
Compiler-Driven Performance on Heterogeneous
Computing Platforms

by

Artem Chikin

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Artem Chikin, 2018

Abstract

Modern parallel programming languages such as Open Multi-Processing

(OpenMP) provide simple, portable programming models that support of-

floading of computation to various accelerator devices. Coupled with the

increasing prevalence of heterogeneous computing platforms and the battle for

supremacy in the co-processor space, gives rise to additional challenges placed

on compiler/runtime vendors to handle the increasing complexity and diversity

of shared-memory parallel platforms.

To start, this thesis presents three kernel re-structuring ideas that focus on

improving the execution of high-level parallel code in Graphics Processing Unit

(GPU) devices. The first addresses programs that include multiple parallel

blocks within a single region of GPU code. A proposed compiler transformation

can split such regions into multiple regions, leading to the launching of multiple

kernels, one for each parallel region. Second, is a code transformation that

sets up a pipeline of kernel execution and asynchronous data transfers. This

transformation enables the overlap of communication and computation. The

third idea is that the selection of a grid geometry for the execution of a parallel

region must balance the GPU occupancy with the potential saturation of

the memory throughput in the GPU. Adding this additional parameter to

the geometry selection heuristic can often yield better performance at lower

occupancy levels.

This thesis next describes the Iteration Point Difference Analysis — a new

static-analysis framework that can be used to determine the memory coalescing

ii

characteristics of parallel loops that target GPU offloading and to ascertain

safety and profitability of loop transformations with the goal of improving

their memory-access characteristics. GPU kernel execution time across the

Polybench suite is improved by up to 25.5× on an Nvidia P100 with benchmark

overall improvement of up to 3.2×. An opportunity detected in a SPEC ACCEL

benchmark yields kernel speedup of 86.5× with a benchmark improvement of

3.4×, and a kernel speedup of 111.1× with a benchmark improvement of 2.3×

on an Nvidia P100 and V100, respectively.

The task of modelling performance takes on an ever increasing importance

as systems must make automated decisions on the most suitable offloading

target. The third contribution of this thesis motivates the need with a study of

cross-architectural changes in profitability of kernel offloading to GPU versus

host CPU execution, and presents a prototype design for a hybrid computing

device selection framework.

iii

Preface

Chapter 3 of this thesis has been published as A. Chikin, T. Gobran. J.N.

Amaral, “OpenMP Code Offloading: Splitting GPU Kernels, Pipelining Com-

munication and Computation, and Selecting Better Grid Geometries”, Pro-

ceedings of the Fifth Workshop on Accelerator Programming Using Directives,

in November 2018. This work was presented at the workshop during the

Supercomputing 2018 conference in Dallas, TX, on November 11, 2018, by the

author. My role on the project was to formulate the research project, introduce

ideas for compiler transformations that the project evaluated, and form the

experimental methodology to evaluate these ideas. I was also responsible for

supervision of the undergraduate student working on the project, educating

him about the subject and guiding the execution of the ideas. T. Gobran

was responsible for carrying out the manual prototyping of the proposed code

transformations, performing the experimental evaluation, reporting the results

to myself and J.N. Amaral and drafting the manuscript. J.N. Amaral was the

supervisory member of the research project team and contributed to the overall

structure, direction of the resulting manuscript and to manuscript edits.

Chapter 4 of this thesis has been submitted for publication as A. Chikin,

T. Lloyd, J.N. Amaral, E. Tiotto, M. Usman, “Memory-access-aware safety

and profitability analysis for transformation of accelerator-bound OpenMP

loops”. The contents of this chapter fall under a patent filed with the U.S.

Patent Office as A. Chikin, T. Lloyd, J. N. Amaral, E. Tiotto “Compiler

for Restructuring Code Using Iteration-Point Algebraic Difference Analysis”,

Patent Reference: P201706298US01, filed on March 12, 2018. I was responsible

for designing, building, and experimentally evaluating the analysis framework

(within the IBM XL Compiler), the loop dependence test, and the associated

iv

safety/profitability analyses that are used to guide relevant automated compiler

transformations. T. Lloyd contributed many technical discussions and advice

that helped evolve the ideas developed during this research, the work also

directly extends T. Lloyd’s prior work. J.N. Amaral was the supervisory author

and contributed to guiding the experimental evaluation and editing the resulting

manuscript. E. Tiotto was the IBM collaborator, and participated in technical

discussions. M. Usman contributed the formal mathematical formulation for

the algorithms presented in this work.

Chapter 5 of this thesis has been submitted for publication as A. Chikin,

J.N. Amaral, K. Ali, E. Tiotto, “Towards Hybrid Execution Target Selection

Through Analytical Performance Modeling”. The contents of this chapter cover

ideas that fall under a patent filed with the U.S. Patent Office as A. Chikin,

J.N. Amaral, K. Ali, E. Tiotto, “Hybrid Compute Device Selection Analysis”,

Patent Reference: P201803063US01, filed on August 31, 2018. I was responsible

for conceiving the research project idea, constructing the architecture of the

hybrid analysis, prototyping its components, and experimentally evaluating its

efficacy. J.N. Amaral and K. Ali were supervisory authors and contributed to

the focus of the project and edits to the resulting manuscript. E. Tiotto was

the IBM collaborator, and participated in technical discussions.

Another research result, which is not part of this thesis, but was completed

during my M.Sc program at the University of Alberta is a research project

published as T. Lloyd, A. Chikin, E. Ochoa, K. Ali, J.N. Amaral , “A Case

for Better Integration of Host and Target Compilation When Using OpenCL

for FPGAs”, Proceedings of Fourth International Workshop on FPGAs for

Software Programmers, in October 2017. This work introduced a series of

interconnected compiler transformations aimed at improving performance of

Field-Programmable Gate Array (FPGA) programs generated through high-

level synthesis of Open Compute Language (OpenCL). My roles on the project

included implementing the reduction dependence elimination transformation

and participating in guiding the overall direction of the research.

v

To my Mom and Dad

For all the sacrifices they have made, endless love, support and inspiration.

vi

Acknowledgements

I would like to thank my supervisor, Dr. J Nelson Amaral, for his continuing

support through guidance, advice and direction over the years that I have had

the privilege of working with and learning from him.

I would also like to thank the many people working at, and visiting, the

University of Alberta systems laboratory, for insightful conversations, technical

arguments, and moments of whimsy. I have learned so much from each and

every one of you.

This research has been funded by IBM Center for Advanced Studies

(CAS) Canada and by the National Science and Engineering Research Council

(NSERC) of Canada through their Collaborative Research and Development

(CRD) program and through the Undergraduate Student Research Awards

(USRA) program.

vii

Contents

1 Introduction 1

2 Background 3
2.1 GPU Architecture, Programming Model, and Execution Platform 3

2.1.1 Memory Coalescing . 5
2.2 OpenMP and Accelerator Programming 5

2.2.1 OpenMP 4.x GPU Code Generation 7
2.3 Symbolic Static Analysis: Arithmetic Control Form 9

3 OpenMP Code Offloading: Splitting GPU Kernels, Pipelining
Communication and Computation, and Selecting Better Grid
Geometries 11
3.1 Fission of Multiple-Parallel-Region Target Regions 14
3.2 Overlapping Data Transfer and Split Kernel Execution 16
3.3 Pipelining Data Transfer and Parallel Loop Execution 20
3.4 Custom Grid Geometry . 23
3.5 Estimating Potential Benefits of Transformations 26

3.5.1 Combining Kernel Splitting with Elision Improves Per-
formance . 27

3.5.2 Elision Amplifies Benefits of Custom Grid Geometry . 30
3.5.3 Pipelining Improves Performance for High Trip Counts . 31

3.6 Concluding Remarks . 34

4 Memory-access-aware safety and profitability analysis for trans-
formation of accelerator-bound OpenMP loops 35
4.1 Loop Iteration Point Algebraic Differences 37

4.1.1 Focusing on Loop-Specific Analysis Demands 39
4.2 Symbolic Representation . 39

4.2.1 Algebraic Simplification 40
4.2.2 Algebraic Difference Cancellation 41

4.3 Data Dependence Graph Pruning with Iteration Point Differences 42
4.3.1 Single-Loop Dependence Checking 43
4.3.2 Loop-Nest Dependence Checking 45
4.3.3 Symbolic Differences of Control-Dependent Expressions

Improve Dependence Testing 47
4.3.4 Prototype Implementation Demonstrates That the Itera-

tion Point Difference Analysis (IPDA) Test is Essential
For Safety Analysis . 49

4.4 IPDA GPU Global Memory Coalescing
Analysis on parallel OpenMP loops 49

4.5 Improving GPU Memory Access Patterns with Loop Transfor-
mations . 52
4.5.1 Loop Collapse . 53

viii

4.5.2 Loop Interchange . 56
4.6 Evaluation . 58

4.6.1 Informed Loop Reshaping Performance Impact 58
4.6.2 Code Portability Impact 61

4.7 Concluding Remarks . 63

5 Toward Hybrid Execution Target Selection Through Analyti-
cal Performance Modeling 67
5.1 Comparative Offloading Performance

Change Across GPU Generations 69
5.1.1 Generational Performance Gaps Require

Fine-Tuned Performance Estimates 71
5.2 A New Hybrid Analysis Framework for Deciding the profitability

of GPU Offloading . 72
5.2.1 OpenMP CPU Performance Model 74
5.2.2 GPU Performance Model 76
5.2.3 GPU Memory Access Pattern: Improved Coalescing De-

tection . 79
5.2.4 Putting It All Together 80
5.2.5 Evaluation . 82

5.3 Discussion and Future Work 85

6 Related Work 86
6.1 Overlapping GPU Computation and Memory Transfers 86
6.2 GPU Occupancy / Grid Geometry 87
6.3 Performance Portability . 89
6.4 Symbolic Memory Reference Analysis 89
6.5 Loop Dependence Analysis . 90

7 Conclusion 93

References 95

ix

List of Tables

3.1 Optimal occupancy for a massively parallel memory-bound ker-
nel at varying numbers of uncoalesced memory accesses with
tripcount 5000. 26

3.2 The experimental evaluation versions for the splitting method. 28

4.1 Benchmark execution time speedup with automatic loop in-
terchange and collapse enabled compared to the default code-
generation scheme. 65

4.2 Loop collapse clauses were removed from benchmarks which
contain them. This table shows the portion of the loop collapses
re-discovered to be benefitial and automatically applied by the
compiler. Execution ratio columns show the performance of the
code stripped of collapse clauses versus the code with collapse
clauses present. GPU code is executed on an Nvidia P100.
The MIC (Many Integrated Core) relative execution column
compares the performance of the same two versions of the kernel
executed on an Intel Xeon Phi 7250 Processor, compiled with
ICC ver. 17.0.2 . 66

5.1 Cross-architectural changes in GPU sffloading speedup vs. host
execution. 70

5.2 CPU processor/parallel parameters as used in the execution model. 76
5.3 GPU device/bus parameters as used in the execution model. . 78

x

List of Figures

2.1 Example topology of a heterogeneous computing environment 4
2.2 Example vector addition OpenMP 4.x accelerator code 6
2.3 Visualization of the cooperative threading OpenMP 4 GPU

code-generation scheme. (Adapted from similar figure in [24]) 8

3.1 Example OpenMP GPU code with multiple parallel loops in a
target region. 12

3.2 Example OpenMP code following kernel splitting. 14
3.3 Two kernel GPU code structure before asynchronous memory

transfer. 17
3.4 Two kernel GPU code structure with Asynchronous Memory

Transfer. 17
3.5 The split OpenMP GPU code with asynchronous memory transfers. 18
3.6 Run time cost of allocating and freeing memory with the three

methods. 19
3.7 Speedup of the four versions pinning memory over the baseline

version. 20
3.8 A GPU parallel regions structure after being broken up into 4

tiles. 21
3.9 First parallel region in ATAX before pipelining. 22
3.10 ATAX region after being broken up into four tiles for pipelining. 22
3.11 Runtime results by occupancy of SYRK at tripcount 4000. . . . 24
3.12 Runtime results by occupancy of FDTD-2D at tripcount 15000. 26
3.13 The speedup ratio over the baseline for each experiment evalua-

tion of the applicable Polybench and Rodinia benchmarks run
at a tripcount set to 9600. SRAD executes on a 512by512 image
with the encompassing iteration loop performed 9600 times. LUD
operates on a 9600by9600 matrix. 29

3.14 Speedup over the baseline for the KEG version of the two bench-
marks at their two improved occupancies with varying tripcounts.
Heuristic refers to that by Lloyd et al. [37] 31

3.15 Speedup over the baseline with the kernel pipelining method on
applicable Polybench benchmarks at varying tripcounts. GEMM
is missing sizes due to time constraints. 32

3.16 Speedup over the baseline for the kernel pipelining method on an
Intel i7 machine at varying tripcounts with optimal occupancy
applied to all kernels. 33

4.1 Example loop to be analyzed by IPDA with a conditionally-
defined indexing expression. 37

4.2 Example loop array access with a potential dependence. 42
4.3 Example n-degree loop nest with a potential loop dependence. 46
4.4 Example Loop Nest at various stages of compilation/optimization. 48
4.5 Computing the number of coalesced accesses 50

xi

4.6 Example target region from GEMM benchmark 52
4.7 Pictorial representation of a parallel loop nest’s iteration space.

– Loop iterations comprising units of parallel work. –
Loop Iterations executed sequentially. 53

4.8 Pictorial representation of a parallel loop nest’s memory access
pattern. 56

4.9 Excerpt from a target region in 557.pcsp 63

5.1 Example compilation and execution flow of an offloading decision
compiler/runtime framework. 72

5.2 Equations of Cost Model for OpenMP from [33]. 74
5.3 Hong and Kim performance model program exection predic-

tion [20]. Highlighted is the additional factor that describes the
side-effects of OpenMP thread-loop-iteration scheduling. 77

5.4 Equations of Memory-Warp and Compute-Warp Parallelism
used in GPU execution Cost Model from [20]. 81

5.5 Actual versus predicted GPU offloading speedup for test kernel
execution mode versus a host using 4 threads. 81

5.6 Actual versus predicted GPU offloading speedup for benchmark
kernel execution mode versus a host using 4 threads. 82

5.7 Speedup achieved by always offloading to GPU versus offloading
when determined profitable by the analytical hybrid decision
model. Benchmarks executed in Benchmark mode. 83

xii

List of Acronyms

ACF Arithmetic Control Form.

DDG Data Dependence Graph.

FPGA Field-Programmable Gate Array.

GPU Graphics Processing Unit.

HPC High-Performance Computing.

IPDA Iteration Point Difference Analysis.

IR Intermediate Representation.

LLVM Low-Level Virtual Machine.

MIC Many Integrated Core.

OpenACC Open Accelerators.

OpenCL Open Compute Language.

OpenMP Open Multi-Processing.

SIMD Single Instruction, Multiple Data.

SIMT Single Instruction, Multiple Thread.

SM Streaming Multiprocessor.

VEG Value Evolution Graph.

xiii

Chapter 1

Introduction

Heterogeneous computing platforms are increasingly commonplace across all

major application domains. Accelerator devices can be found in systems that

vary from mobile phones to supercomputers. In the most recent Top500 list [59],

7 out of the top 10 machines use accelerator devices. The two fastest computers

in the USA, the Summit supercomputer at the Oak Ridge National Laboratory

and the Sierra supercomputer at the Lawrence Livermore National Laboratory

rely heavily on accelerators for their computation. Summit has more than

25, 000 NVIDIA V100 GPUs coupled with 9, 200 IBM POWER 9 CPUs [56].

The Cray XC40 Trinity supercomputer, at the Los Alamos National Laboratory,

achieves 41.5 petaflops of peak performance with a different heterogeneous

architecture that uses Many Integrated Core (MIC) Xeon Phi co-processors [60].

Various competing accelerator platforms co-exist, often within the same host

machine, as each has its own strengths, weaknesses, and corresponding favor-

able application domains. Moreover, different accelerator architectures place

different, often opposing, demands on attributes of computer programs. Such

demands must be met in order to achieve acceptable levels of performance.

Proliferation of heterogeneous computing has spurred development of pro-

gramming models that allow developers to write applications that target

execution on accelerator devices. High-level programming models such as

OpenMP [13] and Open Accelerators (OpenACC) [58] provide the means to

write architecture-agnostic accelerator code. Programs written using such

high-level programming models are meant to be written once in a generic

1

fashion and to run on a variety of computational devices from general-purpose

CPUs to GPU, FPGA, and MIC co-processors. Target-agnostic programming

abstracts the details of accelerator architecture from the developer and makes

it the prerogative of the compiler/runtime to handle architecture-specific code

generation, optimization, and parameter tuning, within the limits allowed by

the programming model. Furthermore, programming models like OpenMP are

shifting towards being more descriptive, rather than prescriptive, with the next

iteration of the standard poised to introduce constructs that allow compilers

most freedom yet on how to generate code and where it should execute (e.g.

#pragma loop).

The notion of performance portability is a core tenet behind the design

of high-level parallel programming models. OpenMP promises a model that

allows users to write programs that seamlessly scale from workstation PCs to

supercomputers. Yet, performance portability is extremely difficult to achieve

because compiler heuristics and analyses struggle to keep up with advancements

in micro-architecture. To compensate, the OpenMP language specification has,

over time, accumulated hints that developers may provide to the compiler to

increase performance for a specific target. For instance, the collapse clause

instructs the compiler to collapse the iteration-space of multiple nested loops

in a prescribed manner. The resulting code exhibits memory access patterns

that favour a specific architecture’s memory subsystem. Such hints detract

from portability. More capable compilers should be able to generate the same

higher-performing code without portability-reducing annotations.

2

Chapter 2

Background

A typical heterogeneous system consists of a host machine that operates using

an ordinary CPU and contains main memory modules. Attached to the host

machine, via a data-transfer bus, are one or more accelerator devices. An

example topology of a host computer with two accelerator devices attached

is shown in Figure 2.1. The host — a general-purpose CPU machine — is

responsible for the overall system’s operation, memory management and control

of execution among attached devices. During execution of a program that

contains an accelerator kernel — a piece of computation specified to be offloaded

to an accelerator — the host machine schedules execution of the kernel on a

given computing device and performs the necessary data transfers to and from

the computing device. A fallback scenario may occur in which the required

accelerator device is unavailable or busy, in which case the host may instead

schedule execution of the accelerator kernel on the host machine’s CPU. If the

programming model allows it, the host may elect to schedule kernel execution

either on the host itself or any of the available accelerators.

2.1 GPU Architecture, Programming Model,

and Execution Platform

GPUs are composed of a large number of Streaming Multiprocessors (SMs),

each capable of executing thousands of threads in parallel. Such massive

parallelism requires a strict Single Instruction, Multiple Thread (SIMT) data-

parallel programming model in order to achieve performance. The Nvidia V100

3

CPU

CoreCore

CoreCore

Main Memory

GPU

GPU Memory

FPGA

FPGA Main Memory

Figure 2.1: Example topology of a heterogeneous computing environment

is a state-of-the-art Nvidia GPU for high-performance computing composed of

80 SMs. Each SM can issue an instruction for 128 threads per cycle [44]. The

V100 has enough resources to maintain the state of thousands of threads, which

gives each SM the ability to context switch between threads with zero penalty

— a key instruction-latency hiding mechanism. GPU threads are grouped into

warps : all the threads that comprise a warp execute either the same instruction

in lock-step or no instruction at all. Lock-step execution reduces the overhead

of scheduling work across a large number of threads. Threads are further

grouped into thread blocks or Cooperative Thread Arrays (CTA). All threads

within a thread block must execute on a single SM. They can both share

intermediate results via access to SM’s shared memory banks and synchronize

their execution. Threads from different thread blocks have no means of direct

communication or synchronization. The number of threads per thread block

and the number of thread blocks comprise the GPU grid geometry.1

1NVIDIA-specific terms such as warp and SM are used throughout this thesis for the
sake of clarity and consistency.

4

2.1.1 Memory Coalescing

In a typical data-parallel kernel, thread identifiers are used in memory-access

addressing expressions to load/store the data items for each thread. The

number of memory requests issued by a warp in a given cycle can be as large

as the number of threads in a warp (32 in current architectures) because the

threads belonging to it execute the same instruction simultaneously. The GPU

global memory subsystem has a limited amount of bandwidth available. As a

means to reduce the overall number of requests, the GPU coalesces multiple

same-cycle accesses to memory within the same cache line into a single request.

Coalescing memory accesses into fewer requests can dramatically improve

memory throughput because no thread in a warp can continue execution until

the memory accesses of all threads have completed. The number of requests

necessary to satisfy all the accesses in a warp of threads is equal to the number

of distinct cache lines that are accessed. Each global memory request requires

hundreds of cycles to be completed; thus, structuring GPU programs to avoid

non-coalesced memory accesses is paramount for performance [1].

2.2 OpenMP and Accelerator Programming

Programming in CUDA or OpenCL is a painstaking process that requires devel-

opers to have thorough working knowledge of the accelerator architecture being

targeted. An alternative are high-level directive-based parallel programming

models such as OpenMP that support offloading of code regions to accelerators.

These models reduce the amount of effort required to write accelerator code

by abstracting the accelerator hardware specifics from the developer. Being

platform-agnostic, these models promise code portability across existing and

future accelerators. Figure 2.2 shows an example parallel loop written using

OpenMP 4.x with accelerator offloading. The programmer specifies a target

region, directing the compiler to offload the region to an accelerator device. The

target region directive is annotated with data-transfer map clauses that indicate

which arrays must be transferred to and from the device data environment. Full

assortment of OpenMP parallelism constructs are supported inside target re-

5

1 void vecAdd(double *a, double *b, double *c, int n)

2 {

3 #pragma omp target map(to: a[:n], b[:n]) map(from: c[:n])

4 #pragma omp teams distribute parallel for

5 for (int i = 0; i < n; i++)

6 c[i] = a[i] + b[i];

7 }

Figure 2.2: Example vector addition OpenMP 4.x accelerator code

gions; however, task-level parallelism maps poorly to data-parallel devices such

as GPUs. Thus, performance considerations limit the expression of parallelism

in OpenMP for execution in GPUs to parallel and loop constructs.

Moreover, GPUs’ reliance on a SIMT execution model has implications on

the compiler implementations that generate GPU code from OpenMP. Where

possible, parallel constructs must be mapped to data-parallel structures in order

to achieve good performance. Other aspects of the accelerator architecture

must be taken into account in for efficient hardware utilization, such as the

selection of a grid geometry. In contrast with low-level languages — such as

CUDA and OpenCL — where the selection of program runtime parameters

such as grid geometry is the prerogative of the programmer, OpenMP assigns

this task to the compiler/runtime-system designers. On one hand the rigid

execution model that must be followed when generating GPU code makes the

compiler designer’s task challenging. On the other hand it affords considerable

freedom for code generation from high-level descriptive models. Grid geometry

selection in the OpenMP context was one of the research projects pursued as a

component of this thesis by the author, in collaboration with T. Lloyd. [37].

OpenMP can express three levels of parallelism inside a target region: the

teams construct declares a region of code to be executed by a league of threads,

the parallel construct declares a task to be executed in parallel by threads

within a league, and the simd construct declares vector-based execution of a

loop. The first two provide a natural mapping to the GPU’s notions of thread

blocks and threads, respectively. Both teams and parallel constructs have

associated loop work-distribution clauses: teams distribute and parallel

6

for. teams distribute distributes iterations of the associated loop into

equal-sized partitions spread among teams, and parallel for distributes loop

iterations within a chunk to individual threads. Combined constructs are

often used to capture all of the above levels of parallelism for a given loop

into one prescription, such as teams distribute parallel for construct in

Figure 2.2.

2.2.1 OpenMP 4.x GPU Code Generation

As implemented in OpenMP 4.x for LLVM/Clang as well as in the IBM

XL C/C++/Fortran compilers, target regions are outlined into separate

procedures. The outlined procedure is cloned into two versions: a device

version and a host fallback version. CPU code is generated for the fallback

variant. A kernel suitable for GPU execution is generated for the device version.

To best take advantage of the GPU, data-parallel code is generated in place

of parallel loops. However, full breadth of the OpenMP specification must

be supported by a compliant compiler implementation. Thus, the GPU code

generator must be able to handle a multitude of constructs that contain both

serial and parallel code that may be nested or adjacent within a target region.

The compilers used in this work employ a cooperative threading model that

utilizes the technique of warp specialization to generate data-parallel GPU code

from parallel OpenMP regions [24]. Parallel work is performed by a collection

of worker warps and coordinated by a single master warp (selected to be the last

warp in a CTA). The coordination between warps is done through the use of a

CTA-level synchronization primitive that allows for named barriers that apply

to a compiler-specified number of warps to participate in the barrier (bar.sync

$0 $1). When the master encounters a parallel region, it activates the required

number of worker warps and suspends its own execution. Figure 2.3 shows a

visualization of the process described above.

The resulting device kernel is translated into Nvidia’s Parallel Thread

Execution(PTX) pseudo-assembly language, using Nvidia’s proprietary PTXAS

assembler. The host code that previously contained the target region is

rewritten to invoke the outlined device kernel through a runtime method call.

7

Master ThreadMaster Shadow

cta.sync #0, 4 (warps)

Master
executes

serial
region

return

Launch #omp parallel

Inactive workers

Parallel execution with 64 threads

IdleIdlecta.sync #1, 2

cta.sync #0, 4
Implicit #omp parallel barrier

Figure 2.3: Visualization of the cooperative threading OpenMP 4 GPU code-
generation scheme. (Adapted from similar figure in [24])

The runtime performs the required setup and data-transfer. Finally, the GPU

runtime compiles the PTX code into machine instructions and launches kernel

execution.

Warp Specialization Elision

While necessary to support the full breadth of possible OpenMP constructs that

can occur in target regions, as well as serial code sections and sibling parallel

regions, warp specialization code-generation scheme incurs a significant amount

of runtime overhead that can be avoided in select special cases. Not all kernels

require the full machinery of the cooperative code-generation scheme. For

8

target regions that are comprised solely of a single parallel loop with no nested

OpenMP constructs, and no serial code, the compiler optimizes the generated

code by eliding the warp specialization and runtime-managed sections of the

code. This optimization results in dramatically simpler generated data-parallel

code that eliminates the mentioned overheads.

Elision of the cooperative code-generation scheme and its incurred synchro-

nization points is enabled by target region splitting. Jacob et al. describe

how this elision is handled automatically by the Clang compiler, and present a

performance study of elision [24].

2.3 Symbolic Static Analysis: Arithmetic Con-

trol Form

The Arithmetic Control Form (ACF) static analysis framework, introduced

by Lloyd et. al., is a way to capture linear and non-linear relationships

between program statements [36]. ACF’s main approach is to combine data

and control flow by computing symbolic values for expressions of interest.

Similarly to the work by Ferriere and Stoutchinin on φ-nodes [55] and prior

efforts in if-conversion [39], ACF converts conditionally-executed statements

into predicated statements, capturing definitions across all potential traces

through the program. Resulting ACF expressions consist of binary operations

on constants and symbols representing compile-time unknowns.

In the context of data-parallel programs, ACF’s key strength lies in its

ability to compute an algebraic difference on the symbolic representation of a

statement. For instance, consider a statement S that is executed by different

threads, and assume that S contains an addressing expression A[f(i)], where

i is the identifier of a thread executing the code. ACF constructs an algebraic

expression for the difference between the symbolic value of the function f

computed by two distinct threads. Then, by substituting actual constant

thread identifiers into symbolic expressions, ACF can determine the memory-

access stride between threads by solving the difference to a constant.

ACF replaces variable references with their dominating definitions wherever

9

possible during the construction of symbolic expressions. ACF can perform this

replacement without any additional considerations for potential performance

impact of this replacement because ACF expressions are symbolic and are

not actual Intermediate Representation (IR) of the program that will undergo

transformation and code-generation.

The rest of this thesis builds on these core topics. Chapter 3 outlines

several compiler transformations that aim at re-structuring OpenMP paral-

lelism constructs to better suit the GPU architecture. Chapter 4 posits a

static analysis framework for detecting memory access patterns of GPU-bound

parallel loops and using it to power safety and profitability analyses guiding

performance-improving loop transformations. Chapter 5 re-approaches the

topic of accelerator offloading in high-level parallel programming models, de-

tailing a hybrid-analysis decision framework for selecting a target processing

element out of a plurality present in a heterogeneous compute node. Chapter 6

records the state-of-the-art related work in the relevant areas of study. Chapter

7 concludes this thesis.

10

Chapter 3

OpenMP Code Offloading:
Splitting GPU Kernels,
Pipelining Communication and
Computation, and Selecting
Better Grid Geometries

A natural way for an experienced OpenMP CPU programmer to write OpenMP

GPU code is to offload to an accelerator sections of code that contain various

parallelism-specifying constructs, that are often adjacent. However, this pro-

gramming style generally leads to unnecessary overheads that are not apparent

to programmers unfamiliar with GPU programming and mapping of high-level

OpenMP code to GPUs. Experienced GPU Programmers will instead create a

common device data environment and operate on data by invoking separate

kernels for each required parallel operation. This technique results in more

efficient code and often reduces the overall amount of host-device data transfer,

as our work will demonstrate. The main goal of this investigation is to deliver

better performance for the code written by experienced OpenMP programmers

that are not necessarily GPU programming experts.

When an OpenMP target region contains a combination of parallel and

serial work to be executed in a GPU, the compiler must map these computations

to the GPU’s native SIMT programming model. One approach is through a

technique called warp specialization [3]. When specializing warps, the compiler

11

1 #pragma omp target teams map(to: B[:S]) map(tofrom: A[:S], C[:S])

{

2 #pragma omp distribute parallel for

3 for () {

4 ... // Parallel work involving A and B

5 }

6 #pragma omp distribute parallel for

7 for () {

8 ... //Parallel work involving B and C

9 }

10 }

Figure 3.1: Example OpenMP GPU code with multiple parallel loops in a
target region.

designates one warp as the master warp and all others as a pool of worker

warps. In the Clang-YKT compiler OpenMP 4 implementation, the master

warp is responsible both for executing serial code and for organization and

synchronization of parallel sections [24] [23]. The synchronization between

parallel and serial work is implemented through named warp barriers and an

emulated stack in GPU global memory for the worker warps to access the

master threads state. To handle activation and deactivation of worker warps,

synchronization constructs are added to the target region.

Figure 3.1 is an example of OpenMP 4 code. The pragma in line 1 establishes

that the following region of code will run on the default target accelerator —

assumed to be a GPU in this work, and ensures that the data specified in

map clauses is transferred to and from the GPU, respective to the (to,from)

specifiers. The pragmas in lines 2 and 6 establish the associated work as parallel

within the enclosing target region. There is an implicit synchronization point

at the end of each parallel region.

Warp specialization introduces substantial overhead because the master

and worker warps must synchronize execution when parallel region execution

starts and finishes. Even when there is no sequential code between parallel

regions, synchronization is required between the completion of one parallel

region and the start of another.

The Clang-YKT compiler performs a transformation called elision that

12

removes the warp specialization code, the master-thread stack emulation and

the synchronization code, thus eliminating unnecessary overhead [24]. To be

candidate for elision, a target region must contain only one parallel loop and

this loop must not contain calls to the OpenMP runtime. A research question

posed by our work is: what would be the performance effect of transforming

an OpenMP 4 target region that contains multiple parallel regions, with or

without serial code, into multiple target regions, each with a single parallel

region. The goal is to enable the compiler to perform the elision transformation.

Special care must be taken to avoid increasing the amount of data transfer

between the host and device memory.

This chapter explores two additional transformation opportunities, both

applicable to any OpenMP code where parallel loops are isolated into their own

target regions. The first is the overlapping of data transfer and GPU kernel

execution for multiple adjacent target regions. The target regions are wrapped

in a common device data environment and through memory-use analysis, a

compiler can determine which data is and is not needed until or after a certain

point. The second opportunity is to overlap computation with data-transfer by

pipelining the loop within a single-loop parallel region in a fashion similar to

iterative modulo scheduling [49]. The loop iteration space can be divided into

multiple tiles, each resulting in a separate kernel launch, execution of which

happens asynchronously with the data transfer for the next tile.

Finally, this target region format allows for better selection of grid geometry

tailored to the contained parallel loop. Grid geometry is the number of

Cooperative Thread Arrays (CTAs), also known as thread blocks, and the

number of threads per CTA that the GPU uses. Grid geometry strongly affects

the overall occupancy of the GPU. Tailoring this selection to a specific parallel

region can have a significant effect on the performance of that region. However,

a single grid geometry must be selected for an entire target region. Therefore,

multiple parallel regions in the same target region cannot have individually

specialized geometry for each parallel region.

In the remainder of this chatper, Section 2.2.1 describes how kernel splitting

enables the elision of runtime calls and barrier synchronization. Section 3.1

13

1 #pragma omp target data map(to: B[:S]) map(tofrom: A[:S], C[:S]) {

2 #pragma omp target teams distribute parallel for

3 for () {

4 ... // Parallel work involving A and B

5 }

6 #pragma omp target teams distribute parallel for

7 for () {

8 ... //Parallel work involving B and C

9 }

10 }

Figure 3.2: Example OpenMP code following kernel splitting.

presents a sample code to demonstrate how kernel splitting is performed.

Section 3.2 describes the implementation of asynchronous memory transfers

and presents a study of their performance implications. Section 3.3 explains

how these transfers can be used to establish a pipeline between computation

and data transfers. Section 3.4 shows that custom grid geometry must take

into consideration the potential saturation of memory bandwidth in the GPU.

Section 3.5 presents the performance study that can be used to predict the

potential benefits of the proposed transformations.

3.1 Fission of Multiple-Parallel-Region Target

Regions

When a target region is separated into two target regions, as shown in Figure 3.2,

each target region is then executed as a separate kernel on the GPU and

therefore data transferred for the first region is no longer present for the

second region to utilize as is the case when both exist in a single-target region.

Figure 3.2 shows how the single-target region spanning lines 1-10 in Figure 3.1

can be split into two separate target regions, one spanning lines 2-5 and the

other lines 6-9. The parallel region directives (lines 2 and 6 of Figure 3.1) are

combined with the target directives (lines 2 and 6 of Figure 3.2), transforming

each parallel region into a stand-alone target construct. To avoid extra data

transfers, the newly formed target regions are enclosed in a common device

data environment containing all the implicit and explicit mappings of data

14

from the original single-target region. Only the data items specified in the data

environment persist in GPU global memory across multiple target regions. The

motivation for this transformation to be performed by a compiler is further

reinforced by the design of the kernels OpenACC construct [57]. kernels

construct definition states:“The compiler will split the code in the kernels

region into a sequence of accelerator kernels“, as deemed appropriate by the

implementation. This design makes a strong argument for implementing the

proposed transformation at the OpenMP level to further the efforts towards

performance portability.

Furthermore, with a common device data environment, it is possible to

overlap memory transfers with computation by analyzing when each data

element is needed or produced. In our hand-implemented prototype for the

transformation the OpenMP target update directive is used for these transfers,

with the additional nowait clause added to allow for asynchronous memory

transfers.

Safety measures must be taken when performing target fission, mainly to

handle the presence of serial sections within the original single-target region.

One concern to address is the possibility of variables being declared for the scope

of the original single-target region. These variables reside in GPU memory and

exist for the duration of the target region that is their scope, as a result the

compiler must ensure that splitting does not interfere with any usages of them.

One approach, if possible, is to move the variable declaration onto the CPU

and map it to the common device data environment with an alloc map clause.

Additional care must be taken to then mark such variables as teams private,

to replicate the semantics of original code. Another approach is to limit the

fission transformation such that all code from the declaration of the variable

to its final usage resides within a single target region, though this can prevent

elision.

A mitigating factor for this concern is that any such interfering declaration

within the original single-target region scope must reside in a serial region at

the target region scope. Variables declared inside parallel regions are assumed

to be thread-local and expire when the parallel code block goes out of scope.

15

Another safety concern is that of serial code operating on data objects that

are modified by previous parallel regions or are utilized by later parallel regions.

The compiler must ensure that an updated variable is used by both the serial

code and any later parallel regions on the GPU as would be the case with a

single-target region wherein all code operates on the same GPU memory. One

solution is to place serial code segments on the GPU in their own target regions.

A drawback is paying the cost of additional kernel launch to execute serial

code. An alternative approach is to execute the serial code on the CPU, with

compiler analysis ensuring that any data object used in parallel regions are

transferred to and from the device as needed for correctness. These transfers

can become costly if they occur frequently, but in some cases run time can be

improved significantly by executing serial code on the CPU.

Therefore the kernel splitting method should be applied with caution when

the original single-target region has serial code or target region scoped local

variables. Such scenarios did not appear in any of the benchmarks tested and

likely do not represent a large portion of OpenMP code that can benefit from

splitting.

3.2 Overlapping Data Transfer and Split Ker-

nel Execution

Overlapping data transfer with computation can be an effective strategy to

increase performance. Opportunities to benefit from asynchronous data trans-

fers may arise from the splitting of a multi-parallel-region target into multiple

single-parallel region targets. To enable the pipelining of data transfers and

computation, the compiler must determine the first point of use of data and

also when the computation of results is completed and the data is no longer

used in the target. After such analysis, a schedule can be created for the

pipelining with the overlapping effectively hiding the memory transfer time.

Figures 3.3 and 3.4 illustrate how this pipelining, enabled by asynchronous

memory transfers, can reduce the overall execution time. In this example, if

the runtime of the two kernels are long enough, this transformation results in

16

Kernel Ini-
tialization

Allocate
GPU

Memory

Transfer
1st Kernel

Data

Transfer
2nd

Kernel
Data

Execute
1st Kernel

Execute
2nd

Kernel

Return
1st Kernel

Results

Return
2nd

Kernel
Results

Figure 3.3: Two kernel GPU code structure before asynchronous memory
transfer.

Kernel Ini-
tialization

Allocate
GPU

Memory

Transfer
1st Kernel

Data

Execute
1st Kernel

Transfer
2nd

Kernel
Data

Execute
2nd

Kernel

Return
1st Kernel

Results

Return
2nd

Kernel
Results

Figure 3.4: Two kernel GPU code structure with Asynchronous Memory
Transfer.

the costs of the asynchronous memory transfers being entirely hidden.

Execution of asynchronous memory transfers and their synchronization

with kernel execution can be specified manually by a programmer, using two

OpenMP 4.5 clauses: depend and nowait. An OpenMP command with a

depend clause with an out attribute must finish before any command with a

depend clause with an in attribute with the same value. The nowait clause

states that the specified OpenMP task can be run asynchronously with other

tasks, thus allowing the update memory transfer to occur while a target region

is executing. The combination of these clauses allows for the construction of

GPU code that has asynchronous memory transfers to and from the GPU

while also maintaining correct computation through clearly established task

dependence relations by which these asynchronous transfers must finish.

Figure 3.5 is an example of split target region code with asynchronous

memory transfers within a common device data environment. In this example

the data element C is not needed until the target region at line 9, thus its

mapping in the target data region in line 2 is only to return to the host after

all work finishes. The transfer to the GPU for C instead begins on line 3 where

it is declared asynchronous by the nowait clause. With the pair of depend

clauses in lines 3 and 9 ensuring the transfer must be completed before any

computation on the target region in line 9 can begin. Furthermore the array A

17

1 int a;

2 #pragma omp targe data map(to: A[:S], B[:S]) map(from: C[:S]) {

3 #pragma omp target update to(C[:S]) depend(out: a) nowait

4 #pragma omp target teams distribute parallel for

5 for () {

6 ... // Parallel work involving A and B

7 }

8 #pragma omp target update from(A[:S]) nowait

9 #pragma omp target teams distribute parallel for depend(in: a)

10 for () {

11 ... //Parallel work involving B and C

12 }

13 }

Figure 3.5: The split OpenMP GPU code with asynchronous memory transfers.

can be transferred back to the host memory asynchronously as it is not used

in the second target region. Thus the memory transfer of A back to the host is

moved to line 8, after the first target region computation and it is declared to

be asynchronous.

As per vendor specification, asynchronous memory transfers require that

the transferred data be page-locked i.e. pinned on the host. A pinned page

cannot be swapped out to disk and enables DMA transfers via the memory

controller, bypassing the CPU. To enable asynchronous transfers, the pinning

must be done through the CUDA API to allocate/free pinned memory or to

pin pre-allocated heap memory. The invocation of these API functions and the

actual pinning of the memory introduce additional overheads but also leads

to faster memory transfers. Memory capacity constraints of the target device

are not affected by the transformed kernel. The amount of data required to be

present on the device at a given time is reduced in the best case, and is left

unaffected in the worst.

The experimental results shown in Figure 3.6 illustrate the cost of pin-

ning memory using the CUDA API. As a point of comparison, the time

taken to allocate non-pinned memory with a call to malloc and release with

free is provided. cudaHostAlloc measurements include releasing memory

with cudaHostFree. Finally, the cudaHostRegister results include the cost

18

4 95 381 1526 3433 6103
0

0.5
1

1.5
2

2.5

Data Size (MB)

R
u
n

T
im

e
C

os
t

(s
)

malloc cudaHostAlloc malloc + cudaHostRegister

Figure 3.6: Run time cost of allocating and freeing memory with the three
methods.

of allocating with malloc, pinning with cudaHostRegister, unpinning with

cudaHostFree and releasing with free. Allocating and freeing non-pinned

memory takes far less time compared to the same with pinned memory for both

methods that the CUDA API provides at all data sizes. However the cost of the

cudaHostAlloc method grows considerably with greater data sizes while the

cost of the cudaHostRegister method grows less in comparison, overtaking the

other in performance. This is, in part due to cudaHostRegister not zeroing

the data it pins, unlike cudaHostAlloc which does.

We use the cudaHostRegister API to pin user-allocated memory in our

experiments. The main trade-off to consider when implementing kernel asyn-

chronous data transfers is to offset the overhead of pinning memory through

faster transfers enabled by pinned memory and overlapping transfer with com-

putation. Pinning memory also has the effect of reducing the overall memory

available on the host for other processes, which can possibly stifle host compu-

tation. An important factor to consider when pinning memory is the operating

system’s default page size.We have found that pinning the same amount of

memory was up to 10× faster on a POWER8 host with 64KB pages than on a

x86 Haswell host with 4KB pages.

A synthetic experiment to illustrate the balancing of the costs and benefits

of asynchronous memory transfer was designed with three simple GPU kernels

(k1, k2, k3) that execute within a shared data environment; k2 modifies one

data object from the CPU whose results must be returned, the object is not

19

4/0.1 95/0.2 381/0.6 858/1.2 1526/2.5 2384/4.2 3433/6.3
0.5

0.75
1

1.25
1.5

Data Size(MB) / Baseline Run Time(s)

S
p

ee
d
u
p

R
at

io

Sync Transfers Async To / Sync From
Sync To / Async From Async To / Async From

Figure 3.7: Speedup of the four versions pinning memory over the baseline
version.

used by the first or third kernel. Thus, asynchronous transfer is possible both

to transfer this data object to the GPU and back to the CPU. Furthermore, k1

and k3 both have enough computation to fully hide the asynchronous memory

transfers. The experiment’s results with a varying size of the object modified

by k2 are shown in Figure 3.7. The baseline version uses unpinned memory and

synchronous transfers. Four versions using pinned memory were constructed

for comparison: (1) sync transfers; (2) async to/sync from; (3) sync to/async

from; (4) async to/async from. The run time measured includes the time

needed to allocate and free memory. The graph outlines the speedup ratio in

total execution time for each of the four pinned memory versions compared

to the baseline version. The horizontal axis shows both the size of the object

transferred and the baseline run time measured in seconds. The results show

that as the size of the transferred object increases, the additional cost of pinning

memory becomes less relevant. For larger objects, even though simply pinning

the memory pages yields performance gains, asynchronous memory transfers

produce additional benefits.

3.3 Pipelining Data Transfer and Parallel Loop

Execution

A more ambitious code transformation that utilizes the faster transfer to/from

pinned memory and asynchronous communication and computation consists of

20

Kernel Ini-
tialization

Allocate
GPU

Memory

Transfer
Tile 1
data

Execute
Tile 1

Transfer
Tile 2
data

Execute
Tile 2

Transfer
Tile 3
data

Execute
Tile 3

Transfer
Tile 4
data

Execute
Tile 4

Return
Kernel
Results

Figure 3.8: A GPU parallel regions structure after being broken up into 4 tiles.

breaking a singular parallel loop into multiple loops. Known as tiling in compiler

literature, this transformation produces multiple sub-loops (tiles) which are

then placed in separate target regions. After this transformation the data

transfer required for the original loop may be split into several asynchronous

data transfers for data elements required by the respective tiles. Ideally, each

tile should use different, contiguous, large chunks of data. The goal is to

overlap the transfer with computation. In the evaluation prototype OpenMP

depend clauses are used to ensure that each data transfer is finished before the

corresponding tile executes. Transmission of tile results back to the host can

also be added to this pipeline. Pipelining can greatly improve the run-time

performance of programs with large data transfers, when the execution time of

the split loop is long enough to compensate for the overhead of setting up data

transfers and pinning memory.

Figure 3.8 illustrates how the execution of a parallel region can be pipelined

to overlap memory transfers with computation. The single parallel-loop GPU

kernel is split into four tiles which allows the memory transfers required for

the latter three tiles to be hidden underneath the previous tiles’ execution

with asynchronous transfers. Furthermore if the execution of the tiles are long

enough to cover the runtime of the memory transfers then the total cost of the

transfers may be as low as 1/4 of the original cost.

The Polybench benchmark ATAX is a good candidate to benefit from this

transformation. The original benchmark’s first parallel region, shown in Fig-

ure 3.9, has the majority of its runtime dependent on the memory transfer of

the data object A to the GPU in line 1.

Figure 3.10 shows the code after the loop is divided into four tiles and

the transfer of A split into four OpenMP target update calls. The first

21

1 #pragma omp target teams distribute parallel for map(to: A[:NX*NY

], x[:NY]) map(from: tmp[:NX]) {

2 for(int i = 0; i < NX; i++) {

3 tmp[i] = 0;

4 for(int j = 0; j < NY; j++)

5 tmp[i] = tmp[i] + A[i*NY+j] * x[j];

6 }

7 }

Figure 3.9: First parallel region in ATAX before pipelining.

call in line 2 is not asynchronous as it must be done before the first tile

execution starts. The remaining three transfers in line 6 are asynchronous

and start before the preceding tile execution to overlap communication and

computation. The depend clauses in the asynchronous transfers are needed

to synchronize the end of the data transmission with the execution of the

corresponding tile. Figure 3.10 shows a proof-of-concept manually implemented

code change. A sufficiently-capable compiler should be able to apply a similar

code transformation when equipped with memory access-pattern analysis to

be able to separate tile data chunks, among other code safety analyses.

1 int S[4];

2 #pragma omp target update to(A[0:(NX/4)*NY])

3 for(int s = 0; s < 4; s++)

4 {

5 if (s < 3)

6 #pragma omp target update to(A[((s+1)*NX/4)*NY:((s+2)*NX/4)*NY

]) depend(out: S[s+1]) nowait

7 #pragma omp target teams distribute parallel for depend(in: S[s

])

8 for(int i = (s*NX/4); i < ((s+1)*NX/4); i++) {

9 tmp[i] = 0;

10 for(int j = 0; j < NY; j++)

11 tmp[i] = tmp[i] + A[i*NY+j] * x[j];

12 }

13 }

Figure 3.10: ATAX region after being broken up into four tiles for pipelining.

22

3.4 Custom Grid Geometry

A grid geometry defines the number of CTAs and the number of threads per

CTA assigned to execute a GPU kernel. A typical GPU has a number of

Streaming Multiprocessor (SM) cores that can each issue instructions for two

groups of 32 threads (warps) in each cycle. An SM can maintain the state of

thousands of threads in-flight, and thus can context switch execution from a

warp waiting on data accesses to other warps in order to hide memory-access

latency.

Each SM has a fixed-size register file, giving each CTA a register budget.

At any given time the number of CTAs that can be scheduled is limited by

the size of the register file. Similarly, each SM has a fixed amount of shared

memory which is shared by all CTAs running on the SM. Thus, the number of

CTAs simultaneously executing on an SM is also constrained by the individual

CTA’s shared memory use. Additional CTAs that cannot be scheduled due to

these and other hardware resource limitations are queued for later execution.

GPU occupancy is the percentage of available GPU threads that are used by a

given kernel.

Some parallel regions with relatively low parallelism perform better when

not using all available threads. A compiler can analyze parallel loops in a

target region to select the most performant grid geometry. However, a single

grid geometry has to be selected for an entire target region leading to a

compromise that performs relatively well for all the loop nests in the region.

Grid geometry specialized to each individual parallel loop, made possible by

target region fission, can lead to significant performance improvements.

Lloyd et al. propose a compiler heuristic, based on static analysis and

runtime loop tripcount data, for the selection of a grid geometry calculated

by the amount of parallelism in each loop nest [37]. The heuristic takes into

account the usage of registers and shared memory for each thread and CTA

as it seeks to maximize the GPU occupancy. However, maximizing occupancy

can often lead to far worse performance because it leads to saturation of other

hardware resource, such as the memory subsystem in heavily memory-bound

23

12.5 25 28.6 37.5 50 62.5 75 87.5 100
0

10

20

30

Occupancy Percentage

S
ec

on
d
s

Figure 3.11: Runtime results by occupancy of SYRK at tripcount 4000.

codes. An example of this effect occurs in the SYRK benchmark shown in

Figure 3.11. At a tripcount of 4000 the best performance is achieved around

25% occupancy which is close to the Clang-YKT default of roughly 28.6% (128

CTAs on this GPU). For this case the heuristic proposed by Lloyd makes a

poor choice of geometry because in seeking to maximize occupancy it does

not consider memory-bandwidth saturation. Maximum occupancy produces

a Unified Cache throughput of 19.742 GB/s compared to a throughput of

183.001 GB/s at the optimal occupancy of 25%; moreover, the observed Global

Load Throughput of 751.8 GB/s at optimal occupancy versus 81.5 GB/s at

maximal, and the respective Global Store Throughput is 91.5 and 9.9 GB/s.

These metrics support the intuition that memory bus saturation can severely

limit performance at high occupancy.

This exception to the grid geometry formula led to the formulation of an

improved grid-geometry selection strategy for the cases where the optimal

occupancy is lower than the maximum. These cases fall into the broad category

of parallel regions with a high amount of parallelism exposed by the program

(high parallel-loop tripcounts) and result from memory-bandwidth saturation

due to a large number of memory requests. The results of this performance

study allows for the classification of these cases of massively parallel memory-

bound kernels into two subcategories:

24

Uncoalesced Kernels are highly memory-bound due to uncoalesced mem-

ory accesses in large tripcount parallel loops. Uncoalesced memory accesses

being loads and stores to global memory where data locations accessed by

adjacent threads in a warp are not grouped together closely enough, hence

the warp must perform several memory accesses to satisfy all the threads in a

warp. This subcategory includes the benchmarks SYRK with tripcount of 1000

or higher and COVAR with tripcounts of 12000 or higher. SYRK falls into this

subcategory due to the two high tripcount outer loops of its longest running

parallel region being collapsed for high parallelism and an innermost loop

containing an uncoalesced memory access which is performed sequentially by

each thread. COVAR has a similar structure except without a collapse of the

two outer loops and two uncoalesced memory accesses instead of one inside

the inner loop. A close examination of the execution of the SYRK benchmark

in the Nvidia Visual Profiler, reveals that the best performance is observed

when the ratio between attempted memory transaction count and the memory

throughput is the lowest — when the most data is transferred with the fewest

requests. The grid geometry affects this ratio because more warps generate

more requests when memory accesses are not coalesced.

The SYRK performance study shown in Figure 3.11 indicates that there is an

opportunity to improve the grid-geometry selection by taking into consideration

memory-bandwidth saturation. In a supplementary performance study we

altered the ratio of requests/memory throughput in SYRK by adding and

removing dummy uncoalesced memory accesses. This study yielded a pattern

of optimal occupancy halving roughly when the number of uncoalesced memory

accesses double. This insight can be used to predict the optimal occupancy

for a parallel region. To analyze this pattern further a synthetic experiment

was designed in which a more generalized program similar to SYRK was created

consisting of a simple summation of the rows of k different N ×N matrices

to produce a single matrix. The summation statement is performed within a

triple-nested loop with each tripcount being 5000 and the summation involves

exclusively uncoalesced memory accesses (row-major matrix accesses). The

experiment was then performed with different numbers of uncoalesced memory

25

Number of Accesses 1 2 3 4 5 6 7 8 9 10

Optimal Occupancy 25% 12.5% 6.3% 6.3% 6.3% 6.3% 6.3% 4.0% 4.0% 3.1%

Table 3.1: Optimal occupancy for a massively parallel memory-bound kernel
at varying numbers of uncoalesced memory accesses with tripcount 5000.

12.5 25 28.6 37.5 50 62.5 75 87.5 100
20

25

30

35

Occupancy Percentage

S
ec

on
d
s

Figure 3.12: Runtime results by occupancy of FDTD-2D at tripcount 15000.

accesses to find the optimal occupancy for each. The results of the experiment

in Table 3.1 show the similar optimal occupancy pattern that was found in

the study of SYRK, indicating a general pattern. This study and experiment

indicates that the heuristic for grid-geometry selection introduced by Lloyd et

al should be augmented to account for memory-request saturation [37].

Coalesced Kernels have high memory utilization because of parallel loops

with very large tripcounts and several memory accesses. Coalesced memory

accesses are the opposite of uncoalesced and require only one access to bring

over all data required by a warp of threads. This category includes the

benchmarks FDTD-2D and LUD at high tripcounts. Lower occupancy results in

better performance but the effect is less significant as shown in the results for

the experiment study of FDTD-2D in Figure 3.12. This category should also be

taken into consideration in an augmented version of the grid-geometry-selection

heuristic.

3.5 Estimating Potential Benefits of Transfor-

mations

The goal of this experimental evaluation is to estimate the potential perfor-

mance benefits of the proposed transformations to inform a design-team’s

decision to include them in a compiler. The results in this section are based

26

on manually-implemented modifications to programs in the Polybench and

Rodinia benchmark suites [11] [8]. Both suites have an initial OpenMP 4.0 im-

plementation. Before performing the experiments, we modified some programs

in both suites to fully utilize the GPU parallelism hierarchy with teams and

distribute constructs. This experimental study uses benchmarks that contain

parallel regions where the three transformations described in this chapter can be

applied. SPEC ACCEL benchmarks, while available to us for experimentation,

contain few to none such cases. Therefore, they do not make a good case for

the transformation described in this work due to their already-extensive usage

of target data data-sharing environemnts.

All performance results reported are the average of ten runs of the program

under the same conditions. Measurement variances were monitored and stayed

below 1% of the average and are not reported. Two exceptions are in the

execution of SYRK and COVAR that saw up to 5% variance from the average

because of the effects of memory saturation. Correctness of every transformation

was verified using the benchmarks’ output verification mechanisms.

This experimental study uses an x86 host equipped with an Intel i7-4770

processor, 32 GiB of RAM and an NVIDIA Titan X Pascal GPU with 28

SMs and 12 GiB of on-board memory that is attached via the PCIe bus. The

clock rate is locked at 80% of the nominal clock rate for the GPU to prevent

variance in performance due to frequency scaling 1. Additional experiments

are performed using an IBM POWER8 (8335-GTB) host with an Nvidia P100

GPU with 60 SMs that is attached via NVLINK.

3.5.1 Combining Kernel Splitting with Elision Improves
Performance

The effect of the transformation on performance is studied on 2MM, 3MM, FDTD-2D,

SYRK, COVAR, ATAX, MVT and BICG applications from the Polybench benchmark

suite and SRAD and LUD from the Rodinia benchmark suite. All benchmarks

chosen can be logically written with a singular target region by a naive GPU

1Dynamic frequency scaling makes achieving consitent, reproducible results very challeng-
ing due to high variance and increased effects of device warm-up.

27

Version Kernel Splitting Elision
Custom Grid

Geometry
Asynchronous

Memory Transfer

Baseline
K X
KE X X
KG X X
KEG X X X
KA X X
KEGA X X X X

Table 3.2: The experimental evaluation versions for the splitting method.

OpenMP programmer. The experimental evaluation of the kernel-splitting

technique includes seven different versions of each benchmark outlined in Ta-

ble 3.2. Custom grid geometry was calculated using the heuristic by Lloyd et al.

with the additional pattern for massively parallel memory-bound uncoalesced

kernels described in Section 3.4 utilized for relevant cases [37].

Figure 3.13 displays the speedup over the baseline for each benchmark

and each version shown in Table 3.2. Asynchronous transfer is not applicable

(N/A) to the SRAD, FDTD-2D and LUD benchmarks as they all lack memory

transfers that could be performed asynchronously. In the baseline, serial code

is executed between any two parallel regions and the state of the master thread

is propagated to all worker threads. Kernel splitting removes the serial code

and workers’ update. LUD has few worker threads because of its low level of

parallelism, thus there is little benefit to the elimination of worker updating

and the cost of launching a second kernel makes LUD slower after splitting

(version K). LUD’s target region is executed within a loop, which amplifies the

cost of the extra kernel launch. In contrast, FDTD-2D and SRAD have far higher

levels of parallelism which leads to more expensive workers’ state update. Thus

they benefit the most from kernel splitting.

Benefits from adding elision to splitting (version KE) vary, with 2MM, 3MM

and SYRK performing poorly because the runtime’s default strategy selects an

inefficient grid geometry. The removal of the warp specialization and sequential

code overhead makes the memory bus saturation issue more relevant leading to

28

Benchmark Base Time K KE KG KEG KA KEGA

2MM 36.6s 1.00 0.85 0.94 1.22 1.00 1.22
3MM 54.8s 1.00 0.85 0.94 1.22 1.00 1.22
FDTD-2D 11.8s 1.03 1.23 0.97 1.37 N/A N/A
SYRK 40.9s 1.00 0.92 1.01 1.04 1.01 1.04
COVAR 54.9s 1.00 1.04 1.02 1.04 1.00 1.04
ATAX 0.16s 1.01 1.03 1.02 1.03 0.66 0.67
MVT 0.16s 1.01 1.00 1.02 1.02 0.66 0.66
BICG 0.16s 1.00 1.01 1.01 1.01 0.66 0.66
SRAD 8.90s 1.04 1.45 1.18 1.48 N/A N/A
LUD 38.1s 0.91 1.57 0.92 1.57 N/A N/A

Figure 3.13: The speedup ratio over the baseline for each experiment evaluation
of the applicable Polybench and Rodinia benchmarks run at a tripcount set
to 9600. SRAD executes on a 512by512 image with the encompassing iteration
loop performed 9600 times. LUD operates on a 9600by9600 matrix.

the lower performance. In SYRK the main issue is that the default occupancy

is too high. In 2MM and 3MM the number of threads is too low to exploit all

available parallelism. FDTD-2D, SRAD, and LUD benefit greatly from elision

because they contain a large number of kernel calls, accumulating the reduction

in overhead of the elided kernels over time. Moreover, the amount of parallelism

and the compute-bound nature of the kernels in these benchmarks suit the

compiler’s default grid geometry selection strategy.

Asynchronous memory transfer (version KA) by itself produces either

negligible benefits or performance degradation. The degradation for ATAX, MVT

and BICG results from the small size of data objects making the cost of pinning

the data for transfer far greater then any hidden transfer cost and the short

length of the benchmarks emphasizes this.

In general, significant performance improvements are achieved by the kernel-

splitting technique combined with elision for the given benchmarks. Further-

more, any poor performance can be mitigated by additional procedures such

as tuning grid geometry that are only available once the splitting technique is

applied.

29

3.5.2 Elision Amplifies Benefits of Custom Grid Geom-
etry

SYRK and COVAR are the benchmarks most affected by the grid-geometry selec-

tion. Both are highly memory-bound because they contain frequently executed

uncoalesced memory accesses (SYRK has one, and COVAR has two) and as a

result they both have lower than maximum optimal occupancies that produce

large performance improvements. COVAR only has a lower than maximum

optimal occupancy at higher tripcounts as it lacks the high parallelism of SYRK.

These benchmarks’ optimal occupancies decrease as the number of memory

accesses rise with higher tripcounts, the optimal percentages following the

optimal-occupancy trend outlined in Table 3.1.

Further experimental evaluation of SYRK and COVAR at multiple tripcounts

for both a base unsplit version and a KEG version illustrates the effects of

varying the grid geometry. The optimal occupancy, determined by the grid

geometry, changes with the amount of parallelism for both benchmarks. For

SYRK the optimal occupancy is 25% at lower tripcounts and 18.75% at higher

tripcounts, while for COVAR the optimal is the default heuristic presented by

Lloyd et al. that has the occupancy slowly grow towards the maximum for

lower tripcounts when parallelism is low, with higher tripcounts having an

optimal occupancy of 12.5% [37]. To illustrate this shift of optimal occupancy

the experimental results shown in Figure 3.14 present the speedups of the

two benchmarks’ KEG version over the baseline for both of their optimal

occupancies. The large improvement for SYRK at tripcount 3000 matches a

similar effect in other programs with collapsed parallel loops that is caused

by a sufficiently high parallelism. This performance is due to a combination

of a GPU code that was simplified by elision and low impact of memory bus

saturation because of still relatively low parallelism.

2MM, 3MM and FDTD-2D present slight performance degradation when only

custom grid geometry is applied (version KG) as with all three benchmarks the

custom grid geometry is set to achieve full occupancy of the GPU SM’s. With

elision this is optimal but without elision additional warps are added on top of

30

SYRK(25) SYRK(18.75) COVAR(Heuristic) COVAR(12.5)
0.75

1
1.25
1.5

1.75
2

Benchmark

S
p

ee
d
u
p

R
at

io

3000 6000 9600 12000 15000 20000

Figure 3.14: Speedup over the baseline for the KEG version of the two bench-
marks at their two improved occupancies with varying tripcounts. Heuristic
refers to that by Lloyd et al. [37]

the full occupancy for the master warps in each CTA. As a result the executed

kernels request more warps then can be active on the GPU concurrently, thus

additional scheduling of the warps is performed by the GPU to ensure all warps

execute. This scheduling causes overhead that result in worse performance for

the three benchmarks compared to when only kernel-splitting is applied. In

comparison significant performance improvements for SRAD with version KG

come from the high amount of computation compared to memory accesses

in the program which take advantage of increased GPU occupancy from the

heuristic.

The improvements brought by custom grid geometry (version KG) are

amplified when combined with elision (version KEG) because the simplified

execution for elided code better utilizes an optimized number of CTAs in

terms of memory utilization and computation ability. Thus, the version KEG

produces the best performance through this amplification of the benefits of

elision and custom grid geometry.

Finally asynchronous transfers do not interact with grid geometry in any

meaningful way, as such the KEGA results are only presented for completeness.

3.5.3 Pipelining Improves Performance for High Trip
Counts

The pipelining transformation requires that a parallel region be broken into

sub-loops that process separate data chunks of sufficiently large size to justify

31

ATAX(i7) ATAX(PWR8) GESUMMV(i7)GESUMMV(PWR8) GEMM(i7) GEMM(PWR8)
0
1
2
3
4
5
6
7
8

Benchmark

S
p

ee
d
u
p

R
at

io

1000 5000 10000 15000 20000 25000 30000 35000

Figure 3.15: Speedup over the baseline with the kernel pipelining method on
applicable Polybench benchmarks at varying tripcounts. GEMM is missing
sizes due to time constraints.

the pipeline. Thus only the Polybench benchmarks ATAX, GESUMMV and GEMM are

suitable for pipelining. Memory transfers to/from the GPU are dominant for

the execution time for ATAX and GESUMMV resulting in significant improvements

from pipelining. These improvements increase with the number of iterations

as the additional computation amortizes the cost of pinning memory pages.

Pipelining transfers plays a minor role in GEMM because kernel execution is

dominant, instead the restructuring of computation caused by splitting the

kernel in four improves performance. Each of the four resulting kernels have a

quarter of the parallelism of the original kernel and thus a higher number of

loop iterations can be executed before memory bandwidth saturation requires

reduction in occupancy. A similar effect occurs for ATAX and GESUMMV but due

to the dominant memory transfers the effect on performance is minimal.

For the experimental evaluation of kernel pipelining on the benchmarks

ATAX, GESUMMV and GEMM, the baseline is a KE version of the benchmarks with

non-pinned memory for all data objects. This baseline is compared to a version

that has data transfer pipelined into four tiles with all pipelined data objects

pinned. Both versions utilize the default Clang-YKT grid geometry formula.

The evaluation is run on two machines: the Intel i7-4770 described above

and a POWER8 host with a P100 GPU. The results in Figure 3.15 show

significant improvements in performance with kernel pipelining for sufficiently

large tripcounts. The POWER8 speedup is far larger because it uses 64KB pages

compared to the 4KB pages in the Intel i7. The larger page size greatly reduces

32

ATAX GESUMMV GEMM
0

0.5

1

1.5

Benchmark

S
p

ee
d
u
p

R
at

io

1000 5000 10000 15000 20000 25000 30000 35000

Figure 3.16: Speedup over the baseline for the kernel pipelining method on an
Intel i7 machine at varying tripcounts with optimal occupancy applied to all
kernels.

the cost of pinning memory. GEMM sees significant performance improvement

because each individual tile processes a smaller chunk of data, thus allowing for

higher utilization of the device without hitting the memory subsystem saturation

performance barrier. In comparison, the benefits for ATAX and GESUMMV emerge

from hiding transfer cost. At lower tripcounts the transformation degrades

performance because there is not enough parallelism in the tiles to utilize

as many GPU SMs, and the overhead of pinning memory and initializing

additional kernels is not overcome.

In a second version of the experiment, on the x86 machine, the optimal

occupancy at every tripcount for each kernel is applied to remove the influence

of memory saturation. For GESUMMV and GEMM the optimal is 12.5% occupancy

for the baseline and the Clang-YKT default formula for the pipelined version.

While ATAX has an optimal occupancy of 18.75% for the baseline and the default

formula for the pipelined version. Figure 3.16 shows this experiment’s results

with significantly better performance for the baseline that lowers the speedup

from the pipelined version. However the pipelining still shows benefits due to

pipelined memory transfers and later memory saturation at higher tripcounts

of the benchmarks.

33

3.6 Concluding Remarks

This chapter puts forward the idea of splitting a singular OpenMP target region

of GPU code with multiple parallel regions into multiple target regions each

with a singular parallel region. The experimental evaluation using Polybench

and Rodinia benchmarks indicates that there can be non-trivial performance

gains from implementing this idea in future compilers targeting OpenMP 4.x.

Additionally the evaluation indicates that combining kernel splitting with

synchronization elision and support for asynchronous memory transfers (with

OpenMP 4.5) would lead to even more significant performance.

The study of grid geometry indicates that there is scope to improve existing

grid-geometry selection strategy by considering the saturation of the GPU

memory bandwidth due to uncoalesced memory accesses or to data-intensive

parallel loop nests. This problem was recognized before with both dynamic

runtime solutions and hardware changes proposed. However, the solution

proposed here based on static analysis and compiler action is simpler, effective,

and has lower overhead.

This chapter also studies the performance effect of pipelining memory

transfers with kernel execution when there is sufficient data. Both kernel

splitting and loop tiling can be used to enable pipelining. The results indicate

that the performance gains can be significant especially in machines with larger

page sizes such as the POWER architecture.

34

Chapter 4

Memory-access-aware safety
and profitability analysis for
transformation of
accelerator-bound OpenMP
loops

The paradigm shift toward heterogeneous platforms with accelerator devices

adds an additional dimension to the portable code generation problem. The

OpenMP 4.0 standard allows programmers to offload regions of code for execu-

tion on a coprocessor, making no assumptions about its memory or execution

model [12]. Accelerator architectures operate on different assumptions of

memory layout and locality, each requiring highly specialized program code.

Common pitfalls in GPU programming can be avoided when generating

code from high-level languages through code analysis and transformation that

would be difficult in lower-level programming models. For instance, coalescing

of memory accesses leads to higher performance when threads in a warp access

memory locations that map to few cache lines so that these accesses can be

satisfied with fewer requests to the memory subsystem. A naive mapping of

parallel loop nests to data-parallel code often results in non-coalesced accesses.

A sufficiently capable optimizing compiler must be able to detect such code

patterns and be able to reshape loop nests such that the resulting mapping

exhibits better memory access characteristics.

35

This chapter introduces the IPDA that is able to capture OpenMP parallel

loop access stride information and enable safety and profitability analyses that

guide automatic interchange and collapse of loop nests. Loop-nest reshaping,

informed by the results of IPDA, can yield dramatic performance improvements,

demonstrated with an achieved speedup of up to 25.5× for a loop nest in the

Polybench benchmark suite and up to 86.5× for a loop nest from the SPEC

ACCEL suite. This new analysis builds on the ideas proposed in a novel

static analysis framework called ACF [36]. ACF is unique in its ability to

handle control-flow conditionals symbolically and statically determine access

stride patterns in CUDA code. The IPDA framework introduces the ability

to discover inter-loop-iteration symbolic differences statically. Stronger data-

access analysis also enables the generation of efficient parallel code without

requiring programmers to provide hints to the compiler. The performance

study in this chapter demonstrates that removing collapse clauses from

OpenMP 4.x programs can increase performance across diverse accelerator

architectures if the compiler is capable of inferring the profitability of loop

collapsing automatically.

This chapter also demonstrates the versatility of the analysis framework by

building a loop-dependence test based on IPDA: the IPDA Test is introduced

as an Data Dependence Graph (DDG) pruning algorithm that enables safety

proofs on more loop nests than originally possible in the experimental compiler

setup. This chapter describes the following contributions: i) IPDA – A static

analysis framework for the computation of inter-iteration symbolic differences

among expressions contained in loops. ii) A novel DDG pruning technique

based on constructing inequality proofs over symbolic iteration-point algebraic

difference equations. iii) A static analysis that identifies inter-thread memory

access stride of addressing expressions contained in parallel OpenMP loops.

iv) Safety and profitability analyses to guide loop collapse and interchange

transformations on OpenMP parallel loops intended for GPU execution.

36

4.1 Loop Iteration Point Algebraic Differences

The Iteration Point Difference Analysis can symbolically calculate the difference

in the expression’s value across iterations of a loop, and is specially useful for

analysis of induction-value-dependent addressing expressions. A compiler can

use the results of IPDA to make decisions regarding both safety and profitability

of classical loop transformations. IPDA can improve the generation of code

that will execute either in the CPU or the GPU.

IPDA uses an ACF-like approach to compute the loop access stride of

an addressing expression. While ACF relies strictly on the presence of a

direct source of thread-dependent behaviour in the expression, IPDA uses the

induction variables to examine iteration-point differences. In its evaluation

prototype, ACF is applied to CUDA programs and is limited to stride-access

analysis and branch-divergence detection on explicitly data-parallel programs.

In that prototype, results are strictly used to advise CUDA programmers about

potential opportunities for performance improvement.

Given a thread-dependent memory-addressing expression IPDA computes

the inter-iteration access stride. For instance, consider the code snippet in

Figure 4.1.

1 #define TSIZE 64

2 for (int i = 0; i < N; ++i) {

3 int idx = 0;

4 if (i < (TSIZE / 2))

5 idx = TSIZE + i

6 else

7 idx = i

8 B[idx] = foo()

9 }

Figure 4.1: Example loop to be analyzed by IPDA with a conditionally-defined
indexing expression.

37

The symbolic expression computed for the address expression of the memory

reference B[idx] in line 6 is:

IPD(B[idx]) = ([i] < 32)× ([&B] + 8× (64 + [i])) +

([i] >= 32)× ([&B] + 8× [i])

where references to idx were replaced with their definition in terms of i, which

is the source of induction-variable-dependent behaviour. Symbolic propagation

allows the analysis to compute the inter-iteration memory access stride by

substituting constant parameters in place of induction variable identifiers and

performing algebraic simplification:

IPD1(B[idx])− IPD0(B[idx]) =

(1 < 32)× ([&B] + 8× 65) + (1 >= 32)× ([&B] + 8× 1)

−(0 < 32)× ([&B] + 8× 64) + (0 >= 32)× ([&B] + 8× 0)

= ([&B] + 520)− ([&B] + 512)

= 8

Determining the inter-thread memory access stride to be 8 bytes. In this

example constant iteration values of 0 and 1 are used. The actual analysis

computes this difference for a sufficiently large number of iterations to arrive at

a memory-access stride description. For example, when applying the analysis

to calculate the inter-thread access stride of a GPU parallel loop, a number of

iterations equal to the GPU thread-block size is tested.

A major strength of the IPDA framework is its reliance on symbolic value

computation, which makes it highly independent of the transformation phase

ordering: the analysis is likely to produce equally accurate results regardless

of the current state of the loop code (e.g. before or after loop-invariant code

motion). This has the effect of not only increasing the overall analysis accuracy

but also its applicability at different stages of the compilation process.

Furthermore, IPDA’s innovations make ideas first proposed in ACF relevant

for non-data-parallel programs. Detection of induction-variable-dependent

behaviour is also particularly useful for the analysis of parallel OpenMP loops

38

because in such loops different iterations might be scheduled to be executed by

different threads, affecting cache behaviour.

4.1.1 Focusing on Loop-Specific Analysis Demands

The transformation of loop nests often requires an analysis that can compute an

induction-value-dependent difference between distinct addressing expressions

computed at different iteration points of a loop nest. In contrast, the original

design of ACF was intended only to compute the differences between the same

expression as evaluated by multiple threads to detect divergent behaviour.

For example, let Es be the expression used to compute the address of the

source of a loop-carried dependence relation that exists in the compiler’s DDG

and let Et be the expression for the target of the same dependence. In many

loops, Es and Et are similar enough that the difference between the ACF

symbolic representations of Et and Es produces a simplified ∆E expression

that yields useful information about potentially overlapping access ranges of

the two statements. Symbolic differences between distinct expressions can

often be used to determine that the dependence occurs under certain specific

conditions or that it never actually occurs at runtime. Such information can

often enable a multitude of compiler transformations previously prevented

by a conservative or insufficiently capable safety analysis. Moreover, for the

cases where the symbolic difference simplification framework does not provide

information to increase the precision of the dependence relations, it does not

affect the soundness of the results. In the case of a ∆E expression that could

not be simplified or does not provide meaningful access range insights, the

dependence is left as-is in the DDG.

4.2 Symbolic Representation

IPDA computes the algebraic difference of expression instances as accessed in

different loop iterations. It models each access as a tree of symbolic values

consisting of constants, statically unknown values, and operators. The symbolic

representation for an expression is constructed in a way that lends easily into

39

computing differences across iterations. For instance, whenever possible, a

load is replaced directly with its reaching definition. IPDA iterates through

instructions referencing the location of the load and avoids store-updates in

the case of loops by means of dominance analysis.

An addressing expression of an arbitrary level of indirection is representable

symbolically in a fashion similar to that of building an AST by traversing each

index operation and creating offset addition operators for element accesses.

Consider a data access expressed in C such as A[4].x[2] - the symbolic-

expression tree is built by taking sums of each index operation (three in this

case), each of which are offsets to the specified element.

Whenever there are multiple reaching defining expressions for a variable

that is used in an IPDA address expression, a separate term is created for the

IPDA expression for each reaching definition. Each term is multiplied by the

set of predicates, extracted from the conditional statements along the path

where the reaching definition lies, that must be true for that definition to reach

the IPDA address expression. During the execution of the program, only one

such path can be executed, and therefore only one such set of predicates can

be true.

4.2.1 Algebraic Simplification

Two IPDA symbolic values for address expressions at different points in the

iteration space are subtracted to determine if the two expressions could ever

access the same memory location. IPDA canonicalizes the difference to a sum-of-

products form and applies various algebraic simplification techniques to arrive at

a simplified expression, such as simplifying constant sub-expressions, factoring

constant multiplier variables and folding of special cases such multiplication

by zero or one. In many practical cases, applying this step to the subtraction

results in a tree where common expressions are cancelled leaving only a constant

value that indicates the memory access stride.

40

• Canonicalization Symbolic trees are refactored into a canonical, sum-of-

products form using a fixed point algorithm. Canonicalization is bottom-

up process: the innermost expressions are distributed (e.g. (v + w) ∗ (x)

becomes vx+ wx) before successive operations.

• Simplification Expression rewriting is used to bring the canonicalized

form into the most simplified form possible. For instance, constant values

are eliminated whenever possible: x
1

and x + 0 both are re-written to

x. Constants are folded, e.g. (x ∗ y + c1) + c2 becomes x ∗ y + c where

c = c1 + c2. Various included factoring techniques are also implemented

as fixed-point processes.

4.2.2 Algebraic Difference Cancellation

The following are the steps taken to compute a difference between two address

expressions, which are now represented as canonicalized symbolic-expression

trees:

1. A new binary tree root is created, joining the two trees with a subtraction

operator

2. The canonical sum-of-products form allows for a simple way to split each

of the two subtraction operands into a series of constituting product

summands in order to identify common expressions on both sides that

can be cancelled.

3. Once the cancelled sub-expressions are removed from the summand lists,

the remaining expressions are rebuilt back into a tree which is further

simplified as outlined in Section 4.2.1.

If the resulting tree has been resolved to a constant value, IPDA returns

the number of requests to global memory that an expression will incur.

41

4.3 Data Dependence Graph Pruning with It-

eration Point Differences

The IPDA test constructs address value ranges that encompass the full scope

of memory locations accessed by a potential dependence source and sink

expressions across all dimensions of the iteration space. Consider a potential

dependence in a given single loop where the dependence source is a store

instruction to a memory location whose address is bounded by Esrc = [a, b].

Similarly, the sink of the dependence is a load instruction whose address is

in the range Esink = [c, d]. If the ranges Esrc and Esink do not overlap, then

IPDA determines that source and sink operations do not create a dependence;

thus, the potential dependence is false and can be pruned from the DDG.

1 for (i=0; i<6; i++) {

2 A[(i+8)*N] = A[i*N] + x;

3 x = ...;

4 }

Figure 4.2: Example loop array access with a potential dependence.

To determine the value range of an address expression, IPDA propagates

the value ranges of individual variables up the expression trees. Let R1 =[a, b]

and R2 =[c, d] be two ranges. The following list outlines the various operations

on ranges and how IPDA evaluates them to produce a resulting range.

• R1 +R2 = [a+ c, b+ d]

• R1−R2 = [a− d, b− c]

• R1×R2 = [min(min(ac, ad),min(bc, bd)),max (max (ac, ad),max (bc, bd))]

• R1÷R2 = (a >= 0∧b >= 0)×[a/d, b/c]+(a < 0∨b < 0)×[minInt ,maxInt]

• R1%R2 = (a >= 0 ∧ c >= 0)×[0, d]+(a < 0 ∨ c < 0)×[minInt ,maxInt]

• R1 and |or |xor R2 = [min(0, a),min(b, d)]

• R1 = | 6= | < | ≤ | > | ≥ R2 = [0, 1]

42

We outline the procedure IPDA uses to verify dependencies in non-nested

loops, then describe the more complex case of nested loops.

4.3.1 Single-Loop Dependence Checking

Let i and i′ be two distinct values for the induction variable of a single-

nested loop. The source and sink expressions of a potential dependence

are formalized as functions of the loop induction variable. IPDA constructs

symbolic, canonicalized expressions for f(i) and g(i′) for the source and sink

expressions, respectively. Functions f and g map the induction variable to an

interval of memory addresses that may be accessed by the source and the sink.

Therefore, IPDA difference f(i) − g(i′) is the interval difference of memory

accesses by the source and the sink. If the difference is an empty interval, then

distinct ranges of memory addresses are accessed by the source and by the

sink and there is no real dependence. On the other hand, if the difference is

resolved to a non-empty interval then a range overlap exists.

Consider the illustrative example in Figure 4.2, where A is an array of

integers and x is a value whose value is reassigned in the body of the loop.

There is a potential dependence whose source is the write of an element of A

on the left-hand side of the first statement in the loop body and whose sink is

the read of an element of A on the left-hand side of the same statement. IPDA

begins by identifying the source and sink of a dependence, then constructs

their symbolic representations as per Section 4.2. The symbolic difference

f(i)− g(i′) is constructed and then factored such that the induction variables

appear exclusively as a term of difference on each other: (i′ − i) (or (i− i′), it

is immaterial which). The IPDA test applies the following algebraic steps:

43

f(i) =IPD(A[(i+8)*N]) = [&A] + 4× (i+ 8)× [N]

=[&A] + (4i+ 32)× [N]

=[&A] + 4i[N] + 32[N]

g(i′) =IPD(A[i′*N]) = [&A] + 4i′[N]

f(i)− g(i′) =([&A] + 4i[N] + 32[N])− ([&A] + 4i′[N])

=4i[N] + 32[N]− 4i′[N]

=4[N](i− i′) + 32[N]

=4[N]∆i+ 32[N]

With the simplified symbolic difference, the analysis verifies whether the differ-

ence can possibly equal to zero. The equation is rewritten into an inequality,

as follows for our example: 4[N]∆i+ 32[N] 6= 0. Should this equation possibly

have solutions, then a dependence exists because f(i) overlaps with g(i′), ie.

f(i)− g(i′) 6= 0. IPDA rewrites the inequality by splitting the equation into a

right operand (RO) and a left operand (LO) and isolating either into one side

of the inequality. In particular, the three cases that are checked by splitting

into the two operands are as follows:

RO + LO 6= 0 =⇒ RO 6= −LO

RO − LO 6= 0 =⇒ RO 6= LO

RO × LO 6= 0 =⇒ RO 6= 0 ∧ RO 6= 0

In the example, the inequality 4[N]∆i + 32[N] 6= 0 is evidently true iff

4[N]∆i 6= −32[N]. Observe that if N equals 0, the inequality is proven to

be false and a dependence exists. Suppose N is the size of a dimension of

the array in question; then, a value range analysis would determine that the

range of N is, conservatively [1,maxint]. This fact allows IPDA to further

simplify the ineuqality into: ∆i 6= −8. By definition of normalized loops, the

induction variables initialize at 0 and exclusively increment. Should IPDA be

able to statically determine the upper bounds of the loop, it can substitute

44

in ranges for induction variables i and i′. Since the range is [0, 5] for i in

our example, then the value range of (i − i′) is either [1, 5] or [−5,−1], by

construction of i′. The range of the right-hand-side expression scalar value is

[−8,−8]. The dependence check is then reduced to verifying whether ranges

[1, 5] and [−8,−8] or [−5,−1] and [−8,−8] overlap. This verification can be

performed via a simple bounds check. Arbitrary precision integers are used

in our implementation in order to handle various maxint range scenarios. In

the case of intra-iteration dependencies, IPDA will not be concerned because

loop-independent dependencies may be executed in parallel and are therefore

not tested by the analysis.

4.3.2 Loop-Nest Dependence Checking

When dependence relation source and sink are contained in a loop nest, the

IPDA Test must ensure that their access ranges do not overlap in any two

points of the iteration space. To do so, IPDA repeatedly applies the access

overlap test described in Section 4.3 to differences across all combinations of

loops that contain the dependence.

IPDA collects all induction variables, along with their upper bounds

whenever possible, to create a set I = {i1, i2, ..., in}. Another set I ′ =

({i′1, i′2, ..., i′n}|i′k 6= ik), holds the set of induction variables that represent

arbitrary values for the induction variables in the n-dimensional iteration space.

The subscript indicates the IV of a specific loop in the loop nest.

In the same manner that functions f and g are used in 4.3.1, let f(i′1, i
′
2, ..., i

′
n)

and g(i′1, i
′
2, ..., i

′
n) be functions that map arbitrary iteration points to the

location in memory being accessed by the source and sink, respectively. IPDA

constructs symbolic, canonicalized expressions for f and g, joined by a symbolic

subtraction operator which represents f − g. This total expression is factored

such that each ik and i′k term appears exclusively as a difference ∆ik = (ik− i′k).

In order to prove that f and g do not map to the same memory location

in any two iterations, IPDA evalutes the access range overlap across every

dimension in the iteration space as well as every combination of dimensions.

Consider the n-degree loop in Figure 4.3. The iteration space is composed of

45

1 for (i1 = 0; i1 < N1; i1++) {

2 for (i2 = 0; i2 < N2; i2++) {

3 ...

4 for (in = 0; in < Nn; in++)

5 x = A[i1*N1 + ... + in*Nn]

6 A[src] = x

7 ...

8 }

9 }

Figure 4.3: Example n-degree loop nest with a potential loop dependence.

n axes: i1, i2, ...in. A trivial example of data dependencies arises if the source

expressions accesses memory at A[i1*N1+ ... +in*Nn-1]. In such a case, the

next iteration in the innermost loop depends on its previous iteration, but

the IV value for every other loop is constant. Consider also that a source

could access memory across dimensions, unlike the previous example where

the source and sink occur only in a single dimension (the innermost loop).

Since dependencies may occur across any possible combination of dimensions

in a nested parallel loop, IPDA performs range-overlap analysis (4.3) on each

combination by fixing the ∆ik values to 0 for each loop at depth k which does

not participate in the dependencies for the combination.

The power-set P(D) is the set of all subsets of D. For each set S ∈ P(D),

each ∆ik ∈ D ∧∆ik /∈ S indicates a loop at depth k that is fixed (∆ik = 0), so

that all ∆ik ∈ S identify the combination of loops in S that are part of the

current iteration space being evaluated for memory-access overlap. IPDA fixes

∆ik values not in a given S by substituting a value of zero for the difference

that appears as (ik − i′k) in the symbolic expression. The resulting reduced

difference expression is then evaluated with the range analysis overlap method

as discussed in 4.3.1. If and only if, for every S, the analysis is able to prove

via the range overlap analysis that the difference expression is never equal to

zero, the dependence relation is pruned from the DDG.

46

4.3.3 Symbolic Differences of Control-Dependent Ex-
pressions Improve Dependence Testing

The IPDA Test’s ability to incorporate conditionally-defined values into sym-

bolic expressions, means to perform algebraic simplification on differences of

such expressions, and ability to propagate variable definitions to their uses

across control flow, distinguishes it from other symbolic analyses.

Many competing analyses require the dependence source and sink expres-

sions to be defined in terms of the induction variables of their containing loops.

However, this reliance is often broken by other compiler transformations, such as

the ones that canonicalize the representation of loops. For instance, Figure 4.4

(b) shows the normalized version of a loop. After normalization the addressing

expressions are no longer expressed in terms of the canonical loop induction

variables. Some compilers may rely on expression re-materialization to obtain

the expressions in terms of the canonical induction variables; however, a cost

function may prevent the propagation of expressions into the body of a hot loop.

The result is addressing expressions still expressed in terms of a mix of both

original and canonical induction variables. Such mixed indexing expressions

may stymie dependence analyses, as is the case in the example in Figure 4.4

(c) where propagating CIVJ+1 and CIVI+1 to the indexing expression, in place

of i and j would hurt performance. IPDA’s symbolic propagation of variable

definitions to their references eliminates the problem.

Common loop dependence analysis algorithms have difficulty processing

addressing expressions with non-constant induction-variable coefficients. Con-

sider the loop nest in Figure 4.6 (a), and suppose NI, NJ, and NK are runtime

parameters. The Greatest Common Divisor (GCD) Test, for example, checks

dependences by verifying that the induction variable coefficients divide the

constant factor of the respective Diophantine equation [63]. This test cannot

be performed if one of its operands is an unknown runtime value. Similarly, the

Banerjee Test is not able to compute the coefficient sums in order to evaluate

the constraint condition inequality [2]. However, the dependence source and

sink are often likely to contain the same induction-variable coefficients, and

47

therefore the IPDA’s difference calculation engine will factor and cancel them ,

leaving the resulting expression in terms of the induction variables and other

constants.

1 for(j=1;j<NJ-1;++j){

2 for(i=1;i<NI-1;++i){

3 for(k=1;k<NK -1;++k){

4 B[i*(NK*NJ)+j*NK+k] = foo(j,i,(CIVK+1));

5 }

6 }

7 }

a. Original Source Code

1 for(CIVJ=0;CIVJ<NJ-2;++CIVJ){

2 j = CIVJ+1;

3 for(CIVI=0;CIVI<NI-2;++CIVI){

4 i = CIVI+1;

5 for(CIVK=0; CIVK<NK-2;++CIVK){

6 k = CIVK+1;

7 B[i*(NK*NJ)+j*NK+k] = foo(j,i,(CIVK+1));

8 }

9 }

10 }

b. After Loop-Normalization

1 for(CIVJ=0;CIVJ<NJ-2;++CIVJ){

2 j = CIVJ+1;

3 for(CIVI=0;CIVI<NI-2;++CIVI){

4 i = CIVI+1;

5 for(CIVK=0;CIVK<NK-2;++CIVK){

6 B[i*(NK*NJ)+j*NK+(CIVK+1)] = foo(j,i,(CIVK+1));

7 }

8 }

9 }

10

c. After Copy-Propagation

Figure 4.4: Example Loop Nest at various stages of compilation/optimization.

48

4.3.4 Prototype Implementation Demonstrates That
the IPDA Test is Essential For Safety Analysis

The IPDA Test was implemented in the IBM XL compiler. As in LLVM,

XL’s loop dependence analysis is based almost entirely on the seminal work

by Goff et. al. [18], and includes an assortment of exact and approximate

tests such as the Lamport Test [30], GCD Test [63], Banerjee Test [2], and

the Delta Test [18]. The IPDA Test is appended as an additional step in the

DDG pruning pipeline. Implementation of the IPDA Test is highly specific

to the compiler infrastructure it is built within. Thus, the only comparison

to this first prototype is the original XL loop dependence analysis, which

is a mature infrastructure from a major vendor. Upon implementation, the

IPDA Test became an essential component of the safety analysis for the loop

transformations described in Section 4.5, reducing the DDG further than the

compiler’s existing analyses and allowing transformations previously deemed

unsafe. The techniques described here are applicable in a much wider variety

of applications. We invite researchers and developers to explore those.

4.4 IPDA GPU Global Memory Coalescing

Analysis on parallel OpenMP loops

Equipped with the ability to calculate inter-iteration access stride of address-

ing expressions, the compiler can infer the inter-thread access pattern of an

addressing expression contained in a parallel loop. If the loop in question is

destined for GPU offloading, then the inter-thread access pattern can be used

to determine the coalescing characteristics of the memory access. The original

ACF, as implemented in GPUCheck, utilized explicit sources of thread depen-

dence to examine the degree of coalescing in a given memory access operation.

ACF employed taint analysis where thread identifiers and their propagated

uses were marked so that thread-dependent accesses to global memory could

be analyzed and therefore inform the programmer of possible non-coalesced

accesses. The IPDA test makes use of a similar approach but with regards to

49

memory accesses within the body of parallel loops.

1 Constants ← { };
2 Unknowns ← 0;
3 for instruction I ∈ loop body do
4 E ← symbolic(I);
5 for thread t ∈ num(threads) do
6 if diff.isConstant() then
7 Constants.append(diff);
8 else
9 Unknowns += 1;

10 end

11 end
12 Function numRequests(Constants, Unknown)
13 Requests ← { };
14 for c ∈ C do
15 fit ← false;
16 for r ∈ Requests do
17 if c ≥ r.low && c ≤ r.high then
18 fit ← true;
19 else if c ≥ r.high - 256 && c ≤ r.high then
20 r.low ← c;
21 fit ← true;

22 else if c ≤ r.low + 256 && c ≥ r.low then
23 r.high ← c + 8;
24 fit ← true;

25 end
26 if fit 6= true then
27 Requests.append((low: c, high: c+8));
28 end

29 end
30 return (Requests.size, Requests.size + Unknown);

Figure 4.5: Computing the number of coalesced accesses

Only OpenMP loops that specify a schedule clause set to static with a

compile-time constant chunk size parameter are analyzed. In practice, this

restriction does not seriously limit the usefulness of the analysis because loops

without a user-specified schedule are common and can be treated as having a

schedule that the compiler deems beneficial. Taking the schedule chunk size

into account, IPDA maps the induction variable of a parallel OpenMP loop to

50

threads and employs a similar coalescing analysis as ACF. The analysis collects

load and store instructions in the body of a given loop nest that are marked as

tainted and outputs the number of memory requests that are required per warp

to satisfy the memory access. Each tainted access instruction in a given loop is

represented as a symbolic expression E. The difference Et − E0, as computed

by IPDA for thread t, indicates the memory access stride for the instruction

of interest. Algebraic simplification and difference cancellation techniques

outlined in 4.2.1 are applied in an attempt to simplify inter-thread difference

results to constant values. For instructions where IPDA is successfully able

to compute constant-value access strides, the analysis employs the algorithm

outlined in Figure 4.5 to greedily fit the solved results into a memory request.

The IPDA test creates a list holding potential constant symbolic differences

and keeps a count of non-constant instances. The list Requests indicates the

overall requests to global memory in the loop body, where each individual

element depicts the range of accesses that compose a single coalesced access.

An insertion into Requests creates an access of stride sizeof (accesstype) bytes,

with a limit of 256, the size of the cache line in the current generation of

NVIDIA cards.

For symbolic differences that cannot be solved to a constant value, IPDA

coalescing analysis conservatively assumes distinct requests. Non-constant

values may arise in the occurrence of runtime-only known values in the symbolic

difference computation, in which case no static analysis would be able to deduce

the value at compile time.

51

4.5 Improving GPU Memory Access Patterns

with Loop Transformations

1 #pragma omp target teams distribute parallel for

2 for (i = 0; i < NI; i++) {

3 for (j = 0; j < NJ; j++) {

4 C[i*NJ + j] *= BETA;

5 for (k = 0; k < NK; ++k) {

6 C[i*NJ + j] += ALPHA * A[i*NK + k]

7 * B[k*NJ + j];

8 }

9 }

10 }

a. Original benchmark source code

1 #pragma omp target teams distribute parallel for

2 for (c = 0; c < NI * NJ; c++) {

3 i = c / NI;

4 j = c % NI;

5 C[i*NJ + j] *= BETA;

6 for (k = 0; k < NK; ++k) {

7 C[i*NJ + j] += ALPHA * A[i*NK + k]

8 * B[k*NJ + j];

9 }

10 }

b. Collapsed i-j nest.

Figure 4.6: Example target region from GEMM benchmark

Naively translating parallel OpenMP loops directly into data-parallel code can

lead to an inefficient kernel that poorly utilizes the GPU memory subsystem.

Consider the OpenMP target region extracted from the GEMM benchmark

from the Polybench suite shown in Figure 4.6 (a). The iteration space of the i

loop is first divided into chunks in conformance with the teams distribute

construct directive, and iterations of each chunk are then scheduled to run in

parallel, as prescribed by the parallel for construct. Each thread executing

an iteration of the i loop sequentially executes the j, k loop nest. In this

example, for a given memory access, the inter-thread stride is the size of each

array, which result in an inter-thread stride of 4096 bytes and none of the

52

accesses can be coalesced.

Memory access patterns for a GPU kernel that uses high-dimensional data

structures or otherwise non-trivial addressing expressions are often not obvious

even to experienced developers and require expert knowledge of the compiler’s

code-generation scheme and mapping from loop-parallel to data-parallel code.

A particular loop layout may also benefit one accelerator architecture over

others, leading to loss of performance portability no matter which selection is

made. IPDA’s memory-access analyses enable and guide loop transformations

that improve GPU memory utilization by increasing access coalescing.

4.5.1 Loop Collapse

i1 i2

j2j1 j1 j2

k1 k2 k1 k2 k1 k2 k1 k2

I1

j1

I1

J2

I2

j1

I2

j2

k1 k2 k1 k2 k1 k2 k1 k2

I1
J1
k1

I1
J1
k2

I1
J2
k1

I1
J2
k2

I2
J1
k1

I2
J1
k2

I2
J2
k1

I2
J2
k2

Original Loop

Collapse(2) Collapse(3)

#pragma omp parallel for
for(i = 1; i < UI; ++i)
for(j = 1; j < UJ; ++j)
for(k = 1; k < UK; ++k)
{ … }

Original Loop

Figure 4.7: Pictorial representation of a parallel loop nest’s iteration space.
– Loop iterations comprising units of parallel work.

– Loop Iterations executed sequentially.

The OpenMP collapse(n) clause merges n nested loops into a single

parallel iteration space. Collapsing parallel loops for execution on a GPU has

two performance-sensitive effects: the number of parallel work items to be

scheduled increases; and, the thread memory access pattern changes.

53

• Increased parallelism

The total number of iterations of the collapsed parallel loop is equal to the

product of the trip counts of all the loops in the collapsed nest, increasing

the amount of parallelism available. Figure 4.7 shows an example parallel

loop nest and the mapping of iterations to units of parallel work and

sequential iterations.

• Improved memory access pattern

Collapsing changes the inter-thread access stride because the outer loop

induction variable no longer maps to the thread identifiers. If the sequen-

tial execution order of the collapsed loops is used to determine the order

of the iterations in the collapsed iteration space, then the stride of the

innermost collapsed loop becomes the inter-thread access stride.

Collapsing can be benefitial even when no collapse clause is present. For

example, in the loop shown in Figure 4.6 (a) consecutive iterations of the j loop

access adjacent elements of arrays C at line 4, C at line 6, and B at line 7 and

have an inter-thread stride of 4096 bytes with no coalescing. After collapsing

the i-j loop nest (Figure 4.6 (b)) all accesses are perfectly coalesced. Figure 4.8

illustrates how this collapse enables coalescing by changing the access to a

two-dimensional array from row-major order to column-major order.

Loop Collapse Safety:

In the absence of a collapse clause, the compiler must prove that collapsing

is safe for a loop nest of depth n with a parallel outermost loop. Such nest

must satisfy the following conditions to be safely collapsed:

• It must be perfect: all statements must be inside the innermost loop.

• Iteration spaces of the loops in the nest cannot be affected by the values

of the induction variables of the other loops in the nest. Loop boundaries

for all loops must not change after entry into the loop nest.

• There must be no loop-carried dependencies among iterations of any of

the loops in the nest.

54

The parallel clause in the outermost loop implies that the iterations of this

loop are independent within the specified schedule chunk size. Therefore, the

required dependence analysis must only check for dependencies across loops

nested in the outermost loop, but not across the outermost loop itself. A

parallel loop contained in a target region follows aliasing restrictions on data

mapped into the device data environment. These restrictions often make

dependence analysis feasible where it would not be for an identical loop not

contained within a target region. For a given loop nest, all possible collapse

depths are tested for safety. For the set of provably safe collapse depth levels,

profitability analysis determines which, if any, should be performed by the

compiler.

Loop Collapse Profitability:

The main performance benefit of loop collapse stems from improved access

patterns. Thus, the reduction in the number of memory requests executed per

warp can be used to estimate the profitability of collapsing a loop nest. Using

the IPDA framework, the profitability is computed as follows:

1. Compute the number of memory requests for every access in the original

loop nest.

2. For each nest level κ, compute the number of memory requests for every

access in the nest by rewriting the addressing expressions to emulate the

effect of collapsing the nest to that level.

3. A collapse is profitable if, for any nest level, the total number of memory

requests per warp in the kernel is reduced.

These steps are performed for all collapse depth levels considered safe and the

most profitable level is chosen for actual code transformation.

55

#pragma omp parallel for
for(i = 1; i < UI; ++i)

for(j = 1; j < UJ; ++j)
A[i * UI + j] = …

Original Loop Collapse(2)

i

t0
t1
t2
t3
t4

#pragma omp parallel for
for(c = 1; c < UI * UJ; ++c)

i = c / UJ; j = c % UJ;
A[i * UI + j] = …

0x000
0x040
0x080
0x0c0
0x100
0x140

j

t0 t1 t2 t3 t4
0x000
0x040
0x080
0x0c0
0x100
0x140

…

…
t5

t5

……

i

j

Figure 4.8: Pictorial representation of a parallel loop nest’s memory access
pattern.

4.5.2 Loop Interchange

Loop interchange is a classical loop transformation wherein the order of two

iteration variables in a loop nest is exchanged. In loop nests of dimension higher

than two, several interchanges may occur, for example, moving the innermost

loop to the outermost position in a 3-dimensional nest.Loop interchange is

typically performed to improve spatial locality and cache utilization of array

accesses in loop nests. The aim of loop interchange here is to improve access

coalescing by changing the mapping of loop induction variable differences

to inter-thread memory access stride. For example, consider the loop nest

excerpt shown in Figure 4.9. IPDA memory coalescing analysis finds that the

resulting inter-thread stride leads to non-coalesced accesses. It also shows that

loop i, when used as a source of thread-dependence, i.e. when iteration-point

differences of the i-loop are treated as thread-difference values for addressing

expressions, would result in perfectly coalesced loads and stores. However,

the loop nest cannot be collapsed to a depth of three, as described previously,

because it contains a loop-carried dependence across iterations of the j loop. An

56

alternative method to achieve a mapping to data-parallel code that distributes

individual iterations of the i loop to GPU threads, loops i and j can be first

interchanged without affecting the semantics of the program. Post-interchange,

the outermost 2-dimensional k-i loop nest can be collapsed, according to the

collapse profitability analysis outlined above.

Loop Interchange Safety:

The proposed interchange applies to a loop nest where the outermost loop

is labeled as parallel by a programmer, and consists of moving a loop from

inside that nest to the outermost level. Thus, the two outermost loops of the

transformed nest can be collapsed, as described in section 4.5.1. Finding loops

within a given loop nest for which this transformation is legal requires finding

loops within the nest that are independent. Moving an independent loop to

the outermost level preserves loop-carried dependences of all other loops in a

nest. Similar to the analysis performed for loop collapse, aliasing restrictions

on data mapped to the target region data environment often result in a more

precise dependence analysis. In both collapse and interchange safety analysis,

the compiler uses the IPDA Test to further reduce the DDG. Every loop found

to be independent in a parallel loop nest is considered a candidate for loop

interchange.

Loop Interchange Profitability:

For all candidates, profitability is computed in a fashion identical to the

profitability of collapsing the nest to depth of up to and including the loop in

question. The profitability of loop interchange takes into account the subsequent

collapse transformation, which is required to create a mapping from induction

variable differences in addressing expressions to inter-thread stride that results

in better coalescing characteristics. The most profitable of the candidate loops

is selected for actual code transformation.

57

4.6 Evaluation

Coalescing of memory requests is a key performance consideration when writing

or generating GPU code. It is increasingly difficult for developers to infer

memory access characteristics of OpenMP GPU code as it gets translated

into a data-parallel form. Moreover, explicitly committing the code to a

specific access pattern that would suit a specific type of accelerator can hurt

performance portability. Thus, high-level accelerator programming models

make such considerations the prerogative of the compiler designer rather than

the developers.

The analysis framework described in this chapter has been implemented

in the IBM XL compiler. The efficacy of the analysis framework is evaluated

in two ways. First, the potential performance impact of the two proposed

loop transformations is demonstrated on a set of representative OpenMP 4.x

programs. The second evaluation demonstrates that a compiler equipped with

loop transformations informed by the IPDA analysis allows a higher degree

of performance portability in OpenMP code. Generality and architecture-

independence of OpenMP code can often be improved by removing developer-

specified clauses intended as optimization prescriptions that commit generated

code to specifically target GPU accelerators. The results of this evaluation

demonstrate (1) that equipped with the IPDA analysis and loop transformation

framework, the compiler is able to re-capture the performance impact of such

clauses by automatically performing the required optimization when generating

GPU code; and (2) that omitting performance-guiding clauses results in a

performance improvement when targeting other accelerator architectures.

4.6.1 Informed Loop Reshaping Performance Impact

The Polybench [50] and SPEC ACCEL [26] OpenMP 4 benchmark suites are

used to evaluate the efficacy of the coalescing-analysis-informed loop reshaping

of OpenMP 4.x parallel loop nests. Execution times are reported for two

experimental setup machines: an IBM POWER8 host with an Nvidia P100

GPU, and an IBM POWER9 host with an Nvidia V100 GPU accelerator. Table

58

4.1 shows speedup of benchmarks with IPDA-guided collapse and interchange

transformations enabled in the compiler. The analysis detected transformation

opportunities in three Polybench benchmarks: MVT, 2DCONV, 3DCONV, and one

SPEC ACCEL benchmark: 557.pcsp.

The matrix multiplication GEMM contains a single 3-deep parallel loop nest.

Collapsing the nest to depth 2 was found by the analysis to have the effect of

transforming a kernel with completely non-coalesceable accesses into a kernel

with perfectly coalesced accesses. The kernel execution time improves by a

factor of 25.5× in the P100 and 20.9× in the V100. The benchmark execution

time improves by a factor of 3.18× in the P100 and by 8% in the V100 machine.

The much lower overall benchmark improvement in the V100, in spite of the

higher kernel improvement, is due to higher kernel launch overhead as explained

below.

2DCONV and 3DCONV convolution benchmarks contain a single parallel loop

nest of depth 2 and 3, respectively. The original compiler failed to prove that

the 3DCONV loop nest is free of loop-carried dependences. The IPDA Test

reduced the DDG further, ultimately proving the nest as independent and

safe to collapse. Profitability analysis on the two parallel nests indicated that

automatic collapse would result in turning both from non-coalesceable into

completely coalesced GPU kernels. The transformed code for 2DCONV improves

kernel execution time by a factor of 14.75× and 6.37× and benchmark execution

time improves by a factor of 1.65× and 5%, on the P100 and V100 machines,

respectively. Transformed 3DCONV code results in kernel execution time speedup

of 19.54× and 18.3× and benchmark execution time speedup of 2.03× and 3%

on the P100 and V100 machines, respectively.

The SPEC ACCEL benchmark suite consists of highly-tuned OpenMP code

written in a way that maximizes GPU performance. Aggressive use of collapse

clauses by the benchmark developers limits the opportunities available for

automatically inferring the need to interchange or collapse loop nests. Still, our

analysis identified one such opportunity. 557.pcsp, a pentadiagonal software

application, is an OpenMP port of a pentadiagonal solver software developed

by the Center for Manycore Programming at Seoul National University, derived

59

from an application developed by NAS. It contains > 60 OpenMP target

regions, all made up of parallel loops. One parallel loop, performing the forward

elimination operation according to the Thomas algorithm, was identified by the

IPDA analysis to be a safe candidate for transformation.An excerpt from the

3-dimensional k-j-i parallel loop nest in question is shown in Figure 4.9. The

coalescing analysis identifies the opportunity to reduce the number of memory

requests per warp present in the kernel by interchanging loops j and i, and

collapsing the resulting k-i nest. Observe that a collapse(3) transformation

of the original code is not possible due to loop-carried dependences across

iterations of the j loop. Post j-i interchange and k-i collapse, the j loop is

executed sequentially by each thread, preserving the j-loop-carried dependence.

The combination of transformations reshapes the resulting GPU kernel in a

way that makes every memory access contained within fully-coalesced. The

transformed version yields an improvement in kernel execution time of 86.5×

on an Nvidia P100 and 111.1× on an Nvidia V100 accelerators. Across a run

of the benchmark, the forward elimination kernel is invoked 401 times. The

untransformed kernel’s poor performance characteristics make it the biggest

contributor to the overall benchmark execution time, of which it constitutes

41%. Applying the transformations described above to just 1 out of > 60

parallel loops present in the benchmark results in overall speedup of 3.38× in

the P100 and 2.3× in the V100.

The dramatically lower improvement in benchmark execution time compared

to kernel execution time in Polybench benchmarks stems from their small default

input data sets. Thus, kernel execution time comprises only a small part of

the total time with kernel initialization and data transfer taking up most

of the benchmark execution time. Higher improvements should occur with

larger input sizes. For example, the GEMM benchmark performance improvement

begins to approach the kernel speedup as input size is increased, as can be seen

in Table 4.1. As input size is increased, CONV benchmark speedups remain

fixed, despite a massive improvement in kernel execution time because memory

transfer time dominates the overall execution time.

The relative decrease in overall benchmark execution time on a V100 is due

60

to an increased overhead of kernel launch when using a Volta GPU with CUDA

9. The CUDA runtime creates a unifying context at first kernel launch in order

to maintain state for consecutive launches. The context creation operations

takes up to 0.7 seconds versus up to 0.1 seconds for the machine with a

Pascal GPU. We hypothesized that the difference is due to Volta’s support

for unified memory which would require allocation of pinned host memory.

The impact of this overhead is most pronounced in single-kernel programs

with short runtimes. To test this hypothesis, we created high-throughput

versions of the Polybench programs in which the benchmark kernel is invoked

100 times in a single launch, on different data sets, amortizing the CUDA

context creation overhead. Results are reported in the rightmost columns

of Table 4.1. The high-throughput version of GEMM confirmed our intuition

with overall benchmark speedup of 15.9× and 7.14× on the P100 and V100.

Memory-transfer dominated 3DCONV also demonstrated Volta improvement

start to approach Pascal figures with speedups of 1.82× and 1.56×. Based on

these experiments, we believe that in real-world computation-heavy code, the

improvement in overall program performance on Volta is likely to scale more

closely with kernel performance improvement.

No other Polybench or SPEC benchmarks contain loop nests that are legal

to automatically collapse because they all contain loop-carried dependences.

A large number of benchmarks contain parallel loop nests collapsed by the

programmer by specifying a collapse clause on the loop construct directive.

In benchmarks where no safe/profitable opportunities were found, performance

remained unchanged; as such, their results are not presented in Table 4.1.

Benchmarks that do not contain collapse clauses and benchmarks that could

not be compiled with the current compiler versions are not presented in Table 4.2.

557.pcsp currently crashes when compiled with the ICC.

4.6.2 Code Portability Impact

The OpenMP collapse clause is prescriptive and requires the compiler to gen-

erate a specific code structure. Its goal is to exploit performance characteristics

of a particular architecture. The issue is that memory access patterns that lead

61

to maximum coalescing in a data-parallel GPU result in poor spatial locality

on a multi-core CPU architecture.

Forcing developers to make such trade offs in a prescriptive manner reduces

performance portability. A capable compiler must be able to detect when such

transformation is beneficial for the target architecture. This experimental eval-

uation demonstrates that the IPDA-based loop collapse safety and profitability

analyses are effective at capturing the same insights made by expert developers

for a specific architecture, while allowing the code to remain generic.

To test this claim we remove all collapse clauses from the Polybench and

SPEC ACCELL benchmarks available to us. Then we let the IPDA-based

framework automatically perform the same transformations. The evaluation

shows that the resulting, more-generic, code has the same performance as the

architecture-specific code and has better performance on platforms for which

it wasn’t hand-tuned — this evaluation uses the Intel MIC Xeon Phi 7250

accelerator. Table 4.2 shows the impact of removing the collapse clauses

from benchmark code. The performance implications of this directive in GPUs

are clear from the slowdowns of up to 33× on 3MM and 16× on SYR2K when

it is removed. COVAR slowdown is not as significant because only 1 out of 3

parallel loops in the benchmark is annotated with collapse. The IPDA-enabled

GPU Speedup column shows that the original performance is recovered when

IPDA-based transformations are applied to the code from which the clauses

were removed.

In multi-core CPU platforms each processor has a local cache. Adjacent

threads accessing adjacent memory locations, which is the effect of collapsing,

results in false sharing, causing unnecessary coherence traffic and degrading

performance. Intel’s OpenMP performance guidelines recommend avoiding

this usage pattern at all cost [21]. Yet, even highly-tuned benchmark imple-

mentations have programmers inserting prescriptive clauses that maximize

false sharing. The ’No Collapse MIC Speedup’ column of Table 4.2 shows that

simply removing the collapse clauses can significantly improve performance on

an x86-based accelerator (up to 26%). Analysis and transformation capabilities

enabled by IPDA go a long way towards removing the need for specializing the

62

code to a given architecture.

1 #pragma omp target teams distribute parallel for private(i,j,k,m,

fac1,j1,j2)

2 for (k = 1; k <= gp2-2; k++) {

3 for (j = 0; j <= gp1-3; j++) {

4 j1 = j + 1;

5 j2 = j + 2;

6 for (i = 1; i <= gp0-2; i++) {

7 fac1 = 1.0/lhsY[2][k][j][i];

8 lhsY[3][k][j][i] = fac1*lhsY[3][k][j][i];

9 lhsY[4][k][j][i] = fac1*lhsY[4][k][j][i];

10 for (m = 0; m < 3; m++) {

11 rhs[m][k][j][i] = fac1*rhs[m][k][j][i];

12 }

13 lhsY[2][k][j1][i] = lhsY[2][k][j1][i] - lhsY[1][k][j1][i] *

lhsY[3][k][j][i];

14 ...

15 }

16 }

17 }

Figure 4.9: Excerpt from a target region in 557.pcsp

4.7 Concluding Remarks

Architecture-specific compiler optimization is key for achieving performance

portability for high-level parallel programs. Conflicting demands of current

accelerator architectures when it comes to efficient use of memory hierarchies

mean compilers demand stronger program analyses and heuristics in order to

generate optimal code for a given target. This chapter introduced a static

analysis framework capable of identifying memory access strides of parallel

accelerator code using Iteration Point Difference Analysis. The evaluation

of a prototype implementation of a framework that uses IPDA to guide the

safety and profitability decisions required for improving performance through

loop transformations, demonstrated the potential for dramatic performance

improvement in GPU-bound OpenMP code. Moreover, this chapter also

demonstrated that informed compiler transformation can further advance the

goal of performance portability by reducing the reliance on programmer hints

63

used to hand-tune OpenMP loop code. Making such hints redundant both

increases performance across a greater variety of target architectures and

increases abstraction of the underlying computing platform, making parallel

programs more generic and allowing the developer to focus instead on the

problem at hand.

64

B
m

kS
e
tu

p
O

ri
g
in

a
l

In
c
re

a
se

d
In

p
u

t
S

iz
e

(1
6
×
−

64
×

)
H

ig
h

-T
h

ro
u

g
h

p
u

t
P

8
+

P
1
0
0

P
9

+
V

1
0
0

P
8

+
P

1
0
0

P
9

+
V

1
0
0

P
8

+
P

1
0
0

P
9

+
V

1
0
0

K
e
rn

e
l

O
v
e
ra

ll
K

e
rn

e
l

O
v
e
ra

ll
K

e
rn

e
l

O
v
e
ra

ll
K

e
rn

e
l

O
v
e
ra

ll
O

v
e
ra

ll
O

v
e
ra

ll

G
E

M
M

25
.5
×

3
.1

8×
20
.9
×

1
.0

8×
8
.0

7×
6.

79
×

6.
99
×

3.
64
×

15
.9
×

7.
14
×

2
D

C
O

N
V

1
4.

75
×

1
.6

5×
6
.3

7×
1
.0

5×
31
.8

8×
1.

43
×

11
.1
×

1.
10
×

1.
41
×

1.
11
×

3
D

C
O

N
V

2
2.

84
×

1
.4

3×
18
.3
×

1
.0

3×
19
.4

9×
1.

30
×

10
.3

5×
1.

20
×

1.
82
×

1.
56
×

5
5
7.

p
cs

p
86
.5
×

3
.3

8×
1
1
1
.1
×

2.
3×

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

-
—

—
—

—
-

T
ab

le
4.

1:
B

en
ch

m
ar

k
ex

ec
u
ti

on
ti

m
e

sp
ee

d
u
p

w
it

h
au

to
m

at
ic

lo
op

in
te

rc
h
an

ge
an

d
co

ll
ap

se
en

ab
le

d
co

m
p
ar

ed
to

th
e

d
ef

au
lt

co
d
e-

ge
n
er

at
io

n
sc

h
em

e.

65

B
e
n

ch
m

a
rk

P
a
ra

ll
e
l

O
p

e
n

M
P

4
lo

o
p

s

U
se

r-
sp

e
c
ifi

e
d

c
o
l
l
a
p
s
e

c
la

u
se

s

IP
D

A
a
u

to
m

a
ti

c
c
o
ll
a
p

se
tr

a
n

sf
o
rm

a
ti

o
n

s

N
o

C
o
ll
a
p

se
G

P
U

S
p

e
e
d

u
p

IP
D

A
-e

n
a
b

le
d

G
P

U
S

p
e
e
d

u
p

N
o

C
o
ll
a
p

se
M

IC
S

p
e
e
d

u
p

3
M
M

3
3

3
0
.0

3×
1
.0
×

1.
26
×

C
O
V
A
R

3
1

1
0
.9

8×
1
.0
×

1.
04
×

S
Y
R
2
K

1
1

1
0
.0

6×
1
.0
×

1.
13
×

S
Y
R
K

2
2

2
0
.1

2×
1
.0
×

1.
15
×

5
0
3
.
p
o
s
t
e
n
c
i
l

1
1

0
0
.3

3×
0.

33
×

1.
83
×

5
5
5
.
p
s
e
i
s
m
i
c

14
13

0
0
.0

9×
0.

09
×

1.
01
×

5
6
3
.
p
s
w
i
m

17
8

0
0
.8

4×
0.

84
×

1.
19
×

5
7
0
.
p
b
t

42
36

26
0
.7

8×
0.

96
×

0.
97
×

5
5
7
.
p
c
s
p

60
60

50
0
.0

4×
0.

76
×

n
a

T
ab

le
4.

2:
L

o
op

c
o
l
l
a
p
s
e

cl
au

se
s

w
er

e
re

m
ov

ed
fr

om
b

en
ch

m
ar

k
s

w
h
ic

h
co

n
ta

in
th

em
.

T
h
is

ta
b
le

sh
ow

s
th

e
p

or
ti

on
of

th
e

lo
op

co
ll
ap

se
s

re
-d

is
co

ve
re

d
to

b
e

b
en

efi
ti

al
an

d
au

to
m

at
ic

al
ly

ap
p
li
ed

b
y

th
e

co
m

p
il
er

.
E

x
ec

u
ti

on
ra

ti
o

co
lu

m
n
s

sh
ow

th
e

p
er

fo
rm

an
ce

of
th

e
co

d
e

st
ri

p
p

ed
of

co
ll

ap
se

cl
au

se
s

ve
rs

u
s

th
e

co
d

e
w

it
h

co
ll

ap
se

cl
au

se
s

p
re

se
n
t.

G
P

U
co

d
e

is
ex

ec
u

te
d

on
an

N
v
id

ia
P

10
0.

T
h
e

M
IC

(M
an

y
In

te
gr

at
ed

C
or

e)
re

la
ti

ve
ex

ec
u
ti

on
co

lu
m

n
co

m
p
ar

es
th

e
p

er
fo

rm
an

ce
of

th
e

sa
m

e
tw

o
ve

rs
io

n
s

of
th

e
ke

rn
el

ex
ec

u
te

d
on

an
In

te
l

X
eo

n
P

h
i

72
50

P
ro

ce
ss

or
,

co
m

p
il
ed

w
it

h
IC

C
ve

r.
17

.0
.2

66

Chapter 5

Toward Hybrid Execution
Target Selection Through
Analytical Performance
Modeling

Analytical performance modelling, a mature field of research, has been the focus

of work in tuning software systems and guiding compiler optimizations. Due

to the increasing prevalence of heterogeneous compute platforms, architecture-

specific performance modelling becomes a progressively important topic due

to the role it has to play when deploying target-agnostic applications. The

ability to choose the processing unit which will execute a given section of

code can result in a critical performance advantage that can be offered by

compiler/runtime systems. Existing analytical models strive to capture the

complexity of the architectures they are modelling, and the interplay between

the levels of abstraction used to represent said architectures.

A critically important challenge faced by analytical performance predictors

for CPU execution is to model the specifics of CPU resource allocation and how

it impacts instruction latencies. To improve the accuracy of CPU instruction

mix latency modelling, we propose an elegant solution that leverages LLVM-

MCA - a predictor that uses the compiler’s built-in instruction scheduling

algorithms [38]. The tool is integrated into an existing analytical model in

order to increase its accuracy. In the realm of GPU performance models, Hong’s

performance model is a seminal approach to runtime prediction [20]. One of

67

the model’s biggest losses in abstraction is in characterizing the coalescing

characteristics of memory accesses - a critical factor for GPU code performance.

We introduce an improvement to the model that applies IPDA, a hybrid

symbolic analysis framework that captures the precise coalescing characteristics

of OpenMP parallel loops set for GPU code-generation, in order to generate

better estimates of the GPU’s memory-warp parallelism.

This chapter addresses the following research problem: What should be the

paradigm of constructing runtime target device selection heuristics, what are

the biggest challenges involved, and how to make such heuristics suitable to

production environments. Modelling execution of compute kernels on a variety

of accelerator architectures is a notoriously challenging task, we highlight

this by examining cross-generational GPU architectural differences having a

significant impact on the outcome of deciding whether to execute a kernel on

an accelerator target or to keep execution on the host. We position analytical

performance modelling in addressing this research question as the approach to

making better decisions fast and efficiently. Machine Learning-based algorithms

may achieve high degrees of accuracy, but suffer from important drawbacks

that limit their applications. In particular, the high level of dependence

on runtime parameters in order to make an informed decision requires that

the learned model be evaluated immediately prior to kernel launch, which

can be a prohibitively expensive procedure. Moreover, a classical problem

of learning approaches — their black box nature — is a much more serious

limitation in compiler/runtime systems due to its effects on understandability,

reproducibility and susceptibility to non-linear, and sometimes non-contiguous,

relations between model parameters and performance. Finally, we present

a decision framework for profitability analysis of offloading GPU versions

of OpenMP parallel loops that indicates that analytical models based on a

combination of static analysis and runtime parameters may be most suitable

for such decisions.

68

5.1 Comparative Offloading Performance

Change Across GPU Generations

Significant differences among generations of GPU architecture and bus intercon-

nects mean that performance models must be fine-tuned to the most intricate

details of the platform they aim to abstract. Table 5.1 displays our experimen-

tal measurement of GPU offloading benefit for a series of Polybench OpenMP

kernels. The data was collected on two experimental platforms: 1) POWER8

Host + Nvidia Tesla K80 (PCI-E) and 2) POWER9 Host + NVidia Tesla V100

(NVlink 2). The k80 and V100 host’s CPUs was clocked at 3000Mhz. All

programs were compiled using the IBM XL C/C++ compiler ver. 16.1. Each

kernel was evaluated in two execution modes, test and benchmark, which differ

only in the size of the program’s input, being 1100× 1100, and 9600× 9600,

respectively, in most programs. Each benchmark was executed 10 times and

the average execution time of each kernel is used for relative performance mea-

surements. Kernel execution time includes data transfer, but does not include

the CUDA context initialization that occurs on the first kernel launch by a

given program. The context creation is an overhead paid once by a program

that may repeatedly launch many kernels. Omitting context initialization

overhead presents a more typical case of executing a kernel of computation

and prevents the results from being skewed on single-kernel benchmarks. In

our experiments, on Volta architecture, CUDA context initialization can take

upwads of 0.5 seconds. The recorded kernel execution time is used to present

speedup over the host execution time of the same target region.

This data shows that a single GPU generation may sway the offloading

profitability decision in a drastic fashion. For example, the 3DCONV kernel, in

benchmark configuration is a far better fit for execution on the CPU when the

accelerator choice is Kepler, with GPU offloading resulting in a slowdown of

of 2.1×. Yet, a Volta equipped machine with an even more capable CPU sees

a dramatic speedup of 4.41× when offloading the same computation to the

GPU. The benchmark’s computation kernel has low arithmetic intensity and is

heavily memory-bound; thus, benefiting greatly from the Volta’s card memory

69

P
la

tf
or

m

GEMM1

MVT1

MVT2

3MM1

3MM2

3MM3

2MM1

2MM2

ATAX1

ATAX2

BICG1

BICG2

2DCONV1

3DCONV1

COVAR1

COVAR2

COVAR3

GESUMMV1

SYR2K1

SYRK1

SYRK2

CORR1

CORR2

CORR3

CORR4

T
es
t

G
P

U
O

ffl
oa

d
in

g
sp

ee
d

u
p

on
H

os
t

w
it

h
4

O
M

P
T

h
re

ad
s

P
8+

k
80

4.
01

5.
12

0.
67

5.
2
4

28
.0

7
24

.2
6

6.
68

14
.7

0
5.

43
0.

79
5.

23
0.

53
0.

11
0.

13
5.

42
0.

71
3.

44
0.

0
9

1.
6
8

3.
21

3.
58

5.
55

0.
67

3
.2

6
2
.9

5

P
9+

v
10

0
1.

54
23

.2
6

3
6.

6
7

1
86

.5
9

18
3.

67
18

7.
78

18
2.

88
18

0.
95

19
.0

5
1.

36
25

.3
6

1.
15

0.
39

0.
53

25
.1

9
2.

19
12

.9
7

0.
0
6

3.
9
4

16
.9

3
71

.6
7

19
.4

3
1.

36
4
.5

4
1
2
.1

0

B
en

ch
m
a
rk

G
P

U
O

ffl
oa

d
in

g
sp

ee
d

u
p

on
H

os
t

w
it

h
4

O
M

P
T

h
re

ad
s

P
8+

k
80

12
8.

3
0.

44
3.

66
1
32

.7
6

13
2.

54
13

3.
97

13
7.

86
13

7.
70

0.
42

2.
77

2.
79

0.
44

0.
54

0.
98

2.
85

1.
12

80
.7

9
0.

1
7

0.
9
8

0.
64

2.
49

2.
96

4.
21

5
.0

4
7
9
.8

5

P
8+

v
10

0
33

2.
85

4.
31

3.
91

3
62

.3
6

38
9.

38
37

3.
92

34
2.

03
38

4.
55

1.
67

4.
30

4.
62

1.
44

5.
18

23
.7

3
4.

37
1.

75
14

5.
62

0.
3
0

4.
1
0

1.
70

4.
62

4.
56

3.
93

2
.8

8
1
4
2
.2

5

T
es
t

G
P

U
O

ffl
oa

d
in

g
sp

ee
d

u
p

on
H

os
t

w
it

h
16

0
O

M
P

T
h

re
ad

s

P
8+

k
80

3.
31

52
.2

5
1.

37
3.

8
4

10
.3

4
11

.0
4

3.
52

9.
78

49
.8

4
1.

24
52

.4
6

48
.4

3
1.

47
0.

87
53

.1
8

37
.5

7
3.

05
0.

9
6

1.
0
3

26
.6

9
1.

69
70

.4
4

46
.9

7
3
.8

2
2
.4

7

P
9+

v
10

0
0.

49
66

.6
7

8
8.

9
2

62
.4

8
52

.7
2

53
.2

2
51

.8
9

36
.2

4
51

.6
4

40
.6

9
71

.5
3

33
.4

4
1.

11
0.

81
66

.9
2

0.
66

5.
54

0.
1
7

0.
6
1

41
.8

3
8.

91
75

.7
6

0.
70

1
.4

9
5
.1

5

B
en

ch
m
a
rk

G
P

U
O

ffl
oa

d
in

g
sp

ee
d

u
p

on
H

os
t

w
it

h
16

0
O

M
P

T
h

re
ad

s

P
8+

k
80

35
.4

5
0.

89
2.

53
31

.6
4

34
.7

5
32

.3
7

45
.5

4
42

.8
2

0.
80

2.
90

2.
98

0.
23

0.
35

0.
47

2.
21

0.
72

64
.9

4
0.

3
0

0.
2
1

0.
79

0.
42

2.
45

3.
21

2
.3

3
6
5
.0

9

P
8+

v
10

0
32

.0
7

1.
44

1.
54

36
.2

6
32

.1
8

29
.3

9
35

.5
5

34
.4

3
1.

15
1.

59
2.

61
0.

17
1.

48
4.

41
2.

52
0.

44
41

.0
88

0.
1
8

0.
4
3

0.
91

0.
20

1.
66

1.
18

0
.7

3
3
5
.0

3

T
ab

le
5.

1:
C

ro
ss

-a
rc

h
it

ec
tu

ra
l

ch
an

ge
s

in
G

P
U

sffl
oa

d
in

g
sp

ee
d
u
p

v
s.

h
os

t
ex

ec
u
ti

on
.

70

bandwidth of 900GB/s, nearly double of the K80’s peak 480GB/s. An example

to the contrary is the CORR kernel, which, in benchmark execution mode, is

a good candidate for acceleration for a POWER8 host, but should not be

offloaded on a POWER9 machine. This outcome holds despite a more capable

GPU on a faster interconnect. The four kernels invoked by the benchmark

contain sequential loops to be executed by each parallel worker, which are well-

suited for SIMD vectorization and stand to benefit from POWER9’s broader

vector operation support and newly introduced VSX3 operations. In several

other cases, despite the decision whether a target region should be offloaded

remaining the same, the magnitude of change of speedup is colossal: ATAX2

kernel, in a test run, compared to a 160-thread host, saw an offloading speedup

go from 1.24× on K80 to 40.69× on a V100 due to a combination of faster

data transfer rates and architectural improvements.

5.1.1 Generational Performance Gaps Require
Fine-Tuned Performance Estimates

Year-over-year advances in GPU generations are far out-pacing development of

CPU architecture. This pace of innovation coupled with rise in domain-specific

applications particularly well-suited to data-parallel computation mean that

rapid evolution of accelerator architectures presents significant challenges for

both the compiler developers, and the research community working on analytical

performance modelling. Both are chasing a moving target for code optimization

and analysis. Meanwhile, CPU platforms too are gaining new features and

ever-increasing facilities for vector computation, adapting to the emerging

workloads through application-specific gadgets. The increasing importance of

performance models means that they need to capture greater amounts of detail

intricacies of their target architectures; meanwhile, a growing variability across

computing-device architecture types calls for more domain-specific expertise on

behalf of those who attempt to model them, attracting more hardware experts

to the problem.

71

5.2 A New Hybrid Analysis Framework for

Deciding the profitability of GPU Offload-

ing

Designing a compiler/runtime framework for a heterogeneous system that

combines multiple processing units is a challenging task. Such framework

must amalgamate multiple compilation backends that generate code for several

targets and bundle all versions into a single binary, a collection of static

analyses that extract relevant program features and characteristics, a means to

aggregate relevant dynamic information at a program point prior to the relevant

target section, a runtime machine description query mechanism, and detailed

performance models that would inform the final offloading selection decision.

We describe a prototype of such a framework and outline our approach in detail

below, concluding the description by providing some early results of applying

the framework on an OpenMP 4 microkernel benchmark suite — Polybench.

#pragma omp target
#pragma omp parallel for
for (int k = 0; k < N; ++ k)

…

Compiler
(Static Analysis)

Program
Attribute
Database

GPU Kernel

FPGA Kernel

MIC Kernel

Executable

Program
Launch

Target Region
Encountered

Execution Runtime
(Dynamic Analysis)

Accelerator
Selection

Dispatch Kernel
to Selected

Device

Machine
Hardware

Description
Files

Figure 5.1: Example compilation and execution flow of an offloading decision
compiler/runtime framework.

Figure 5.1 shows the flow of program compilation and execution. The IBM

XL Compiler is used for this prototype. This compiler is a fully compliant

implementation of the OpenMP 4.5 standard, capable of outlining target

regions specified in the program and translating them into GPU kernels. The

72

outlined region is duplicated prior to code-generation, and a host-bound CPU-

parallel version is generated to provide a fallback mechanism in case a GPU

device is unavailable. After the creation of optimized versions of the compute

kernel for CPU and GPU, the compiler was augmented with a static analysis

that collects relevant program features that will form skeletons of respective

performance models. The evaluation of these models may depend on values

that cannot be known at compilation time and that can be only discovered

at runtime; thus, statically constructed performance predictors are inherently

incomplete. During program execution, on reaching the target region, the

OpenMP runtime is invoked that initializes the accelerator, queues up required

data-transfers and launches kernel execution. In our proposed method, the

runtime is augmented to instead extract the compiler-collected program features

from the program attribute database, and collect runtime values that were

missing from the static attributes. A compiler transformation is required that

supplies the OpenMP runtime with dynamic information e.g. array sizes,

loop trip counts, arbitrary variable values that may be required to determine

memory access stride/characteristics. The above data is then used to generate

predictions of potential performance gain or loss of offloading the target region

to the GPU. Finally, based on the decision, either of the two generated versions

of the region code is invoked for execution.

The measurements were performed on an IBM POWER9 (AC922) machine

with an Nvidia V100 GPU accelerator connected via the NVlink 2 interface.

The machine runs RHEL Server 7.3 Operating System with CUDA version

V9.2.88. Due to the requirements placed on the LLVM’s instruction scheduler by

LLVM-MCA, POWER9 is the only viable host architecture for our experiments

at the time of writing. OpenMP loops from the Polybench benchmark suite,

representing kernels of the more common high-level computation operations

is used to demonstrate the performance model’s efficacy and applicability in

deciding GPU offloading profitability [50].

73

Parallel Regionc = Forkc +
m∑
j=1

[maximum(Thread0 exe jc, ..., Threadn−1 exe jc)] +

Joinc

Threadi exe jc = Worksharingc + Synchronizationc

Worksharingc = Parallel forc|Parallel sectionc|Singlec
Synchronizationc = Masterc|Criticalc|Barrierc|Atomicc|Flushc|Lockc

Parallel forc = Scheduletimes× (Schedulec + Loopchunkc

+Orderedc +Reductionc)

Loop chunkc = Machinec per iter × Chunk size+ Cachec

+Loop overheadc

Figure 5.2: Equations of Cost Model for OpenMP from [33].

5.2.1 OpenMP CPU Performance Model

In this work, we leverage a compile-time cost model for OpenMP proposed by

Liao and Chapman [33]. The cost model was originally built to augment exist-

ing performance estimators of the OpenUH optimizing open-source OpenMP

compiler for C/C++ and Fortran programs [34]. OpenUH, in turn, inherits its

performance models largely from the Open64 loop nest optimizer infrastruc-

ture [62]. Liao’s adaptation of the compile-time model implements extensions

that account for specifics of OpenMP work-sharing constructs, estimating

execution time of a parallel region as determined by the execution time of the

most time- consuming thread between each pair of synchronization points. It

also adds factors such as scheduling overhead cycles and parallel loop chunk size

overheads. An appealing quality of this model is that values of its parameters

can be obtained from micro-benchmarks [6], [7], [54]. Figure 5.2 contains the

OpenMP model’s equations, directly derived from the equations of the original

OpenUH parallel model. Our input kernels consist of strictly parallel loop code

and therefore other types of work-sharing constructs described by the model

are not exercised. Table 5.2 contains various parameters used in the model.

Some obtained from the POWER9 Processor User Manual [48]. The TLB miss

74

penalty is estimated using the TLB cost measurement tools included in the

Linux libhugetlbfs utility [35]. We used the EPCC OpenMP micro-benchmark

suite to measure scheduling and synchronization overhead parameters of the

execution model on our hardware configuration [15].

Cycles Per Iteration of a Parallel Loop

A key metric in Liao’s model is the Machinec per iter value, computed based

on cycles from FP and ALU units, processor memory units, and issue units.

Deep ties to the OpenUH compiler’s inner instruction scheduler have made it

challenging to obtain this estimate in other contexts until recently. We forego

the original model’s calculations on processor resource, dependency latency

and register allocation cycle estimates in favour of the LLVM Machine Code

Analyzer (MCA). Spearheaded by SONY, MCA is a performance analysis

tool that uses the LLVM infrastructure’s rich hardware backend ecosystem to

estimate the value of IPC for a given sequence of assembly instructions [38].

Both the compiler-instruction-scheduler-driven analysis and the tool’s reporting

style were heavily influenced by Intel’s IACA tool [22]. The prediction for

the number of cycles required to execute an assembly sequence is based on

throughput and processor resource consumption as the backend’s instruction

scheduling model already specifies. The backend module is used to emulate

execution of machine code sequence, while collecting a number of statistics

which are then presented as a report. The tool is able to handle the presence

of long data dependency chains and other bottlenecks. Due to its reliance on

the instruction scheduler, it is limited by the quality of the information present

in the scheduler. For example, common machine instruction schedulers omit

information on the number of retired instructions per cycle or the processor’s

number of read/write ports in the register file. The tool’s known limitations

also include a lack of a cache hierarchy and memory type model.

In our experimental implementation, the tool is integrated into the compi-

lation process. The body of a parallel loop is extracted and MCA is used to

estimate the total number of cycles required to execute it, yielding the number

of cycles spent by a thread participating in the parallel region to do the work

75

of one iteration — Machinec per iter — in the performance model. The cache

hierarchy model, missing from the analysis tool, remains a limitation of the

performance model described here and is a primary future work direction to

improve the model’s accuracy.

CPU Frequency 3 Ghz
TLB Entries 1024
TLB Miss Penalty 14 Cycles

Loop overhead per iter 4 Cycles
Par. Schedule Overhead static 10154 Cycles
Synchronization Overhead 4000 Cycles
Parallel Startup 3000 Cycles

Table 5.2: CPU processor/parallel parameters as used in the execution model.

5.2.2 GPU Performance Model

An analytical model for a GPU architecture with Memory-level and Thread-level

parallelism awareness by Hong and Kim is a seminal approach to performance

prediction of GPGPU kernels [20]. Our work implements their model adapted

to the Volta architecture by combining static-analysis-driven feature gathering,

dynamic kernel information acquired on encountering a target region, and micro-

benchmark acquired hardware parameters for values not directly disclosed by

the vendor.

Static features

The IBM XL compiler generates a GPU kernel version of encountered target

regions. Static analyses were integrated into the compilation process that gather

program features that are required by the model or are otherwise important

indicators of performance.

Instruction Loadout

A key factor in the performance model is the amount of work performed by

individual threads. For example, if the amount of computation done by each

thread is very small, threads will finish execution very quickly and will have

76

If (MWP == N == CWP):

Exec Cycles = (Mem Cycles+ Comp Cycles+
Comp Cycles

#Mem Inst

× (MWP − 1))×#Rep×#OMP Rep

If (MWP > CWP):

Exec Cycles = (Mem Cycles× N

MWP
+
Comp Cycles

#Mem insts

× (MWP − 1))×#Rep×#OMP Rep

If (CWP > WWP):

Exec Cycles = (Mem L+ Comp cycles×N)×#Rep

×#OMP Rep

Figure 5.3: Hong and Kim performance model program exection prediction [20].
Highlighted is the additional factor that describes the side-effects of OpenMP
thread-loop-iteration scheduling.

to be queued to be scheduled for more work. In this case, the overhead of

scheduling more work to be performed on a GPU in a very small time will

be larger than the actual kernel computation, most likely leading to poor

performance. The model’s thread execution cycle estimate is computed using

the number of dynamic instructions. We implement a simple static analysis

to count the number of IR instructions, which will be translated into native

micro-instructions later. Given the closed nature of the true GPU assembly ISA,

this serves as a good estimate. Our static analysis groups collected instructions

into IO and CMPUT categories. Control-flow constructs are abstracted in an

identical way across CPU and GPU analyses: all loops are assumed to execute

128 iterations and all conditional blocks of code are executed half of the time.

While the absolute prediction accuracy of this approach might suffer, it should

provide a reasonable point of comparison of relative performance between the

two platforms.

77

Architectural Model Parameters

Nvidia Tesla V100
#SMs 84
Processor Cores 5376
Graphics Clock 1.312 Ghz
Processor Clock 1.53 Ghz
Memory Size 16 GB
Memory Bandwidth 900 GB/s
NVLink Transfer Rate 25 GB/s
Max Warps/SM 64
Max Threads/SM 2048
Issue Rage 1 cycle
Int Cmput Inst. Latency 4 cycles
Float Cmput Inst. Latency 8 cycles
Memory Access Latency 1029 cycles
Access on TLB Hit 375 cycles
Access on L2 Hit 193 cycles
Access on L1 Hit 28 cycles

Table 5.3: GPU device/bus parameters as used in the execution model.

Figure 5.3 shows the Volta architecture-specific values used by the model.

These values were gathered from either the CUDA API queries, vendor manuals,

and the excellent technical report by Zhe Jia who obtained them in a deep

examination of the architecture through micro-benchmarking [25].

Runtime Model Parameters

The dynamic aspect of the hybrid approach to performance estimation is essen-

tial because only with runtime values the analytical models can be complete.

The sizes of kernel inputs prescribe the amount of data that will be sent to

the device and back over the interconnect. The size of the iteration space

of the original parallel loop affects the number of parallel work-items in the

resulting data-parallel program and the grid geometry the runtime will select.

In order for the runtime to obtain these values, they are stored into a Program

Attribute Database which is queried at execution time, indexed by the target

region’s program and location.

78

The original cycle count estimate from the Hong model needed to be

modified to adjust for one OpenMP specific aspect of GPU code-generation.

The #OMP Rep parameter, highlighted in Figure 5.3, represents cases where

the maximum grid-geometry selected by the runtime does not result in a

sufficient threads to cover all parallel work items — iterations of the original

parallel loop. In that case, a thread performs the work that comprises the

body of the original parallel loop, then, depending on the specified schedule of

the parallel loop, is assigned another iteration to execute, either by advancing

by a static chunk size, or querying the OpenMP runtime. This parameter

is set to account for the number of distinct loop iterations a single thread

will execute if the number of loop iterations is higher than the product of

num thread blocks× threads per block.

5.2.3 GPU Memory Access Pattern: Improved Coalesc-
ing Detection

Given the different memory organizations in different accelerators, the memory

access pattern is an important input to the performance model. Existing

approaches to performance modelling rely on either crude estimates or trace

and profile driven analysis that requies an application to be executed in order

to determine its coalescing characteristics The latter require the code to

execute prior to the model being able to generate an accurate prediction. This

constitutes a key shortcoming in a production runtime and is a key improvement

of this approach in relation to solutions that appear in related work.

To further improve the accuracy of memory-throughput related model

parameters by increasing the accuracy of memory-coalescing characteristics

of code, we build memory-access related parameters of the model using the

IPDA analysis framework [10]. Our prototype deploys IPDA to construct

a symbolic equation for the inter-thread stride of each memory access. For

example, suppose the kernel in question contains the following parallel loop:

#pragma omp teams distribute parallel for

for (int a=0; a<max; a++) {

A[max*a] = ...

}

79

IPDA creates a symbolic expression for the inter-thread access stride on the

store to array A in line 3:

IPDt1(A[max * a])− IPDt0(A[max * a])

= [max]× 1− [max]× 0

= [max]

where a value contained in [] indicates a symbolic unknown. Two possibilities

exist in which the framework determines the stride for this memory access:

1. the value of max is known at compile-time and IPDA is able to stati-

cally determine, for example, whether or not this kernel would result in

coalesced GPU code.

2. the value of max is not known statically, but is known at runtime, prior

to kernel launch.

In our proposed compiler/runtime framework, the IPDA symbolic expression

of the access stride is stored in a Program Attribute Database (Figure 5.1).

At the program point when the target region is encountered, the unknown

values are extracted and used in the symbolic expression to compute the actual

stride, informing the analytical model with whether or not the kernel’s accesses

are coalesced and to what degree (#Uncoal Mem inst and #Coal Mem inst

values used to compute Mem Cycles).

5.2.4 Putting It All Together

With both the CPU and GPU analytical performance models defined in the

OpenMP runtime system, the compiler must alter the code generated for

invoking an encountered target region. Instead of simply launching GPU

kernel execution, the generated code configures the runtime to extract static

features of the generated versions of the region, feeds in the necessary runtime

values, and queries the results of performance models. The model that results in

the lowest predicted runtime is chosen as the winner and execution is queued up

on the architecture the model describes, either the host CPU or GPU. Because

80

MWP = min(MWP Without BW,MWP peak BW,N)

BW per warp =
Freq × Load bytes per warp

Mem L

MW peak BW =
Mem Bandwidth

BW per warp×#ActiveSM

CWP full =
Mem Cycles+ Comp Cycles

Comp Cycles

CWP = MIN(CWP full, N)

Figure 5.4: Equations of Memory-Warp and Compute-Warp Parallelism used
in GPU execution Cost Model from [20].

G
E
M

M
1

M
V
T
1

M
V
T
2

3M
M

1

3M
M

2

3M
M

3

2M
M

1

2M
M

2

ATA
X
1

ATA
X
2

B
IC

G
1

B
IC

G
2

2D
C
O
N
V
1

3D
C
O
N
V
1

C
O
VA

R
1

C
O
VA

R
2

C
O
VA

R
3

G
E
SU

M
M

V
1

SY
R
2K

1

SY
R
K
1

SY
R
K
2

C
O
R
R
1

C
O
R
R
2

C
O
R
R
3

C
O
R
R
4

0.1

1

10

100

Kernel

G
P

U
O

ffl
oa

d
in

g
S
p

ee
d
u
p

True Speedup

Predicted Speedup

Figure 5.5: Actual versus predicted GPU offloading speedup for test kernel
execution mode versus a host using 4 threads.

of the analytical nature of the model, generating a prediction for either target

is equivalent to solving an equation, making decision time negligible. This

goes in a stark contrast to an approach that would employ machine learning to

perform model inference at runtime, a step that may, in fact, take longer than

the kernel execution itself [37].

81

G
EM

M
1

M
V
T1

M
V
T2

3M
M

1

3M
M

2

3M
M

3

2M
M

1

2M
M

2

ATA
X
1

ATA
X
2

BIC
G
1

BIC
G
2

2D
CO

N
V
1

3D
CO

N
V
1

CO
VA

R
1

CO
VA

R
2

CO
VA

R
3

G
ESU

M
M

V
1

SY
R
2K

1

SY
R
K
1

SY
R
K
2

CO
R
R
1

CO
R
R
2

CO
R
R
3

CO
R
R
4

1

10

100

Kernel

G
P

U
O

ffl
oa

d
in

g
S
p

ee
d
u
p

True Speedup

Predicted Speedup

Figure 5.6: Actual versus predicted GPU offloading speedup for benchmark
kernel execution mode versus a host using 4 threads.

5.2.5 Evaluation

We present some early results of the hybrid decision analysis by evaluating it

on a collection of parallel OpenMP loops found in the Polybench benchmark

suite. These parallel loops represent common atoms of computation found

across a variety of applications. 25 kernels from are executed from 12 dif-

ferent benchmarks: GEMM, MVT, 3MM, 2MM, ATAX, BICG, 2DCONV, 3DCONV, COVAR,

GESUMMV, SYR2K, SYRK, and CORR. Each benchmark in the suite has two modes

of execution, test and benchmark. The execution modes differ only in the size

of the program’s input, being 1100× 1100, and 9600× 9600, respectively. We

also include results for restricting the host execution environment to just 4

threads to demonstrate both the adaptability characteristics of the models,

and a scenario that resembles a more typical execution environment, when

compared to our experimental machine’s 20-core 8-SMT CPU running at full

capacity of 160 threads. Execution runtimes were recorded as average kernel

runtimes across 10 runs of each benchmark. For the sake of a fair head-to-head

comparison of kernel execution times across platforms, this overhead is omitted

from the evaluation in order to demonstrate a generic case of computation

82

offloading in a running application, similarly to the experiment described in

Section 5.1.

G
EM

M
1

M
V
T1

M
V
T2

3M
M

1

3M
M

2

3M
M

3

2M
M

1

2M
M

2

ATA
X
1

ATA
X
2

BIC
G
1

BIC
G
2

2D
CO

N
V
1

3D
CO

N
V
1

CO
VA

R
1

CO
VA

R
2

CO
VA

R
3

G
ESU

M
M

V
1

SY
R
2K

1

SY
R
K
1

SY
R
K
2

CO
R
R
1

CO
R
R
2

CO
R
R
3

CO
R
R
4

1

10

100

Kernel (4 CPU Threads)

S
p

ee
d
u
p

Always Offload

Decide Using Hybrid Analysis

G
EM

M
1

M
V
T1

M
V
T2

3M
M

1

3M
M

2

3M
M

3

2M
M

1

2M
M

2

ATA
X
1

ATA
X
2

BIC
G
1

BIC
G
2

2D
CO

N
V
1

3D
CO

N
V
1

CO
VA

R
1

CO
VA

R
2

CO
VA

R
3

G
ESU

M
M

V
1

SY
R
2K

1

SY
R
K
1

SY
R
K
2

CO
R
R
1

CO
R
R
2

CO
R
R
3

CO
R
R
4

0.1

1

10

100

Kernel (160 CPU Threads)

S
p

ee
d
u
p

Always Offload

Decide Using Hybrid Analysis

Figure 5.7: Speedup achieved by always offloading to GPU versus offloading
when determined profitable by the analytical hybrid decision model. Bench-
marks executed in Benchmark mode.

Figure 5.5 and Figure 5.6 demonstrate the true versus predicted speedup of

offloading the kernel execution to the GPU in test and benchmark execution

modes. While the overall magnitude of the predictions is often off due to the

abstraction of control-flow constructs in the performance model (iterations of

all loops counted 128 times), the predicted outcome is correct for 23/25 kernels.

When deploying the decision analysis framework to select the execution

83

target, overall benchmark suite execution time is improved. When following the

compiler’s default policy of always offloading target regions to an accelerator,

GPU offloading of all kernels yields a geometric mean speedup of 10.2× and 2.9×

versus a host using 160 CPU threads (Test and Benchmark execution modes,

respectively). Switching the runtime to evaluate the relative performance of

GPU offloading through analytical modelling and only do so when predicted

to be profitable profitable results in a geomean speedup of 14.2× and 3.7× on

an otherwise the same configuration. Figure 5.7 shows the speedups achieved

under both experimental setups. Note that the speedup provided by the

GPU is captured in most cases, with few notable outliers: in the 160-thread

Benchmark execution mode, the model’s decision on the convolution kernels is

incorrect, predicting a speedup of 0.913×, whereas the true offloading speedup

is 1.48×, in the 2D case. Discrepancies in scenarios where the decision is a

close one, such as these, require further tuning of the model to increase its

accuracy. Improved representation of the memory hierarchy impacts is a sure

way to improve prediction efficacy for these scenarios. The SYRK2 kernel in

Test execution mode has the performance model severely over-estimate the

GPU execution time relative the the CPU running at 160 threads, likely due to

over-accounting for the kernel’s poor coalescing characteristics without taking

the details of cache hierarchy into account.

While the OpenMP specification does not, currently, allow compliant run-

time systems to elect to not offload target regions, there is a clear need to

provide this ability to runtime vendors. Even among highly-regular OpenMP

parallel loops — a construct best-suited for translation into data-parallel code,

there are computation patterns ill-suited to GPU acceleration. While more

difficult to model, common OpenMP programs that utilize mixtures of con-

struct types to express parallelism alongside sequential code within target

regions are even more likely to see better performance on the host fallback path.

We demonstrate an early but successful attempt at guiding compile/runtime

system architecture to handle a more descriptive programming model approach.

The upcoming OpenMP 5.0 standard is set to introduce new constructs that

allow implementors exactly this kind of freedom [47].

84

5.3 Discussion and Future Work

The task of constructing performance models is one of increasing importance.

It requires deep understanding of intricate details of target architectures that

go far beyond spec sheets. It also represents a chase after a running target as

hardware architectures iterate at an increasing pace. As the challenge of the

task rises, so does its importance; rise of heterogeneous computing platforms

that combine radically different processing units in a single system makes these

models crucial for a new realm of optimizing programs to the machine at-large,

rather than a singular micro-architecture.

OpenMP 4.0 standard greatly expands the functionality of the program-

ming model by introducing support for programming heterogeneous computing

systems. Newly written applications can take advantage of powerful acceler-

ators like GPUs by annotating the code with appropriate target constructs.

Meanwhile, a great wealth of existing OpenMP code can be upgraded by users

through fairly minor modifications and additions of new directives to existing

constructs. This work takes the notion of upgrading existing OpenMP 3.x code

further by taking the developer out of the equation and proposing an architec-

ture for a supporting compiler implementation to automatically offload suitable

parallel loops. This reduces the effort of porting legacy code to state-of-the-art

heterogeneous computing platforms to a simple act of recompilation. A hybrid

approach to a profitability analysis of offloading parallel loops to a GPU is

essential due to the complexities of the trade-off made when sending both

program code and data to a GPU. This approach demonstrates encouraging

results, showing significant performance gain is possible through application

of such analysis by choosing the correct architecture present in the system for

execution of parallel code. Looking ahead, the upcoming OpenMP 5.0 will

introduce the concurrent loop construct directive, which asks the compiler to

make a decision on how to parallelize the loop and, more importantly, where

to execute it. In light of this development, the work in profitability analysis of

offloading OpenMP code to GPUs becomes ever so prudent.

85

Chapter 6

Related Work

The work presented in this thesis spans multiple areas of inquiry, well-studied

by researchers. Related work is presented in this chapter, organized by fields

related to the projects that comprise this thesis.

6.1 Overlapping GPU Computation and Mem-

ory Transfers

Asynchronous transfers are used for BigKernel, by Mokhtari et al., which

breaks up a kernel into smaller kernels and pipelines memory transfer in a

similar fashion to our kernel pipelining process [42]. BigKernel is a coding

framework wherein a memory transfer that would be too large for the available

GPU memory is partitioned into segments which are then transferred onto

the GPU as needed. The data segments are laid out by BigKernel in host

memory by analyzing the GPU kernel and organizing all data items that are

used into a prefetch buffer in the order of their access by the GPU threads,

creating more coalesced memory accesses in the GPU as memory accessed at

the same time is placed beside each other. As with our pipelining method these

transfers are performed asynchronously and are overlapped with unrelated

kernel computation. However, BigKernel requires a programmer to specify

different GPU calls as opposed to the compiler transformation that we propose.

Furthermore, BigKernel focuses on very large data and thus its design requires

double the original number of threads for a kernel, with half the threads utilized

for calculating prefetch addresses. These additional overheads are not present

86

in our method.

A common approach to pipeline GPU execution uses double buffering.

Komoda et al. present a OpenCL library that optimize CPU-GPU commu-

nication by overlapping computation and memory transfers based on simple

program-descriptions written by the programmer [29]. Komoda’s work is lim-

ited to pipelining memory transfers with existing GPU kernels, and requires

programmer specification. Our approach, in contrast, creates multiple kernels

out of a single description of a GPU program (a single target region) to enable

pipelining.

6.2 GPU Occupancy / Grid Geometry

GPU occupancy is the focus of Kayıran et al.’s DYNCTA, a dynamic solution

similar to ours that accounts for memory saturation by reducing occupancy [27].

DYNCTA analyzes each GPU SM’s utilization and memory latency during ex-

ecution and adjusts the occupancy within the SM to avoid memory-bandwidth

saturation by keeping occupancy lower than the maximum. Changing the

defined grid geometry for a kernel is impossible, as a result occupancy adjust-

ment is achieved by assigning additional CTAs to a SM that have already been

allocated to the kernel at the start of execution. Once assigned to an SM a

CTA cannot be removed, as a result adjustment is performed by prioritizing

or deprioritizing CTAs. A prioritized CTA has any available warps executed

before a deprioritized CTA’s warps, as a result with memory intensive pro-

grams wherein all warps stall on memory accesses the deprioritized CTAs will

eventually be utilized after all prioritized warps stall. Performance is improved

by having the occupancy just below the threshold where memory saturation

causes negative effects, ensuring the SM remains utilized while avoiding the

punishing effects of memory saturation. Analysis is recorded in two hardware

counters within each SM, that record how long each SM has been under utilized

and how the often the SM has stalled due to memory access waiting. Sethia et

al. describe a similar approach with Equalizer, a heuristic that dynamically

adjusts the number of CTAs based on four hardware counters [53]. Lee et

87

al. propose a slightly different strategy with “Lazy CTA Scheduling” (LCS)

wherein the workload of an initial prioritized CTA is calculated by a hardware

performance counter and that data is used to calculate an improved number

of CTAs for each SM [31]. In contrast, our grid geometry proposal is based

on a simple hybrid analysis with a low runtime cost and is suitable for simple

GPU kernels, which represent the majority of benchmarks we have tested. The

benefits of a simple heuristic approach over heavyweight dynamic mechanisms,

as outlined by Lloyd et al. allow for a practical deployment in a production

system, even if it does sacrifice some optimility [37].

Sethia et al. present the Mascar system, which approaches memory satu-

ration by prioritizing the accesses of a single warp instead of a round robin

approach [52]. The single warp starts computation earlier to help hide the

latency of other accesses, with the scheduler additionally prioritizing warps

with computation over memory-accessing warps when memory saturation is

detected. A queue for failed L1 cache access attempts is also added to the

GPU hardware, holding the accesses for later execution, it prevents warps from

saturating the cache controller with repeated access requests so that other

warps can attempt their accesses. Mascar requires hardware design and warp

scheduling changes. In contrast, our custom grid geometry based on static

analysis is far less intrusive.

Other dynamic approaches include Oh et al.’s APRES, a predictive warp

scheduler that prioritizes the scheduling of groups of warps with likely cache

hits [46]. Kim et al. suggest an additional P-mode for warps waiting on long

memory accesses wherein later instructions that are independent of the long

accesses are pre-executed while any dependent operations are skipped [28].

Lee et al.’s CAWA reduces the disparity in execution time between warps by

providing the slower running warps with more time to execute and a reserved

area of the L1 cache [32]. All these approaches have additional run time

costs when compared to a static analysis and compile-time selection of custom

grid geometry and re-distribution of work across multiple kernels enabled

by pipelining. Furthermore, warp scheduling approaches and custom grid

geometries are complimentary and can be combined.

88

6.3 Performance Portability

The quest for performance portability of high-level parallel programming

models has attracted much research attention to the areas of modeling and

optimization of parallel-program performance [16], [40], [45], [61], [64]. In the

context of OpenACC, Miles et. al. argue that true performance portability

can only be achieved through compiler transformations guided by the specific

demands of the target platform [41]. They observe that parallel loop nests

must be structured differently depending on whether they are to be executed

on a homogeneous multi-core machine, or on a highly parallel, throughput-

optimized, accelerator. Both paradigms currently coexist in the domains of

high-performance and scientific computing; thus, the continued development of

compiler technology is key to achieve performance portability.

6.4 Symbolic Memory Reference Analysis

Symbolic analysis of loop code is a concept that dates as far back as 1976, when

Cheatham and Townley proposed symbolic execution as a tool for loop analysis

for the EL1 programming language [9]. This analysis expressed a set of facts

about an execution of a loop across iterations captured as recurrence equations

with symbolic unknowns. This research paved the way for decades of work

that iterated on the idea. Haghighat et. al. use numerical finite differences

in order to detect generalized induction-variable expressions and to reduce

inter-iteration access stride to a recurrence, solving which can yield dependence

information (Paraphase 2 compiler) [19]. Gerlek, Stoltz and Wolfe apply a

technique based on a generalization of demand-driven constant propagation

to detect strongly-connected components in the SSA graph with the goal of

identifying sequence variables in program code [17]. They demonstrate how

solving recurrences that occur in loop expressions can be used to replace update

statements with the respective closed form.

Motivated by the need to analyze addressing expressions that cannot be

captured as a solvable recurrence, Rus, Zhang and Rauchwerger introduced a

89

framework for analysis of memory reference sets addressed by induction variables

without closed forms [51]. The framework relies on a data structure called

the Value Evolution Graph (VEG). Based on Gated Static Single Assignment

representation, the VEG augments the GSA data-flow graph by representing

values as ranges of possible actual values. Sequences of data-flow edges p

→...→q form evolutions, which are unioned across all paths from p to q to form

an aggregate evolution. Similarly to IPDA, the VEG can be used to compute

iteration distance between two consecutively accessed elements. Representing

evolutions as graph paths restricts the evolutions that it can represent and the

kinds of operations that can be performed. IPDA’s symbolic representation

allows it to scale to large indexing expressions because the algebraic differences

lead to simpler expressions due to term cancellations.

Moon et al. proposed a technique called predicated array data-flow analysis

that associates predicates with data-flow values that represent control-flow

paths taken to arrive at the values [43]. The predicates are formulated into ex-

ecutable program statements that form tests which guard parallelized versions

of computation. They capture control-flow into the data-flow representation

at runtime for a specific control-flow path. In contrast, The IPDA framework

encodes facts about all possible control-flow paths into its symbolic representa-

tions of program statements without losing accuracy. A result similar to Moon

et al.’s can, in principle, be achieved by the IPDA framework.

6.5 Loop Dependence Analysis

Industrial-strength compilers, such as the LLVM Compiler Infrastructure and

the IBM XL C/C++/Fortran Compilers, use a near-complete implementation

of Goff-Kennedy-Tseng dependence testing [18]. For a single-index addressing

expression, exact tests are typically used that treat most commonly occurring

single-index expressions as special cases for which efficient closed-form solutions

are implemented. For linear addressing expressions, dependence testing is often

reduced to finding integer solutions to systems of linear Diophantine equations.

Implementations of the Goff-Kennedy-Tseng work include a limited variety of

90

’symbolic’ tests. One such test processes addressing expressions that contain no

index variables and can be symbolically tested for equality. Another handles

expressions of the form ¡ai+ c1, ai
′ + c2¿ that contain a single index variable i,

with loop-invariant symbolic additive constants c1 and c2, where the difference

c2− c1 can be reduced to a constant. These techniques are restricted to a small

subset of addressing expressions that conform to a very specific format. In

contrast, the IPDA analysis scales to arbitrary addressing expressions and to

many index variables present in these expressions, enabling the analysis of deep

loop nests.

The work most similar to our proposed DDG algorithm technique is the

Range Test by Blume and Eigenmann [4]. The Range Test propagates ranges

to symbolic values to determine potential overlap of two addressing expressions

across iterations of a given loop. It then computes the minimum and the

maximum difference between addressing expressions across multiple loops and

checks whether the maximum value for one expression is less than or equal

to the minimum value of the other. Whereas the IPDA Test first computes

algebraic differences between symbolic representations of the two subscripts,

and then methodically reduces iteration point differences for all loop subsets in

a given nest to verify if the difference can be zero. Moreover, the Range Test

fails for subscript expressions that reference conditionally defined variables - a

limitation the IPDA framework does not have.

Engelen et. al. propose a symbolic loop analysis framework for nonlinear

dependence testing based on a representation of symbolic expressions with

chains of recurrences (CRs) [14]. Their framework handles variable and pointer

updates in conditional paths inside the loop body by constructing a set of CR

forms for a conditionally defined variable, where each set element corresponds

to the CR form of a given program path. Bounding functions for the range

of the given variable are then constructed for a set of CR forms, instead of

an individual CR form. Indexing expression range analysis is then performed,

similarly to the Range Test, over sets of characteristic functions. The CR-set

technique may handle some code patterns described in the paper that are

common to DSP codes (boundary checks); however, range analysis over sets

91

of characteristic functions has significant drawbacks that do not affect IPDA.

Consider the case of:

int x; if (c) { x = 0; } ... if (c) { A[x] = ...; }

The set of CRs for the conditionally-defined variable x through code paths

that lead to the array access A[x] will have the value of x range both 0 or any

other possible integer value (for the case that the if condition does not hold).

As a result, the analysis would not be able to infer any information about

the array access. IPDA analysis is capable of capturing variable reference’s

dominating definitions and will determine the access to always be A[0]. Even

without the definition propagation, the algebraic difference computation on the

values of A[x] computed by different iterations would be solved to a 0 because

the condition expressions would be canceled out. The symbolic difference

simplification process often makes range computation much simpler.

Another popular methodology for dependence analysis is the Polyhedral

model [5]. The polyhedral model treats loop iterations within loop nests as

points in a lattice inside a polytope. This representation allows geometric mod-

elling of any affine functions of indices that comprise the polytope. Dependence

relations can then be established based on overlap of the resulting polytopes

of memory location subscripts. A key limitation of the polyhedral represen-

tation, one that does not impact IPDA, is its restriction to spaces of affine

functions of index variables. Moreover, expressions containing variables defined

in conditional execution paths are intractable by the Polyhedral model.

92

Chapter 7

Conclusion

This thesis presents a collection of ideas and techniques aimed at extracting

performance from accellerator-enabled heterogeneous computing machines

through application of compile-time and runtime techniques.

Chapter 3 explored a series of code-restructuring transformations that can

be executed by the programmer or the compiler, to better fit the structure

of program code to the peculiarities of GPU architecture. Advantages of

the proposed approaches include the opportunity to tailor grid geometry of

each kernel to the parallel region that it executes and the elimination of the

overheads imposed by a code-generation scheme meant to handle multiple

nested parallel regions.

Chapter 4 championed a symbolic static analysis framework capable of

characterizing memory access statements in GPU-bound parallel loops. This

analysis can propagate definitions through control flow, works for non-affine

expressions, and is capable of analyzing expressions that reference conditionally-

defined values. Experimental results demonstrated potential for dramatic

performance improvements. A highlight performance improvement result is an

opportunity detected by the analysis framework in a SPEC ACCEL benchmark

yielding kernel speedup of 111.1× with a benchmark improvement of 2.3×

on an Nvidia V100. This thesis also demonstrated how architecture-aware

compilers improve code portability and reduce programmer effort.

Finally, Chapter 5 argued that the transition to accelerator-based platforms

demands an analytical approach for performance modeling, aiming to select

93

the most suited accelerator out of those present in a system, to execute a

given computation. The use of a hybrid analytical performance modelling

is positioned as the most practical way forward in building fast and efficient

methods to select an appropriate target for a given computation kernel. The

target selection problem had been addressed in the literature, however there

had been a strong emphasis on building empirical models with machine-learning

techniques. We argued that the practical applicability of such solutions is

severely limited in production systems. A comprehensive comparison evaluation

of difference in GPU kernel performance on devices of multiple generations of

architecture strengthened the need for accurate analytical performance models

and provided insights in the evolution of GPU accelerators as a predominant

computational platform. This thesis also highlighted a drawback of existing

approaches to modelling GPU performance — accurate modelling of memory

coalescing characteristics. To that end, we demonstrated a novel application of

an inter-thread difference analysis to further improve analytical models. Finally,

this thesis presents a prototype study of an OpenMP runtime framework for

target-offloading target selection.

94

References

[1] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Intern.
symp. on performance analysis of systems and software (ISPASS), Apr.
2009, pp. 163–174. 5

[2] U. K. Banerjee, Dependence analysis for supercomputing. Norwell, MA,
USA: Kluwer Academic Publishers, 1988. 47, 49

[3] M. Bauer, H. Cook, and B. Khailany, “CudaDMA: Optimizing GPU
memory bandwidth via warp specialization,” in High performance com-
puting, networking, storage and analysis SC, Seattle, WA, USA, 2011,
pp. 1–11. 11

[4] W. Blume and R. Eigenmann, “The range test: A dependence test for
symbolic, non-linear expressions,” in Proceedings of supercomputing ’94,
Washington, DC, USA, Nov. 1994, pp. 528–537. 91

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Programming language design and implementation (PLDI), Tucson, AZ,
USA, 2008, pp. 101–113. 92

[6] J. Bull, “Measuring synchronization and scheduling over- heads in openmp,”
in The european workshop of OpenMP(EWOMP), Lund, Sweden, 1999. 74

[7] J. M. Bull, F. Reid, and N. McDonnell, “A microbenchmark suite for
OpenMP tasks,” in Proceedings of the 8th international conference on
OpenMP in a heterogeneous world(IWOMP), Rome, Italy, 2012. 74

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IEEE international symposium on workload characterization (IISWC),
2009, pp. 44–54. 27

[9] T. E. Cheatham and J. A. Townley, “Symbolic evaluation of programs:
A look at loop analysis,” in Symposium on symbolic and algebraic com-
putation, Yorktown Heights, New York, USA, 1976. 89

[10] A. Chikin, T. Lloyd, J. N. Amaral, and E. Tiotto, “Compiler for restruc-
turing code using interation-point algebraic difference analysis,” Patent
Reference: P201706298US01, Filled on March 12, 2018, Apr. 2018. 79

95

[11] A. Chikin, Unibench for OpenMP 4.0, https://github.com/artemcm/
Unibench. 27

[12] O. L. Committee, OpenMP application program interface version 4.0,
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf,
Accessed: 2018-03-13. (visited on 03/13/2018). 35

[13] L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared-memory programming,” IEEE computational science and engi-
neering, Jan. 1998. 1

[14] R. A. van Engelen, J. Birch, Y. Shou, B. Walsh, and K. A. Gallivan,
“A unified framework for nonlinear dependence testing and symbolic
analysis,” in International conference on supercomputing (ICS), Malo,
France, 2004, pp. 106–115. 91

[15] EPCC OpenMP micro-benchmark suite, Accessed: 2018-01-01. [Online].
Available: https : / / www . epcc . ed . ac . uk / research / computing /

performance-characterisation-and-benchmarking/epcc-openmp-

micro-benchmark-suite. 75

[16] T. Fahringer, M. Gerndt, G. Riley, and J. L. Träff, “Formalizing OpenMP
performance properties with ASL,” in High performance computing, 2000,
pp. 428–439. 89

[17] M. P. Gerlek, E. Stoltz, and M. Wolfe, “Beyond induction variables:
Detecting and classifying sequences using a demand-driven SSA form,”
ACM transactions on programming languages and systems (TOPLAS),
vol. 17, no. 1, pp. 85–122, Jan. 1995. 89

[18] G. Goff, K. Kennedy, and C.-W. Tseng, “Practical dependence testing,”
in Programming language design and implementation (PLDI), Toronto,
ON, Canada, 1991, pp. 15–29. 49, 90

[19] M. Haghighat and C. Polychronopoulos, “Symbolic program analysis
and optimization for parallelizing compilers,” in Workshop on languages
and compilers and parallel computing (LCPC), Portland, OR, USA, 1993,
pp. 538–562. 89

[20] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” in Proceedings of
the 36th annual international symposium on computer architecture, ser.
ISCA ’09, Austin, TX, USA, 2009, pp. 152–163. 67, 76, 77, 81

[21] Intel, Avoiding and identifying false sharing among threads, https://
software.intel.com/en-us/articles/avoiding-and-identifying-

false-sharing-among-threads, Accessed: 2018-03-13. 62

[22] Intel R© architecture code analyzer, Accessed: 2018-09-01. [Online]. Avail-
able: https : / / software . intel . com / en - us / articles / intel -

architecture-code-analyzer. 75

96

https://github.com/artemcm/Unibench
https://github.com/artemcm/Unibench
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer

[23] A. C. Jacob, A. E. Eichenberger, H. Sung, S. F. Antao, G. T. Bercea, C.
Bertolli, A. Bataev, T. Jin, T. Chen, Z. Sura, G. Rokos, and K. O’Brien,
Clang-YKT source-code repository, https://github.com/clang-ykt. 12

[24] ——, “Efficient fork-join on GPUs through warp specialization,” in High
performance computing HiPC, Jaipur, India, 2017, pp. 358–367. 7–9, 12, 13

[25] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
NVIDIA Volta GPU Architecture via Microbenchmarking,” Arxiv e-
prints, Apr. 2018. arXiv: 1804.06826. 78

[26] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che,
M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-M. W. Hwu, H. Li,
M. S. Müller, W. E. Nagel, M. Perminov, P. Shelepugin, K. Skadron,
J. Stratton, A. Titov, K. Wang, M. van Waveren, B. Whitney, S. Wienke,
R. Xu, and K. Kumaran, “SPEC ACCEL: A standard application suite
for measuring hardware accelerator performance,” in High performance
computing systems. performance modeling, benchmarking, and simulation,
S. A. Jarvis, S. A. Wright, and S. D. Hammond, Eds., 2015. 58

[27] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more
nor less: Optimizing thread-level parallelism for GPGPUs,” in Parallel
architectures and compilation techniques PACT, Piscataway, NJ, USA,
2013, pp. 157–166. 87

[28] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram,
“Warped-preexecution: A GPU pre-execution approach for improving la-
tency hiding,” in High performance computer architecture HPCA, Barcelona,
Spain, 2016, pp. 163–175. 88

[29] T. Komoda, S. Miwa, and H. Nakamura, “Communication library to
overlap computation and communication for OpenCL application,” in Par-
allel and distributed processing symposium workshops IPDPSW, Shanghai,
China, 2012, pp. 567–573. 87

[30] L. Lamport, “The parallel execution of do loops,” Communications of
the ACM, vol. 17, no. 2, pp. 83–93, Feb. 1974. 49

[31] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Improving
GPGPU resource utilization through alternative thread block scheduling,”
in High performance computer architecture HPCA, Orlando, FL, USA,
2014, pp. 260–271. 88

[32] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “CAWA: Coordinated warp
scheduling and cache prioritization for critical warp acceleration of
GPGPU workloads,” in International symposium on computer archi-
tecture (isca), ACM, Portland, Oregon, 2015, pp. 515–527. 88

[33] C. Liao and B. Chapman, “Invited paper: A compile-time cost model for
OpenMP,” in 2007 IEEE international parallel and distributed processing
symposium, Mar. 2007, pp. 1–8. 74

97

https://github.com/clang-ykt
http://arxiv.org/abs/1804.06826

[34] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng, “OpenUH:
An optimizing, portable OpenMP compiler: Research articles,” Concurr.
comput. : Pract. exper., pp. 2317–2332, Dec. 2007. 74

[35] Libhugetlbfs - preload library to back text, data, malloc() or shared memory
with hugepages, Accessed: 2018-09-01. [Online]. Available: https://

linux.die.net/man/7/libhugetlbfs. 75

[36] T. Lloyd, K. Ali, and J. N. Amaral, “GPUCheck: Detecting CUDA
performance problems with static analysis,” Manuscript under review,
Aug. 2018. 9, 36

[37] T. Lloyd, A. Chikin, J. N. Amaral, and E.Tiotto, “Automated GPU grid
geometry selection for OpenMP kernels,” in Workshop on applications
for multi-core architectures, ser. WAMCA 2018, Pre-print Manuscript.
Available: https://webdocs.cs.ualberta.ca/~amaral/papers/

LloydWAMCA18.pdf, Lyon, France, Sep. 2018. 6, 23, 26, 28, 30, 31, 81, 88

[38] LLVM-MCA - LLVM Machine Code Analyzer, https://llvm.org/
docs/CommandGuide/llvm-mca.html, Accessed: 2018-09-13. 67, 75

[39] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann, “Effective compiler support for predicated execution using the
hyperblock,” in Micro, Portland, OR, USA, 1992, pp. 45–54. 9

[40] J. Meng and K. Skadron, “Performance modeling and automatic ghost
zone optimization for iterative stencil loops on GPUs,” in International
conference on supercomputing (ICS), Yorktown Heights, NY, USA, 2009,
pp. 256–265. 89

[41] D. Miles, D. Norton, and M. Wolfe, “Performance portability and Ope-
nACC,” in Conference of cray user group (CUG), Lugano, Switzerland,
2014. 89

[42] R. Mokhtari and M. Stumm, “Bigkernel – high performance CPU-GPU
communication pipelining for big data-style applications,” in Interna-
tional parallel and distributed processing symposium IPDPS, Phoenix,
AZ, USA, 2014, pp. 819–828. 86

[43] S. Moon, M. W. Hall, and B. R. Murphy, “Predicated array data-flow
analysis for run-time parallelization,” in International conference on
supercomputing (ICS), Melbourne, Australia, 1998, pp. 204–211. 90

[44] Nvidia, NVIDIA TESLA V100 GPU ARCHITECTURE – The World’s
Most Advanced Data Center GPU. http : / / images . nvidia . com /

content/volta-architecture/pdf/volta-architecture-whitepaper.

pdf, Accessed: 2018-01-01. 4

[45] M. F. P. O’Boyle, Z. Wang, and D. Grewe, “Portable mapping of data
parallel programs to OpenCL for heterogeneous systems,” in Intern.
symp. on code generation and optimization (CGO), Shenzhen, China,
2013, pp. 1–10. 89

98

https://linux.die.net/man/7/libhugetlbfs
https://linux.die.net/man/7/libhugetlbfs
https://webdocs.cs.ualberta.ca/~amaral/papers/LloydWAMCA18.pdf
https://webdocs.cs.ualberta.ca/~amaral/papers/LloydWAMCA18.pdf
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[46] Y. Oh, K. Kim, M. K. Yoon, J. H. Park, Y. Park, W. W. Ro, and
M. Annavaram, “APRES: Improving cache efficiency by exploiting load
characteristics on GPUs,” ACM SIGARCH computer architecture news,
vol. 44, no. 3, pp. 191–203, 2016. 88

[47] OpenMP Technical Report 6: Version 5.0 Preview 2, Accessed: 2018-09-01.
[Online]. Available: https://www.openmp.org/wp-content/uploads/
openmp-TR6.pdf. 84

[48] Power9 Processor User‘s Manual, Accessed: 2018-09-01. [Online]. Avail-
able: https://openpowerfoundation.org/?resource_lib=power9-
processor-users-manual. 74

[49] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in Proceedings of the 27th annual international sympo-
sium on microarchitecture, ser. MICRO 27, San Jose, California, USA:
ACM, 1994, pp. 63–74. 13

[50] D. Rolls, C. Joslin, and S.-B. Scholz, “Unibench: A tool for automated
and collaborative benchmarking,” in International conference on program
comprehension (ICPC), Braga, Minho, Portugal, 2010, pp. 50–51. 58, 73

[51] S. Rus, D. Zhang, and L. Rauchwerger, “The value evolution graph
and its use in memory reference analysis,” in Parallel architectures and
compilation techniques (PACT), Antibes Juan-les-Pins, France, 2004,
pp. 243–254. 90

[52] A. Sethia, D. A. Jamshidi, and S. Mahlke, “Mascar: Speeding up GPU
warps by reducing memory pitstops,” in High performance computer
architecture HPCA, San Francisco, CA, USA, 2015, pp. 174–185. 88

[53] A. Sethia and S. Mahlke, “Equalizer: Dynamic tuning of GPU resources
for efficient execution,” in International symposium on microarchitecture
(MICRO), Cambridge, UK, 2014, pp. 647–658. 87

[54] Sphinx, Accessed: 2018-01-01. [Online]. Available: http://www.llnl.
gov/casc/sphinx/sphinx.html. 74

[55] A. Stoutchinin and F. de Ferriere, “Efficient static single assignment form
for predication,” in Micro, Austin, TX, USA, 2001, pp. 172–181. 9

[56] Oak Ridge Readies Summit supercomputer for 2018 debut, https://www.
top500.org/news/oak-ridge-readies-summit-supercomputer-for-

2018-debut/, Accessed: 2018-03-13. (visited on 01/01/2018). 1

[57] The OpenACC application programming interface, https://www.openacc.
org/sites/default/files/inline-files/OpenACC.2.6.final.pdf,
Accessed: 2018-01-01. 15

[58] The OpenACC application programming interface version 2.5, Accessed:
2017-10-15. [Online]. Available: http://www.openacc.org/sites/

default/files/inline-files/OpenACC_2pt5.pdf. 1

99

https://www.openmp.org/wp-content/uploads/openmp-TR6.pdf
https://www.openmp.org/wp-content/uploads/openmp-TR6.pdf
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
http://www.llnl.gov/casc/sphinx/sphinx.html
http://www.llnl.gov/casc/sphinx/sphinx.html
https://www.top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/
https://www.top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/
https://www.top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
http://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5.pdf
http://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5.pdf

[59] Top500 supercomputers, https://www.top500.org/, Accessed: 2018-01-
01, 2017. 1

[60] Trinity, https://lanl.gov/projects/trinity/, Accessed: 2018-08-08,
2018. 1

[61] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: A
machine learning based approach,” in Principles and practice of parallel
programming (PPoPP), Raleigh, NC, USA, 2009. 89

[62] M. E. Wolf, D. E. Maydan, and D.-K. Chen, “Combining loop transfor-
mations considering caches and scheduling,” in International symposium
on microarchitecture (MICRO), Dec. 1996, pp. 274–286. 74

[63] M. J. Wolfe, “Optimizing supercompilers for supercomputers,” AAI8303027,
PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL,
USA, 1982. 47, 49

[64] Z. Zheng, X. Chen, Z. Wang, L. Shen, and J. Li, “Performance model
for OpenMP parallelized loops,” in Transportation, mechanical, and
electrical engineering (TMEE), Changchun, China, Dec. 2011. 89

100

https://www.top500.org/
https://lanl.gov/projects/trinity/

	Introduction
	Background
	GPU Architecture, Programming Model, and Execution Platform
	Memory Coalescing

	OpenMP and Accelerator Programming
	OpenMP 4.x GPU Code Generation

	Symbolic Static Analysis: Arithmetic Control Form

	OpenMP Code Offloading: Splitting GPU Kernels, Pipelining Communication and Computation, and Selecting Better Grid Geometries
	Fission of Multiple-Parallel-Region Target Regions
	Overlapping Data Transfer and Split Kernel Execution
	Pipelining Data Transfer and Parallel Loop Execution
	Custom Grid Geometry
	Estimating Potential Benefits of Transformations
	Combining Kernel Splitting with Elision Improves Performance
	Elision Amplifies Benefits of Custom Grid Geometry
	Pipelining Improves Performance for High Trip Counts

	Concluding Remarks

	Memory-access-aware safety and profitability analysis for transformation of accelerator-bound OpenMP loops
	Loop Iteration Point Algebraic Differences
	Focusing on Loop-Specific Analysis Demands

	Symbolic Representation
	Algebraic Simplification
	Algebraic Difference Cancellation

	Data Dependence Graph Pruning with Iteration Point Differences
	Single-Loop Dependence Checking
	Loop-Nest Dependence Checking
	Symbolic Differences of Control-Dependent Expressions Improve Dependence Testing
	Prototype Implementation Demonstrates That the ipad Test is Essential For Safety Analysis

	IPDA GPU Global Memory Coalescing Analysis on parallel OpenMP loops
	Improving GPU Memory Access Patterns with Loop Transformations
	Loop Collapse
	Loop Interchange

	Evaluation
	Informed Loop Reshaping Performance Impact
	Code Portability Impact

	Concluding Remarks

	Toward Hybrid Execution Target Selection Through Analytical Performance Modeling
	Comparative Offloading Performance Change Across GPU Generations
	Generational Performance Gaps Require Fine-Tuned Performance Estimates

	A New Hybrid Analysis Framework for Deciding the profitability of GPU Offloading
	OpenMP CPU Performance Model
	GPU Performance Model
	GPU Memory Access Pattern: Improved Coalescing Detection
	Putting It All Together
	Evaluation

	Discussion and Future Work

	Related Work
	Overlapping GPU Computation and Memory Transfers
	GPU Occupancy / Grid Geometry
	Performance Portability
	Symbolic Memory Reference Analysis
	Loop Dependence Analysis

	Conclusion
	References

