutions require intimate knowledge of polyhedral analysis [18] or of

a new domain-specific language that describes idioms [34]. They also have high

compilation time costs even when the target idiom is absent from the code

9

(see Section 3.3.5).

Our solution is a new optimization pass for the LLVM framework [64]. This

pass combines tree matching and idiom recognition [14], [68], [74], [75] with

a data dependence analysis to deliver a robust idiom recognition and a safe

replacement strategy. Previously, Carvalho et al. presented a work-in-progress

report of this compiler pass [15]. This solution extends tooling already present

in the LLVM framework and is fully integrated in this widely used compiler

framework. Therefore it will be easier to adopt, maintain and update. This

chapter also introduces the first, to the best of our knowledge, formulation of

an analysis that determines a GEMM matrix’s access order by matching the

induction variables used in the memory access (see Section 3.2.1). Access-order

detection is crucial to enable transparent and correct usage of high-performance

libraries.

This chapter makes the following contributions:

1. A robust idiom-recognition compiler pass that identifies many variants

of the GEMM and SYR2K idioms and replaces them with optimized

library calls (see Section 3.2 and Section 3.2.3). Kernel Finder &

Replacer (KernelFaRer)1 identifies both näive implementations and

hand-optimized variants of these idioms(see Section 3.3.3).

2. The first formulation of an analysis that determines a GEMM matrix’s

access orders by combining pattern matching and loop information anal-

ysis in LLVM Intermidiate Representation (IR) (see Section 3.2.1).

The same strategy was employed to match SYR2K’s access order.

3. An experimental evaluation that provides evidence that: (a) the pass is

robust and identifies many more idiom variants than other approaches;

(b) the addition to compilation time is significantly smaller; (c) the

increase in performance is consistent across architectures and libraries

(see Section 4.2).

The remainder of the chapter is organized as follows: Section 3.1 presents

1Source code available at https://github.com/jaopaulolc/KernelFaRer.

10

https://github.com/jaopaulolc/KernelFaRer

background material; Section 3.2 details how LLVM IR pattern matching and

optimized library call insertion are combined in KernelFaRer’s implementa-

tion; Section 4.2 describes the experimental setup and analyzes the performance

improvements achieved by the proposed approach when compared with current

solutions and manual library-based programming.

3.1 Pattern Matching Idioms

This section presents programming idioms in the context of pattern matchers

that target idioms in LLVM IR code and reviews how the GEMM operation is

typically programmed and optimized.

3.1.1 Programming Idioms

Programming idioms are recurrent constructs that express a computation,

can be easily recognized (by humans), and are simple to compose [74]. The

introduction of the array-oriented APL language in the 1960s [54] with concise

statements that exhibit high memory and high runtime complexity motivated

research on idiom recognition and selection [82]. Later, recognition of idioms

was used in many programming languages [14], [18], [34], [41], [44], [45], [60],

[68], [75]. Existing idiom-based approaches differ mostly on:

• the program representation — usually graph-based structures (e.g . data-

dependence graphs, expression trees);

• the matching algorithm (e.g . depth-first traversals or solver-based);

• the normalization constraints for the matching mechanism to work (e.g .

memory accesses must be affine) or to be more effective (e.g . common

subexpressions elimination);

• how idioms are expressed, either through a domain-specific language

(DSL) or programatically via a Visitor Pattern [72], and replaced (e.g .

code generation or employment of high-performance library).

11

f o r (i = 0; s[i]; i++);

(a)

(i < j) ? i : j;

(b)

Figure 3.1: (a) Idiom of finding the length of a string and (b) returning the
minimum of 2 numbers.

Idioms have concise syntax and convey common understanding of recurrent

computations [54]. For example, Figure 3.1(a) shows an idiom, written in C, for

finding the length of a string s. This example relies on the NULL byte at the end

of well-formed strings, a false value in C that terminates the loop. Figure 3.1(b)

shows how a ternary operator concisely expresses the min operation without

the need for if/else control flow. This chapter identifies larger idioms that

express an identifiable and well-known operation: GEMM. These idioms often

account for a significant portion of the execution time of an application and

their performance can be greatly improved by replacing them with calls to

fine-tuned libraries.

3.1.2 Pattern Matching in LLVM IR

The LLVM compiler framework has a PatternMatch namespace that pro-

vides a mechanism to build simple and efficient matchers for LLVM IR [64].

PatternMatch is used for static analysis (e.g . Demanded-Bits and Instruction-

Simplify analyses), code generation (e.g . Instruction Selection) and transfor-

mations (e.g . Instruction Combining). The code in Figure 3.2 illustrates how

PatternMatch can simplify instructions in the LLVM InstCombine pass.

Figure 3.2(b) shows the tree representation of the expression in the return

statement in line 3 of Figure 3.2(a). Figure 3.2(c) has a code excerpt from

the LLVM InstCombine pass that employs PatternMatch to simplify the

expression X − (−Y) into X + Y , shown as a tree in Figure 3.2(d) 2. In the

code of Figure 3.2(c), I references an fsub (floating-point subtract) instruction.

The method match(V, P) returns true if and only if the value V matches the

pattern P .

PatternMatch provides template methods that both describe IR patterns

2The code in LLVM uses a visitor for fsub instructions that only matches fneg.

12

1 f l o a t foo (f l o a t X, f l o a t Y)

2 {

3 r e t u r n X - (-Y);

4 }

(a)

fsub

X fneg

Y

(b)

1 // X - (-Y) => X + Y

2 i f (match(I,
3 m FSub(
4 m Value(X),
5 m FNeg(
6 m Value(Y)))))
7 {

8 r e t u r n CreateFAdd(X, Y, &I);

9 }

(c)

m_FSub

m_Value m_FNeg

m_Value

(d)

Figure 3.2: (a) Double negation example; (b) Tree representation of (a); (c)
Matcher and replacement code; and (d) Pattern matched.

and bind values in the pattern to pass variables. For example, the m FSub and

m FNeg methods shown describe the instructions fsub and fneg. The m Value

method matches and binds the left-hand side operand of fsub to X and the

single argument of fneg to Y . PatternMatch also provides flexible commutative

versions of matcher methods (e.g .m c FAdd3) that avoids cumbersome code

describing and testing two symmetric patterns. Within a basic block, LLVM

can find simple patterns used for instruction selection.

The LLVM LoopIdiomRecognize attempts to recognize two idioms —

memory-set and memory-copy — to replace the loop code with the llvm.memset

and llvm.memcpy intrinsics. Backends generate inline code or runtime library

calls for these intrinsics. The existing LLVM PatternMatch cannot be used in

the LoopIdiomRecognize pass because it is limited to the scope of a single basic

block. Instead, that pass employs only Data-Flow Analyses (DFAs) [1] to

identify and replace both memory idioms. KernelFaRer uses PatternMatch

to find loop idioms and DFAs to assess if the the transformations are legal.

3.1.3 General Matrix-Matrix Multiplication

General matrix-matrix multiplication (GEMM), already pervasive in linear

algebra computations [46], regained attention because convolution kernels

3 c indicates that the instruction to be matched (fadd) is commutative.

13

1 vo id cblas_dgemm (

2 const CBLAS_LAYOUT Layout ,

3 const CBLAS_TRANSPOSE transa ,

4 const CBLAS_TRANSPOSE transb ,

5 const i n t m, const i n t n, const i n t d,

6 const double alpha ,

7 const double *a, // A’s base address

8 const i n t lda , // and leading dimension

9 const double *b, // B’s base address

10 const i n t ldb , // and leading dimension

11 const double beta ,

12 double *c, // C’s base address

13 const i n t ldc); // and leading dimension

Figure 3.3: CBLAS interface for double-precision GEMM.

used in neural networks can be efficiently implemented using GEMM as a

primitive [19]. Formally, GEMM can be defined as follows.

Definition 1. Let A and B be matrices of dimensions M × D and D × N

respectively. Let α and β be any value in IR. The general matrix-matrix

product of A and B is a matrix C of dimensions M ×D such that:

C(i, j) = β · C(i, j) + α ·
D∑

k=1

A(i, k) ·B(k, j) (3.1)

Although a näıve implementation of GEMM is simple, seminal work by Goto

et al. shoroughly 80%ws that a fast GEMM must utilize the memory hierarchy

well [35]. Their approach splits the computation into blocks to increase data

reuse; and creates a matrix memory layout that increases temporal and spatial

access locality, a process called packing the matrices. The central idea is to

focus on the data movement from main memory, through caches, and into the

processor’s registers.

The GotoBLAS library [35] inspired other BLAS libraries. Processor-

manufacturer solutions include IBM’s Engineering and Scientific Subrou-

tine Library (ESSL) [49] and Intel’s Math Kernel Library (MKL) [51].

Manufacturers also contribute to OpenBLAS [70]. AMD’s version is the BLAS-

like Library Instantiation Software (BLIS) framework [94]. CBLAS is a

unified interface to these libraries for C languages [9].

Figure 3.3 shows the interface for double-precision GEMM. The Layout

specifies if the resulting matrix C is stored in row-major or column-major

order. The arguments transa and transb indicate if the matrices A and B

14

are transposed, allowing matrices in different storage orders to be multiplied

without the creation of copies. An idiom matcher (see Section 3.2) must deduce

the layout of the matrices being matched to obtain these first three parameters.

The matrix dimensions (m, n, and d) appear in line 5, followed by the scalar

factors α and β (lines 6 and 11), and the base address pointers (lines 7, 9, and

12). The leading dimensions (lines 8, 10, and 13) are the number of elements

in the first dimension of each matrix.

BLAS libraries rely heavily on direct use of assembly and thus are not

portable across platforms, thus the many versions of BLAS. In contrast,

Eigen [38] implements BLAS routines using C++ template meta programming

to hierarchically organize the decisions and the tuning for each platform. The

templates encode platform-specific information that allow the compiler to

choose a strategy that is tuned based on cache sizes, vectorization support and

other instruction-set-architecture features (e.g . fused multiply-add support).

Eigen also relies on code transformations available in modern compilers such

as GNU’s C/C++ Compiler (GCC) and Clang [21]. There is no routine

to call to compute GEMM in Eigen because it is a header-file only library

that defines builtin vector and matrix types. Computations are overloaded

operations on these types. Thus, the programmer needs to include the header

files providing Eigen’s types and operators and write C++ expressions of the

form: C = beta * C + alpha * A * B as per Definition 1. Using Eigen to

replace a GEMM idiom required the creation of a wrapper library encapsulating

Eigen code (see Section 3.2.3).

3.2 An Idiom Recognition and Replacement

Pass

This section presents KernelFaRer, an LLVM IR pass that performs id-

iomatic code rewrite and is integrated into LLVM’s standard optimization

pipeline. KernelFaRer is an independent IR pass that extends the LLVM

PatternMatch Application Programming Interface (API) (see Section 3.1.2)

with custom matchers to identify more complex idioms. KernelFaRer works

15

independently of other LLVM optimization frameworks like Polly, but it can

be of assistance to it or other paths to code generation. The description of this

pattern-matching extension is demonstrated in a GEMM case study. However,

the methodology is flexible enough to capture all IR constructs and thus enables

the description of many idioms. In fact, performance results with our prototype

implementation of a SYR2K matcher and replacer are discussed in Section 4.2.

A standard data-flow analysis is sufficient to determine if values computed in

the idiom are used elsewhere in the program and thus can also be extended to

other idioms.

The KernelFaRer’s algorithm can be divided into three phases as follows:

1. Identify candidates that match the target idiom through IR matchers

(see Section 3.2.1).

2. Check data dependences and isolate the matched code (see Section 3.2.2).

3. Replace the idiom with a call to a high-performance library (see Sec-

tion 3.2.3).

Phase 1 uses LLVM’s PatternMatch to identify IR code that matches the

target idiom. The data-dependence analysis in Phase 2 determines if the

replacement of the matched code with a library call is legal. This phase also

determines if code transformations, such as loop distribution or loop invariant

code motion, are needed to make the transformation legal.

3.2.1 GEMM Pattern Matching (Phase 1)

GEMM memory access patterns can be expressed in a higher-level programming

language as shown in Figure 3.4. The variables iv i, iv j, and ivk on line 1

of Figure 3.4(a) are induction variables of a level-three loop nest (or deeper).

The for loop syntax in Figure 3.4(a) indicates that the three loops can be

nested in any order. For any nesting order, the reduction on line 2 expresses

a GEMM. Parenthesis operators are used for indexing the arrays to indicate

that the elements of the array may be accessed either in column-major or in

row-major order. For instance, A(i, k) means that the element on the i-th

16

1 f o r (0 <= iv i < M; 0 <= ivj < N;

2 0 <= ivk < D)

3 C(iv i,ivj) += A(iv i,ivk) * B(ivk,ivj)

(a)

1 operator ()(iv1, iv2) {

2 r e t u r n *(addr + iv2 * ld + iv1);

3 }

(b)

1 operator ()(iv1, iv2) {

2 r e t u r n *(addr + iv1 * ld + iv2);

3 }

(c)

1 %41 = phi [%53 , %40], [0, ←↩
%25]

2 %42 = phi [%52 , %40], [0, ←↩
%25]

3 %43 = mul %41 , %17

4 %44 = add %43 , %23

5 %45 = getelementptr %4 , %44

6 %46 = load %45

7 %47 = mul %41 , %16

8 %48 = add %47 , %26

9 %49 = getelementptr %6 , %48

10 %50 = load %49

11 %51 = fmul %46 , %50

12 %52 = fadd %42 , %51

13 %53 = add %41 , 1

14 %55 = icmp eq %53 , %21

15 br %55 , %30 , %40

(d)
Figure 3.4: (a) Memory access of GEMM in source code; (b) colum-major
access order; (c) row-major access order; (d) Simplified LLVM IR code of the
innermost loop in (a) (Code in (b) and (c) is in C/C++).

row and k-th column is accessed. The implementation of the operators for

column-major order is shown in Figure 3.4(b) while the row-major access is

shown in Figure 3.4(c), where addr is the base address of an array and ld is

the leading dimension of the array. The dimensions of the matrices are: AM×D,

BD×N , and CM×N .

Identifying a GEMM idiom requires the identification of its two components:

the loop nest on line 1 and the reduction operation on line 2 of Figure 3.4(a).

The multiply-and-add operations of the reduction idiom appear on lines 11-12 of

the LLVM IR of the innermost loop nest shown in Figure 3.4(d). In this Static

Single Assignment (SSA) representation the result of each instruction is

assigned a unique value. Thus, each of the instructions in Figure 3.4(d) can be

referred to by its value V. For instance, the fmul in line 11 is uniquely identified

by the value %51 and the fadd in line 12 by the value %52. In general, when

presenting an algorithm that iterates over all the instructions in the body of a

loop L, this chapter will say “for all values V in L”.

A GEMMReduction is a multiply-add instruction sequence that satisfies the

following conditions: 1. it appears in the innermost level of a loop nest of at

least depth three; 2. the operands are memory accesses to arrays; 3. the address

17

1 template <typename MatcherType >

2 auto MatchStoreOfMatrixC(MatcherType GEMMReduction , Value C, Value

Alpha , Value Beta , PHINode iv1, PHINode iv2, Value LDC , Value GEP)

{

3 r e t u r n m Store(
4 OneOf(ScaledVOrV(Alpha , GEMMReduction),

5 ScaledVOrV(Beta , m_PHI(m Value(), GEMMReduction)),

6 m c FAdd(ScaledVOrV(Beta , m Load(GEP)),
7 ScaledVOrV(Alpha , m_PHI(m Value(), GEMMReduction)

))),

8 ArrayAccess(C, iv1, iv2, LDC));

9 }

(a)

1 i n l i n e auto GEMMReduction(Value AddLHS , Value MulLHS , Value MulRHS ,

PHINode ivA
1 , PHINode ivA

2 , PHINode ivB
1 , PHINode ivB

2 , Value Alpha ,

Value LDA , Value LDB) {

2 r e t u r n MultiplyAdd(

3 Alpha , AddLHS , m Load(ArrayAccess(MulLHS , ivA
1 , ivA

2 , LDA)),

4 m Load(ArrayAccess(MulRHS , ivB
1 , ivB

2 , LDB));

5 }

(b)

1 auto ArrayAccess(Value Op, PHINode iv1, PHINode iv2, Value LD) {

2 r e t u r n OneOf(

3 m_GEP(m Load(m_GEP(Op, m_PHI(iv2))), m_PHI(iv1)),

4 m_GEP(m_GEP(Op , PHITimesLD(iv1, LD)), m_PHI(iv2)),

5 m_GEP(m_GEP(Op , m_PHI(iv2)), PHITimesLD(iv1, LD)),

6 m_GEP(Op, m_PHI(iv1), m_PHI(iv2)),

7 m_GEP(Op, AffineFunctionOfPHI(iv1, iv2, LD));

8 }

(c)

Figure 3.5: (a) Matcher of a store of GEMMReduction into matrix C; (b)
GEMMReduction matcher; and (c) Matcher for an array access.

of the memory accesses are affine expressions of the form addr+ivx×ld+iv y,

where ivx and iv y are index variables in the loop nest and addr is a loop-

invariant expression — either the base address of a matrix or the base address

or a block within the matrix; and 4. the combination of induction variables

used in the address expressions is one of the combinations shown in Table 3.1.

The first component of the pattern, loop nests, are identified using LLVM’s

LoopInfo analysis pass. LoopInfo provides a consistent way to retrieve loop

information from the IR of a program, such as the nesting level of a given loop.

The second part of the pattern, GEMMReduction, cannot be identified with

the existing LLVM PatternMatch API. Therefore, KernelFaRer extends

PatternMatch by adding new matchers and new constructs for matching

more complex patterns. Figure 3.5 shows the main patterns contributed by

18

KernelFaRer, those printed in red are the proposed extensions and those in

black are the existing constructs. The main pattern that matches a store of

a GEMMReduction to the destination matrix C is shown in Figure 3.5(a), a

similar pattern was created to match SYR2K reductions.

KernelFaRer introduces the OneOf combiner construct to allow a list of

multiple matchers, which usually represent subtle variations in a target pattern,

to be tested in turn. OneOf only returns a successful match if one of the

provided sub-matchers match the underlying piece of LLVM IR. This construct

is widely used in KernelFaRer extensions to facilitate the description of

variations in the target pattern. PatternMatch provides basic disjunctive and

conjunctive nodes. Disjunction nodes allows the capturing of idioms with

polymorphic components. Conjunction nodes allow further specification and

pattern component constraints. Combining OneOf with these nodes makes

KernelFaRer pattern matcher more robust. For example, ScaledVOrV (s ,V)

uses the disjunctive node to match either s ∗ V or V , where V is any value

represented by a KernelFaRer & PatternMatch matcher.

Figure 3.5(b) shows the matcher that captures the GEMMReduction itself,

where MultiplyAdd matches expressions of the form α ∗A ∗B.4 ArrayAccess,

shown in Figure 3.5(c), is the matcher that identifies accesses to arrays in

different representations. Lines 3-6 are the sub-matchers representing dif-

ferent variants of access to 2D arrays, while in line 7 the matcher iden-

tifies flat-arrays. m GEP and m PHI match their respective IR instructions,

namely getelementptr and φ-nodes. Flat-arrays have indexing expressions

that are affine functions of loop induction variables and such expressions are

matched with AffineFunctionOfPHI. 2D-array accesses have an idiomatic

expression that multiplies an induction variable by a matrix leading dimension.

PHITimesLD captures two variants of this idiom, thus matching wether the

multiplication is performed by a multiply (mul) or by a shift-left (shl) LLVM

IR instruction.

4α is optionally matched by using PatternMatch’s disjunctive node.

19

Algorithm 1 LLVM IR Pass to find GEMM candi-
dates.
1: function findGemmIRPass(Function F, LoopInfo LI)
2: LoopList ← findInnerDeepLoops(F, LI)
3: for all Loops L in LoopList do
4: for all Values V in L do
5: if GemmPattern.Match(V) then
6: IVList ← {ivA

1 , ivA
2 , ivB

1 , ivB
2 , ivC

1 , ivC
2 }

7: (OrderList, iv i, iv j , ivk) ← MatrixAccessOr-
der(IVList)

8: (M, N, D) ← LoopsUpperBound(LI, iv i, iv j , ivk)
9: if AllGemmValuesFound() then

10: A ← Matrix(OrderList, M, N, D)
11: B ← Matrix(OrderList, M, N, D)
12: C ← Matrix(OrderList, M, N, D)
13: Gemm ← (L, IVList, A, B, C)
14: Candidates.insert(Gemm)

15: function match(Value V, Pattern P)
16: return P.match(V)

17: interface Pattern<T>::match(Value V)
18: function Pattern<FAdd>::match(Value V)
19: AddOper0 ← V.getOperand(0)
20: AddOper1 ← V.getOperand(1)
21: return FAdd Match(AddOper0, AddOper1)

Algorithm to match a GEMM

The central idea of this chapter is that the loop information provided by the

compiler can be used to constrain the search for the target idiom’s components

to the places where it is possible for them to occur. In LLVM, the nesting

level, entry, exit, and latch basic blocks for each loop are available through

the LoopInfo pass. However, there are two limitations: (1) in a kernel that

has been optimized through blocking, the inner loops are not in canonical

form; and (2) the induction-variable information is only available for canonical

loops via the LoopInfo pass [64]. KernelFaRer’s solution is to combine

basic-block and loop-nesting information from LoopInfo with PatternMatch.

In LLVM IR, induction variables are lowered to φ instructions with at least

two incoming values: an initialization value; and a new value that comes from

the loop’s latch basic block. KernelFaRer’s general idiom recognizer uses

PatternMatch to match these φ instructions.

Algorithm 1 uses PatternMatch and the LoopInfo pass to identify GEMM

20

Table 3.1: Access offset expressions for all combinations of column-major (CM)
and row-major (RM) order.

Access Order Offset Expressions

C A B C A B

RM
RM

RM

iv i × ldC + iv j
iv i × ldA + ivk

ivk × ldB + iv j
CM iv j × ldC + iv i

RM
CM

iv i × ldC + iv j
ivk × ldA + iv i

CM iv j × ldC + iv i

RM
RM

CM

iv i × ldC + iv j
iv i × ldA + ivk

iv j × ldB + ivk
CM iv j × ldC + iv i

RM
CM

iv i × ldC + iv j
ivk × ldA + iv i

CM iv j × ldC + iv i

candidates. First, using the LLVM LoopInfo pass, find all innermost loops

that are nested at the third (or deeper) level and place these loops in a list

(line 2). Then, iterate over all instructions (value V in line 4) inside those

loops, invoking the method Match of a GemmPattern object on each one of

them. The generic interface for Match is shown in line 17, where T can be

any LLVM IR instruction type. Each instruction type in a pattern must have

an implementation for the Match interface. For instance, the implementation

of Match for FAdd for the GEMM pattern is shown on line 185. To find the

idiom, Match descends the IR tree matching the specified pattern.

Values from the IR are captured through matcher objects of type BindType.

GemmPattern contains such objects to capture, for instance, values associated

with a GEMM’s induction variables and memory address instructions.

Determination of the Matrix Access Order

A crucial step to replace a GEMM idiom with a call to a library is to determine

the access order used by the idiom for each matrix (Algorithm 1, line 7). These

access orders are required by the library call that will replace the detected

idiom (see Section 3.2.3). This analysis differs from the work of Wolfe et al.

where the iteration domain is analyzed to identify dependencies in a loop [71].

5The FAdd Match in line 21 is an algorithmic simplification of an object-oriented
code structure in LLVM. It abstracts the matching of both operands of a fadd instruction
referenced by V (line 18) using the FAdd Match object within GemmPattern.

21

Table 3.2: Conditions to determine the access orientation.

Access Order Equalities to derive access order of

A B A and B
C

RM CM

RM RM oA = lB lC = lA ∧ oC = oB lC = oB ∧ oC = lA

CM RM lA = lB lC = oA ∧ oC = oB lC = oB ∧ oC = oA

RM CM oA = oB lC = lA ∧ oC = lB lC = lB ∧ oC = lA

CM CM lA = oB lC = oA ∧ oC = lB lC = lB ∧ oC = oA

Here the goal is to identify the access order of each matrix in the target pattern.

Table 3.1 shows the offset expressions according to the access order of

the matrices assuming that the index variables are iv i, iv j, and ivk. When a

multiply-and-add operation that is a candidate to be a GEMM reduction is

encountered, the expressions for the access into the matrices are identified as

lC × ldC + oC , lA × ldA + oA, and lB × ldB + oB where lC is the index variable

for the leading dimension of matrix C and oC is the offset into that dimension

of C6. The same logic is applied to the matrices A and B. The access order

can be deduced by examining which of the index variables are identical in the

multiply-and-add idiom candidate.

Table 3.2 shows the equality conditions that determine the access order

for matrices A and B. For instance, if oA = lB, then both matrices A and B

are accessed in row-major order as shown in the first two rows of Table 3.1.

Given that all the possible combinations for access orders for a GEMM are

given in Table 3.1, it follows that if none of the equality constraints shown on

the second column of Table 3.2 are met, then the multiply-and-add cannot be

a GEMM reduction.

To illustrate how to determine the access order of C, let’s examine the two

top rows of Table 3.1 where both matrices A and B are accessed in row-major

order. There are two cases. If lC = lA and oC = oB then C is accessed in

row-major order. If lC = oB and oC = lA, then C is accessed in column-major

order. If neither of these conjunctions are satisfied, then the multiply-and-add

6lX and oX are also known as the angular and linear coefficients of a linear function, such
as those in indexing expressions used to access array elements.

22

is not a GEMM reduction. Similar sets of conjunctions can be written for the

other three combinations of access order for A and B as shown in Table 3.2.

This strategy can also be used to detect the access order of matrices in

other computational kernels (e.g ., SYR2K).

Loop Upper Bounds

The intuition to determine loop upper bounds is that the index variable of a

loop must be initialized prior to starting the execution of the loop and must be

updated within the loop body. Therefore, in the SSA representation there must

be a φ instruction that merges the initialization path with the update path

at the first basic block of a loop. First, add all φ instructions that are in the

first basic-block of the loops and that use iv i, iv j, or ivk to a work list. Then,

match each φ instruction in this list against a pattern tree that represents the

instruction sequence for the loop index update and loop comparison7. The

upper bound of a loop L is the operand compared with the value defined by

the φ instruction if the pattern belongs to the latch block of L. All GEMM

instances matched by GemmPattern that have a valid access order and for which

loop nests upper bounds can be determined are candidates for replacement

with a call to a library (see Section 3.2.3). Now, a data-flow analysis must

establish the legality of the transformation.

In the triangular iteration space of SYR2K two out of tree induction

variables are traversed in the same way as in GEMM and the third variable’s

(J) upper (lower) bound is dependent on another variable (I). To detect this

pattern, KernelFaRer checks for the presence of I in the φ instruction for J .

This detection method can be thwarted by the insertion of auxiliary induction

variables.

3.2.2 Data-Dependence Analysis

Idiom replacement must preserve program behavior, including writes to memory

and outputs. Also, any inner-loop code that is not part of the GEMM reduction

must be safely moved out of the loop nest. A liveness and side-effects analysis

7This instruction sequence is idiomatic of loop-exit conditions.

23

Algorithm 2 Data-Dependence Analysis IR Pass.

1: function AnalysisPass(Function F, Kernel K)
2: L ← K.getAssociatedLoop()
3: for all Instructions I in L do
4: if I ∈ K.Values or I ∈ K.Stores then continue
5: if I.mayWriteToMemory() then
6: return False
7: if I.mayHaveSideEffects() then
8: return False
9: for all Users U of Instruction I do

10: B ← BasicBlock of I
11: if B /∈ L then
12: return False
13: return True

of the use-def chains in the idiom’s loop nest can be combined to determine if

any intermediate value is live after the idiom or produces side-effects during

the computation. This analysis differs from the loop dependence analysis of

Wolfe et al. [71].

The Data-Dependence Analysis in Algorithm 2 receives the IR for a function

F and a Kernel object found within F. It returns a boolean indicating if the

idiom replacement is legal. At the matching stage, the algorithm gathers two

data structures. (K .Values) contains matrix pointers, offsets and intermediate

values; (K .Stores) contains the stores in the Kernel. These data structures

afford flexible access to the Kernel parameters and enable checking that the

only extra stores in the loop nest are initializations stores.

The Data-Dependence Analysis algorithm iterates over all instructions in

the kernel’s associated loop (line 3) skipping those that are in the kernel (line

4). If an instruction may store to memory (line 5) or produces side-effects such

as throwing an exception (line 7), return False. The algorithm also checks for

data flow from definitions in the kernel innermost loop to uses after the loop

(lines 9 - 12).

The kernels in Figure 3.6 illustrate when instructions may or may not be

moved out of a GEMM loop. Two of them, Figure 3.6(b) and (c), are from

benchmarks in PolyBench [77]. In spite of its simplicity, the näıve GEMM

implementation in Figure 3.6(a) cannot be directly rewritten because of the

24

1 f o r (l ong i = 0; i < M; i++)

2 f o r (l ong j = 0; j < N; j++) {

3 C[i][j] = 0.0;

4 f o r (l ong k = 0; k < D; k++)

5 C[i][j] +=

6 alpha * A[i][k] * B[k][j];

7 }

(a)

1 f o r (l ong i = 0; i < M; i++)

2 f o r (l ong j = 0; j < M; j++)

3 f o r (l ong k = 0; k < N; k++) {

4 C[i][j] +=

5 alpha * A[i][k] * B[j][k];

6 C[i][j] +=

7 alpha * B[i][k] * A[j][k];

8 }

(b)

1 f o r (l ong r = 0; r < R; r++)

2 f o r (l ong q = 0; q < Q; q++) {

3 f o r (l ong p = 0; p < P; p++) {

4 sum[r][q][p] = 0.0;

5 f o r (l ong s = 0; s < P; k++)

6 sum[r][q][p] +=

7 A[r][q][s] * C4[s][p];

8 }

9 f o r (l ong p = 0; p < P; p++)

10 A[r][q][p] = sum[r][q][p];

11 }

(c)

Figure 3.6: (a) Näıve GEMM; (b) symmetric rank-2k operations (syr2k); and
(c) Multiresolution analysis kernel (doitgen).

initialization of matrix C. This initialization must first be moved to a separate

loop because all high-performance libraries assume that matrix C is initialized

prior to calling the function that implements GEMM. Another possibility is

to simply delete the GEMM reduction store that is in line 5 and to insert a

library call at the exit-block of the loop nest — dead code can be removed

later by LLVM passes. Side effects in the initialization of the matrix C could

also prevent rewrite. KernelFaRer recognizes this idiom and replaces it if

no side-effects exist.

Figure 3.6(b) shows a symmetric rank-2k operation from the SYR2K kernel.

This kernel accesses matrix A in row-major order and B in column-major

order in line 4 and then matrix B in row-major order and A in column-major

order in line 5. C is accessed in row-major order. The replacement of the

idioms in SYR2K is safe and the access order is detected by the algorithm.

No copy operations are required because a matrix stored in row-major order

can be accessed in column-major order by specifying to the library that the

matrix is transposed. However, floating-point arithmetic is not associative

and, depending on the values in A and B, the result after and before the

transformation might differ for a given error tolerance. In this case there are

three options: 1. do not replace it; 2. replace it with two calls to cblas gemm if

the the user allows it; 3. replace it with a call to cblas syr2k. KernelFaRer

replaces this idiom with a call to cblas syr2k.

25

The multiresolution analysis doitgen kernel shown in Figure 3.6(c) has R

GEMM instances, one for each resolution r. The GEMM in each resolution

can only be rewritten after the update of row q in A with the values from

sum (lines 8-9) is moved to a new loop-Q after the original one (line 2). Loop

distribution is not currently available in KernelFaRer because LLVM only

distributes innermost loops.

3.2.3 Idiom Rewrite

The prototype of KernelFaRer evaluates two replacement options: a custom

library that leverages Eigen [38] or the CBLAS [9] interface, which is widely used

by OpenBLAS [93] and by vendor-specific libraries such as MKL [51], ESSL [49]

and BLIS8 [94]. This interface allows the evaluation of multiple libraries without

recompiling the program. CBLAS expects that matrices be stored contiguously

in memory, thus KernelFaRer does not replace any GEMM that access

the matrices through double pointer indirection, e.g .float**, because the

contiguity constraint cannot be proven. In addition, instaces where only sub-

blocks of 2D arrays are accessed to compute GEMM are also not replaced since

the contiguity constrain is violated.

Unlike BLAS, Eigen [38] uses a minimum amount of assembly code; is

portable; and supports all basic types from C/C++ languages, not just single

and double-precision floating-point types. KernelFaRer creates a slim wrap-

per routine for each data type in Eigen. Eigen heavily exploits C++ template

meta programming and other object-oriented features (e.g . polymorphism).

In Eigen’s template type hierarchy the compiler chooses which methods to

instantiate based on the target platform (see Section 3.1.3).

The following steps replace a GEMM-idiom loop nest with a library call:

1. insert a call instruction in the exit-block of the idiom’s loop nest. The values

captured in the matching phase (Section 3.2.1) are passed as arguments to the

library call; 2. delete the idiom’s store to the resulting matrix. This makes the

computations in the idiom’s loop nest dead-code, which can be removed by

8BLIS is actually an open-source project but AMD provides support and advertises it as
their platform-specific solution: https://developer.amd.com/amd-aocl/blas-library/

26

https://developer.amd.com/amd-aocl/blas-library/

Table 3.3: Machine configuration used in the evaluation.

Component/Feature Intel® IBM® AMD®

Processor 2x Xeon™ 8268 2x Power9™ 1x EPYC™ 7742
Cores/Threads 24/2 20/4 64/2
L1 instruction cache 32KiB 32KiB 32KiB
L1 data cache 32KiB 32KiB 32KiB
L2 (unified) 256KiB 512KiB 512KiB
L3 (unified+shared) 35.75MiB 10MiB 16MiB
RAM 755GiB 1TiB 995GiB
Memory bandwidth 131.13GiB/s 140GiB/s 190.7GiB/s
FMA Latency 4 7 5
FMA Throughput 2 2 2

LLVM passes scheduled afterwards. 3. run LLVM’s loop deletion, dead-code

elimination and CFG simplification passes.

3.3 Experimental Evaluation

This experimental evaluation assesses 1. the effect on performance of replacing

native code idioms with high-performance library calls on three platforms:

Intel x86, AMD x86, and IBM PowerPC (Section 3.3.2); 2. the robustness of

KernelFaRer’s pattern matching in comparison with Polly and IDL [34] (Sec-

tion 3.3.3); and 3. the effects of pattern matching and analysis on compilation

times (Section 3.3.5).

3.3.1 Experimental Setup

This section presents the detailed experimental setup, methodology, and all

tools used in the experimental evaluation presented next.

Machine Setup

This experimental evaluation uses the three platforms shown in Table 5.1 to

determine if the performance trends are platform specific 910. All platforms run

Linux with a 64-bit kernel at version 4.15.0-115-generic. The processor’s

frequency was locked to 3.5 GHz on the Intel machine and to 2.3 GHz on the

IBM machine. Issues with the acpi-cpufreq module prevent the locking of

9Core counts are per socket and thread counts are per core.
10Cache sizes are per core or per core pair.

27

the frequency on the AMD machine and thus the frequency fluctuates between

1.8 GHz and 2.2 GHz.

Compilation Pipeline

All benchmarks are compiled using Clang and LLVM tools from the pro-

prietary LLVM 12.x branch at -O3 with -mtune=native and the options

-march=native for x86 (Intel and AMD) and -mcpu=native for IBM PowerPC.

IDL [34] and KernelFaRer need to run prior to loop unrolling and vector-

ization passes. The solution is to disable these passes via -fno-unroll-loops

-fno-vectorize -fno-slp-vectorize before the idiom-identification pass

and to reenable them afterwards by running the opt LLVM tool using -O3.

All binaries, including the baselines, were compiled with -ffp-contract=fast

and -ffast-math for a fair comparison with libraries that assume a relaxed

floating-point contract.

Backends

This evaluation uses the following backends: BLAS (via the OpenBLAS imple-

mentation [70], [93]), Eigen [38], MKL [51], BLIS [94], and ESSL [49]. It uses

the latest stable release, from source, of BLAS11 and Eigen12. It uses the most

recent, pre-built, binaries available from the vendors for the platform-specific

backends — MKL13, BLIS14, and ESSL15.

Libraries are unmodified except for setting flags to enable multithreading.

The number of threads in each platform is chosen such that all computation is

performed on a single socket and no hyperthreading takes place. This criteria

results in 24 threads for the Intel platform, 64 for the AMD, and 20 for the

PowerPC (see Table 5.1). The same number of threads is used in each platform

for all backends.

11Default branch at 1f62a8278983f7afec8c9c28ecbb2f4892f7ce52.
12Default branch at b5df8cabd7b9dcaf3eb0ab93416f3f25352c55f2.
13Version 2020.0 build 20191122.
14Version 1.3 build 20190901.
15Version 6.2.1.

28

Polly

This evaluation uses the version of Polly available in the proprietary LLVM 12.x

branch. The target-specific instruction scheduling in Polly’s GEMM optimiza-

tion pass requires the following platform information: size and associativity of

first and second level caches; latency and throughput of vector fused multiply-

add instruction (FMA). This information was extracted from each vendor’s

software optimization guides [3], [48] and Agner Fog’s instruction tables [26] and

included the architecture-specific information in Table 5.1 For the evaluation,

Polly’s code uses the same thread counts as the other approaches. Even though

pattern-matching options are always enabled in Polly, it is only successful in

four out of seven programs (see Section 3.3.3).

IDL

IDL [34] does not provide a replacement pass (see Section 3.2.3). This evalua-

tion focuses on the idiom identification mechanism of IDL. The performance

improvement of replacing idioms identified by IDL should be the same as when

using KernelFaRer. Normally, IDL also has the ability to detect multiple

idioms at once, but in this evaluation, all other idioms have been disabled,

leaving only GEMM.

PolyBench

This evaluation uses all of the benchmarks in the PolyBench/C 4.2 benchmark

suite [77], a set of benchmarks originally curated for the testing of Polly.

Choosing the extra-large datasets ensures that the input and output matrices

do not fit in cache, thus allowing assessment of the cache and memory-hierarchy

awareness of each evaluated library and strategy. This study evaluated all the

benchmarks in the suite but presents results only for benchmarks where at least

one of the approaches recognized a GEMM pattern. Section 3.3.2 discusses the

impact on the other benchmarks.

29

gemm syr2k 2mm 3mm

Intel

0

500

1000

1500

2000

S
p
ee
d
u
p

BLAS
MKL

Polly

gemm syr2k 2mm 3mm

AMD

0

200

400

600

800

1000

1200

BLAS
BLIS

Polly

gemm syr2k 2mm 3mm

PPC

0

50

100

150

200

250

BLAS
ESSL

Polly

Speedup of Polybench Benchmarks

Figure 3.7: The speedup of benchmarks when compared to the same benchmark
run at -O3 on the respective platform.

Experimental Methodology

The methodology proceeds as follows. 1. Compile each benchmark, for each

platform, with aggressive optimization flags (see Section 3.3.1) using five

strategies: baseline, Polly, and replacement with BLAS, Eigen, and a platform-

specific library (MKL for Intel, BLIS for AMD, and ESSL for PowerPC).

2. Create a list containing all the executables. 3. Measure the execution time

of each element of the list once. 4. Randomize the list of executables before

the next set of measurements. 5. Repeat until there are twenty measurements

for each executable. This methodology ensures that changes to the execution

environment that may affect performance manifest in a higher variance between

executions of the same executable rather than introduce bias in the results of

the experimental evaluation. All speedups are relative to the platform-specific,

baseline application code compiled with -O3, and are the average of these

twenty measurements. The confidence intervals (95%) are computed using

Kalibera et al.’s formulation [59]. In addition to the traditional confidence

interval, this formulation adds a factor accounting for the ratio between the

actual and estimated (for lowest variance) repetition counts.

30

3.3.2 Performance Comparison

Figure 3.7 shows the speedup for each library or strategy for each of the

platforms for the four PolyBench/C 4.2 benchmarks where the idioms are

recognized and replaced. The outstanding performance of the BLAS libraries

is due to a macro/micro-level design strategy. Such strategy enables higher

performance gains with SYR2K than with other kernels as only half of the

output matrix is accessed.

KernelFaRer never negatively affects performance in the case where

no GEMM is detected because no transformation is imposed. Polly improves

performance of other benchmarks in the PolyBench/C 4.2 suite that do not

contain a GEMM idiom, but it occasionally causes a degradation. For instance,

the performance for atax is only 70% performance of the baseline in the AMD

environment.

Replacing a native GEMM idiom with a call to the BLAS library on

the Intel platform leads up to a 2000 times speedup for the 2mm benchmark.

Polly also produces non-trivial performance gains — up to 200× for SYR2K

on AMD. Polly only targets the first two levels of cache but the third-level

cache is significantly larger (see Table 5.1) and its effective utilization is key

for performance [35]. Polly also only applies thread-level parallelism to the

outermost loop in a GEMM [18] while the libraries implement a dynamic

run-time strategy to decide how to divide the GEMMReduction across multiple

threads [94]. Polly’s current GEMM-packing strategy could be improved by

carefully choosing packing parameters for multithreading [81].

In the results shown in Figure 3.7, OpenBLAS [70] outperforms MKL, BLIS

and ESSL, the vendor-specific solutions from Intel, AMD and IBM, respectively.

This result contradicts the expectation that the performance of vendor-specific

libraries should be on par with, or superior to, OpenBLAS. This is due to

the largest dataset sizes in PolyBench/c 4.2 — M = 2000, N = 2300, and

K = 2600 — not being in the optimal range for the vendor-specific libraries.

Figure 3.8 shows the ratio of running times between a vendor-provided library

(ESSL and MKL) and OpenBLAS. The results were measured for for matrix

31

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4
32
76
8

Matrix size

0

1

2

3

4

5

6

R
at
io

of
ru
n
ti
m
es

OpenBLAS / ESSL

gemm

syr2k

2mm

3mm

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4
32
76
8

Matrix size

0

1

2

3

4

5

6

R
at
io

of
ru
n
ti
m
es

OpenBLAS / MKL

gemm

syr2k

2mm

3mm

Figure 3.8: The ratio of runtimes of OpenBLAS and vendor libraries

sizes M = K = N = 2i, i ∈ [7, 15] and averaged over 10 runs. ESSL is up to 5×

faster for 3mm and on average 2× faster for GEMM and 2mm than OpenBLAS for

sizes smaller than 4K. The cblas syr2k routine is better optimized in OpenBLAS

than in ESSL, which explains the significantly poorer performance of ESSL.

PPC’s baseline binares (compiled with only -O3) also ran three times faster

than Intel’s baseline, which could explain its lower library speedups. MKL has

been optimised for larger matrix operations, visible in its consistent improvment

as dimension sizes increase. This is undoubtedly due to the insight that saving

a percentage of time from an operation that takes several hours to complete

is much more impactful than that same percent taken from one that takes a

fraction of a second. Starting with the matrix sizes of 4K, all libraries show

comparable performance for all kernels.

3.3.3 Robustness of Pattern Matching

Sophisticated programmers may attempt to improve the performance of a native-

code implementation of GEMM by applying source-code level transformations.

The BLISLab tutorial [47], made available by the Science of High-Performance

Computing Group [86], provides a sequence of increasingly more sophisticated,

32

Table 3.4: Comparison of pattern matching tool robustness to different patterns.
KernelFaRer is the presented method. Cells marked “X” indicate that the
tool recognized and replaced the kernel idiom. “M” indicates instances where
the tool only matched the kernel but was not able to replace it.

gemm syr2k 2mm 3mm S1 S2 S3 S4

KernelFaRer X X X X X X X M

Polly X X X X

IDL

high-level-code-only implementations of GEMM16. S0 is the simplest näıve

form of GEMM where neither α nor β are used, all matrices are accessed

in column-major order and can be expressed as C = C + A ∗ B. In S1 the

matrix A is transposed. In S2, instead of transposing A, the loop nest (i, j, k)

is interchanged to (j, k, i). S3 both interchanges the loop nest, as in S2, and

tiles the loop nest by 128, 64, and 128, respectively. S4 interchanges the loop

nest as in S2, tiles as in S3, and performs a gather operation to pack matrices

A and B into blocks of tiles. The values used for tiling and packing are chosen

to allow effective cache usage.

The more complex source code makes idiom recognition more challenging as

shown in Table 3.4. KernelFaRer idiom recognition is robust in comparison

with the two alternatives. Outside of the patterns in Polybench, the test suite

used in its development, Polly recognizes only S3. IDL’s recognition expects the

result of the GEMMReduction to be stored into a scalar variable that is then

later used to update the destination matrix — in all benchmarks the reduction

is performed directly into the destination matrix. IDL is not expressive enough

for the writing of an alternative specification to capture variants of GEMM.

Capturing such variants would require modifications to the DSL compiler.

This limitation highlights the brittleness of IDL’s approach: a programmer

must specify in a DSL the exact form of the code to be matched. A different

specification is need for each subtle variation in the way the pattern is written.

Operating in the LLVM IR, KernelFaRer avoids this gap between the

16Pattern matching assembly code is platform-specific and is out of the scope of this
chapter.

33

Table 3.5: Comparison of time spent in LLVM passes implementing a GEMM
& SYR2K detection method. Times are in milliseconds.

gemm syr2k 2mm 3mm S1 S2 S3 S4

KernelFaRer 26.1 31.1 30.6 31.5 99.0 99.0 99.5 102.4

Polly 348.0 225.1 898.2 1400.5 390.0 616.3 2130.3 3268.5

IDL 255.0 - 959.6 2204.7 40.8 40.7 50.0 451.5

S1

0

250

500

750

1000

1250

1500

S
p
e
e
d
u
p

(o
v
e
r
n
o
P
a
ss
)

S2

0

100

200

300

400

500

600

S3

0

50

100

150

200

250

300

350

S4

0.0

0.2

0.4

0.6

0.8

1.0

BLAS

EIGEN

MKL

POLLY

(a) Intel’s x86

S1

0

50

100

150

200

250

300

350

S2

0

25

50

75

100

125

150

175

S3

0

20

40

60

80

S4

0.0

0.2

0.4

0.6

0.8

1.0

BLAS

EIGEN

BLIS

POLLY

(b) AMD’s x86

S1

0

50

100

150

200

250

300

350

S2

0

20

40

60

80

S3

0

20

40

60

80

100

S4

0.0

0.2

0.4

0.6

0.8

1.0

BLAS

EIGEN

ESSL

POLLY

(c) IBM’s PowerPC

Figure 3.9: The speedup relative to each hand optimization by replacing GEMM
in each platform.

pattern description and the code to be matched because nodes in the pattern

tree are explicitly made to match LLVM IR.

Figure 3.9 shows that even when a programmer spends significant effort

to improve the source code of a GEMM kernel, highly specialized library

implementations still deliver significantly superior performance. Note the

different scales in the vertical axis of each of the graphs; the amount of work

required to calculate the GEMM does not change, so the only varying factor

is the effectiveness of the hand optimized version. For S4 KernelFaRer

identifies a GEMM reduction but the additional memory access needed to gather

tiles of matrices A and B lead the KernelFaRer analysis to conclude that it

is not safe to replace the GEMM idiom with library calls.

Polly improves the performance of the kernels S1 and S2 through loop

tiling, unrolling and fusion. In the case of S3 however, after applying GEMM

specific optimizations, Polly produces a result matrix C that differs from that

34

computed by Eigen and BLAS for the same input matrices A, B, and C17.

In addition to the programs listed in Table 3.4, we also created sixteen

variants of the GEMM idiom by varying the presence of the scaling factors

α and β, and the choice of first storing the result of the GEMM reduction

into a scalar variable or storing it directly into matrix C18. KernelFaRer

recognizes all 16 variants of GEMM; IDL only recognizes the four instances

that accumulate into a scalar; and Polly does not recognize any of these variant

as a GEMM. Polly always fails because all variants have an extra loop that

stores the expression C = β × C, or variants of it, generated by the compiler

to guarantee correctness for cases where the innermost loop trip count is zero.

No False Positives Occurred

An important question is whether or not KernelFaRer ever detects a GEMM

idiom where it does not exist. No such occurrences were detected while com-

piling the following benchmark suites: Rodinia 3.1 [17], SPEC CPU 2006 [43]

and 2017 [13], and Nekbone[25]. None of the approaches found any instances

of the GEMM idiom in these suites, though Nekbone already uses the CBLAS

interface to perform GEMM operations. Both its design and the compilation

of this extensive corpus of code provides confidence that KernelFaRer does

not detect a GEMM idiom when none exists.

3.3.4 Flexibility

The matching code for GEMM is largely reused to match SYR2K pointing

to the potential to extend this pattern matching approach to other kernels.

The flexibility of this pattern-matching approach is underscored in this demon-

stration because SYR2K is different from GEMM in two principal ways: two

matrix multiplication operations instead of one and a triangular output matrix

iteration space. Matching SYR2K requires additional checks for the induction

variables and their bounds and matrix layouts (similar to Table 3.1). Inte-

grating the SYR2K pattern in KernelFaRer consists simply of adding a

17A communication to the authors resulted in no response up to the time of this writing.
18All the code used in this evalution is part of an Artifact submitted together with this

manuscript.

35

match invocation to the if statement of the Algorithm 1. When extending the

matching to other kernels, developer’s time will be spent on filtering out false

positive cases (e.g., rectangular iteration space) and matching corner cases,

such as the addition of temporary variables by earlier compiler passes.

3.3.5 Effect on Compilation Times

Pattern matching consumes compilation time whether a program contains the

pattern or not. Using LLVM’s built-in pass-timing mechanism, this evaluation

applies each of the idiom recognition methods to each benchmark and sums

the wall-clock times for each of the passes added as part of the recognition

method. Some analysis or transformation passes that are already performed

for high levels of optimizations also support the recognition passes but these

are not included in the summation because they are performed whether or not

the idiom recognition is also performed. Table 3.5 shows the averages of 20

compilation-time measurements on PPC. Intel and AMD times differ by no

more than 20% on average. The presented times include the time it takes to

perform the corresponding pass (KernelFaRer, Polly or IDL) plus the time

for -O3 for KernelFaRer and Polly (because Polly requires -O3).

KernelFaRer has low impact in the compilation pipeline, scaling slowly

as the complexity of the program increases. IDL’s constraint solver method is

inherently more costly than tree matching and must also analyse all function

code, unlike KernelFaRer which knows that the idiom can only occur in

loops of at least depth three and so limits its scope. The times from IDL are

also solely for detection of the GEMM idiom because there is no replacement

strategy. The higher compilation time of Polly includes more than idiom

recognition as it also computes the polyhedral model of the loops, performs

extra transformations beyond idiom recognition, and finally code generation

back to IR. The additional compilation time in this evaluation are all from

singular compilation units; these impacts will be magnified in larger programs

or with more files. For instance, both PolyBench’s gemm and S1 are simple

GEMM kernels; the only difference between the two is that S1 transposes A.

However, a verification loop elsewhere in the file that prints the result matrix

36

in gemm significantly increases the compilation time for Polly and IDL.

As Table 3.5 shows, the time KernelFaRer spends to detect and replace

GEMM and SYR2K is about the same. This indicates that KernelFaRer’s

matching strategy runtime is not significantly affected by the complexity of

the kernel. Polly does not have a specific matcher for SYR2K, but it is able to

optimize SYR2K’s loop nests in 225ms. The compilation time for IDL is not

shown because, at the time of writing, there is no description of the SYR2K

idiom in IDL.

3.4 Concluding Remarks

This chapter presents KernelFaRer, an idiom recognizer coupled with a

data-flow analysis that finds and replaces idiomatic instances of a computing

kernel with calls to high-performance libraries. KernelFaRer is implemented

entirely within LLVM’s compiler framework and extends its PatternMatch

namespace to build a robust and effective tree-matching based pattern rec-

ognizer. The idiom recognition in KernelFaRer is robust: for GEMM it

recognizes many more idioms than state-of-the-art approaches, e.g. Polly and

IDL, including more complex instances of GEMM that were hand-optimized

following well-known source-code transformations. No false-positives were

produced when KernelFaRer analyzed extensive codebases from SPEC CPU

2016 & 2017, Rodinia, and Nekbone. This chapter also introduced a novel

strategy to identify the access order of matrices in LLVM IR. Access-order infor-

mation is central to correctly replacing kernels with calls to high-performance

Basic Linear Algebra Subprograms (BLAS) libraries. KernelFaRer is a

sophisticated idiomatic recognizer that only relies on standard data-flow anal-

ysis and extensions to tree-matching support in LLVM, a production-ready

compiler framework.

37

Chapter 4

Fast Matrix Multiplication via
Compiler-only Layered Data
Reorganization and Intrinsic
Lowering

New machine-learning algorithms, combined with the ever increasing demands

of scientific and business analytics applications, highlight the importance of

improving the performance of matrix algorithms and matrix multiplication in

particular [88]. General Matrix Multiplication (GEMM) is a routine heavily

used in high-performance computing and neural networks [90], both as a stan-

dalone operation and as a crucial component of other linear-algebra algorithms,

such as LU decomposition. As the typical matrix sizes in GEMM operations

for deep-learning workloads approach the order of 10,000 [79], efficiently par-

titioning the matrices to fit into the cache hierarchy is key to performance.

The state-of-the-art approach in high-performance numerical libraries uses a

layered approach for matrix multiplication that consists of (re)organizing the

data to improve data locality as it moves from the main memory through the

memory hierarchy and then relying on specialized assembly code to execute

the multiplications efficiently in each targeted architecture.

This layered method, explained by Goto and Geijn [35] and used in both

proprietary (e.g. Intel® MKL, IBM® ESSL) and open-source (e.g. Open-

BLAS [93], BLIS [87], Eigen [38]) highly-optimized libraries, consists of a

two-layer approach. First, a macro kernel performs tiling and packing of

38

the operand matrices across the caches. In a second layer, a micro kernel,

implemented by means of compiler builtins or direct assembly instructions,

extracts blocks from the packed tiles and executes the block multiplication.

This work contributes new ideas to both the macro and micro kernels.

Libraries have been successful in exploiting the memory hierarchy to perform

efficient matrix operations. However, they all share some drawbacks: 1. users

must download and install architecture-specific libraries; 2. each library needs

to be tailored by writing assembly code for every new architecture design;

3. manual changes to the users’ code are necessary to call the libraries; and

4. often there is a time lag between the introduction of a new architecture

and the creation of a specialized micro kernel for that architecture in a library.

Overcoming these drawbacks would lead to broader utilization of the layered

approach and of specialized micro kernels [90].

Linear-algebra libraries share similar code for matrix multiplication because

they all make use of the ideas described by Goto and Geijn [35]. This insight

leads to the first contribution of this chapter, which aims at capturing the

layered strategy described by Goto and Geijn in a compiler-only LLVM-based

optimization pass. Implementing the layered strategy as a general-purpose

compiler pass brings three benefits. 1. programs written in all languages that

are supported by the LLVM frontend (e.g., C, Fortran, Go, Rust) can leverage

the strategy when there is no library interface or a library implementation is

outdated; 2. the tiling and packing code, which is common to all libraries, is

automatically generated by the new compiler pass; 3. the algorithm to lower

the LLVM intrinsic to architecture-specific micro-kernel code only needs to be

implemented once for each architecture.

The resurgence of machine learning also led to the introduction of application-

specific accelerators into general-purpose CPUs. Examples include Intel®’s

Advanced Matrix Extension (AMX) [53], Arm’s Matrix Extension (ME) [5] and

IBM POWER10’s Matrix Multiply Assist (MMA) [78], [84]. AMX is an off-core

accelerator with a dedicated register file that employs inner product operations

to compute in-register matrix multiply using novel tile registers [53]. New

instructions allow the CPU to communicate with AMX through an accelerator

39

command queue [53]. Both Arm’s ME and IBM’s MMA unit are on-core exten-

sions that use SIMD vector registers for input and output operands. However,

ME and AMX rely on inner products for multiplication, while MMA uses outer

products.

This heterogeneity of accelerators further complicates the hand optimization

of micro kernels that library developers must perform. In a compiler-only code

generation path, the adoption of LLVM’s intermediate representation (IR)

llvm.matrix.multiply intrinsic abstracts target-specific operations under a

clear interface reducing the need for specialized micro kernels to a single imple-

mentation of the intrinsic. This LLVM intrinsic computes the product of two

fixed-size matrices. LLVM provides a generic lowering algorithm that unrolls

the matrix-multiply computations to target-independent IR code. LLVM’s

backends can then further lower IR code to target-specific machine code for

any of the many backends supported. For instance, another contribution of

this chapter is a lowering algorithm of the LLVM llvm.matrix.multiply

intrinsic that efficiently utilizes the new MMA unit in POWER10. When

generating code for MMA this intrinsic computes a fast outer-product-based

matrix multiplication for the micro kernel.

Summarizing, this chapter makes the following contributions:

• An algorithm for a compiler-only, architecture-independent, tiling &

packing strategy for the macro kernel that improves upon the strategy

described by Goto et al. [35] (Section 4.1.1). The incorporation of

this algorithm in LLVM leverages all available backends for processor

architectures by building upon a compiler-intrinsic micro kernel instead

of a hand-crafted assembly micro kernel as in most high-performance

BLAS libraries;

• An algorithm to lower the LLVM llvm.matrix.multiply intrinsic (micro

kernel) to the new IBM MMA extension (Section 4.1.2). The specialized

code generated for MMA benefits not only the code generated by the

macro-level algorithm, but any compilation path that uses the intrinsic.

• A thorough experimental evaluation that shows that: 1. the proposed

40

× =

Figure 4.1: Outer-product (rank-1 update) operation.

macro-level algorithm, even when coupled with a generic intrinsic lowering,

can perform more than 22× faster – for small matrices on Intel®– and

more than 6× faster – for large matrices on POWER9™– than PLuTO[11],

a widely used polyhedral optimizer. 2. this compiler-only approach

generates code that is on-par with Eigen and 34% slower than BLAS on

Power9™; 3. coupling the macro-level algorithm with an MMA-specific

lowering of the llvm.matrix.multiply intrinsic in POWER10 achieves:

(a) more than 2.6× the performance of the VSX micro kernel; (b) 10%

more performance than BLAS for a small SGEMM and up to 96% of BLAS

peak performance for large SGEMM; (c) 83% faster code than Eigen for

large matrices.

An overview of the POWER10 Matrix-Multiply Assist (MMA) facility

follows in Section ??. Then, Section 4.1 describes the proposed code generation

approach, detailing the algorithms for the macro and micro kernels. Section 4.2

presents and analyzes the experimental results. Section 6.2 describes and puts

in perspective the works related to this chapter, and finally, Section 4.4 presents

conclusions.

4.1 Code Generation for GEMM

Algorithm 3 provides an overview of the computation of GEMM within our com-

piler pass. The code generation can be divided into two abstract levels: macro:

target-independent blocking and packing of matrices for faster memory access

and micro: small target-dependent kernel lowered from compiler-intrinsic calls.

A compiler-intrinsic-based micro kernel, instead of a hand-crafted assembly

micro kernel, enables the micro-kernel code to be (i) automatically optimized

— for instance via vectorization — and mapped — via instruction selection

— to efficient instructions in the target or (ii) generated by a lowering algo-

41

Algorithm 3 Algorithm overview for GEMM

1: for j ← 0, N, step nc do
2: for k ← 0, K, step kc do
3: pack(B, BPack, k, j, kc, nc, kr, nr, ”B”, ”Row”)
4: for i ← 0, M, step mc do
5: pack(A, APack, i, k, mc, kc, mr, kr, ”A”, ”Col”)
6: for jj ← 0, nc step nr do
7: for ii ← 0, mc, step mr do
8: AccTile ← 0
9: for kk ← 0, kc, step kr do

10: BTile ← loadTile(BPack, kk, jj, kr, nr, ldb)
11: ATile ← loadTile(APack, ii, kk, mr, kr, lda)
12: ABTile ← llvm.matrix.multiply(ATile, BTile, mr, kr, nr)
13: AccTile ← ABTile + AccTile

14: CTile ← loadTile(C, i + ii, j + jj, mr, nr, ldc)
15: if k == 0 then
16: CTile ← β×CTile

17: CNewTile ← α×AccTile
18: CTile ← CTile + NewCTile
19: storeTile(CTile, C, i + ii, j + jj, mr, nr, ldc)

rithm that aims to exploit target-specific instructions (See Section 4.1.2). The

macro-level strategy is inspired by the memory-hierarchy modelling described

by Goto and Geijn [35]. Nevertheless, our compiler-only macro-level algorithm

differs from Goto and Geijn’s seminal work on key aspects that better capture

modern CPU’s and accelerator’s features (See Section 4.1.1). Implementing

this strategy fully inside the compiler has advantages: 1. compile-time known

features of the target architecture — e.g. minimum vector-register length

— guide the automatic generation of tiling & packing code, contrasting with

hand-crafted and target-specific implementations in BLAS libraries; 2. a flexible

packing layout enables the use of either row or column-major tiles to match

the access order in the micro kernel; 3. defining tile sizes for more levels or for

different cache/memory organizations only requires changes in the heuristic

code itself — the remaining algorithm code remains untouched; and 4. the

packing code — generated by the compiler instead of hardcoded as in libraries

— can be retargeted to accelerators with, for instance, explicit cache/memory

management (e.g. software-managed caches or scratch-pad memories).

42

In Algorithm 3, j, k, and i are the offsets of the blocks in the matrices,

counted in terms of elements. The values lda, ldb and ldc are the leading

dimensions, and thus the access stride, of the matrices as they are originally

stored in memory. The blocking parameters mc, kc, and nc divide the input

matrices A and B into blocks properly sized for cache. The pack functions in

lines 3 and 5 each create a buffer in main memory containing one copy of an

entire block of matrix B or of matrix A. The last argument of the function pack

specifies the data layout within each tile. The storage order of the tiles after

packing, which is independent of the original storage order of the elements of A

and B, is selected to benefit the tiled multiplication (see Section 4.1.1).

The tiling parameters mr, kr, and nr ensure optimal resource utilization in

the micro kernel. ATile, BTile, AccTile, ABTile, CTile, and CNewTile, are

virtual LLVM IR vectors. These vectors are allocated and loaded to physical

registers by subsequent code-generation passes. Lines 10 and 11 each load a

single tile of an input matrix into an LLVM IR vector from the packed buffers.

The algorithm invokes the intrinsic on Line 12 which multiples ATile and

BTile and results in a new tile (ABTile) that is accumulated into AccTile.

AccTile is kept in vector regiters for all iterations of the loop on Line 9. On

the MMA code generation path, AccTile is mapped to accumulator registers.

A tile of matrix C is loaded into CTile, in line 14, and scaled by the constant

β on the first iteration of the loop on Line 2, satisfying GEMM’s requirement

that the matrix multiplication updates the values of the destination matrix.

Likewise, the accumulation produced in AccTile is multiplied by the constant

α in Line 17 satisfy the GEMM mathematical expression. Once the entire

multiplication is completed, CTile can be stored to its position in memory

(Line 19).

4.1.1 Macro-level Algorithm: blocking, tiling and pack-
ing

Assuming large matrices, portions of each matrix must be brought, through

the memory hierarchy, to the registers. These portions become operands to

a mulitiplication intrinsic. At the micro level, a code generation pass lowers

43

mc

mc

kr

mr

0 1 i j ... 2 3 k l ... 4 5 m n ... 6

0

1

2

3

4

5

6

7

kc

A

8

9

10

11

12

13

14

15

a

b

c

d

e

f

g

h

mr

kr

mc

mc

mc

kc kc kc

mc

7 o p ... 8 9 q r ... 10 11 s t ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15APack ... a b c d e f g h i

... 12 13 u v ... 14 15 w x ...

M

K

0 2 4 6 10 12 14 ... 3 5 7 9 13B 15 I... m o q s w j l...... p r t v x ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15BPack s t u v w x

kc

0 1

nc

kr
2 3
4 5
6 7

kr

nr nr

8 1 11 k u n

A Bkr

i

j

kc

nc nc nc

N

K
kc

kc

j

... ...
...

8 9
10 11
12 13
14 15mr

nr nr nr

k

l

m

n

o

p

q

r

s

t

u

v

w

x

q r

q r
s t
u v
w x

i j
k l
m n
o p

(a)

(b)

(c)

k l m n o pi j

Figure 4.2: Tiling and packing for llvm.matrix.multiply.

the intrinsic to specific hardware instructions (Section 4.1.2). Contrary to

other approaches, no manual vectorization or hand-written assembly code is

required. The whole micro kernel development happens inside the compiler as

the intrinsic takes advantage of the target’s available matrix engine operations.

In the example shown in Figure 4.2 (a), matrix A has M × K elements

and matrix B has K ×M elements. Both matrices are stored in memory in

column-major order. A block of matrix A has mc× kc elements and a block of

matrix B has kc× nc elements. Each block of A is divided into tiles of mr× kr

elements and each block of B is divided into kr×nr tiles. Figure 4.2 (b) presents

the order of the elements and tiles in the packed block when mr = 2, kr = 4

and nr = 2. These small values are used to keep the figure at a reasonable

size. The actual values for mr, kr, and nr are selected at compilation time to

result in a performant micro-level computation for each data-type size in each

architecture.

Figure 4.2 (b) illustrates the partition of a block into tiles. The tiles are

packed within the block in the order in which they will be accessed in the

innermost tiling loop. That is, disregarding the preferred layout of elements

within each tile for a particular architecture, the tiles will be placed in rows

in the block mc × kc of A and in columns in the block kc × nc of B. The

44

sequential numbers inside the tiles are used simply to indicate the order in

which the elements will be accessed when micro-level tiles are loaded into vector

registers. Letters are used at the end of the first row (column) and at the

start of the second row (column) of tiles to indicate the relative order of these

elements. Figure 4.2 (c) shows the layout of the elements of each matrix as

they are originally stored in column-major order in memory, and the order

of the elements of A and B as stored into the APack and BPack buffers after

packing. The layout of elements within the tiles is tailored to the needs of

the underlying architecture. For example, Arm ME, expects a row-major A

and a column-major B for its input operands and accumulates the result in

a row-major C [5]. Figure 4.2 (c) presents an example for IBM® POWER10

MMA, which uses column (A), row (B), row (C) layouts.

kc ≤ L1SizeInBytes/2/TypeSizeInBytes/VL (4.1)

kl ≤ (L1SizeInBytes/2/TypeSizeInBytes − VL× VL)/(2× VL) (4.2)

mc ≤ (L2SizeInBytes − L1SizeInBytes)/TypeSizeInBytes/kl (4.3)

nc ≤ (L3SizeInBytes − L2SizeInBytes)/TypeSizeInBytes/kl (4.4)

kc mod2kr = 0 (4.5)

mc mod2mr = 0 (4.6)

ncmod2nr = 0 (4.7)

Constraints 4.1-4.7 model how the tiling & packing factors are computed

by the compiler-only macro-level algorithm. LXSizeInBytes is the number of

bytes in cache level X, TypeSizeInBytes is the number of bytes in the matrix

operations (e.g 4 for single-precision floating-point numbers), and VL is the

minimum vector length size on the target architecture (e.g 4 for 128-bit vector

registers). Similar to Goto & Van Geijn [35], the macro-level algorithm allocates

a significant portion of L1 for a piece of each kc × nc block of B. However,

different from Goto & Van Geijn, which allocate half of L1 for a kc× nr piece,

the macro-level algorithm allocates half of L1 only for a kc× VL piece of B’s

kc× nc block (Constraint 4.1). This strategy produces a larger value for kc to

45

exploit the fact that most modern architecture have enough vector registers to

hold nr multiples of VL. The algorithm considers that the remaining half of the

L1 will be used to hold VL× VL C elements from memory and VL elements of A

and B as per Constraint 4.2. kl is used to maximize the use of L2 for a mc× kl

piece of an mc× kc block of A and to determine how much to allocate in L3 for

the kl× nc piece of kc× nc block of B. Constaints 4.3 and 4.4 consider the

effective size of L2 and L3, respectively, and take into account cache inclusion

as in most modern architectures. The inclusion property of caches is not

explicitly modelled by Goto & Van Geijn. A final constraint is to make kc, mc,

and nc multiple of their respective register-tiling factor in the micro kernel,

kr, mr, nr (Constraints 4.5-4.7). POWER10’s MMA features eight 512-bit

accumulators and thirty two 128-bit vector registers to support outer-product

computations. Therefore, for 32-bit matrix elements the performant choice

is mr = 8 and nr = 16, as explained in Section 4.1.2, while kr is selected to

maximize the number of in-accumulator operations. The effective sizes for L2

and L3 caches may depend on the machine load. For instance, L3 caches can

be shared on some configurations of POWER10 (Section 4.2), and this allows a

single-threaded computation to use all of the core’s caches. To account for this

effect, the macro algorithm has command line options to provide the effective

L2 and L3 cache sizes available per core.

Parameters mr, kr, and nr define the size of the GEMM computed by the

micro kernel at each innermost loop iteration in Algorithm 3. The values

of these parameters are selected by the intrinsic implementation, based on

the architectural design of the target. Section 4.1.2 provides an explanation

of how optimal mr, kr, and nr need to be chosen for the micro kernel on

POWER10 MMA. The values of mr, kr, and nr are the only parameters that

need tuning as the cache blocking parameters mc, kc and nc are chosen based

on target-specific cache size information available in LLVM. Following the

blocking strategy described by Goto and Geijn, the value of kc is selected in

such a way that an entire row of tiles of the matrix A — mr × kc elements

— and an entire column of tiles of the matrix B — kc × nr elements — fit

simultaneously in the L1 data cache. The L1 cache must also have space for an

46

mr× nr tile of the matrix C but such a tile is quite small in comparison with

the space needed for tiles of A and B.

Figure 4.2 (b) shows the order of the matrix elements in the buffers after

packing, while Figure 4.2 (a) show the original matrices. Arrays A and B in

Figure 4.2 (c) reflect that the original matrices are stored in column-major

layout. Buffers APack and BPack in Figure 4.2 (c) illustrate that, after packing,

the elements of matrices A and B are stored into these buffers in the order in

which they will be accessed by the micro-level computation. Packing provides

two benefits. First, the tiles of matrices A and B lie in the copied memory

in the order they will be loaded for the multiply intrinsic in lines 10 and 11.

Second, each row of tiles of A residing in a part of L1 cache is used in dnc
nr
× kc

kr
e

multiplications (dmc
mr
× kc

kr
e times for a column of tiles of B).

When CNewTile is not a multiple of a micro tile, the remainder elements

are filled with zeroes in the packing buffers and the result is stored with scalar

store instructions instead of the efficient matrix store intrinsic used for full

tiles. This brings an overhead for using slow, element-by-element stores instead

of fast strided stores. For the remaining and zero-padded elements, the micro

kernel still performs a full computation.

4.1.2 Micro-Level Algorithm

The micro-level algorithm is centered around the LLVM intrinsic llvm.matrix

.multiply. Intrinsics encapsulate a computational idiom and enable special-

ization to specific architectures, thus preventing the duplication of code within

a compiler infrastructure. An intrinsic can be viewed as a function call that is

eventually replaced by inlined generated code. Like a function call, an intrinsic

has input parameters and a return value. An intrinsic can be transparently

lowered to target-agnostic or to target-specific code. As expected, the target-

agnostic code has lower performance but is available for all LLVM-supported

backends. This section describes the design process to create a target-specific

lowering pass for the llvm.matrix.multiply intrinsic that utilizes the MMA

instructions to deliver high performance matrix multiplication.

The LLVM IR fragment in Listing 4.1 shows how the llvm.matrix.multiply

47

Listing 4.1: An example usage of llvm.matrix.multiply.

%CNewTile = ca l l <128 x float>
@llvm . matrix . mul t ip ly . v128f32 . v40f32 .
v80f32 (%ATile , %BTile , 8 , 5 , 16)

intrinsic — called in line 12 of Algorithm 3 — takes ATile and BTile to produce

CNewTile. The mangled function name shows the types of %ATile, %BTile,

and %CNewTile. The return value, %CNewTile is <128 x float>, an 8 × 16

result, while %ATile is <40 x float>, an 8 × 5 tile, and %BTile is <80 x

float>, a 5×16 tile. The three remaining parameters represent the dimensions

of the matrices, mr = 8, kr = 5, and nr = 16, indicating that this intrinsic

computes a C8×16 = A8×5 ·B5×16 multiplication. These tile sizes must be known

at compilation time and must match the dimensions of the packed input and

output vectors. The requirement that the tile sizes are known at compile time

allows both the target-agnostic lowering and the MMA target-specific lowering

to completely unroll the matrix-multiplication loop nest in the IR to give the

backend full control over instruction rescheduling.

In addition to these software constraints, scheduling decisions in the algo-

rithm that lowers the intrinsic computation to execute in an MMA backend

must also adhere to the following hardware constraints: 1 there are at most

eight accumulators available per thread and for each accumulator that is used,

the usage of four VSRs are blocked; 2 there are 64 VSRs, thus if eight accumu-

lators are used, there are 32 VSRs remaining to contain the data from the input

matrices; 3 two multiply-and-accumulate outer-product instructions can be

issued on a single cycle; 4 the issue-to-issue latency for the same accumulator

is four cycles; and 5 spilling an accumulator to memory is an expensive opera-

tion because it requires an instruction to disassemble the accumulator into four

VSRs, four vector store instructions and, later, four vector load instructions.

Figure 4.3 illustrates how CNewTile is divided into portions that are assigned

to the MMA accumulators. ATile, BTile, and CNewTile are represented in

two dimensions to illustrate the position of the elements in the matrices. Each

small square in the figure represents one 32-bit element of a matrix. A circled

48

v

h

k

k

ATile

BTile

CNewTilekr nr

mr

kr

0

4

1

5

2

6

3

7

Figure 4.3: Division of CNewTile into MMA accumulators.

number indicates that the corresponding portion of CNewTile is assigned to

that accumulator number. When the intrinsic is executed each accumulator

computes kr outer products using a multiply-and-add operation. The two

tones of gray colour in Figure 4.3 illustrate that a strip of ATile and a strip of

BTile are used for the accumulation of each portion of CNewTile. Each strip

is reused for all the accumulations in the same row or column of accumulators.

Each outer-product computation needs two four-element operands, one from

ATile and one from BTile. These operands are surrounded by dashed lines

for the two accumulations highlighted in gray. The arrows indicate how the

loop indices in Algorithm 4 iterate for the example in the figure.

Algorithm 4 describes the lowering of the intrinsic computation for MMA.

The compile-time constants VAccs and HAccs (used in lines 5 and 7) specify

the layout of the accumulators for the computation. For the example in Fig-

ure 4.3, VAccs = 2 and HAccs = 4. These constants in the compiler generalize

the lowering and make it applicable to future architectures where the ideal

arrangement to increase data reuse may be different from the 2×4 arrangement

in the POWER10 processor.

After creating CNewTile (line 2) and assembling and zeroing all the accu-

mulators (line 3), Algorithm 4 iterates k from 0 to kr− 1 (line 4) to extract

operands from ATile and BTile into virtual IR registers. For each value of k,

using the accumulator assignment shown in Figure 4.3, the algorithm extracts

49

Algorithm 4 Computation by llvm.matrix.multiply

1: function llvm.matrix.multiply(ATile, BTile, nr, kr, mr)
2: CNewTile ← Empty
3: Assemble ACCs and initialize to zero
4: for k = 0 to kr-1 do
5: for v = 0 to VAccs-1 do
6: AOps[v][k] ← Extract op from ATile[v][k]

7: for h = 0 to HAccs-1 do
8: BOps[h][k] ← Extract op from BTile[h][k]

9: for k = 0 to kr-1 do
10: for v = 0 to VAccs-1 do
11: for h = 0 to HAccs-1 do
12: Accs[v][h] +=

MMABuiltIn(AOps[v][k], BOps[h][k])

13: Disassemble ACCs and store VSRs into CNewTile
14: return CNewTile

two operands from ATile (lines 5-6) and four operands from BTile (lines 7-8).

For k = 0 the operands are extracted from the leftmost column of ATile

and from the top row of BTile in Figure 4.3. The algorithmic presentation

in Algorithm 4 uses the notation AOps[v][k] and BOps[h][k] to show the

connection between the operands extracted from ATile and BTile with the

use of these operands in the MMABuiltin on line 12. In the compiler, at this

point in the lowering, each four-element operand is extracted into a virtual IR

register. The actual VSRs used for each operand are determined later by a

register-allocation pass.

In Figure 4.3 each operand is formed by four elements and, once extracted,

occupies one 128-bit VSR. Given constraints 1 and 2 , with the choice of

kr = 5, there are enough non-blocked VSRs to contain all the thirty operands

needed for the computation illustrated in Figure 4.3. Thus, laying out the

accumulators in this 2× 4 pattern maximizes the reuse of values loaded into

the VSRs: operands extracted from ATile are reused four times and operands

extracted from BTile are reused two times.

Once all operands are extracted into VSRs, the algorithm again iterates over

the dimension kr to compute each piece of C to avoid spilling any accumulator

to memory. Following constraint 3 , two outer-product instructions are issued

50

in each cycle. Four pairs of accumulators can be scheduled before circling back

to the first pair, thus satisfying constraint 4 . The assignment of a portion of

CNewTile to a single accumulator eliminates the need to spill accumulators,

thus increasing the performance according to constraint 5 .

The lowering of the intrinsic for execution in POWER10 is based on a set of

builtins that encapsulate the computation of an outer product. There is a set

of builtins for each data type to allow the code generator to select a multiply-

and-add that either initializes or updates an accumulator. All combinations

of positive/negative multiplication with positive/negative accumulation are

available as well. For some data types there are also builtins that perform

saturating arithmetic instead of overflow for accumulation. Thus, when lowering

the intrinsic for the GEMM computation, the compiler selects the appropriate

positive multiply and positive accumulate builtin for the specified data type

which is then used on line 12.

4.1.3 Other Data Types

The presentation so far assumed 32-bit data types where each operand VSR

contains 4 elements and an MMA instruction computes a rank 1 update,

computing and accumulating a single outer product. Halving the data-type

size doubles the number of elements in each VSR and doubles the rank of the

update. For example, for a 16-bit data type MMA computes a rank 2 update

while an 8-bit data type computes a rank 4 update. The packing of more

elements into a single VSR and the accumulation of multiple outer products

by a single MMA instruction requires changes to Algorithm 3 and Algorithm 4.

Let n be the number of outer products performed by an MMA instruction —

i.e. the rank of the update. Now the step size of the loops on lines 4 and 9 must

both be n because, in Figure 4.3, n rows of BTile and n columns of ATile are

packed into each VSR. The extraction of operands in lines 6 and 8 is now a

strided access. For instance, for n = 2 (16-bit data types), four consecutive

elements are extracted from row k and four consecutive elements are extracted

from row k + 1 to form the 128-bit VSR. The length of kr must increase by n

times to provide enough data to populate the VSRs. The effect is that more

51

partial-product accumulations can be computed per micro-kernel invocation

given the same number of assemblies and disassemblies because the number of

multiplications per outer product increases by n.

For double-precision floating-point data type f64 an accumulator contains

4 × 2 64-bit elements. The operand extracted from ATile is placed into

a combination of two VSRs that together contain four elements while the

operand extracted from BTile is placed into a single 128-bit VSR containing

two elements. Therefore, for f64 the value of nr should be reduced in half

to reflect the number of VSRs available. With this reduction, an ATile tile

occupies 16 VSRs and a BTile tile also occupies 16 VSRs. The extraction of

operands into vector registers in lines 6 and 8 of Algorithm 4 must be changed

accordingly.

4.1.4 Arbitrary Values for nr, mr, kr and Access Order

Until now, the algorithms have used values of mr and nr selected such that a

micro kernel with the accumulator arrangement shown in Figure 4.3 could be

computed with a single set of assemble and disassemble instructions. However,

the implementation of Algorithm 4 in LLVM must handle any llvm.matrix

.multiply intrinsic created by any compilation path and thus must handle

arbitrary values for nr, mr and kr. The code-lowering algorithm also supports

inputs and outputs in any access order through modifications to the functions

that extract operands and store the results in the accumulators to memory.

To handle larger values of mr and nr, the micro-level code-lowering algorithm

has an additional outer double-nested loop that logically divides the CVec tile

into 8 × 16-element sections as shown in Figure 4.3. Each of these sections

can then be handled as shown in Algorithm 4. The disadvantage of a tile size

that spans multiple accumulator sections is that the extraction of data into

vector registers becomes more complex. For example, consider a 32-bit data

multiplication as shown Figure 4.3 but with the values of nr and mr double of

what is shown in the figure. The rows of ATile and BTile shown in Figure 4.3

are now a portion of the rows of larger tiles and the data extraction must gather

the correct data into the vector registers that will be used by the accumulators.

52

This data gathering adds additional code and may impact access locality if

the tiles are large enough. Moreover, if Algorithm 4 is used in combination

with Algorithm 3, then the packing work done earlier in lines 3 and 5 of that

algorithm may not result in optimal locality. As well, if kr is smaller than K

(see Figure 4.2) multiple invocations of the intrinsic are needed to compute

each element of the result matrix. Therefore, accumulators must be assembled

and disassembled multiple times, creating an issue with constraint 5 .

4.2 Experimental Evaluation

Experimental results support the following claims: 1. the macro-level algorithm

is architecture-independent: it is performant across four different architec-

tures (Intel®’s and AMD®’s x86; IBM®’s Power9™ and POWER10); 2. the

algorithm, when fully implemented inside the compiler, surpasses the per-

formance of PluTo, a widely used polyhedral-based compiler-only approach;

3. the macro-level algorithm, even when coupled with a generic-lowering of the

LLVM’s matrix-multiply intrinsic, approaches the performance of Eigen [38]

and OpenBLAS [93]; 4. for small GEMMs the compiler-only approach per-

formance can surpass library calls; 5. the MMA lowering delivers more than

2.6x the performance of VSX on POWER10; and 6. our compiler-only solution

boosts GEMM’s performance by exploiting target-specific matrix engines: the

micro-level algorithm lowers multiply-add GEMM reductions to efficient IBM’s

MMA instructions resulting in better performance than Eigen and up to 96%

of OpenBLAS’ peak performance.

Machine Setup

Experimental evaluation used the four platforms shown in Table 5.11. All

platforms run Linux with 64-bit kernel at version 4.15.0-155-generic, except

POWER10 which runs at version 4.18.0-277.el8.ppc64le. L1 and L2 cache

sizes are per core while L3 is shared among all cores on Intel®’s and AMD®’s

1Core counts are per socket and thread counts are per core. Cache sizes in POWER10
are those available for a single thread.

53

Table 4.1: Machine configuration used in the evaluation.

Component
/ Processor

Intel® Xeon™

8268
IBM®

Power9™
IBM®

POWER10
AMD® EPYC™

7742
Cores/Threads 24/2 20/4 8/8 64/2
L1 i-cache 32KiB 32KiB 32KiB 32KiB
L1 data cache 32KiB 32KiB 48KiB 32KiB
L2 (unified) 256KiB 512KiB 1024KiB 512KiB
L3 (unified) 35.75MiB 10MiB 4MiB 16MiB
RAM 755GiB 1TiB 1TiB 995GiB
Memory band-
width

131.13GiB/s 140GiB/s – 190.7GiB/s

machines. L3 cache is shared between pairs of cores in Power9™ but is local to

a core in POWER10.

Compiler Options

All binaries are compiled with Clang version 14 at -O3 targeting each architec-

ture. Binaries for Intel® are targeted and tuned to Cascade Lake™ (-march=

cascadelake -mtune=cascadelake), AMD®’s to Zen 2™ (-march=znver2 -

mtune=znver2), and IBM®’s machines to their corresponding CPUs (-mcpu

={power9|power10} -mtune={power9|power10}). All binaries are statically

linked (-static).

Code Generation and Libraries

Section 4.2.2 and Section 4.2.3 show results for the following code generation

strategies:

• Intrinsic: GEMM loops are replaced with a single call to LLVM’s

matrix-multiply intrinsic. This option causes all GEMM loops to be

unrolled and multiply-add computations to be lowered with either generic

or MMA lowering (Section 4.1.2).

• Tiling: This option tiles the GEMM loops iterating over each dimension

(M, K, and N) and calls the matrix-multiply intrinsic in the body of the

innermost loop (depth 3). Tile sizes are computed following Goto et al.’s

strategy as described in Section 4.1.1.

54

• Tiling+Packing: This option tiles the GEMM loops and packs the input

matrices A and B as described in Section 4.1.1. The matrix-multiply

intrinsic is called in the body of the innermost loop (depth 6) to compute

a block of C from tiles of A and B.

• PLuTo: This option applies a source-to-source transformation using

PLuTo2, a polyhedral-based paralelism and locality optimizer, that au-

tomatically tiles and redorders loops annotated with #pragma scope.

PluTo’s auto-tiling3 for both the first and second-level caches are enabled.

• BLAS: This option replaces the GEMM loops with a single call to the

CBLAS interface GEMM routine. The OpenBLAS4 [93] library is the

implementation of the CBLAS interface evaluated. The library is compiled

and linked as described in Section 4.2.

• Eigen: This option replaces the GEMM loops with Eigen5 [38] code to

compute the general matrix-matrix multiply. Eigen code is compiled as

described in Section 4.2.

The experiments use versions of BLAS and Eigen, which support both VSX

and MMA instructions, that were contributed to the open source community

by internal teams from IBM®. All versions listed above are compiled and set

to execute single-threaded code. A naive implementation of a M × K × N

SGEMM in C++ serves as the base code for our algorithm. Carvalho et al.’s

pattern-matching algorithm [16] is used to automatically identify and replace

these GEMM loops in the source code with the code generated by the macro-

level algorithm. The input matrices are stored and accessed in column-major

order and the values mr = 16, nr = 4, and kr = 64 are used for all platforms,

except on POWER10 which used mr = 16, nr = 8, and kr = 128.

Even though PLuTo lacks critical optimizations, such as packing, it is

the only compiler-only solution available that produced correct results for

2PLuTo Release v0.11.4
3-tile -l2tile
4OpenBLAS 1e4b2e98d953a18df85243a3fa019a105cbcb3dc.
5Eigen 5bbc9cea93ef29cee2b8ffb2084d4ebca32600ba

55

https://github.com/bondhugula/pluto
https://github.com/xianyi/OpenBLAS
https://gitlab.com/libeigen/eigen

the programs used in the experimental evaluation. Polly, another compiler-

only solution, either failed to optimize the input code or generated code that

computes incorrect results.6

Experimental Methodology

The methodology follows these steps: 1. Compile each benchmark, for each

platform, with aggressive optimization flags (see Section 4.2) using the six

strategies: Intrinsic, Tiling, Tiling+Packing, PLuTo, BLAS, and Eigen.

2. Create a list containing all of the executables. 3. Measure the execution time

of each element of the list once. 4. Randomize the list of executables before

the next set of measurements. 5. Repeat until there are twenty measurements

for each executable. This methodology ensures that changes to the execution

environment that may affect performance manifest as a higher variance between

executions of the same executable rather than as a bias in the measurements

for a version of the experiements. Section 4.2.2 and Section 4.2.3 show 95%

confidence intervals.

4.2.1 Performance Comparison Against Other Compiler-
Only Approaches

The results in Figure 4.4 indicate that for small SGEMM sizes the performance

of Tiling is far superior than PLuTo across all platforms: Tiling is up to 22x

faster than PLuTo for the smallest SGEMM size on Intel®, almost 25x faster

on AMD®, and over 11x faster on Power9™. For small problem sizes Tiling

6These incorrect results were reported to the developers of Polly.
This chapter presents an end-to-end solution that compiles a C/C++ input program

and replaces identified GEMM loops with the high-performance code generated by the
macro-level algorithm. Another compiler-only solution, introduced by Uday Bondhugula,
is not an end-to-end solution because it relies on a hand-crafted MLIR code written in the
Affine dialect [10]. At the time of writing, there is no way to automatically translate C/C++
programs to MLIR. Thus, Bondhugula’s hand-crafted input benefits from MLIR passes that
are unreachable for a C/C++ end-to-end compilation path. These MLIR passes are also not
reachable to compile Eigen’s and BLAS’s code, our baselines. The experimental results in
this Section indicate that the macro-level algorithm and the generic-lowered micro kernel
produce code that reaches comparable performance to Bondhugula’s approach relative to
BLAS [10]. Moreover, the MMA lowering reaches up to 96% of BLAS’s peak performance,
while Bondhugula’s reached only 91% of BLAS’s performance on a Coffee Lake Intel machine
with his MLIR code that employes a target-specific vectorization pass [10].

56

Intrinsic Tiling Tiling+Packing PLUTO

 0

 5

 10

 15

 20

 25

16

S
pe

ed
up

 o
ve

r
P

LU
TO

Problem Size (M=N, K=128)

 0

 1

 2

 3

 4

 5

 6

 7

32
 0

 1

 2

 3

 4

 5

 6

 7

64

(a) Intel® x86

 0

 5

 10

 15

 20

 25

16

S
pe

ed
up

 o
ve

r
P

LU
TO

Problem Size (M=N, K=128)

 0

 1

 2

 3

 4

 5

 6

32
 0

 1

 2

 3

 4

 5

 6

 7

64

(b) AMD® x86

 0

 2

 4

 6

 8

 10

 12

 14

16

S
pe

ed
up

 o
ve

r
P

LU
TO

Problem Size (M=N, K=128)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

32
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

64

(c) IBM® Power9™

Figure 4.4: Speedup over PLuTo for small SGEMM in each platform.
Tiling Tiling+Packing PLUTO

 0

 1

 2

 3

 4

 5

 6

128

S
pe

ed
up

 o
ve

r
P

LU
TO

Problem Size (M=N, K=4096)

 0

 1

 2

 3

 4

 5

 6

 7

256
 0

 1

 2

 3

 4

 5

 6

 7

 8

512

(a) Intel® x86

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

128

S
pe

ed
up

 o
ve

r
P

LU
TO

Problem Size (M=N, K=4096)

 0

 1

 2

 3

 4

 5

 6

256
 0

 1

 2

 3

 4

 5

 6

512

(b) AMD® x86

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

128
S

pe
ed

up
 o

ve
r

P
LU

TO
Problem Size (M=N, K=4096)

 0

 1

 2

 3

 4

 5

 6

256
 0

 1

 2

 3

 4

 5

 6

512

(c) IBM® Power9™

Figure 4.5: Speedup over PLuTo for medium SGEMM in each platform.

performs best overall as the matrices fit well in the memory hierarchy. Given

that small matrices fit in cache, Tiling+Packing only adds overhead due extra

memory movent for packing input matrices, performing worse than Tiling, but

still better than PLuTo. In addition, Tiling is aware of the vector unit capacity

in the target architecture and generates a micro-kernel that fully utilizes the

vector unit. PLuTo performs poorly because its auto-tiling mechanism generates

innerloops with conservative tiling sizes which do not saturate the vector unit

capacity.

The graphs for medium and large SGEMMs do not include results for

Intrinsic because the LLVM matrix-multiply intrinsic is designed for small

kernels and completely unrolls the loops. Invoking that intrinsic with large

dimensions leads to prohibitive compilation times.

Figure 4.5 shows speedup results for medium SGEMM sizes. Overall,

Tiling+Packing performs best across all platforms. Medium-sized matrices

57

Tiling Tiling+Packing PLUTO

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1024

S
pe

ed
up

 o
ve

r
P

LU
TO

Problem Size (M=N, K=4096)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

2048
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4096

(a) Intel® x86

 0

 1

 2

 3

 4

 5

 6

 7

1024

S
pe

ed
up

 o
ve

r
P

LU
TO

Problem Size (M=N, K=4096)

 0

 1

 2

 3

 4

 5

 6

 7

2048
 0

 1

 2

 3

 4

 5

 6

 7

 8

4096

(b) AMD® x86

 0

 1

 2

 3

 4

 5

 6

1024

S
pe

ed
up

 o
ve

r
P

LU
TO

Problem Size (M=N, K=4096)

 0

 1

 2

 3

 4

 5

 6

2048
 0

 1

 2

 3

 4

 5

 6

 7

4096

(c) IBM® Power9™

Figure 4.6: Speedup over PLuTo for large SGEMM in each platform.

still fit in the low-level caches (L2 and L3), however not in L1. As matrices

become larger, they span across multiple memory pages. Therefore, the data

reorganization performed by packing improves the utilization of the memory

hiearchy by increasing data temporal locality and reducing both TLB and

page-faults. PLuTo does not employ packing and thus continues to perform

poorly for medium-sized matrices. On AMD®, Tiling is still compatitive

with Tiling+Packing due to the larger caches and lower cache access latency.

Nevertheless, as Figure 4.6 shows, with large SGEMM sizes that no longer

fit the low-level caches (L2 and L3), the performance between Tiling and

Tiling+Packing widens. On Power9™, Tiling does not have its performance

degraded as much as on Intel® and AMD® for large problems due to large cache

line sizes on PowerPC™. However, Tiling+Packing remains the best strategy

for large SGEMMs due to higher data temporal locality and significantly smaller

TLB and page-faults in contrast to Tiling.

LLVM has a polyhedral optimizer, Polly [36], that is not enabled by default.

If Polly’s optimizations are enabled7 the code runs more than 4.8× slower

than Tiling+Packing on all three architectures. Polly also has an option to

parallelize loops8. When this parallelization is run on 20 threads, the resulting

code is 1.4× slower than Tiling+Packing on Power9™. Unfortunately the

SGEMM results computed with Polly-optimized code are incorrect 9. Thus,

7-mllvm -polly
8-mllvm -polly-parallel -lgomp
9Polly maintainers are aware of this correctness issue.

58

the performance results for Polly cannot be included in the comparison at

this time. As reported by Carvalho et al. [16], we also failed to reproduce the

performance results reported by Gareev et al.’s recent work [28]. Enabling

Polly’s GEMM idiom recognition and optimization pass10 the code runs 4.8×

slower than Tiling+Packing. Therefore, to the best of our knowledge, this

work is the first to present a compiler-only solution that produces performance

that is comparable to high-performance libraries (Section 4.2.2) without relying

on hand-written assembly micro kernels [10].

LLVM’s default lowering of matrix-load intrinsics generates code that spills

data from both input operands loaded for the matrix-multiply intrinsic. The

maintainers of the matrix intrinsic passes provide an alternative lowering for

the matrix-multiply intrisic that bypasses matrix-load intrinsics and generates

an unrolled sequence of load-load-multiply instructions with smaller load

instructions. This alternative lowering was used as a work-around to eliminate

the spill problem on Intel®, AMD®, and Power9™. However, this alternative

lowering is currently not modularly integrated into the framework and thus

could not be used for the micro-level algorithm. Therefore, the spill problem

for Intrinsic, Tiling, and Tiling+Packing on POWER10 was resolved by

applying a code transformation after the micro-kernel lowering to sink load

instructions – which load the operands of matrix-multiply – closer to their uses

– MMA outer-product instructions.

4.2.2 Performance Comparison Against High-Performance
Libraries

The results in Figure 4.7 indicate that for the smallest SGEMM size the

performance of Intrinsic is on-par with both Eigen and BLAS, thus revealing

that the backend alone generates efficient code for computing very small

SGEMMs. The superior performance of Tiling is due to the better utilization

of the vector registers in the target architecture. Tiling is more than 85%

faster than BLAS and over 2.6× faster than Eigen on Intel® for the problem

size M = N = 16. On AMD®, Tiling is more than 2.3× faster than Eigen

10-polly-pattern-matching-based-opts=true

59

Intrinsic Tiling Tiling+Packing BLAS EIGEN

 0

 2

 4

 6

 8

 10

 12

16

E
xe

cu
tio

n
Ti

m
e

(u
s)

Problem Size (M=N, K=128)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

32
 0

 10

 20

 30

 40

 50

 60

64

(a) Intel® x86

 0

 2

 4

 6

 8

 10

 12

16

E
xe

cu
tio

n
Ti

m
e

(u
s)

Problem Size (M=N, K=128)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

32
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64

(b) AMD® x86

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

16

E
xe

cu
tio

n
Ti

m
e

(u
s)

Problem Size (M=N, K=128)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

32
 0

 20

 40

 60

 80

 100

 120

 140

64

(c) IBM® Power9™

Figure 4.7: Execution time of small SGEMM in each platform.
Tiling Tiling+Packing BLAS EIGEN

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

128

E
xe

cu
tio

n
Ti

m
e

(m
s)

Problem Size (M=N, K=4096)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

256
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

512

(a) Intel® x86

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

128

E
xe

cu
tio

n
Ti

m
e

(m
s)

Problem Size (M=N, K=4096)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256
 0

 10

 20

 30

 40

 50

 60

512

(b) AMD® x86

 0

 1

 2

 3

 4

 5

 6

128

E
xe

cu
tio

n
Ti

m
e

(m
s)

Problem Size (M=N, K=4096)

 0

 5

 10

 15

 20

 25

256
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

512

(c) IBM® Power9™

Figure 4.8: Execution time of medium SGEMM in each platform.

and 2.8× faster than BLAS for the same problem size. Intrinsic performs

worse in comparison with the libraries as the problem size increases because,

lacking tiling, it exhibits lower cache locality. In summary, Figure 4.7 indicates

that the compiler-only macro-level approach can surpass high-performance

libraries for small problem sizes on multiple platforms.

For medium problem sizes Tiling+Packing is the best code-generation

strategy overall and it is on-par with Eigen across all platforms for the problem

size M = N = 128. As the size of matrices increases the performance of Tiling

degrades with respect to both BLAS and Eigen because LLVM’s matrix-load

intrinsic lowering results in additional spill code. However, Tiling+Packing

remains competitive across all platforms by matching Eigen’s performance

and is less than 80% slower than BLAS for M = N = 512. As discussed in

Section 4.2.1, Tiling and Tiling+Packing show similar performance due to

the larger caches and lower cache access latency on AMD®.

For large matrices Tiling performs worst overall because it produces a data

layout that leads to more cache misses. Tiling increases the cache utilization

60

Tiling Tiling+Packing BLAS EIGEN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1024

E
xe

cu
tio

n
Ti

m
e

(s
)

Problem Size (M=N, K=4096)

 0

 0.5

 1

 1.5

 2

 2.5

 3

2048
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

4096

(a) Intel® x86

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1024

E
xe

cu
tio

n
Ti

m
e

(s
)

Problem Size (M=N, K=4096)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2048
 0

 2

 4

 6

 8

 10

 12

 14

 16

4096

(b) AMD® x86

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1024

E
xe

cu
tio

n
Ti

m
e

(s
)

Problem Size (M=N, K=4096)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2048
 0

 1

 2

 3

 4

 5

 6

 7

 8

4096

(c) IBM® Power9™

Figure 4.9: Execution time of large SGEMM in each platform.

within a given dimension but makes cross-dimension accesses expensive because

elements of a given column, but different rows, are located on different virtual-

memory pages (e.g. 8KB apart on column-major matrix of 2048 columns). The

packing data reorganization creates a better element order that increases data

locality on both dimensions. Therefore, Tiling+Packing performs significantly

faster than Tiling on Intel® and AMD®. On Power9™, the gap between

Tiling and Tiling+Packing is not as large as in other platforms because

Power9™ has larger cache lines (128 bytes) – twice as large as on the other

platforms – which, coupled with prefetching, helps to hide memory latency.

The Tiling performs significantly worse than Tiling+Packing on Power9™ as

the problem size increases due to increased Translation Lookaside Buffer misses

and page-faults. A similar pattern appears on both Intel and AMD machines,

where Tiling suffers memory penalties as the problem size increases, leaving

Tiling+Packing as the best performing code-generation strategy overall.

Compiling the largest SGEMM with Clang -O311, the state of the art when

using Clang prior to this work, cam result in a code that is more than 68×

slower than BLAS. This work significantly reduces this performance gap. For

the largest SGEMM size (M = N = 4096), Tiling+Packing is slower than

BLAS: over 2.2× slower on Intel® and 43% slower on AMD®. In comparison

with Eigen, Tiling+Packing is 1.75× slower on Intel and 34% slower on AMD.

On Power9™, Tiling+Packing is 34% slower than BLAS and on-par with Eigen.

The performance gap between BLAS and Tiling+Packing is in great part due

to a performance gap between the BLAS micro kernel and the generic-lowered

11clang -O3 -mcpu=power9 -mtune=power9 -ffast-math -ffp-contract=fast

61

micro kernel available upstream in LLVM. The generic-lowered micro kernel

is 2.1× slower on Intel®, 70% slower on AMD®, and 30% slower on Power9™

than the micro kernel from BLAS.

Portability is a key design goal for the macro-level algorithm because

it leads to the generation of a micro kernel – for any target architecture

available in LLVM – with significant performance, as indicated by the results

above. Nevertheless, the generic-lowered micro kernel is not a match for the

hand-crafted assembly micro kernel available to high-performance libraries.

This performance gap can be reduced — as demonstrated for POWER10

MMA (See Section 4.1.2) in the following Section — by the utilization of a

platform-specific micro-level lowering algorithm. This strategy of coupling a

target-independent macro-level algorithm for tiling and packing with a target-

specific micro-level lowering algorithm can be a roadmap for hardware vendors.

The results in the following section lead to a prediction that, once micro-level

lowering is available for Intel®, AMD®, and Power9™, the gap between the

layered compiler-only solution and high-performance libraries can be bridged.

4.2.3 MMA intrinsic

The performance of the compiler-only macro kernel can be boosted by exploiting

matrix engines. This study focuses on IBM POWER10’s MMA and uses the

second-silicon version of POWER10 which has similar hardware characteristics

to those that will be featured in commercially available versions but slightly

different firmware settings. Therefore, the reported speedups relative to BLAS

are consistent with the results expected for the commercial version of POWER10.

The micro kernels in both BLAS and Eigen were re-engineered by IBM experts

to make efficient use of MMA. The parameters used for these experiments are

mr = 16, nr = 8, and kr = 128.

Different than on other platforms, Figure 4.10a shows that for small kernels

Tiling+Packing results in either better or on-par performance compared to

the libraries: Tiling+Packing is over 50% faster than Eigen for the problem

size M = N = 16 and over 83% faster for M = N = 32 and M = N =

64. Tiling+Packing achieves up to 10% more performance than BLAS for

62

SGEMMs of size M = N = 32 and M = N = 64. With MMA, as GEMM is

implement with outer products instead of inner products, columns of matrix A

are multiplied by rows of matrix B producing an accumulator result that has

partially computed column elements of matrix C – one per VSR associated

with the accumulator. Therefore, the best access layout for the MMA builtin

is both A and C in column-major and B in row-major order. However, all

input matrices are stored, and thus accessed, in column-major order. Therefore,

loaded tiles of matrix B need to be transposed prior to calling the MMA builtin.

For Intrinsic and Tiling, this means additional vector shuffle and merge

instructions in the micro-kernel code. The extra instructions in the case of

Tiling+Packing are not generated as part of the micro level but as part of

the macro level algorithm that packs the matrices. With fewer instructions,

the micro-kernel code generated with Tiling+Packing runs faster and exhibits

better instruction-cache utilization. In addition, the packing loads act as

prefetching loads and reduce access latency for the operands of outer-product

instructions. Moreover, calling a library incurs in performance overheads that

are more noticeable on smaller problem sizes. These results indicate that the

proposed macro-level approach coupled with an MMA-specific lowering of llvm

.matrix.multiply can provide better performance than two state-of-the-art

libraries.

Figure 4.10b contrasts the performance of the generic-lowered code, which

uses VSX instructions on POWER10, with the performance of the new MMA-

specific lowered code presented in this chapter (Section 4.1.2). The MMA

solution is over 2.6× faster than the VSX solution for the largest SGEMM.

The conclusion is that a target-specific lowering can outperform Eigen, when

both use MMA instructions, for the SGEMM sizes M = N = 2048 and

M = N = 4096. In fact, Tiling+Packing with VSX matches the performance

of Eigen with MMA, indicating that the macro-level algorithm made bet-

ter tiling and packing decisions with compile-time information than Eigen.

Tiling+Packing provides over 2.6% better performance than Eigen for the

largest SGEMM. Furthermore, the MMA-specific lowering algorithm generated

code that closely matches BLAS performance (up to 96%), which itself achieves

63

Intrinsic Tiling Tiling+Packing BLAS EIGEN

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16

S
pe

ed
up

 o
ve

r
B

LA
S

Problem Size (M=N, K=128)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

32
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

64

(a) Speedup over BLAS with MMA.

Tiling+Packing(VSX) Tiling+Packing(MMA) BLAS EIGEN

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1024

S
pe

ed
up

 o
ve

r
B

LA
S

Problem Size (M=N, K=4096)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2048
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4096

(b) VSX vs. MMA performance.

Figure 4.10: (a) Speedup over BLAS of small SGEMM on POWER10 with
MMA; (b) Contrasting VSX and MMA performance of SGEMM kernel on
POWER10.

almost 50 flops/cycle (almost 80% of peak). In essence, a compiler-only layered

approach built around a compiler intrinsic for matrix multiplication can achieve

comparable or better performance than state-of-the-art libraries. In addition,

having a target-specific lowering for the matrix-multiplication instrinsic is key

to make best use of vector/matrix units, the higher cache locality, and better

utilization of the memory hierarchy delivered by the macro-level algorithm.

4.3 Additional Opportunities

This groundwork implementation of the layered approach in LLVM creates

opportunities that will benefit other BLAS kernels and other specialized archi-

tectures.12

4.3.1 Macro-level strategy for other BLAS kernels

Algorithm 3 describes general techniques for blocking, tiling, packing and

intrinsic invocation that can be used for other BLAS matrix operations. As an

example, consider SYR2K, which computes either the lower or upper triangular

half of C ← α×A×BT + α×B ×AT + β ×C. Matrix C is symmetric while

matrices A and B are general. High performance implementations of SYR2K

12The implementation will be openly available as an artifact.

64

partition the matrix C into blocks and use a pair of GEMM operations to

update each block. Both the normal (non-transposed) and transposed versions

of matrices A and B are needed.

An equivalent to Algorithm 3 for SYR2K, will use two calls for packing

matrix B (line 3) and two calls for packing matrix A (line 5). In each case, one

of the calls produces a packed version of a block of the matrix and the other call

produces a packed version of the transpose of a block with different blocks used

for the normal and transposed versions. In the inner loops, the algorithm loads

two tiles of B (line 10) and two tiles of A (line 11), one tile from the normal

block and the other from the transposed, each with different tiles used from

the normal and transposed versions. Finally, the actual computation (line 12)

requires two calls to the llvm.matrix.multiply intrinsic. This approach

reuses the tiling and packing strategies and allows the use of blocks and tiles

of different sizes for matrices A and B to achieve better cache utilization.

4.3.2 Targetting other matrix engines

POWER10 MMA is but one of the emerging enhancements conceived to

accelerate matrix operations in modern CPUs and GPUs. For CPUs two other

architectural extensions have been announced: Intel’s AMX [53] and Arm’s

ME [5].

Each extension has its own unique characteristics, including the list of

supported data types, the set of registers used to operate on matrices, and

basic computational operation. Table 4.2 shows a brief comparison of the

three extensions. It seems that AMX is more targeted to image-processing and

deep learning applications, while both MMA and Arm’s ME can also handle

scientific applications.

MMA and Arm’s ME are tightly integrated in the processor core while

AMX instructions are executed in a more loosely coupled accelerator (TMUL).

An Intel host CPU communicates with an AMX unit via a queue of tiles and

accelerator commands [53]. Tile commands load/store tile register data from/to

memory addressed by host CPU registers. All pointer arithmetic and loop

control instructions run in the host CPU. Coherence between accesses from the

65

Table 4.2: Matrix multiplication extensions comparison.

Extension Types Registers Operation

IBM®

MMA
i4, i8, i16

bf16, f16, f32, f64
VSRs + ACCs

rank-k update
k = 1, . . . , 8

Intel®

AMX
i8, bf16

Separate register file
16× 64-byte tiles

tile multiplication

Arm
ME

i8, bf16, f32, f64 Vector registers only
2× 2

matrix operations

AMX unit and access from the host CPU is maintained at the main memory

level instead of at the cache level [53].

The approach described in this chapter can be used with these other matrix

engines. The macro-level algorithm described in Section 4.1.1 is general and can

be lowered to multiple targets supported by LLVM’s backend. The compiler

designer must tailor a few lowering operations when moving to a new target.

In particular, the load/store operations for packing (Algorithm 3, lines 3 and

5) and for loading and storing tiles (Algorithm 3, lines 10, 11, 14, and 19)

must be lowered to architecture-dependent instructions by the LLVM backend.

Lowering to Arm’s ME and IBM®’s MMA is straightforward because both

matrix engines are tightly coupled accelerators and rely on host CPU vector

registers to store input and output data. On AMX however, the lowering of load

and store operations use theTILELOAD* and TILESTORE* AMX instructions.

These cause data movements between AMX’s tile register and host memory.

There are no instructions to move data between AMX’s tile registers and host

vector-registers (e.g. AVX-512 registers). Therefore, for both GEMM and

SYR2K, where partial products are scaled by α and β (Algorithm 3, lines 17

and 16), tile-register data would have to be stored back to memory and loaded

into host vector register for the scaling computations.

4.4 Concluding Remarks

This work presents a robust solution to the problem of generating efficient

code entirely within a compiler targeting multiple architectures, consisting of

implementing, in the widely used LLVM compilation framework, the layered

approach broadly used in specialized libraries. A key insight was to create a

66

parameterized algorithm for the tiling and packing layer that only requires the

compiler to read the effective sizes of the caches from an existing LLVM pass to

determine the appropriate sizes for blocks. In this approach, a target-specific

compilation can use the size of the register file for the target architecture to

decide on the most appropriate size for tiles. Similar to the layered approach

used in libraries, the goal of packing is to lay out the tiles in memory in the

order in which they will be accessed during the computation to increase locality.

Another essential insight was to use the standard LLVM matrix multiplication

intrinsic as the interface between the macro kernel and the micro kernel. This

way, for any target architecture, the specialized code generation at the micro-

kernel level only needs to be done once and its performance advantages will

benefit any code generation path that uses the same intrinsics. The performance

evaluation, including machines with and without matrix engines, demonstrates

the modularity of the design and reveals significant performance gains from

the layered approach in multiple architectures. The experimental evaluation

indicates that the macro-level algorithm, coupled with a generic intrinsic

lowering, achieves more than 22× better performance than PluTo, a widely

used compiler-only polyhedral optimizer. The new compiler-only approach

generates code that matches Eigen performance and is only 34% slower than

BLAS on Power9™. An MMA-specific implementation results in more than 2.6×

the performance of the VSX micro kernel, is over 83% faster than Eigen, and

achieves up to 96% of BLAS peak performance for large SGEMMs, even when

these libraries are engineered to also benefit from MMA.

67

Chapter 5

YaConv: Convolution with Low
Cache Footprint

Convolutional neural networks (CNNs) deliver reliable solutions for the prob-

lems of image classification, speech recognition, recommendation, and language

translation. Software frameworks such as Caffe, Tensorflow, and PyTorch have

emerged to support the increasing variety of CNNs on multiple hardware archi-

tectures. Most of these frameworks introduce a middle-layer representation for

the network primitives that are efficiently implemented in high-performance

numerical libraries [52], [70], [94].

Training and running a CNN is a computationally-intensive task with

convolution layers accounting for over 80% of the total CPU inference time

on networks VGG-16, Resnet-52 and GoogLeNet. More than three-quarters

of the CNN inference market relies on CPUs because of their low inference

latency [85]. General matrix multiplication (GEMM) is the most-used primitive

in high-performance libraries. Convolution is typically computed by performing

the im2col transformation on the input image and calling a library GEMM

routine [19]. Other approaches suggest reducing the memory footprint of

im2col or implementing convolution through efficient architecture-specific

assembly kernels. [4], [20], [30], [31], [58].

The convolution algorithm presented in this chapter targets memory hi-

erarchy optimization on CPUs. The core idea of YaConv is to pack the

input image into an L3-cache-resident buffer, preload a smaller chunk of the

buffer into L1 cache, and use this image chunk for computation with all L2-

68

cache-resident filter elements before switching to other image elements. To our

knowledge, YaConv is the first convolution algorithm that implements all of

the following:

1. uses unchanged GEMM microkernel from a high-performance library;

2. integrates domain-specific packing of elements the into cache with the

calls to GEMM microkernels;

3. avoids unnecessary additional copies of input-image elements.

The two last points are important distinct design decisions. Several methods

have been proposed to eliminate or reduce the copy of the image tensor in

memory [4], [20], [58]. However, unlike YaConv, they do not address the cache

reload issue encountered while calling a library GEMM routine multiple times

on the same elements.

YaConv successfully repurposes GEMM building blocks to perform convo-

lution. It aims to compute convolution at a performance level that is close

to the machine’s peak without requiring the writing of new assembly kernels.

There are several ways to implement a convolution algorithm with the same

constraints. The version implemented and evaluated in this chapter is the most

promising in terms of performance on the actual layers found in PyTorch.

For some layers, YaConv’s performance is on par with a library GEMM

routine, which is around 80 − 90% of the machine’s theoretical peak perfor-

mance [35], [70], [94]. In comparison with another architecture-independent

solution, im2col convolution, YaConv is 24% faster, measured as the geometric

mean of the speedup (w.r.t. im2col) over 73 layers taken from real CNN

models. Moreover, YaConv achieves this level of performance using 10× less

memory than im2col convolution, requiring only a small buffer space.

An experimental study based on varying input image sizes confirms that

the performance of YaConv is dependent on architecture-specific parameters

within the GEMM microkernel. The results of this study point to ways to

reduce this sensitivity by tuning the image height in the intermediate layers of

certain CNNs. Cache utilization evaluation on the range of inputs reveals that

69

two parameters — the number of output channels (M) and image height (H)

— affect the performance of YaConv the most, with consistent speedup over the

baseline when M < 500 or H > 20.

5.1 Cache Inefficiencies of Previous Algorithms

Figure 2.2b shows how a naive algorithm computes convolution I5×5×2 ⊗

W3×3×2×M = O3×3×M . For this example, the naive method iterates over image

patches of dimensions [3× 3× 2] and computes the sum of products between

each input image patch and each filter. The highlighted output elements

in Figure 2.2b are computed using all weight elements in the filter and the

input elements surrounded by dashed lines. The depth dimension of the selected

output elements (output channels) corresponds to the number of filters in the

weight tensor.

The naive approach underutilizes the available vector units on a CPU

and suffers from poor cache locality of the patch elements. In Figure 2.2b,

every Fw · C = 3 · 2 = 6 elements of each image patch lie consecutively in

memory. However, two consecutive rows within the same patch lie at an offset

of (W − Fw) · C = (5− 3) · 2 = 4 elements in memory, as each patch of size

I3×3×2 is a part of the entire image I5×5×2. This causes loading of cache lines

and populating TLB entries for the elements not in the order they are accessed

during computation.

5.1.1 Convolution With im2col Transformation

im2col addresses the problems of the naive approach by placing the patch

elements adjacently in memory and calling a performant GEMM routine to

compute the output. Figure 5.1 provides an example convolution W3×3×C×M ⊗

I5×5×C = O3×3×M computed through the im2col + GEMM path. The whole

algorithm is broken into four steps, indicated with red circles. Along with the

description of the im2col transform, Figure 5.1 shows data movement in the

cache-resident buffers of the GEMM routine.

70

2
3
6
7

1

8
11
12
13

3
4
7
8

2

9
12
13
14

3
4
5
8
9
10
13

15
14 17

18

6
7

16

8
11
12
13

17
18
19

7

14

8
9
12
13

15
18
19
20

14

8
9
10
13

18
21
22
23

17

11
12
13
16

18
19
22
23

17

24

12
13
14

18
19
20
23

15

24
25

13
14

=

1 2 3 4 5
87 9 106

11 1312 14 15
16 1817 19 20
21 2322 24 25...

1

23

4

Figure 5.1: im2col convolution

Step 1 in Figure 5.1 demonstrates how im2col copies the input tensor

into a patch buffer as an [Fh · Fw · C]× [Hout ·Wout] matrix. Each column in

this matrix is a flattened patch of the input of size Fh × Fw × C. There are

Hout ·Wout columns in the im2col buffer corresponding to the output image of

size Hout ×Wout. Computing a GEMM between the reshaped weight tensor as

a matrix [M]× [Fh ·Fw ·C] and the im2col matrix produces a matrix of shape

[M]× [Hout ·Wout]. The output of GEMM is the output tensor Hout×Wout×M

stored as a column-major matrix of leading dimension M in memory.

Step 2 in Figure 5.1 shows the movement of the elements of the im2col

buffer during the GEMM call. In the GEMM implementation, the second

matrix is packed to an L3-cache-sized buffer in a layout that facilitates L1 cache

and register reuse by the outer product microkernel (Section 2.1). The blue

arrows within the packed im2col buffer demonstrate the order of the elements

in memory, with each arrow’s length capped at nr — an architecture-dependent

factor introduced in Section 2.1.

Step 3 in Figure 5.1 shows how the GEMM routine packs the weight

tensor into an L2-cache-resident buffer as an [M]× [Fh ·Fw ·C] matrix. Packing

71

the weight tensor after the im2col buffer ensures that the packed weight

buffer elements are in L2 cache and the majority of the packed im2col buffer

elements are in L3 cache (except for those that were evicted during the weight

copy). Similarly to the packed im2col buffer, the green arrows of length

mr (Section 2.1) show the memory layout of the elements in the weight buffer.

In step 4 , the outer product GEMM microkernel multiplies the tiles

[mr]× [Fh · Fw · C] of the packed weight and [Fh · Fw · C]× [nr] of the im2col

buffer. The result of each microkernel call is stored in the output as a block of

size mr × nr at the corresponding tile offset in the packed buffers.

The GEMM routine applies tiling along each matrix dimension to ensure

that each packed buffer fits in the respective cache level, in the case when the

weight tensor and/or the im2col matrix are larger than L2 and/or L3 cache.

Placement of the packed buffers into L2 and L3 cache is ensured by the order

of the packing steps. By packing the im2col buffer before the weight tensor,

the GEMM routine ensures that the weight elements are not evicted from L2.

Weight and im2col buffer elements are streamed from the respective packed

weight and packed im2col buffers that reside in L2 and L3 cache. For instance,

highlighted tiles in Figure 5.1 — one from the packed weight buffer and one

from the patch buffer — are multiplied to produce the block of output shown

as a grey rectangle. Tile offsets within the weight and patch buffers directly

translate into vertical and horizontal (on Figure 5.1) block offsets in the output.

Parameters mr and nr are optimized for L1 cache and register reuse within the

microkernel.

5.2 YaConv

Two principles are at the core of the new convolution algorithm: the

algorithm should not require redundant copies or loads of input elements in

cache and the algorithm must use unaltered GEMM microkernels. We follow

the CPU cache utilization guidelines presented in [35]. YaConv introduces a

new iteration pattern for convolution and controls packing of the input tensor

72

3 8
4 9
5 10

2
1 6

7 12
13
14
15

11
17
18
19
20

16
22
23
24
25

211 2 3 4 5
87 9 106

11 1312 14 15
16 1817 19 20
21 2322 24 25...

2

1

3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

=

Ex
tra

 s
pa

ce
 a

fte
r

Ex
tra

 s
pa

ce
 b

ef
or

e

4

Figure 5.2: The novel YaConv algorithm

elements into the cache.

In naive convolution, two loops iterate over the spatial dimensions of the

input image and compute the sum of products between the weight tensor and

each image patch (Figure 2.2b). In YaConv, these sums do not happen in

the same loop iteration. Instead, the YaConv computes one-row convolutions

between a selected row of each filter and the corresponding image patches.

Figure 5.2 demonstrates how YaConv computes the same convolution as

in Figure 5.1 using packing and outer-product microkernels from a library

GEMM. In step 1 , YaConv reshapes the input tensor as a column-major

matrix [W ·C]× [H]. This step does not incur any data copy overhead because

the memory layout of such a matrix matches the layout of the input tensor

IH×W×C .

Step 2 in Figure 5.2 shows how YaConv packs the input tensor into an

L3-cache-resident buffer. Zeroed-out elements in the right tile of size [W ·C]×nr

artificially extend the size of the packed input tensor buffer. The reason for

doing so lies within the GEMM microkernel — it performs poorly when the

matrix sizes are not multiples of nr. By first packing the input tensor, we bring

the input tensor elements to all cache levels, ensuring that the buffer is in L3

cache.

In step 3 , YaConv packs the weight tensor as Fh separate matrices of

size M × [Fw · C] into an L2-cache-resident buffer. This copy operation might

73

evict some input tensor elements — as it happens in the traditional GEMM

algorithm — but ensures that M · Fw · C weight tensor elements are loaded to

L2 cache. To perform partial convolutions for each filter row, one M × [Fw ·C]

matrix is packed in the weight buffer at a time.

In step 4 , YaConv computes each convolution W1×Fw×C×M ⊗ IH×W×C =

OHout×Wout×M as Wout GEMMs with sizes [H]× [Fw ·C]× [M]. Having packed

the input tensor as contiguous tiles of size [W ·C]× [nr], YaConv passes portions

of size [Fw · C] × [nr] of the packed input buffer as a second operand to the

GEMM microkernel — one of such portions is highlighted by the blue rectagle in

Figure 5.2. The first operand of the microkernel call is a tile of size [mr]×[Fw ·C]

from the packed weight buffer.

Each GEMM with sizes [mr]× [Fw ·C]× [nr] computes nr output elements

for mr output channels. All of these elements correspond to the same column

of the output image (Wout-dimension), given by the vertical offset of the tile of

size [Fw · C]× [nr] within the packed input tensor. One GEMM call computes

the result of applying one row of mr filters to nr rows of the input image at

the same column offset. The corresponding weight and input tensor elements

are highlighted by green and blue rectangles in Figure 5.2. Each result of size

mr×nr is placed in the output array (column-major [M]× [Hout ·Wout] matrix)

as nr columns at stride Wout ·M , because every GEMM call corresponds to

applying one filter row over nr input image rows at a fixed column.

5.2.1 Extra Memory Usage

Because YaConv computes GEMM between every possible combination of

the weight and image tiles, and some of these elements are not part of the

convolution result, they are not accumulated in the output. In the example in

Figure 5.2, the first filter row is multiplied with elements of the blue portion

of the input image as part of the GEMM microkernel call with width nr = 4.

However, only the first three columns of this highlighted image area should be

multiplied with the first filter row and the result of this multiplication to be

stored in the output tensor. The result of the dot product between the elements

16, 17, 18 of the input tensor and the first filter row is a part of applying the

74

filter on the image when the last filter row is outside of the image bounds.

One way to discard these elements is to adjust the width of every GEMM

microkernel call to smaller values than nr, leading to significant performance

degradation. Instead, YaConv reserves a larger buffer for the output elements

than the Hout ·Wout ·M elements needed by convolution. The actual output

tensor Hout ×Wout ×M is located at an offset within this buffer space, while

the extra space is used for the spillover elements of the GEMM calls.

The output buffer contains the output array and two extra parts before

and after the actual output tensor. For a given problem, YaConv uses space

for (Fh − 1− Ph) ·Wout ·M extra elements before the output array. Because

the image buffer is enlarged to the optimal microkernel size and to account

for the spillover results from GEMM, YaConv also reserves some space for the

elements immediately after the actual output. In Figure 5.2, Hextra is the H

enlargement required until the next multiple of nr. Therefore, extra space

required after the output array is (Hextra + Fh − 1 − Ph) · Wout ·M , where

the second part comes from the GEMM spillover elements. In total, YaConv

requires (Hextra + 2 · (Fh − 1− Ph) ·Wout ·M extra space, at that Hextra < nr.

Asymptotically, extra space complexity for YaConv is O((Fh − Ph) ·Wout ·M),

which is sublinear on the output size Hout ·Wout ·M .

5.2.2 Tiling and Block Sizes

In real applications, weight and image tensors are large enough to not fit in

the cache. We add loop tiling to our algorithm to improve cache locality and

TLB entry usage, as suggested by Goto and Geijn. The conventional GEMM

algorithm [35] uses three cache block sizes MC,KC,NC for two packed buffers

ÃMC×KC and B̃KC×NC :

1. KC is calculated to fill L1 cache with tiles mr ×KC and KC × nr of

the operands of each microkernel call

2. MC is set to fill the L2 cache with MC ×KC elements of the packed

buffer Ã

75

Architecture Clock, GHz L1, KiB L2, KiB L3, MiB GEMM tile size

Intel® Cascade Lake™ 3.5 32 1024 36 / 24 32× 12

AMD® Zen 2™ 2.0 32 512 16 / 4 6× 16

IBM® POWER10 4.0 32 2048 64 / 8 8× 16

Intel® Haswell 2.7 32 256 30 / 12 6× 16

Table 5.1: Clockrate, cache sizes and output tile dimensions of the GEMM
microkernel of the machines used for the experiments. L1 and L2 cache sizes
are per core. L3 size is followed by the number of cores sharing L3 cache.

3. NC determines the size of the buffer B̃ that resides in L3 cache

High-performance BLAS libraries set these sizes more conservatively as tempo-

rary variables and output tile mr × nr take some L1 cache space, and TLB is

typically a more limiting factor than L2 cache [35], [70], [94].

The sizes for weight and image buffers in YaConv are taken from the BLIS

implementation of the GEMM routine. The order of calls to packing routines

determines the cache-level residence for each buffer. YaConv packs a portion of

the image in the outermost loop, thus loading its elements to all cache levels.

The packing of weight elements into the buffer follows image packing. Such

an order, coupled with adequate tile sizes, ensures that the weight elements

will not be evicted from L2 cache by the image elements during packing. Two

innermost loops around the microkernel (with steps nr and mr) iterate over

L1-sized tiles of weight and image buffers and call the microkernel code to

compute partial results.

Additionally, when W = Fh = Fw = 1, Ph = Pw = 0, the weight and

image tensors can be thought of as matrices and convolution degenerates into

a GEMM with sizes M × C × Hout. The loops over Fh and Wout contain

only one iteration and YaConv becomes the conventional matrix multiplication

algorithm.

5.3 Comparing YaConv with im2col on Multi-

ple Machines

The experimental results in this section indicate that:

76

1. YaConv outperforms the im2col baseline on PyTorch layers by 23-25%

on multiple architectures.

2. The superior performance of YaConv is explained by better L3 cache usage.

Moreover, in most cases, YaConv reduces L1 cache usage as compared to

im2col-based convolution.

3. As expected, the performance of YaConv compares unfavourably with

im2col for small image heights H which are not a multiple of architecture-

dependent GEMM microkernel sizes. Better performance for YaConv can

be achieved by adjusting the image size to match architecture-dependent

values.

Parameter(s) Common values
H,W 14, 7, 28, 56
Fh, Fw 3, 5
C 64, 192, 32, 128
M 128, 256, 64, 192

Table 5.2: Values for selected convolution parameters from 218 layers in
PyTorch, from most to least common.

5.3.1 Experimental Methodology

Table 5.1 provides hardware information about the four machines used for the

experiments. The cache sizes are given per node, i.e. L3 cache is shared among

some cores on each platform. Each binary runs the same convolution on a

batch of N images, where N is adjusted to ensure that each execution lasts

at least 1 second on a 100 GFLOPS machine. FLOPS are calculated as the

number of single-floating-point operations, given by 2 ·N ·H ·W ·C ·Fh ·Fw ·M ,

divided by the wall clock time of the respective convolution routine on the

whole image batch. The results presented for each experiment are mean values

of ten runs. Unless explicitly specified, the relative standard deviation observed

is less than 5%.

77

Benchmarking cache performance is difficult because of the complex hier-

archy of modern CPU memory systems. Although im2col does extra work

copying input image elements to another buffer, it loads the elements into the

cache and populates the TLB entries. This data preparation by im2col reduces

data access time within the packing routines of the library GEMM. Thus, for

a fair comparison, this experimental evaluation compares the performance of

the whole im2col-based convolution routine with YaConv. There should be

fewer accesses to the last levels of the memory hierarchy by YaConv because

YaConv loads each input image element exactly once into an L3-cache-resident

buffer. Both YaConv and im2col-based convolution implementations allocate

temporary space once for the whole batch of images.

The implementation of im2col from Caffe is used for the baseline, followed

by a call to BLIS GEMM [56]. BLIS1 was built using the default library-

provided flags for each platform and the same flags were used to build the

microkernels for integration into YaConv. All platforms run a 64-bit Linux

kernel and all benchmarks are compiled using gcc with -O2 with -mtune=native.

perf was used to collect cache and TLB counters [91].

5.3.2 Performance on PyTorch Layers

This evaluation uses convolutional layer parameters from thirteen pre-

trained CNN models in Torchvision, which is a part of the PyTorch project [73].

Out of a total of 661 layers, 400 layers are a special case of convolution with

filter size 1, which both PyTorch and Tensorflow compute as a direct call to

the library GEMM. Also, YaConv cannot handle convolutions with non-unit

strides because of the element ordering restrictions imposed by the GEMM

microkernel. Thus, another 42 non-unit-stride layers were eliminated leaving

218 layers with unit stride and filter size greater than 1. Some of these layers

have the same geometry: 73 unique layers can be used for the evaluation

of YaConv. The most common values for H,W,Fh, Fw, C,M are provided in

Table 5.2.

1BLIS version b3e674db3c05ca586b159a71deb1b61d701ae5c9

78

224 224 3 3 3 64 1 1
14 14 672 3 3 672 1 1
14 14 576 3 3 576 1 1
7 7 960 5 5 960 2 2
7 7 1152 5 5 1152 2 2
14 14 384 3 3 384 1 1
14 14 480 5 5 480 2 2
14 14 160 3 3 320 1 1
28 28 512 3 3 512 1 1
14 14 96 3 3 208 1 1
14 14 200 3 3 200 1 1
7 7 960 3 3 960 1 1
7 7 1024 3 3 1024 1 1
14 14 184 3 3 184 1 1
14 14 32 3 3 128 1 1
27 27 48 3 3 192 1 1
14 14 116 3 3 116 1 1
27 27 32 3 3 128 1 1
7 7 512 3 3 512 1 1
28 28 128 3 3 192 1 1
7 7 576 5 5 576 2 2
7 7 192 3 3 384 1 1
7 7 232 3 3 232 1 1
7 7 160 3 3 320 1 1
54 54 32 3 3 128 1 1
56 56 256 3 3 256 1 1
7 7 32 3 3 128 1 1
28 28 96 3 3 128 1 1
7 7 48 3 3 128 1 1
28 28 32 3 3 96 1 1
28 28 58 3 3 58 1 1
56 56 128 3 3 128 1 1
7 7 192 3 3 48 1 1
28 28 192 3 3 48 1 1
28 28 16 3 3 32 1 1
56 56 192 3 3 48 1 1
224 224 64 3 3 64 1 1

0

0.5

1

1.5

2

2.5

3 branches
L1-dcache-loads
GFLOPS

Ya
C
on

v
/

im
2c

ol

(a) Intel® Cascade Lake™

224 224 3 3 3 64 1 1
7 7 1024 3 3 1024 1 1
7 7 1152 3 3 1152 1 1
7 7 192 3 3 384 1 1
7 7 48 3 3 128 1 1
7 7 960 5 5 960 2 2
7 7 576 5 5 576 2 2
28 28 256 3 3 512 1 1
54 54 16 3 3 64 1 1
27 27 32 3 3 128 1 1
13 13 192 3 3 384 1 1
27 27 64 3 3 256 1 1
56 56 128 3 3 256 1 1
13 13 384 3 3 256 1 1
13 13 256 3 3 256 1 1
14 14 576 3 3 576 1 1
14 14 112 3 3 224 1 1
14 14 128 3 3 256 1 1
14 14 160 3 3 320 1 1
56 56 64 3 3 192 1 1
28 28 16 3 3 32 1 1
14 14 384 3 3 384 1 1
27 27 64 5 5 192 2 2
14 14 200 3 3 200 1 1
14 14 184 3 3 184 1 1
14 14 16 3 3 48 1 1
56 56 128 3 3 128 1 1
14 14 116 3 3 116 1 1
14 14 32 3 3 64 1 1
14 14 240 5 5 240 2 2
14 14 144 5 5 144 2 2
28 28 58 3 3 58 1 1
56 56 72 3 3 72 1 1
112 112 128 3 3 128 1 1
14 14 192 3 3 48 1 1
112 112 32 3 3 32 1 1
224 224 64 3 3 64 1 1

0

0.5

1

1.5

branches
L1-dcache-loads
GFLOPS

Ya
C
on

v
/

im
2c

ol

(b) AMD® Zen 2™

224 224 3 3 3 64 1 1
7 7 32 3 3 128 1 1
7 7 1152 5 5 1152 2 2
7 7 192 3 3 384 1 1
7 7 160 3 3 320 1 1
7 7 48 3 3 128 1 1
7 7 232 3 3 232 1 1
54 54 16 3 3 64 1 1
27 27 32 3 3 128 1 1
14 14 32 3 3 128 1 1
14 14 512 3 3 512 1 1
14 14 576 3 3 576 1 1
28 28 512 3 3 512 1 1
14 14 672 3 3 672 1 1
28 28 32 3 3 96 1 1
14 14 480 3 3 480 1 1
14 14 160 3 3 320 1 1
14 14 128 3 3 256 1 1
14 14 480 5 5 480 2 2
56 56 128 3 3 256 1 1
13 13 256 3 3 256 1 1
14 14 256 3 3 256 1 1
28 28 256 3 3 256 1 1
56 56 256 3 3 256 1 1
14 14 200 3 3 200 1 1
28 28 192 3 3 192 1 1
28 28 96 3 3 128 1 1
14 14 116 3 3 116 1 1
28 28 128 3 3 128 1 1
14 14 144 5 5 144 2 2
28 28 88 3 3 88 1 1
14 14 120 5 5 120 2 2
28 28 120 5 5 120 2 2
56 56 64 3 3 64 1 1
112 112 32 3 3 32 1 1
28 28 192 3 3 48 1 1
112 112 16 3 3 16 1 1

0

0.5

1

1.5

2

2.5

3
branches
L1-dcache-loads
GFLOPS

Ya
C
on

v
/

im
2c

ol

(c) IBM® POWER10

224 224 3 3 3 64 1 1
7 7 192 3 3 384 1 1
7 7 48 3 3 128 1 1
7 7 960 3 3 960 1 1
7 7 1152 3 3 1152 1 1
7 7 512 3 3 512 1 1
7 7 1152 5 5 1152 2 2
7 7 960 5 5 960 2 2
7 7 1024 3 3 1024 1 1
27 27 64 3 3 256 1 1
14 14 32 3 3 128 1 1
14 14 128 3 3 256 1 1
14 14 96 3 3 208 1 1
14 14 112 3 3 224 1 1
14 14 576 3 3 576 1 1
14 14 480 3 3 480 1 1
14 14 672 3 3 672 1 1
13 13 384 3 3 256 1 1
14 14 200 3 3 200 1 1
14 14 480 5 5 480 2 2
27 27 32 3 3 128 1 1
14 14 184 3 3 184 1 1
56 56 128 3 3 128 1 1
27 27 48 3 3 192 1 1
14 14 32 3 3 64 1 1
28 28 32 3 3 96 1 1
28 28 128 3 3 192 1 1
28 28 192 3 3 192 1 1
28 28 128 3 3 128 1 1
14 14 120 5 5 120 2 2
56 56 144 3 3 144 1 1
56 56 64 3 3 64 1 1
14 14 192 3 3 48 1 1
112 112 64 3 3 128 1 1
28 28 192 3 3 48 1 1
112 112 32 3 3 32 1 1
112 112 16 3 3 16 1 1

0

0.5

1

1.5

2
branches
L1-dcache-loads
GFLOPS

Ya
C
on

v
/

im
2c

ol

(d) Intel® Haswell

Figure 5.3: Ratios for L1 cache, branches and GFLOPS between YaConv and
im2col on layers from PyTorch across four machines

79

Figure 5.3 presents the ratios between YaConv and im2col for the following

measurements provided by perf:

1. number of L1 cache accesses;

2. number of total branch instructions executed;

3. total routine GFLOPS.

Layers are shown on the x-axis in the format H W C Fh Fw M Ph Pw and are

sorted by the GFLOPS ratio between YaConv and the baseline. To improve

visibility, the graph presents only half of the 73 layers. Layers are selected

by choosing every second layer from the sorted list. Figure 5.3 indicates that

YaConv reduces the number of branches taken by the im2col convolution

algorithm. For all machines, the ratio of L1 cache loads between the two

algorithms decreases with a larger speedup of YaConv over im2col convolution,

pointing to increased reuse of elements in L1 cache as the source of the observed

speedup.

The reduction in the number of branches taken in comparison with im2col-

based convolution is due to the elimination of the im2col transform. YaConv

does not make a copy of an image element for each of the filter elements.

YaConv loads each image element into L3 cache exactly once, resulting in

fewer L3 cache loads and misses. However, for some layers, the L3 cache

performance measured in the experiments does not support this hypothesis.

Cache design in some architectures is complex and L3 performance requires

further investigation. Additionally, the slowest layers in Figure 5.3 are also the

ones where YaConv accesses L1 cache more than the baseline. Two following

sections present a detailed study on Intel® Cascade Lake™, where parameters

are varied to identify performance trends. The same studies were conducted on

all four machines, exhibiting similar trends in algorithm runtimes and cache

utilization. Detailed results are presented for one machine for brevity.

5.3.3 YaConv Performance Varies with Image Sizes

80

10 20 30 40 50
100

200

300

400

500

600

700

800

900

1000

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

H = W

M

(a) L1 cache loads

10 20 30 40 50
100

200

300

400

500

600

700

800

900

1000

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

H = W

M

(b) TLB loads

10 20 30 40 50
100

200

300

400

500

600

700

800

900

1000

0.8

1

1.2

1.4

1.6

1.8

H = W

M

(c) GFLOPS

Figure 5.4: Varying image size H = W and number of input channels with
fixed M = 200, Fh = Fw = 3, Ph = Pw = 1 on Intel® Cascade Lake™

The values of H, W and C in the layers in Figure 5.3 were selected from

the real CNNs from PyTorch. A more comprehensive understanding of the

performance of YaConv can be gained by varying these values. Figure 5.4

presents cache and runtime profile collected on the Intel® Cascade Lake™

machine using the same methodology as in the Section 5.3.2. All subfigures

have fixed parameters C = 300, Fh = Fw = 3, Ph = Pw = 1 and vary square

image sizes H = W and M in the range of values found in actual CNNs. The

color of points in the heatmaps represents the value of the ratio YaConv
im2col

for each

metric.

Two insights can be gained from Figure 5.4. First, the repetitive pattern

with step size 12 on the plots confirms that computing full GEMM microkernel

on partially-filled tiles significantly affects performance. For this machine, the

microkernel uses nr = 12 to maximize the use of the vector unit. Therefore,

when H is a multiple of 12, Figure 5.4 shows the fewest L1 cache and TLB

accesses and the best runtime for YaConv.

Second, YaConv performs better with smaller values for M . With the

fixed value C = 300, relative speedup of YaConv over im2col convolution

gradually decreases until M = 480. After that point, the relative performance

stabilizes with further increase in M . As shown in Figure 5.6a in the following

Section 5.3.4, this effect can be explained by the gradual increase in the number

of L3 cache loads that depends on the memory stride M of the weight tensor

elements. On the other hand, performance metrics do not show any trend while

varying the number of input channels C.

In Figure 5.3a, the worst-performing layers on Intel® Cascade Lake™ have

81

H = W = 7, 13, 14, most of which come from one CNN (GoogLeNet). In

im2col-based convolution, the width of the image buffer is H · W which

includes several full GEMM tiles even for the smallest images H = W = 7. In

YaConv, the same input image is packed into a buffer of width H and padded

to the full tile with zeroes. For larger image sizes this padding does not play

a big role because the partially-filled tiles are a small portion of the whole

computation. However, for small H, the extra zero elements require more usage

of the cache and the TLB entries and the result of GEMM for these elements

is not used for accumulation of the output. This is confirmed by sharp vertical

edges in Figure 5.4a and Figure 5.4b. The performance patterns shown in

Figure 5.4 are also observed in other architectures and can be used to improve

the performance of YaConv by adjusting the image size for layers in the middle

of the network according to architecture-specific values.

5.3.4 YaConv Improves L3 Cache Performance

The vertical axis in Figure 5.5 presents the ratios of L3 accesses and misses

and GFLOPS between YaConv and im2col collected on Intel® Cascade Lake™.

The horizontal axis contains the same layers as Figure 5.3a. While most layers

experience a reduction in L3 cache usage, YaConv brings an increase in cache

accesses and misses for certain sizes of the parameters C and M , e.g . 128, 512,

1024. These increases in L3 accesses and misses seem to occur more often when

H = W = 7. Thus, a parameterized performance study could reveal more

information about the correlation of these misses with performance.

The set of experiments shown in Figure 5.6 varies the number of input

channels C on the horizontal axis, the number of output channels M on the

vertical axes with fixed image and filter sizes H = W = 7, Fh = Fw = 3. The

ratio of L3 cache loads is given as im2col
YaConv

, whereas the ratio for GFLOPS is

YaConv
im2col

. Values for both of these ratios in Figure 5.6 are presented with the

corresponding color on the heatmap so that larger numbers are better for

YaConv. The same color scales are used for both subfigures with each color

scale adjusted to show an interval between the minimum and the maximum

82

224 224 3 3 3 64 1 1
14 14 672 3 3 672 1 1
14 14 576 3 3 576 1 1
7 7 960 5 5 960 2 2
7 7 1152 5 5 1152 2 2
14 14 384 3 3 384 1 1
14 14 480 5 5 480 2 2
14 14 160 3 3 320 1 1
28 28 512 3 3 512 1 1
14 14 96 3 3 208 1 1
14 14 200 3 3 200 1 1
7 7 960 3 3 960 1 1
7 7 1024 3 3 1024 1 1
14 14 184 3 3 184 1 1
14 14 32 3 3 128 1 1
27 27 48 3 3 192 1 1
14 14 116 3 3 116 1 1
27 27 32 3 3 128 1 1
7 7 512 3 3 512 1 1
28 28 128 3 3 192 1 1
7 7 576 5 5 576 2 2
7 7 192 3 3 384 1 1
7 7 232 3 3 232 1 1
7 7 160 3 3 320 1 1
54 54 32 3 3 128 1 1
56 56 256 3 3 256 1 1
7 7 32 3 3 128 1 1
28 28 96 3 3 128 1 1
7 7 48 3 3 128 1 1
28 28 32 3 3 96 1 1
28 28 58 3 3 58 1 1
56 56 128 3 3 128 1 1
7 7 192 3 3 48 1 1
28 28 192 3 3 48 1 1
28 28 16 3 3 32 1 1
56 56 192 3 3 48 1 1
224 224 64 3 3 64 1 1

0

2

4

6

8

LLC-loads
LLC-load-misses
GFLOPS

Ya
C
on

v
/

im
2c

ol

Figure 5.5: L3 cache usage and GFLOPS on PyTorch layers on Intel® Cascade
Lake™

values on each heat map. Some locally large values in Figure 5.6a were clipped

to 4 to prevent the figure from giving a distorted image of performance. The

range of values was chosen to cover most of the poorly-performing layers from

Figure 5.3.

When the number of output channels does not exceed the cache block size

along that dimension (M < 480 in Figure 5.6a), the geometric mean of the

reduction of L3 accesses of YaConv w.r.t im2col is 3×. With further increase in

M , relative improvement of L3 usage in YaConv gets worse down to 1.6×. The

heatmaps in Figures 5.6a and 5.6b indicate a correlation between the number

of L3 cache loads and YaConv performance. Figure 5.6 exhibits a pattern of

significantly worse L3 cache utilization by YaConv around specific values, e.g .

C < 60, C ≈ 800, C ≈ 940. While performing experiments for a smaller range

of parameters but with step size 1, we found that the same pattern persists

on a finer scale and some input values cause a sudden increase in the whole

memory hierarchy utilization. This could be explained by the parameter sizes

83

200 400 600 800 1000
100

200

300

400

500

600

700

800

900

1000

0.5

1

1.5

2

2.5

3

3.5

4

C

M

im2col
YaConv

(a) L3 cache loads

200 400 600 800 1000
100

200

300

400

500

600

700

800

900

1000

0.7

0.8

0.9

1

1.1

C

M

YaConv
im2col

(b) GFLOPS

Figure 5.6: Varying the number of input and output channels with fixed image
and filter size on Intel® Cascade Lake™

(leading dimensions of tensors), coinciding with cache associativity stride and

causing more hit conflicts than an average case. We observed similar trends on

other machines and for the heat maps produced with other fixed image sizes.

5.4 Concluding Remarks

The main idea behind the design of YaConv is to prevent unnecessary copies of

image elements, improve cache utilization, and make direct use of unmodified

GEMM building blocks from high-performance numerical libraries. Achieving

these goals required thinking of the input tensor as an [W · C]× [H] matrix

and packing it in the contiguous layout for outer-product GEMM matrices;

packing the weight tensor in the same way that is done in the GEMM routine

of the im2col-based convolution; calling the GEMM microkernel on these

contiguously packed filter and image elements, and cleverly scattering the

results of this computation into the resulting image. The resulting algorithm,

YaConv, eliminates explicit image transformations, has a smaller memory

footprint, and delivers superior performance than im2col by improving cache

usage. YaConv is the first convolution algorithm that uses unmodified packing

and GEMM microkernels from a numerical library to compute convolution

without multiplying the number of input tensor elements kept in memory or

the number of times these elements are loaded into the cache. A detailed

performance study, varying parameters on multiple machines, helps understand

84

the superior performance of YaConv in comparison with im2col: it reduces the

number of branches and LLC cache accesses.

85

Chapter 6

Related Work

6.1 A Brief History of Idiom Matching

David Callahan’s seminal work identifies bounded-recurrence idioms in data-

dependency graphs and replaces them with hand-written parallelized implemen-

tations in FORTRAN [14]. Another seminal work by Pinter et al. formalizes

idiomatic recognition in a Computational Graph (CG) that is used to construct

a tree where pattern matching is implemented [75]. They were among the first

to normalize loops to improve idiom matching. Their normalization includes

loop unrolling to guarantee that all loop-carried dependencies have a maximum

distance of one. The goal is to improve idiom recognition by canonicalizing

the code, thus eliminating syntactic variations that lead to subtle changes in

the intermediate representation. To the best of our knowledge, there is no

experimental evaluation of Pinter et al.’s work. KernelFaRer differs from

Callahan’s approach because it is integrated in the compilation, and differs

from Pinter et al.’s approach because it does not build auxiliary structures for

pattern matching, instead it relies only on the LLVM IR [64].

Menon et al. propose Abstract Matrix Form (AMF), an algebraic

language, as an IR and optimization language [68]. AMF expressions are

transformed through a set of axioms used as rewrite rules provided by the user.

AMF targets loop-based languages, such as FORTRAN and MATLAB, via

source-to-source translation. The evaluation of AMF is restricted to simple

matrix-matrix and matrix-vector kernels on a single platform. Birkbeck et al.

also define a canonical representation for MATLAB programs and find idioms

86

to match patterns in an extensible database [8]. In contrast, KernelFaRer

applies to any language once it is compiled to LLVM IR and is thoroughly

evaluated across three platforms (see Section 4.2).

Sato Hiroyuki use grammar rewriting rules based on the array semantics of

FORTRAN to propose a rule-based term rewritter for idiom recognition and

replacement [44]. Later, Hiroyuki supports graph rewriting optimizations [45].

This approach is limited to FORTRAN, vulnerable to syntactic variations in

the source code, and there is also no public evaluation of the approach.

He et al.’s tree-based idiom recognizer uses a Reduced Affinity Relation

Graph (RAG), a directed tree structure rooted at the left-hand side value

of an assignment expression [41]. A RAG encodes data-dependency relations

between values in an expression. Temporaries do not appear in a RAG. Likewise,

KernelFaRer eliminates unnecessary temporaries through standard compiler

transformation passes. He et al.’s approach incurs a memory and time overhead

for creating and maintaining the RAG. In contrast KernelFaRer uses existing

data representations already built during compilation.

Kawahito et al. match idioms to perform Just-In-Time compilation of

JAVA string operations and replace them with IBM’s System Z machine

instructions [60]. This pattern matcher uses the Abstract Syntax Tree

(AST) and the Control-Flow Graph (CFG). Topological Embedding [27]

enables them to implement non-exact idiom matching in the AST or CFG. Non-

exact matches are made exact via a custom transformation pipeline. However,

the transformation passes needed for non-exact matching limit the general

applicability of this solution.

KernelFaRer is not the first work to recognize that customized imple-

mentations of idiomatic operations can match the performance of specialized

libraries. Spampinato et al. describe SLinGEN, a DSL for expressing small-

scale linear algebra applications [83]. SLinGEN optimizes an algebraic descrip-

tion of a kernel in its high-level representation and generates a C program

with architecture-specific vector intrinsics. In contrast with KernelFaRer,

SLinGEN was designed to target only small-scale and statically sized kernels.

KernelFaRer is not limited to small, static kernels and automatically iden-

87

tifies the idioms in the code written in general purpose languages, no DSL

specification required. Rink et al. present CFDlang, yet another DSL that

targets tensor operations in the fluid dynamics application domain [80]. Simi-

lar to SLinGEN, CFDlang generates C programs that implement the idiom

specified in its DSL and performs high-level optimizations as source-to-source

transformations. KernelFaRer is not restricted to the fluid dynamics domain.

In fact, KernelFaRer can readily identify GEMM and SYR2K in native

programs without custom DSL specifications. The fact that KernelFaRer

is integrated into LLVM, a major compiler framework, also sets it apart from

both SLinGEN and CFDlang that are external tools.

The two most recent, closely related approaches to idiom matching are by

Ginsbach et al. [34] and by Chelini et al. [18]. Ginsbach et al. introduce the

Idiom Description Language (IDL), a constraint-based DSL to describe

idioms. IDL constraints are synthesized into LLVM IR passes that perform

the matching process. While the first IDL prototype [34] had no automatic

idiom-replacement mechanism, Ginsbach et al. later proposed a new DSL

called LiLAC that includes automatic idiom replacement for both dense and

sparse matrix-vector operations [33]. However, LiLAC’s passes cannot identify

the matrix layouts and the evaluation uses hard-coded calls with an assumed

access order. Adoption, maintenance, and extension of IDL is challenging

because it is external to the compilation framework. This prevents IDL users

from exploiting rich debugging tools in LLVM and makes the task of specifying

idioms much more involved since IDL is composed of several small components

written in different languages. Similar limitations are found in Chelini et al.’s

Loop Tactics [89], a DSL to describe idioms to be matched in a polyhedral

schedule tree — an auxiliary structure constructed from LLVM IR, and to be

replaced by either a library call or by code generated by Polly [37]. Adopting

either of the DSL approaches is nontrivial. Loop Tactics requires understanding

the polyhedral model and it is difficult to understand a complex composition

of constraints in IDL. In contrast, KernelFaRer requires no auxiliary data

structures and is fully based on standard LLVM IR passes, allowing developers

experienced with LLVM’s IR to extend its methodology to other idioms.

88

6.2 Compiler Approaches to Memory Access

Optimization

In a seminal work, Goto and Van D. Geijn detail a layered approach to improve

cache and vector-register utilization on CPUs [35]. Using this approach, modern

linear algebra libraries, such as Eigen and BLAS, achieve high performance

on HPC workloads. Goto and Van D. Geijn show that modelling both L2

cache and TLB — and not only L1 as considered earlier — is crucial for cache

performance. That work is seminal because it publicly explained practical

strategies for optimal cache and vector register utilization on CPUs; these

strategies were previously only available in proprietary libraries. The layered

strategy features two stages: 1. blocking input matrices and packing tiles of

these blocks in such a way that tiles lay in main memory in the order that

they will be accessed; and 2. computing a small GEMM at the register level.

This paper is the first to create a compiler-only code generation for the layered

approach and adapts blocking, tiling, and packing to create a data layout that

is suitable for computing with MMA and to also improve utilization of the L3

cache.

Gareev et al. [28] implement tiling and packing within Polly [36] without

the need for an external library or automatic tuning. Their approach with a

hand-optimized SSE kernel reports performance on par with BLIS on Intel®

Sandy Bridge. When not relying on an assembly kernel, their pass uses the

default LLVM vectorizer that delivers only a small speedup over naive code.

The solution proposed in this paper implements both memory optimization

and micro kernel in the compiler, not requiring any hand-optimized code.

Uday Bondhugula presents an implementation of the BLAS strategy within

the emerging MLIR framework [10]. He demonstrates that blocking, packing,

register tiling, and unroll+jam yields code that is 34% slower than OpenBLAS

on Intel®’s Coffee Lake [10]. Bondhugula also implemented a custom vector-

ization pass, to replace the default LLVM vectorizer, to achieve an additional

40% performance improvement, thus reaching 91% of the performance of Open-

BLAS. Our experiments with Intel®, AMD® and IBM® Power9™ machines

89

also pointed out the weakness of the default LLVM vectorizer.

Carvalho et al. introduce KernelFaRer, a robust pattern recognition system

that can identify matrix-multiplication patterns in the LLVM IR level and

can replace these with library calls [16]. While this approach can lead to

speedups on the order of 1000s in comparison with non-optimized code, it

has the drawback of requiring the integration of libraries into a computer

system that may not have it. Moreover, their experimental results indicate

that, for smaller matrices, the overhead of invoking functions in the libraries

leads to performance degradations. The solution in this paper is orthogonal to

Carvalho et al.: their pattern recognition can identify GEMM kernels at the

intermediate-level representation and then invoke the compiler-only solution

presented here.

When presenting the ILLIAC IV, one of the first SIMD machines, Barnes

et al. advocated that data parallelism would be crucial for progress [6], citing

matrix operations as a critical target [62]. Nearly 50 years later, Barnes’ direc-

tion culminated in the inclusion of vector extensions in all mainstream CPUs.

Although fast vectorization is powerful, matrix-multiplication performance

could be improved further with specialized hardware units. This possibility is

now realized with the introduction of what Domke et al. have dubbed “matrix

engines” [23].

Robust performance benchmarking is critical for the evaluation of vector

extensions. While there is extensive performance evaluation of matrix multipli-

cation on vector extensions for Intel architectures [2], [40], [42], to the best of

our knowledge, similar studies do not exist for the PowerPC or Arm platforms.

Moreover, the introduction of matrix engines is recent in all platforms and

therefore only simulated or theorized performance estimates exist for AMX,

SVE, or MMA [23], [76]. Therefore, this work is among the first to present

performance evaluation of a matrix engine on actual hardware.

The advent of the “general purpose” GPUs quickly saw study and per-

formance analysis of matrix computations [24], [63]. This evolved into im-

plementations of matrix multiplications on GPUs: manually [65], through

libraries like BLAS [69], and through frameworks such as DistME [39]. Matrix

90

multiplication is also central to the design of hardware for tensor-operation

acceleration such as Google’s Tensor Processing Unit [57], Nvidia’s Tensor

Core [67], and Huawei’s Cube Unit [66].

91

Chapter 7

Conclusion

Utilizing matrix-multiplication building blocks efficiently in a software stack is

essential for the generation of efficient code for high-performance computing

and for deep learning applications. High-Performance Computing (HPC)

applications often call specialized linear-algebra libraries directly, and these

libraries have been tuned for the efficient computation of matrix multiplication

in each architecture. In some cases, such as when the matrices are small, the

overhead of a call to a library is not justified. Thus, there is a need for compiler

solutions that use the building blocks efficiently.

This thesis presented two solutions for the efficient computation of ma-

trix multiplication starting with user-level code that does not invoke linear-

algebra libraries. The first, KernelFaRer, is based on an improved robust

intermediate-level pattern recognition technique that can identify a matrix mul-

tiplication in the user code and replace it with a call to a library . The second,

is an implementation of matrix multiplication in a production LLVM compiler

that integrates the techniques from high-performance libraries. Experimental

evaluation across several architectures and input sizes showed performance

comparable to the target-specific library code. For the platforms and input

cases when that was not the case, limitations of the vectorizing passes in LLVM

were found. The proposed approach allowed to easily incorporate new matrix

unit instructions into the existing code path.

For deep learning, an efficient implementation of the convolution operation is

pivotal to neural network performance. Traditionally, convolution is computed

92

with a data transformation, followed by one or several calls to the matrix

multiplication routine from a numerical library. This thesis presented a novel

convolution algorithm design that does not rely on the library GEMM routine

nor explicit input copy. The same memory hierarchy utilization principles that

are used for matrix multiplication allowed the new algorithm to reduce the

number of data accesses and narrow the gap between convolution and GEMM

performance on CPUs. By carefully examining the data, we argued that this

level of performance can be achieved for all convolution inputs by adjusting

the input sizes to match architecture-dependent parameters. The algorithm

performance benefits come at no memory cost which is a lucrative solution for

embedded applications.

93

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, principles, techniques,
2nd ed. Addison wesley, 1986, isbn: 0321486811. 13

[2] C. L. Alappat, J. Hofmann, G. Hager, H. Fehske, A. R. Bishop, and G.
Wellein, “Understanding HPC benchmark performance on Intel Broad-
well and Cascade Lake processors,” in High Performance Computing,
P. Sadayappan, B. L. Chamberlain, G. Juckeland, and H. Ltaief, Eds.,
Frankfurt am Main, Germany, 2020, pp. 412–433, isbn: 978-3-030-50743-5.

90

[3] AMD, Software Optimization Guide for AMD Family 17th Models 30h
and Greater Processors (Revision 3.01), 2020. 29

[4] A. Anderson, A. Vasudevan, C. Keane, and D. Gregg, “High-Performance
Low-Memory Lowering: GEMM-based Algorithms for DNN Convolution,”
in 2020 IEEE 32nd International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), 2020, pp. 99–106. doi:
10.1109/SBAC-PAD49847.2020.00024. 68, 69

[5] Arm® Architecture Reference Manual Armv8, for Armv8-A Architecture
Profile, Arm Limited, Jan. 2021. 39, 45, 65

[6] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A.
Stokes, “The ILLIAC IV Computer,” IEEE Transactions on Computers,
vol. C-17, no. 8, pp. 746–757, 1968. doi: 10.1109/TC.1968.229158. 90

[7] P. Bhat, J. Moreira, and S. K. Sadasivam, “Matrix-multiply assist best
practices guide,” IBM, Tech. Rep., 2021. [Online]. Available: https:

//www.redbooks.ibm.com/redpapers/pdfs/redp5612.pdf. 6

[8] N. Birkbeck, J. Levesque, and J. N. Amaral, “A Dimension Abstraction
Approach to Vectorization in Matlab,” in International Symposium on
Code Generation and Optimization (CGO), San Jose, CA, USA, 2007,
pp. 115–130. 87

[9] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Dem-
mel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al., “An updated
set of basic linear algebra subprograms (BLAS),” ACM Transactions on
Mathematical Software, vol. 28, no. 2, pp. 135–151, 2002. 9, 14, 26

94

https://doi.org/10.1109/SBAC-PAD49847.2020.00024
https://doi.org/10.1109/TC.1968.229158
https://www.redbooks.ibm.com/redpapers/pdfs/redp5612.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5612.pdf

[10] U. Bondhugula, High Performance Code Generation in MLIR: An Early
Case Study with GEMM, 2020. arXiv: 2003.00532 [cs.PF]. [Online].
Available: https://arxiv.org/abs/2003.00532. 56, 59, 89

[11] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A.
Rountev, and P. Sadayappan, “Automatic Transformations for Communi-
cation-Minimized Parallelization and Locality Optimization in the Poly-
hedral Model,” in International Conference on Compiler Construction
(ETAPS CC), Apr. 2008. 41

[12] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer,” in
Programming Language Design and Implementation, Tucson, AZ, USA,
2008, 101–113. 9

[13] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
Generation Compute Benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’18,
Berlin, Germany: Association for Computing Machinery, 2018, 41–42,
isbn: 9781450356299. doi: 10.1145/3185768.3185771. [Online]. Avail-
able: https://doi.org/10.1145/3185768.3185771. 35

[14] D. Callahan, “Recognizing and parallelizing bounded recurrences,” in
Languages and Compilers for Parallel Computing, Berlin, Heidelberg:
Springer Berlin Heidelberg, 1992, 169–185, isbn: 978-3-540-47063-2. 10, 11, 86

[15] J. P. L. de Carvalho, B. Kuzma, and G. Araujo, “Acceleration Opportuni-
ties in Linear Algebra Applications via Idiom Recognition,” in Companion
of the ACM/SPEC International Conference on Performance Engineer-
ing, ser. ICPE ’20, Edmonton AB, Canada: Association for Computing
Machinery, 2020, 34–35, isbn: 9781450371094. doi: 10.1145/3375555.
3383586. [Online]. Available: https://doi.org/10.1145/3375555.
3383586. 10

[16] J. P. L. de Carvalho, B. Kuzma, I. Korostelev, J. N. Amaral, C. Bar-
ton, J. Moreira, and G. Araujo, “KernelFaRer: Replacing Native-Code
Idioms with High-Performance Library Calls,” ACM Transactions On
Architecture And Code Optimization (TACO), 2021. 55, 59, 90

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K.
Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54. doi: 10.1109/IISWC.2009.5306797. 35

[18] L. Chelini, O. Zinenko, T. Grosser, and H. Corporaal, “Declarative Loop
Tactics for Domain-Specific Optimization,” ACM Trans. Archit. Code
Optim., vol. 16, no. 4, Dec. 2019, issn: 1544-3566. doi: 10.1145/3372266.
[Online]. Available: https://doi.org/10.1145/3372266. 9, 11, 31, 88

95

http://arxiv.org/abs/2003.00532
https://arxiv.org/abs/2003.00532
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3375555.3383586
https://doi.org/10.1145/3375555.3383586
https://doi.org/10.1145/3375555.3383586
https://doi.org/10.1145/3375555.3383586
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/3372266
https://doi.org/10.1145/3372266

[19] K. Chellapilla, S. Puri, and P. Simard, “High Performance Convolu-
tional Neural Networks for Document Processing,” in Tenth Interna-
tional Workshop on Frontiers in Handwriting Recognition, G. Lorette,
Ed., http://www.suvisoft.com, Université de Rennes 1, La Baule (France):
Suvisoft, Oct. 2006. [Online]. Available: https://hal.inria.fr/inria-
00112631. 14, 68

[20] M. Cho and D. Brand, “MEC: Memory-efficient convolution for deep
neural network,” in Proceedings of the 34th International Conference on
Machine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings of
Machine Learning Research, vol. 70, PMLR, 2017, pp. 815–824. [Online].
Available: https://proceedings.mlr.press/v70/cho17a.html. 68, 69

[21] Clang: a C language family frontend for LLVM, https://clang.llvm.
org, Accessed: January 2020. 15

[22] cuBLAS — NVIDIA Developer, https://developer.nvidia.com/

cublas, Accessed: January 2020. 9

[23] J. Domke, E. Vatai, A. Drozd, P. Chen, Y. Oyama, L. Zhang, S. Salaria,
D. Mukunoki, A. Podobas, M. Wahib, and S. Matsuoka, “Matrix engines
for high performance computing:a paragon of performance or grasping at
straws?” In International Parallel and Distributed Processing Symposium,
2021. 90

[24] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the
Efficiency of GPU Algorithms for Matrix-Matrix Multiplication,” in
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware
(HWWS), Grenoble, France: Association for Computing Machinery, 2004,
133–137, isbn: 3905673150. 90

[25] P Fischer and K Heisey, NEKBONE: Thermal Hydraulics Mini-Application,
2013. 35

[26] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs,” Technical
University of Denmark, p. 383, Aug. 2019, Accessed: March 2020. [Online].
Available: https://www.agner.org/optimize/instruction_tables.
pdf. 29

[27] Fu, James Jianghai, “Directed Graph Pattern Matching and Topological
Embedding,” Journal of Algorithms, vol. 22, no. 2, pp. 372–391, 1997. 87

[28] R. Gareev, T. Grosser, and M. Kruse, “High-Performance Generalized
Tensor Operations: A Compiler-Oriented Approach,” ACM Transactions
on Architecture And Code Optimization (TACO), vol. 15, no. 3, Sep.
2018, issn: 1544-3566. [Online]. Available: https://doi.org/10.1145/
3235029. 59, 89

96

https://hal.inria.fr/inria-00112631
https://hal.inria.fr/inria-00112631
https://proceedings.mlr.press/v70/cho17a.html
https://clang.llvm.org
https://clang.llvm.org
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1145/3235029
https://doi.org/10.1145/3235029

[29] R. van de Geijn and K. Goto, “Encyclopedia of parallel computing,” in, D.
Padua, Ed. Springer, 2011, ch. BLAS (Basic Linear Algebra Subprograms).
[Online]. Available: https://doi.org/10.1007/978-0-387-09766-
4_84. 6

[30] E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar, G. Henry, H.
Pabst, and A. Heinecke, “Anatomy of High-Performance Deep Learning
Convolutions on SIMD Architectures,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2018, pp. 830–841. doi: 10.1109/SC.2018.00069. 68

[31] E. Georganas, K. Banerjee, D. Kalamkar, S. Avancha, A. Venkat, M.
Anderson, G. Henry, H. Pabst, and A. Heinecke, “Harnessing Deep
Learning via a Single Building Block,” in 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2020, pp. 222–
233. doi: 10.1109/IPDPS47924.2020.00032. 68

[32] E. Georganas, D. Kalamkar, S. Avancha, M. Adelman, C. Anderson,
A. Breuer, J. Bruestle, N. Chaudhary, A. Kundu, D. Kutnick, F. Laub,
V. Md, S. Misra, R. Mohanty, H. Pabst, B. Ziv, and A. Heinecke, “Tensor
Processing Primitives: A Programming Abstraction for Efficiency and
Portability in Deep Learning Workloads,” in Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’21, St. Louis, Missouri: Association for Computing
Machinery, 2021, isbn: 9781450384421. doi: 10.1145/3458817.3476206.
[Online]. Available: https://doi.org/10.1145/3458817.3476206. 2

[33] P. Ginsbach, B. Collie, and M. F. P. O’Boyle, “Automatically Harnessing
Sparse Acceleration,” in Proceedings of the 29th International Conference
on Compiler Construction, ser. CC 2020, San Diego, CA, USA: Associa-
tion for Computing Machinery, 2020, 179–190, isbn: 9781450371209. doi:
10.1145/3377555.3377893. [Online]. Available: https://doi.org/10.
1145/3377555.3377893. 88

[34] P. Ginsbach, T. Remmelg, M. Steuwer, B. Bodin, C. Dubach, and M. F. P.
O’Boyle, “Automatic Matching of Legacy Code to Heterogeneous APIs:
An Idiomatic Approach,” in Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’18, Williamsburg, VA, USA: Asso-
ciation for Computing Machinery, 2018, 139–153, isbn: 9781450349116.
doi: 10.1145/3173162.3173182. [Online]. Available: https://doi.
org/10.1145/3173162.3173182. 9, 11, 27–29, 88

[35] K. Goto and R. A.v. d. Geijn, “Anatomy of High-Performance Matrix
Multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, May 2008,
issn: 0098-3500. doi: 10.1145/1356052.1356053. [Online]. Available:
https://doi.org/10.1145/1356052.1356053. 3, 4, 9, 14, 31, 38–40, 42, 45, 69, 72, 75, 76, 89

97

https://doi.org/10.1007/978-0-387-09766-4_84
https://doi.org/10.1007/978-0-387-09766-4_84
https://doi.org/10.1109/SC.2018.00069
https://doi.org/10.1109/IPDPS47924.2020.00032
https://doi.org/10.1145/3458817.3476206
https://doi.org/10.1145/3458817.3476206
https://doi.org/10.1145/3377555.3377893
https://doi.org/10.1145/3377555.3377893
https://doi.org/10.1145/3377555.3377893
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1145/1356052.1356053

[36] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly—performing poly-
hedral optimizations on a low-level intermediate representation,” Parallel
Processing Letters, vol. 22, no. 04, p. 1 250 010, 2012. 58, 89

[37] T. C. Grosser, “Enabling polyhedral optimizations in LLVM,” PhD thesis,
Universität Passau, 2011. 9, 88

[38] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org,
2010. 7, 15, 26, 28, 38, 53, 55

[39] D. Han, Y.-M. Nam, J. Lee, K. Park, H. Kim, and M.-S. Kim, “DistME:
A fast and elastic distributed matrix computation engine using GPUs,”
in International Conference on Management of Data (SIGMOD), Am-
sterdam, Netherlands, 2019, 759–774, isbn: 9781450356435. [Online].
Available: https://doi.org/10.1145/3299869.3319865. 90

[40] S. A. Hassana, A. M. Hemeida, and M. M. M. Mahmoud, “Performance
Evaluation of Matrix-Matrix Multiplications Using Intel’s Advanced
Vector Extensions (AVX),” Microprocessors and Microsystems, vol. 47,
pp. 369–374, 2016, issn: 0141-9331. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0141933116302502. 90

[41] J. He, A. E. Snavely, R. F. Van der Wijngaart, and M. A. Frumkin,
“Automatic Recognition of Performance Idioms in Scientific Applications,”
in 2011 IEEE International Parallel & Distributed Processing Symposium,
IEEE, 2011, pp. 118–127. 11, 87

[42] A. Hemeida, S. Hassan, S. Alkhalaf, M. Mahmoud, M. Saber, A. M.
Bahaa Eldin, T. Senjyu, and A. H. Alayed, “Optimizing matrix-matrix
multiplication on intel’s advanced vector extensions multicore processor,”
Ain Shams Engineering Journal, vol. 11, no. 4, pp. 1179–1190, 2020, issn:
2090-4479. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S2090447920300058. 90

[43] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006. 35

[44] S. Hiroyuki, “Array Form Representation of Idiom Recognition System for
Numerical Programs,” SIGAPL APL Quote Quad, vol. 31, no. 2, 87–98,
Dec. 2000, issn: 0163-6006. doi: 10.1145/570406.570418. [Online].
Available: https://doi.org/10.1145/570406.570418. 11, 87

[45] Hiroyuki, Sato, “Idiom Recognition and Program Scheme Recognition
Based Program Transformations for Performance Tuning–Beyond Com-
piler Optimizations–,” in 2009 International Conference on Parallel
and Distributed Computing, Applications and Technologies, IEEE, 2009,
pp. 272–279. 11, 87

[46] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012. 13

98

https://doi.org/10.1145/3299869.3319865
https://www.sciencedirect.com/science/article/pii/S0141933116302502
https://www.sciencedirect.com/science/article/pii/S0141933116302502
https://www.sciencedirect.com/science/article/pii/S2090447920300058
https://www.sciencedirect.com/science/article/pii/S2090447920300058
https://doi.org/10.1145/570406.570418
https://doi.org/10.1145/570406.570418

[47] J. Huang and R. A. Van de Geijn, “BLISlab: A sandbox for optimizing
GEMM,” arXiv preprint arXiv:1609.00076, 2016. 32

[48] IBM, Power9 Processor User’s Manual (Version 2.0), 2018. 29

[49] ——, ESSL Guide and Reference (Version 5, Release 5), 2020. 14, 26, 28

[50] IBM, “Power ISA version 3.1,” IBM, Tech. Rep., 2020. [Online]. Available:
https://ibm.ent.box.com/s/hhjfw0x0lrbtyzmiaffnbxh2fuo0fog0. 5

[51] Intel, Intel math kernel library: Developer reference manual (revision 26),
2020. 14, 26, 28

[52] Intel Corporation, Oneapi deep neural network library (onednn), https:
//github.com/oneapi-src/oneDNN, 2016. 68

[53] Intel® Architecture Instruction Set Extensions and Future Features
Programming Reference, Intel Corporation, Feb. 2021. 7, 39, 40, 65, 66

[54] K. E. Iverson, “A Programming Language,” in Proceedings of the May
1-3, 1962, Spring Joint Computer Conference, ACM, 1962, pp. 345–351. 11, 12

[55] Y. Jia, PhD thesis, 2014, pp. 74–76. [Online]. Available: https://www2.
eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.pdf. 1

[56] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” arXiv preprint arXiv:1408.5093, 2014. 78

[57] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A.
Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R.
Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E.
Wilcox, and D. H. Yoon, “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in International Symposium on Computer Architecture
(ISCA), Toronto, ON, Canada, 2017, 1–12, isbn: 9781450348928. [Online].
Available: https://doi.org/10.1145/3079856.3080246. 91

[58] P. S. Juan, A. Castelló, M. F. Dolz, P. Alonso-Jordá, and E. S. Quintana-
Ort́ı, “High Performance and Portable Convolution Operators for ARM-
based Multicore Processors,” ArXiv, vol. abs/2005.06410, 2020. 68, 69

99

https://ibm.ent.box.com/s/hhjfw0x0lrbtyzmiaffnbxh2fuo0fog0
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.pdf
https://doi.org/10.1145/3079856.3080246

[59] T. Kalibera and R. Jones, “Rigorous Benchmarking in Reasonable Time,”
in Proceedings of the 2013 International Symposium on Memory Man-
agement, ser. ISMM ’13, Seattle, Washington, USA: Association for
Computing Machinery, 2013, 63–74, isbn: 9781450321006. doi: 10.1145/
2491894.2464160. [Online]. Available: https://doi.org/10.1145/
2491894.2464160. 30

[60] M. Kawahito, H. Komatsu, T. Moriyama, H. Inoue, and T. Nakatani,
“Idiom Recognition Framework Using Topological Embedding,” ACM
Trans. Archit. Code Optim., vol. 10, no. 3, Sep. 2013, issn: 1544-3566. doi:
10.1145/2512431. [Online]. Available: https://doi.org/10.1145/
2512431. 11, 87

[61] D. Khaldi, Y. Luo, B. Yu, A. Sotkin, B. Morais, and M. Girkar, “Extend-
ing LLVM IR for DPC++ Matrix Support: A Case Study with Intel®
Advanced Matrix Extensions (Intel® AMX),” in 2021 IEEE/ACM 7th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC),
2021, pp. 20–26. doi: 10.1109/LLVMHPC54804.2021.00008. 1

[62] D. J. Kuck, “ILLIAC IV Software and Application Programming,” IEEE
Transactions on Computers, vol. C-17, no. 8, pp. 758–770, 1968. doi:
10.1109/TC.1968.229159. 90

[63] E. S. Larsen and D. McAllister, “Fast Matrix Multiplies Using Graphics
Hardware,” in ACM/IEEE Conference on Supercomputing, ser. SC ’01,
Denver, Colorado, 2001, p. 55, isbn: 158113293X. [Online]. Available:
https://doi.org/10.1145/582034.582089. 90

[64] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04, Palo Alto, California: IEEE
Computer Society, 2004, pp. 75–, isbn: 0-7695-2102-9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673. 10, 12, 20, 86

[65] J. Li, S. Ranka, and S. Sahni, “Strassen’s Matrix Multiplication on
GPUs,” in International Conference on Parallel and Distributed Systems
(ICPADS), Tainan, Taiwan, 2011, pp. 157–164. 90

[66] H. Liao, J. Tu, J. Xia, and X. Zhou, “Davinci: A scalable architecture
for neural network computing,” in 2019 IEEE Hot Chips 31 Symposium
(HCS), IEEE Computer Society, 2019, pp. 1–44. 91

[67] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“NVIDIA Tensor Core Programmability, Performance Precision,” in 2018
IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), 2018, pp. 522–531. doi: 10.1109/IPDPSW.2018.00091.

91

100

https://doi.org/10.1145/2491894.2464160
https://doi.org/10.1145/2491894.2464160
https://doi.org/10.1145/2491894.2464160
https://doi.org/10.1145/2491894.2464160
https://doi.org/10.1145/2512431
https://doi.org/10.1145/2512431
https://doi.org/10.1145/2512431
https://doi.org/10.1109/LLVMHPC54804.2021.00008
https://doi.org/10.1109/TC.1968.229159
https://doi.org/10.1145/582034.582089
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/IPDPSW.2018.00091

[68] V. Menon and K. Pingali, “High-Level Semantic Optimization of Numeri-
cal Codes,” in Proceedings of the 13th International Conference on Super-
computing, ser. ICS ’99, Rhodes, Greece: Association for Computing Ma-
chinery, 1999, 434–443, isbn: 158113164X. doi: 10.1145/305138.305230.
[Online]. Available: https://doi.org/10.1145/305138.305230. 10, 11, 86

[69] R. Nath, S. Tomov, and J. Dongarra, “Accelerating GPU kernels for
dense linear algebra,” in High Performance Computing for Computational
Science – VECPAR, J. M.L. M. Palma, M. Daydé, O. Marques, and J. C.
Lopes, Eds., Berkeley, CA, USA, 2010, pp. 83–92, isbn: 978-3-642-19328-6.

90

[70] OpenBLAS: An optimized BLAS library, https://www.openblas.net/,
Accessed: January 2020. 3, 4, 14, 28, 31, 68, 69, 76

[71] D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for
supercomputers,” Communications of the ACM, vol. 29, no. 12, pp. 1184–
1201, 1986. 21, 24

[72] J. Palsberg and C. B. Jay, “The essence of the visitor pattern,” in
Proceedings. The Twenty-Second Annual International Computer Software
and Applications Conference (Compsac’98)(Cat. No. 98CB 36241), IEEE,
1998, pp. 9–15. 11

[73] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J.
Bai, and S. Chintala, “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-

library.pdf. 78

[74] Perlis, Alan J. and Rugaber, Spencer, “Programming with Idioms in
APL,” SIGAPL APL Quote Quad, vol. 9, no. 4-P1, 232–235, May 1979,
issn: 0163-6006. doi: 10.1145/390009.804466. [Online]. Available:
https://doi.org/10.1145/390009.804466. 9–11

[75] S. S. Pinter and R. Y. Pinter, “Program Optimization and Parallelization
Using Idioms,” ACM Trans. Program. Lang. Syst., vol. 16, no. 3, 305–327,
May 1994, issn: 0164-0925. doi: 10.1145/177492.177494. [Online].
Available: https://doi.org/10.1145/177492.177494. 10, 11, 86

[76] A. Poenaru and S. McIntosh-Smith, “Evaluating the effectiveness of
a vector-length-agnostic instruction set,” in Euro-Par: International
European Conference on Parallel and Distributed Computing, M. Malawski
and K. Rzadca, Eds., Warsaw, Poland, 2020, pp. 98–114, isbn: 978-3-
030-57675-2. 90

101

https://doi.org/10.1145/305138.305230
https://doi.org/10.1145/305138.305230
https://www.openblas.net/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/390009.804466
https://doi.org/10.1145/390009.804466
https://doi.org/10.1145/177492.177494
https://doi.org/10.1145/177492.177494

[77] L.-N. Pouchet and T. Yuki, PolyBench/C 4.2.1: The polyhedral benchmark
suite, http://polybench.sf.net, 2019. 24, 29

[78] Power ISA Version 3.1, IBM Corporation, May 2020. 39

[79] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B.
Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM Accel-
erator with Flexible Interconnects for DNN Training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 58–70. doi: 10.1109/HPCA47549.2020.00015. 38

[80] N. A. Rink, I. Huismann, A. Susungi, J. Castrillon, J. Stiller, J. Fröhlich,
and C. Tadonki, “CFDlang: High-level code generation for high-order
methods in fluid dynamics,” in Proceedings of the Real World Domain
Specific Languages Workshop 2018, 2018, pp. 1–10. 88

[81] T. M. Smith, R. Van De Geijn, M. Smelyanskiy, J. R. Hammond, and
F. G. Van Zee, “Anatomy of High-Performance Many-Threaded Matrix
Multiplication,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, IEEE, 2014, pp. 1049–1059. 31

[82] Snyder, Lawrence, “Recognition and selection of idioms for code optimiza-
tion,” Acta Informatica, vol. 17, no. 3, 327–348, 1982, issn: 1432-0525.
doi: {10.1007/BF00264357}. [Online]. Available: {https://doi.org/
10.1007/BF00264357}. 11

[83] D. G. Spampinato, D. Fabregat-Traver, P. Bientinesi, and M. Püschel,
“Program generation for small-scale linear algebra applications,” in Pro-
ceedings of the 2018 International Symposium on Code Generation and
Optimization, 2018, pp. 327–339. 87

[84] W. J. Starke, B. W. Thompto, J. A. Stuecheli, and J. E. Moreira, “IBM’s
POWER10 Processor,” IEEE Micro, vol. 41, no. 2, pp. 7–14, 2021. doi:
10.1109/MM.2021.3058632. 1, 39

[85] S. Tavarageri, A. Heinecke, S. Avancha, B. Kaul, G. Goyal, and R.
Upadrasta, “PolyDL: Polyhedral Optimizations for Creation of High-
Performance DL Primitives,” ACM Trans. Archit. Code Optim., vol. 18,
no. 1, 2021, issn: 1544-3566. doi: 10.1145/3433103. [Online]. Available:
https://doi.org/10.1145/3433103. 68

[86] The Science of High-Performance Computing Group, https://shpc.
oden.utexas.edu/, Accessed: March 2020. 32

[87] F. G. Van Zee and R. A. van de Geijn, “BLIS: A framework for rapidly
instantiating blas functionality,” ACM Transactions on Mathematical
Software (TOMS), vol. 41, no. 3, Jun. 2015, issn: 0098-3500. [Online].
Available: https://doi.org/10.1145/2764454. 38

102

http://polybench.sf.net
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/{10.1007/BF00264357}
{https://doi.org/10.1007/BF00264357}
{https://doi.org/10.1007/BF00264357}
https://doi.org/10.1109/MM.2021.3058632
https://doi.org/10.1145/3433103
https://doi.org/10.1145/3433103
https://shpc.oden.utexas.edu/
https://shpc.oden.utexas.edu/
https://doi.org/10.1145/2764454

[88] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi channel
convolution using general matrix multiplication,” in 2017 IEEE 28th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), IEEE, 2017, pp. 19–24. 38

[89] S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen, “Schedule Trees,”
in International Workshop on Polyhedral Compilation Techniques, Date:
2014/01/20-2014/01/20, Location: Vienna, Austria, 2014. 88

[90] H. Waugh and S. McIntosh-Smith, “On the Use of BLAS Libraries in
Modern Scientific Codes at Scale,” in Smoky Mountains Computational
Sciences and Engineering Conference, Springer, 2020, pp. 67–79. 38, 39

[91] V. M. Weaver, Linux perf event Features and Overhead, Austin, TX:
University of Maine, 2013. 78

[92] M. Weißbrich, A. Garćıa-Ortiz, and G. Payá-Vayá, “Comparing vertical
and horizontal SIMD vector processor architectures for accelerated image
feature extraction,” Journal of Systems Architecture, vol. 100, p. 101 647,
2019, issn: 1383-7621. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1383762119304540. 7

[93] Z. Xianyi, W. Qian, and Z. Yunquan, “Model-driven Level 3 BLAS
Performance Optimization on Loongson 3A Processor,” in 2012 IEEE
18th International Conference on Parallel and Distributed Systems, 2012,
pp. 684–691. doi: 10.1109/ICPADS.2012.97. 7, 9, 26, 28, 38, 53, 55

[94] F. G. Van Zee and R. A. van de Geijn, “BLIS: A framework for rapidly
instantiating BLAS functionality,” ACM Transactions on Mathematical
Software, vol. 41, no. 3, 14:1–14:33, Jun. 2015. [Online]. Available: http:
//doi.acm.org/10.1145/2764454. 3, 4, 14, 26, 28, 31, 68, 69, 76

103

https://www.sciencedirect.com/science/article/pii/S1383762119304540
https://www.sciencedirect.com/science/article/pii/S1383762119304540
https://doi.org/10.1109/ICPADS.2012.97
http://doi.acm.org/10.1145/2764454
http://doi.acm.org/10.1145/2764454

	Introduction
	Background
	Outer Product
	Accelerators With Outer and Inner Product
	Matrix-Multiply Assist in POWER10
	Accelerators With Inner Product

	Convolution Notation

	KernelFaRer: Replacing Native-Code Idioms with High-Performance Library Calls
	Pattern Matching Idioms
	Programming Idioms
	Pattern Matching in LLVM IR
	General Matrix-Matrix Multiplication

	An Idiom Recognition and Replacement Pass
	GEMM Pattern Matching (Phase 1)
	Data-Dependence Analysis
	Idiom Rewrite

	Experimental Evaluation
	Experimental Setup
	Performance Comparison
	Robustness of Pattern Matching
	Flexibility
	Effect on Compilation Times

	Concluding Remarks

	Fast Matrix Multiplication via Compiler-only Layered Data Reorganization and Intrinsic Lowering
	Code Generation for GEMM
	Macro-level Algorithm: blocking, tiling and packing
	Micro-Level Algorithm
	Other Data Types
	Arbitrary Values for nr, mr, kr and Access Order

	Experimental Evaluation
	Performance Comparison Against Other Compiler-Only Approaches
	Performance Comparison Against High-Performance Libraries
	MMA intrinsic

	Additional Opportunities
	Macro-level strategy for other BLAS kernels
	Targetting other matrix engines

	Concluding Remarks

	YaConv: Convolution with Low Cache Footprint
	Cache Inefficiencies of Previous Algorithms
	Convolution With im2col Transformation

	YaConv
	Extra Memory Usage
	Tiling and Block Sizes

	Comparing YaConv with im2col on Multiple Machines
	Experimental Methodology
	Performance on PyTorch Layers
	YaConv Performance Varies with Image Sizes
	YaConv Improves L3 Cache Performance

	Concluding Remarks

	Related Work
	A Brief History of Idiom Matching
	Compiler Approaches to Memory Access Optimization

	Conclusion
	References

