
Not having the information you need when you need it leaves you wanting. Not knowing where to
look for that information leaves you powerless. In a societywhere information is king, none of us

can afford that.

– Lois Horowitz.

University of Alberta

Data Mining Flow Graphs in a Dynamic Compiler

by

Adam Paul Jocksch

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Adam Paul Jocksch
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or
sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta willadvise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except asherein
before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any

material form whatsoever without the author’s prior writtenpermission.

Examining Committee

Jośe Nelson Amaral, Computing Science

Vincent Gaudet, Electrical and Computer Engineering

Joerg Sander, Computing Science

Abstract

This thesis introduces FlowGSP, a general-purpose sequence mining algorithm for flow graphs.

FlowGSP ranks sequences according to the frequency with which they occur and according to their

relative cost. This thesis also presents two parallel implementations of FlowGSP. The first imple-

mentation uses JavaTMthreads and is designed for use on workstations equipped with multi-core

CPUs. The second implementation is distributed in nature and intended for use on clusters.

The thesis also presents results from an application of FlowGSP to mine program profiles in

the context of the development of a dynamic optimizing compiler. Interpreting patterns within raw

profiling data is extremely difficult and heavily reliant on human intuition.

FlowGSP has been tested on performance-counter profiles collected from the IBMR©WebSphereR©

Application Server. This investigation identifies a numberof sequences which are known to be typi-

cal of WebSphereR© Application Server behavior, as well as some sequences which were previously

unknown.

Acknowledgements

I would like to thank my supervisor Nelson, first and foremost, for his endless support, encourage-

ment, and especially for his patience.

I would like to thank Osmar Zaı̈ne for his advice in the planning stages of my research. His

advice on existing data mining algorithms was invaluable.

I would also like to thank the IBM Testarossa JIT developmentteam, specifically Marcel Mitran,

Joran Siu, and Nikola Grcevski. They have provided me with anabundance of technical information

and guidance throughout my research.

The research leading up to this thesis was made possible by funding from the IBM Center for

Advanced Studies (CAS) and by grants from the Natural Science and Engineering Research Council.

Contents

1 Introduction 3

2 Background Information 7
2.1 Machine Learning .. . 7

2.1.1 Data Mining . 8
2.1.2 Frequent-Sequence Mining 9
2.1.3 GSP . 9

2.2 Compiler Technology 10
2.2.1 Control Flow Graphs (CFGs) .. . 10
2.2.2 Edge Profiling vs. Path Profiling 11
2.2.3 Dynamic Optimization .. 12

2.3 Performance Counters 14
2.4 z10 Architecture 15

2.4.1 Address Generation Interlock 15
2.4.2 Page Sizes . 15
2.4.3 Performance Counters on z10 .. . 16

2.5 WebSphere Application Server 16
2.5.1 Profiling WAS . 17

2.6 Parallel Performance 17
2.6.1 Linear Speedup . 17
2.6.2 Memory Organization .18

3 FlowGSP 21
3.1 Edge and Vertex Weighted Attributed Flow Graphs 22

3.1.1 Formal Definition .22
3.2 Calculating Path Support 24

3.2.1 Frequency Support .24
3.2.2 Weight Support . 25

3.3 Sequences of Attributes 25
3.3.1 Matching Sequences to Paths 26
3.3.2 Support of a Sequence .27

3.4 FlowGSP . 30
3.4.1 Creation of Initial Generation 32
3.4.2 Matching Path Discovery .. . 33
3.4.3 Candidate Generation .. . 37

4 Implementation 39
4.1 Data Collection .. . 40
4.2 Data Storage .. 41
4.3 Construction of Execution Flow Graphs from Profiling Data 42

4.3.1 Attributes . 42
4.3.2 Consequences of Edge Profiling 44

4.4 Architecture Specific Considerations 44

4.5 Graph Division .. 45
4.6 Sequential Performance 45

5 Parallel Performance 47
5.1 Parallel Decomposition 48
5.2 Threaded Implementation 49

5.2.1 Work Division . 49
5.2.2 Performance Analysis .. 49

5.3 Distributed Implementation 53
5.3.1 Work Division . 54
5.3.2 Performance Analysis .. 54

6 Mining WebSphere Application Server Profiles with FlowGSP 57
6.1 Discovery of Previously Known Patterns 57
6.2 Discovery of New Characteristics 58

7 Related Work 61
7.1 Machine Learning and Compilers 61

7.1.1 Supervised Learning .. 62
7.1.2 Unsupervised Learning .. . 62

7.2 Data Mining .63
7.3 Performance Counters 65
7.4 Enterprise Application Performance 65

List of Tables

2.1 Example of path profiling information. 12
2.2 Example of edge profiling information. 12
2.3 Possible path profiling constructed from edge profiling information. 12
2.4 Upper path-profiling bounds based on edge profiling information. 13

5.1 Total running time for FlowGSP, in seconds. 50
5.2 Running times for FlowGSP by generation, in seconds, forN threads. 50
5.3 Breakdown of execution time with 8 worker threads. 51
5.4 Influence of changing gap and window sizes on overall program performance. . . . 53
5.5 Execution time for the distributed implementation of FlowGSP withN workers. . . 55

List of Figures

2.1 Example of a portion of a program CFG. 11

3.1 An example of a vertex-weighted, attributed flow graph. Edge weights are given
along each edge and vertex weights are given next to each vertex. The letters in bold
next to a vertex are attributes of that vertex. 23

3.2 The same graph as in figure 3.1 after edge weight and vertexcost normalization . . 23
3.3 Pathsp1 = {v1, v3, v7} andp2 = {v2, v4, v6} containing instances of the sequence

〈(A), (B), (E)〉 . 28
3.4 Pathsp3 = {v6, v8} andp4 = {v7, v8} containing instances of the candidate se-

quence〈(E), (C)〉. 29
3.5 Small example of an Execution Flow Graph (EFG) 35

4.1 Example of CFG annotated with edge profiling information. 44

5.1 Total speedup as a function of the number of threadsN 51
5.2 Speedup for the first through seventh generations as a function of the number of

threadsN . 52

7.1 Example of a directed graph and a weighted traversal. 64

List Of Acronyms

AGI Address–Generation Interlock .. 15

AOT Ahead-Of-Time .. 13

API Abstract Programming Interface .. 18

BTB Branch Transition Buffer .. 65

CFG Control Flow Graph .. 10

CPMF Central Processor Measurement Facility 16

EFG Execution Flow Graph. .. .22

FDO Feedback–Directed Optimization .. 10

JDBC Java Database Connectivity .. 40

JEE Java Enterprise Edition .. 16

JVM Java Virtual Machine .. 53

GSP Generalized Sequential Pattern .. 9

ISA Instruction Set Architecture .. 15

JIT Just-In-Time. .. .10

MPI Message Passing Interface .. 18

PDF Profile–Directed Feedback .. 13

SVM Support Vector Machine .. 62

SPEC Standard Performance Evaluation Corporation 62

TLB Translation Lookaside Buffer .. 14

1

2

Chapter 1

Introduction

Modern optimizing compilers are powerful tools in the pursuit of improved program performance.

Ultimately the ability of optimizing compilers to achieve good program performance is reliant on

the quality of the optimizations performed. These optimizations are the result of many person-hours

of hand tuning and investigation [6].

The development of these optimizations is a long process heavily dependant on the intuition and

skill of the compiler developer. Typically the investigation of new optimization opportunities starts

with the examination of current program performance. Once an opportunity has been identified,

the developer can then design and test an optimization. The entire process from investigation to

implementation can be extremely lengthy.

Typically, performance defects that merit the attention ofa compiler designer come in two dis-

tinct forms. The first consists of events that occur infrequently but incur a large cost. The second

type of defect is that which incurs a modest cost, but occurs very frequently. Identification of the

first type of defect is important to program performance and it is relatively simple to address. The

second type of performance issue is also important althoughmuch more difficult to discover.

Hardware performance counters are a common method for evaluating the performance of ap-

plications. Low-level information such as instruction cache misses, Translation Lookaside Buffer

(TLB) misses, and data cache misses can illuminate many aspects of program behavior that may be

potential targets for new optimizations. However, raw hardware profiles can be extremely verbose

making the identification of performance defects difficult.Many optimization opportunities may go

unnoticed simply due to the volume of information that must be examined. If performance defects

in hardware profiles could be identified more rapidly, then new optimizations could be developed at

3

a much faster pace.

Large enterprise applications, in particular, are an excellent example of how difficult it may be

to extract meaningful performance information from hardware performance profiles. For example,

the IBM R© WebSphereR© Application Server is a Java Enterprise Edition (JEE) enterprise server

written in JavaTM. A typical Application Server profile consists of thousandsof individual methods,

no one of which comes remotely close to dominating the total execution time. Such profiles are

often referred to as “flat” profiles as the histogram of execution time per region of code shows few

discernible peaks. Performance improvements are not likely to be achieved by considering individ-

ual methods; the entirety of the Application Server must be taken into account when designing code

transformations: a daunting task.

The field of data mining is devoted to the identification of patterns in data sets. An automated

analysis of the hardware profile data may be able to identify performance issues. In order to accom-

plish this, two goals must be accomplished:

1. A data structure must be designed to represent the data contained in the hardware profile. This

data structure must allow both the frequency and cost of defects to be identified.

2. An algorithm must be developed to search the data structure for patterns that correspond to

performance defects in the profiling data. This algorithm needs to rank patterns in accordance

with both their frequency and cost.

Generally, the hardware profiles of enterprise applications such as the WebSphereR© Application

Server are very flat. A profile is referred to as flat if no singlemethod accounts for a significant

proportion of the total execution time. In other words, the histogram of execution time spent on

each region of code shows no discernible peaks. This characteristic of enterprise application profiles

makes identification of worthwhile performance defects even more problematic.

The thesis presented in this document is:

A suitable data mining algorithm should be able able to discover patterns in a flat profile.

Some of these patterns should enable compiler designers to create new code transfor-

mations to improve the runtime performance of applications.

This thesis presents FlowGSP, a modification of the Generalized Sequential Pattern (GSP) algo-

rithm [32], and uses it to perform data mining on an ExecutionFlow Graph (EFG) constructed from

performance-counter data and Control Flow Graph (CFG) information extracted from the compiler.

4

The goal of this system is to aid in the identification of patterns in WebSphere-Application profiles

which may be indicative of new opportunities for code transformation.

The main contributions of this thesis are:

• The development of an EFG to model the information containedin hardware-profile data.

EFGs contain information that allows for the identificationof patterns based on their fre-

quency and on their relative weight.

• The development of FlowGSP, a data-mining algorithm designed to mine EFGs for patterns

corresponding to frequent and/or costly performance defects in hardware profiles.

• The development of two parallel implementations of FlowGSPin Java: one based on Java

threads for use on multi-core workstations and one based on sockets for use on distributed

systems. These implementations reduce the total executiontime of FlowGSP on WebSphere

Application Server profiles to the point where it is practical to use FlowGSP in a compiler

development environment.

• A report of the use of FlowGSP to identify performance defects in hardware profiles of the

WebSphere Application Server running on the IBM System z10TMarchitecture.

Chapter 2 provides background information on the technologies on which FlowGSP is based.

Chapter 3 details the FlowGSP algorithm and Chapter 4 outlines its implementation. A parallel im-

plementation and its performance is given in Chapter 5. Chapter 6 lists patterns discovered through

the use of FlowGSP and the performance opportunities exploited by their discovery. Works related

to this thesis are discussed in Chapter 7.

5

6

Chapter 2

Background Information

Mining interesting sequences from hardware profiles requires knowledge from multiple disciplines

in computing science. Knowledge of machine learning (specifically unsupervised learning and data

mining), compiler architecture, parallel algorithm construction, and low-level system architecture is

required in order to properly address the mining problem. This section briefly outlines background

information that may be needed to understand FlowGSP, its implementation, and its application to

mining hardware profiles.

Section 2.1 provides a high-level overview of machine learning techniques, with emphasis on

data mining. Section 2.2 discusses the difference between edge profiling and path profiling. Hard-

ware performance counters are discussed in Section 2.3, andSection 2.4 discusses specifics of the

IBM System z10 architecture on which the profiles were collected. The WebSphere Application

Server, which is the application studied in this work, is discussed in Section 2.5. Section 2.6 dis-

cusses measuring the performance of parallel algorithms.

2.1 Machine Learning

Machine learning, or statistical learning, can be defined asthe use of statistical techniques to auto-

matically extract meaningful information from data. Machine learning is divided into two categories:

supervised learning and unsupervised learning. The goals and methodology of these two types of

machine learning can greatly differ and as such it is important to differentiate between them.

Unsupervisedmachine learning techniques attempt to automatically assign labels to an unlabeled

data set, for example by finding patterns or identifying clusters of similar items [35]. Unsupervised

learning algorithms are not search algorithms. Search problems look for an entry or entries in a data

7

set that have certain characteristics. Unsupervised learning is focused on the discovery of previously

unknown relationships between data points.

Supervisedmachine learning attempts to predict labels on unlabeled data. Construction of the

predictor requires a labelled “training set” representative of the input data. A model is then con-

structed from the training data, and this model is used to predict the appropriate label for novel,

unlabeled data [35].

2.1.1 Data Mining

When unsupervised learning is applied to large databases of information, the process commonly is

referred to asdata mining.

Typically, the type of database on which data mining is performed has the following characteris-

tics. The database consists of a series of records, each having a number of attributes. Attributes are

not constrained to any specific type; there can be boolean, numeric, or string-valued attributes. It is

not required that each record have values for all possible attributes.

A subset of data mining relevant to this work isfrequent itemset mining. An itemset, denoted

(α1, α2, ..., αn), consists of a set ofn itemsαi ∈ α, αi 6= αj , i 6= j, whereα is the set of all

possible items and|α| ≥ n. We say that an itemset matches a record in the database if every item

in the itemset is also in the record. In frequent-itemset mining the level of interest orsupportof an

itemset is proportional to the frequency with which it appears in the database. The goal of frequent-

itemset mining is to discover all itemsets whose support in the database is greater than a minimum

threshold.

An extension of frequent itemset mining is association-rule mining. Association-rule mining

attempts to discover rules of the formβ → γ whereβ = (β1, ..., βj), βi ∈ α, 1 ≤ i ≤ j and

γ = (γ1, ..., γk), γi ∈ α, 1 ≤ i ≤ k. These rules are treated as implications in the database. That is

to say ifβ are present for a record in the database, then the items inγ are also present with a certain

probability. Theconfidenceof an association rule is the percentage of time that the consequent is

also present out of all the times that the antecedent is present. This can be denoted mathematically

as:freq(βγ)/freq(β). The goal of association-rule mining is to discover all association rules with

support greater than a given threshold and confidence greater than a given threshold.

For both frequent-itemset mining and association rule mining, the size of a rule or itemset is

defined to be the number of items contained within it.

The Apriori algorithm developed by Srikantet al. [30] is a frequent association rule mining

8

algorithm. The Apriori algorithm is so named because it is based on what the authors call the apriori

principle: in order for a pattern to be frequent, all of its sub-patterns must be frequent as well [30].1

Apriori searches for all rules up to a given size with a minimum support and confidence.

Apriori is an iterative generate-and-test algorithm. The first iteration is given an initial set of

candidate itemsets consisting of all possible sequences ofsize 1. The database is scanned, and the

support and confidence of each itemset is calculated. Any candidates that do not meet the minimum

support and confidence thresholds are removed. The candidate itemsets for the next iteration are

generated by joining the surviving items of the previous generation of candidates. This process

continues until either a set number of iterations has been completed or no candidates survive the

pruning process.

2.1.2 Frequent-Sequence Mining

An extension of frequent itemset mining isfrequent sequence data mining, or frequent sequence

mining. Sequences in frequent sequence mining, denoted〈I1, I2, ..., In〉, consist of a series of item-

setsI as previously defined. Databases mined for frequent sequences usually contain a number of

data sequences, each of which is a totally ordered sequence of records. Any itemsetI discoverable

through frequent itemset mining corresponds to the sequence 〈I〉 which can be discovered through

frequent-sequence mining. Thus frequent-itemset mining is a subset of frequent-sequence mining.

A sequence〈I1, I2, ..., , In〉matches a series of recordsR1, R2, ..., Rn if and only if:

• ∀α ∈ Ii, α ∈ Ri, 1 ≤ i ≤ n.

• For eachRi, i < n, Ri immediately precedesRi+1.

Many algorithms allow for an additional parameterg which specifies the maximum distance between

Ri, Ri+1 in a sequence.

The support of a sequence is typically defined to be the numberof data sequences in which

the sequence appears. Most frequent sequence mining algorithms do not count support for multiple

instances of a sequence in the same data sequences. Confidence is not included as a metric of support

unless the algorithm is also mining for association rules.

2.1.3 GSP

Our algorithm is based on a frequent-sequence algorithm called the Generalized Sequential Pattern

(GSP) algorithm [32]. GSP is an iterative generate-and-test algorithm.
1Note that this has no connection witha priori or a posteriorireasoning.

9

GSP does allow for flexibility in how to determine if a sequence matches a series of records

by introducing two additional parameters: maximum gap sizeand maximum window size. The

maximum gap size determines how many vertices may occur betweenRi andRi+1. The maximum

window size determines how many records to consider in unison when matching each itemset in

a sequence. Formally, a window size ofw means that a itemsetI will match a series of records

Ri, Ri+1, ..., Ri+w if ∀α ∈ I, α ∈ Ri ∪Ri+1 ∪ ... ∪Ri+w.

2.2 Compiler Technology

Hardware profiles are not the only source of information regarding characteristics of a given pro-

gram. Compilers contain detailed representations of the program being compiled. This information

is used to perform a myriad of code transformations aimed at improving program performance. Un-

derstanding both the design process for new code transformations and the internal data structures of

the compiler is important if we are to search for patterns that are of use to compiler developers.

Compilers can be divided into two distinct categories: static compilers and Just-In-Time (JIT), or

dynamic, compilers. Static compilers are the most common, converting source into native executable

code prior to program execution. JIT compilers run in tandemwith an interpreter or virtual machine,

dynamically compiling sections of the interpreted programto native code during runtime.

The most relevant aspects of compiler technology for this thesis are the representation of pro-

gram flow, the collection of information about the relative frequency of execution of different por-

tions of the program through profiling, and the use of this information, in a process called Feedback–

Directed Optimization (FDO), to improve the performance ofa program. The remainder of this

section discusses these aspects.

2.2.1 Control Flow Graphs (CFGs)

Graphs are ubiquitously used as a way to represent the flow of execution in a program. Nearly all

optimizing compilers use a graph called CFG to represent theprogram being compiled. As the name

suggests, a CFG represents possible flow of control in the program.

Formally, a CFG is a graphG = {V,E, Fe} defined as follows:

• V is a set of vertices.

• E is a set of directed edges(vx, vy) wherevx, vy ∈ V .

• Fe is a function mapping edges inE to integer values.

10

Vertices inV represent units of execution in the program, usually basic blocks. Edges indicate

program flow between vertices. The functionFe maps each edgee ∈ E to an integer value indicating

the frequency of execution ofe. A CFG is a flow graph. Therefore the sum of the frequenciesFe

on the edges leading into any given vertex must be equal to thesum of the frequencies on the edges

leading out of the vertex.

The scope of a CFG is the same as the compilation unit of the compiler that created it. static

compilers typically analyze a single source file at a time. Asa result, the CFGs constructed by static

compilers consist of multiple single-entry single-exit regions corresponding to different procedures

in the source file. JIT compilers typically analyze individual methods in isolation, constructing a

single CFG for each method.

2.2.2 Edge Profiling vs. Path Profiling

It is important to distinguish edge profiling from path profiling. Edge profiling records only the num-

ber of times that each edge is the CFG was traversed during execution. Path profiling records how

many times an entirepath was executed. The difference between the two forms is best illustrated

with an example.

A

B C

D

E F

G

Figure 2.1: Example of a portion of a program CFG.

Consider the graph presented in Figure 2.1 to be an excerpt from a program CFG. Consider as an

example that the region of code represented by the CFG in Figure 2.1 is executed five times, taking

the following paths on each execution:

1. A→ B → D → F → G

2. A→ C → D → E → G

3. A→ C → D → F → G

4. A→ B → D → F → G

5. A→ C → D → E → G

11

Table 2.1 shows how the above information would be encoded asa path profile. Contrast this

profile with table 2.2 which shows the same information encoded as an edge profile.

Path Freq.
A→ B → D → F → G 2
A→ C → D → E → G 2
A→ C → D → F → G 1

Table 2.1: Example of path profiling information.

Edge Freq.
A→ B 2
A→ C 3
B → D 2
C → D 3
D → E 2
D → F 3
E → G 2
F → G 3

Table 2.2: Example of edge profiling information.

The edge profiling information shown in Table 2.2 can be computed from the path profiling of

Table 2.1. However, the path profiling information cannot bederived from the edge profiling. For

instance, the path profiling shown in Table 2.3 could result from the same edge profiling information

in Table 2.2.

Path Freq.
A→ B → D → E → G 2
A→ C → D → F → G 3

Table 2.3: Possible path profiling constructed from edge profiling information.

FlowGSP mines edge profile data for sequences of attributes.Thus FlowGSP mines an upper

bound for the possible execution of the sequences in the program. For example, the upper bound on

path frequencies for the edge profiling of Table 2.2 is given in Table 2.4.

Path profiling is a much more precise representation of program execution. Path profiling is

often referred to astracing. However, for large programs, or long periods of execution,path profiling

becomes increasingly impractical due to the amount of storage space required. Edge profiling, while

less exact, is much more practical in these circumstances.

2.2.3 Dynamic Optimization

The heuristics that guide most standard compiler code transformations are based onstatic program

information, that is to say information that can be obtained by analyzingthe program source code

or CFG. Unfortunately, static information is insufficient to fully predict a program’s behavior at run

12

Path Freq.
A→ B → D → E → G 2
A→ B → D → F → G 2
A→ C → D → E → G 2
A→ C → D → F → G 3

Table 2.4: Upper path-profiling bounds based on edge profiling information.

time. For this reason it is difficult, if not impossible, to achieve optimal program performance using

code transformations that are based on static information alone. In order to more accurately model

program behavior, statistics obtained during program execution can be used in addition to static in-

formation. Such additional information is calleddynamic information. When code transformations

use this information the process is calleddynamic optimization.2

In addition, dynamic optimization also allows the collection of edge-frequency information to

add to the CFG of the program being compiled. This collectionis a form of edge profiling.

The rest of this section outlines the most common ways that modern optimizing compilers collect

runtime data.

Feedback-Directed Optimization

FDO, sometimes referred to as Profile–Directed Feedback (PDF), refers to the process where col-

lected runtime information from the previous execution of aprogram is used to make optimization

decisions about subsequent executions. The dynamic information required to make these optimiza-

tions is usually obtainedvia instrumentation hooks (in the case of Ahead-Of-Time (AOT) compilers)

or via online instrumentation (in the case of JIT compilers).

For AOT compilers, the data collected by the instrumentation hooks is written to disk after

execution has finished. This data is then fed back into the compiler via a command line parameter

on subsequent compilations and used to supplement the static program information. This process

is known asStatic Feedback Directed Optimizationas compilation occurs off-line,i.e. while the

program is not executing.

JIT compilation runtime data can be utilized while the program is still being executed. Programs

run under a JIT compiler can be recompiled multiple times during a single execution run with each

compilation ideally resulting in improved performance over the previous version. As such, programs

run under JIT compilers usually have to execute for a period of time before they reach a steady state.

This process is known asDynamic Feedback Directed Optimizationbecause compilation occurs

while the program is executing.

2Even though the compiler literature often talks about staticand dynamic “optimizations”, in most compiler development
environments the designers implement heuristic-based code transformations. Often, the “optimal” case is not even defined.

13

Iterative Compilation

If the process of iterative search is applied to the optimization space of a program under an AOT

compiler, then the process is known as Iterative Compilation [18]. The idea behind iterative com-

pilation is that with each execution and recompilation performance is improved, even if slightly,

over the previous version. While iterative compilation doesresult in very fast code, it does so at the

cost of many recompilations and executions of the target program. While this large cost does make

Iterative Compilation unfit for general purpose computing,the technique can still be used for spe-

cialized cases where performance is crucial and it is difficult or impossible to update the application

once it has been deployed. Embedded systems and library optimization are fields in which iterative

compilation can provide substantial benefits [18, 6].

JIT compilation does bear some similarities with iterativecompilation. However, iterative com-

pilation is separate from JIT compilation because iterative compilation is done offline. Domains

that make frequent use of iterative compilation, such as embedded systems, are unlikely to use JIT

compilers. In addition, JIT compilers include compilationtime in the program runtime. Iterative

compilation is therefore unattrative from the perspectiveof a JIT compiler.

2.3 Performance Counters

Performance counters, or hardware profiling, allow programperformance at the hardware level to

be recorded. Events such as instruction cache misses, pipeline stalls, and Translation Lookaside

Buffer (TLB) misses to name a few are recorded by specializedhardware and then made available

to the user. Typically this information is obtained by sampling the machine state periodically after

a certain number of CPU cycles. This sampling period varies and can often be adjusted to suit the

application being profiled.

Typically performance counter data is gathered after execution has finished, however it is also

possible to gather this information while execution is occurring through the use of specialized li-

braries [27]. Schneideret. al. develop a custom run-time library to collect hardware counter infor-

mation about instruction-cache misses. The work done by Schneideret al. in this area only involves

a small number of performance counters [27]. It is unclear whether the performance overhead of

such libraries would become unmanageable on architectureswith a large number of performance

counters. Determining this overhead, however, is outside the scope of this thesis.

Performance counters are platform-specific entities; the types of events that are recorded and the

14

manner in which this recording is done varies from architecture to architecture.

2.4 z10 Architecture

The z10 is an in-order super-scalar CISC mainframe architecture from IBM [37]. “In-order” refers

to the fact that no hardware reordering of instructions occurs during execution. The z10 is an it-

erative advancement over the existing z9TMarchitecture [29], which is in turn an evolution of the

s390TM [26].

In modern architectures it takes multiple CPU cycles to decode, prepare, and execute even a

single assembly instruction. The z10 is a pipelined machinewhere, at any given moment, mul-

tiple instructions are at different stages of decoding or execution in order to increase instruction

throughput. Each core in the z10 has its own associated pipeline. The z10 pipeline is optimized

so that register-register, register-storage, and storage-storage instructions share the same pipeline

latency [37].

2.4.1 Address Generation Interlock

The z10 employs an Address–Generation Interlock (AGI) pipeline. AGI pipelines are designed to

avoid hazards introduced by load-use dependencies in the instruction pipeline [12]. However, this

form of pipeline design introduces another type of hazard. AGI stalls occur when a memory address

that is required by an instruction has not yet been computed when the instruction reaches a certain

stage in the pipeline. The missing address causes executionto stall until the address generation

completes. The hardware cannot let other instructions proceed ahead of the blocked instruction

because the z10 is an in-order machine.

There are two common ways to avoid AGI stalls. The first is to ensure that an address calculation

and corresponding use are spread far enough apart. The second is to select instructions from the

System z10 Instruction Set Architecture (ISA) that are designed to minimize AGI penalties [37]. In

either case, the onus falls on the compiler to produce code that avoids AGI stalls. Failure to do so

can result in a significant decrease in program performance.

2.4.2 Page Sizes

Most computer architectures transfer data between long-term storage, such as hard disks and main

memory, in fixed-length contiguous blocks called pages. A page normally contains 4 KB of data.

15

IBM System z10 allows for large pages that contain 1 MB of data[36]. Large pages are turned off

or onvia a command-line parameter given to the compiler.

2.4.3 Performance Counters on z10

The z10 Central Processor Measurement Facility (CPMF) includes numerous hardware performance

counters. There are two types of counters: sampled countersand event-based counters [17]. Sam-

pled counters are, as the name suggests, periodically sampled. Every set number of clock cycles

the architecture is queried, and it’s state recorded. If events of interest are in the process of oc-

curring, then the corresponding counters are incremented.Event-based counters are automatically

incremented each time the event occurs. Sampled counters record a measure of how much time was

spent handling various events, and event-based counters measure how often these events occurred.

Instructions on the z-series are typically grouped in pairs. This often results in performance-

counter information for one of the instructions being associated with the other and vice versa. While

this clustering of instructions does introduce imprecision into the data, this imprecision is extremely

localized and when taken over a large enough profile should not significantly affect overall trends in

the data.

2.5 WebSphere Application Server

The WebSphere Application Server is a full-featured Java Enterprise Edition (JEE) server developed

by IBM and written in Java [1]. A key characteristic of the WebSphere Application Server that makes

it interesting for study is that execution time is spread relatively evenly over hundreds of methods.

This even and thin distribution of execution time is a typical characteristic of enterprise applications

and other middleware. In addition, there are generally veryfew loops that are executed during the

processing of a query. Nagpurkaret al. stated that while each method occupies no more than 2% of

total execution time instruction-cache misses make up 12% of total execution time [22]. In addition,

if we want to capture 75% of all instruction-cache misses we must aggregate roughly 750 methods.

Therefore, optimizing any one method is not likely to make a significant impact on overall program

performance. Characteristics such as this require programbehavior to be examined beyond the scope

of a single method in order to accomplish efficient optimization of WebSphere Application Server.

At the same time it is impractical to thoroughly optimize theentirety of WebSphere Application

Server due to its size and number of methods. Thus, decisionsmade about how and what to optimize

must yield as much global benefit as possible whilst keeping compilation overhead to a minimum.

16

2.5.1 Profiling WAS

WebSphere Application Server is typically run using the IBMTestarossaR© JIT compiler. For this

reason, and the reasons discussed in Section 2.2.3, it is important that when attempting to profile

the Application Server that the proper amount of burn-in time be allowed to pass to ensure that the

majority of the code being executed has been compiled to native code. For the purposes of this work,

whenever profiling data is being discussed it is assumed thatthis data has been collected after the

burn-in period and consists almost entirely of code produced by the JIT compiler. Specific details

about data collection are addressed in Chapter 4.

2.6 Parallel Performance

The typical metric for program performance is raw executiontime. However, this measure of per-

formance is insufficient for programs which execute in parallel. Speed is still ultimately the goal;

however the number of parallel components being executed needs to be considered as well.

The metric by which the performance of parallel programs is measured is how quickly program

execution time decreases as the amount of parallelism is increased. This is referred to asspeedup,

a number representing the program’s execution time relative to the sequential case. Speedups is

calculated as follows:

s =
tparallel

tsequential

wheretsequential is the execution time of the sequential version of the algorithm andtparallel is the

execution time of the parallel version of the same algorithm. A value ofs > 1 indicates a perfor-

mance improvement over the sequential case, whereas a valueof s < 1 indicates worse performance.

2.6.1 Linear Speedup

Ideally, if a task is split inton equal subsections we would expect the work to take1
n

of the amount of

time, i.e. achieve a speedup ofn. This is referred to aslinear speedup, as the curvespeedup = f(n)

is exactly equal to the linef(x) = x.

However, linear speedup is not always obtained in practice because some problems cannot be

completely decomposed into parallel portions. Say that therunning time of an algorithm takes time

t = p + q, wherep is the amount of time taken to execute the potentially parallel portion(s) of the

algorithm andq is the amount of time taken to execute the portion(s) of the algorithm that cannot

be parallelized. The maximum amount of possible speedup ist
q
, as even if we have infinite parallel

17

resources to makep insignificant the algorithm will still take timeq to execute.

When considering sublinear, linear, or superlinear speedups, it is important to consider the fac-

tors that limit performance. In the early days of parallel programming most applications were bound

by the capacity of the processor to execute instructions. Therefore, adding a second processor was

expected to reduce the execution time at most by half. That is, a linear speedup was the best that

one could hope for. Sub-linear speedups were explained by poor load-balancing, communication

and sequencing overhead, contention for common resources,etc. Super-linear speedups typically

indicated an error in the measurement of performance.

However, in contemporary computers, the capacity of the processor to execute instructions is no

longer the limiting factor for performance. In many applications the processor is idle for most of the

time. The memory hierarchy and contentions in the network are more likely to limit performance.

The relationship between the number of processing nodes andperformance is no longer linear. In

these architectures, non-linear relations, both sub- and super-linear, between performance and the

number of processing nodes should be expected.3

2.6.2 Memory Organization

An important factor to consider when discussing parallel systems is the type of memory organization

in use. Typically organization falls into three categories: shared memory, distributed memory, and

distributed-shared memory.

In shared memory, each worker has access to a single, shared pool of memory. Communication

between workers is usually implicit; one worker will write to an area of memory and another worker

will read the same area. Shared memory is typical of threadedsystems such aspthreads or Java

threads.

In distributed memory systems, such as clusters, each worker executes within its own address

space and communication between workers must occur explicitly. This communication is usually

performed through some external Abstract Programming Interface (API) such as UNIX or Windows

sockets or Message Passing Interface (MPI). Distributed memory systems are commonly found in

single-processor clusters.

Distributed-shared memory is a hybrid organization where groups of processors communicate

via messages with processors in other groups. Each group of processors has access to a common

3An example of a super-linear speedup would be a case where a problem does not fit entirely into cache when operating
on a single CPU. Adding a second CPU doubles the amount of available cache so that the problem now fits entirely inside
the combined CPU caches. Alba investigates superlinear speedups in the domain of Parallel Evolutionary Algorithms; many
of his conclusions are also relevant to general parallel computing[3].

18

area of shared memory. Distributed-shared memory is typical of clusters with multi-core nodes.

19

20

Chapter 3

FlowGSP

The theoretical basis for an algorithm is as important as itspotential application. FlowGSP is based

on GSP [32], which is a well-established algorithm for mining frequent sequences in a database.

However, a sequence of records is a poor choice to represent program control flow. Therefore, in

order to effectively mine program data a new data structure must be defined to accurately represent

program behavior. Graphs are commonly used to represent thestructure of a program in most

compilers, and therefore it makes sense to develop a graph-based data structure on which mining

can be performed. Such a data structure is introduced in Section 3.1.

Once this new data model has been defined it is then necessary to define how to measure the

support of frequent sequences in this data structure. The goal of FlowGSP is to discover frequent

and/or costly sequences of attributes in an execution flow graph. In the original GSP algorithm,

the support of a sequence was defined as the number of data sequences in which the candidate

sequence occurred [32]. Given the motivation behind the development of FlowGSP this definition is

insufficient. The traditional definition ignores sequencesthat occur multiple times in the same data

set. In the scope of the execution of a program a sequence thatoccurs multiple times in the same

method is of interest to compiler developers. In addition tothe frequency of a sequence, FlowGSP

is also interested in the cost of these sequences. For these reasons the definition of support for

a subpath must differ from the classical definition of support used by GSP. Section 3.2 defines

support over our new data structure.

21

3.1 Edge and Vertex Weighted Attributed Flow Graphs

While our work was focused on mining hardware profiling data, there are many other applications

where mining weighted and attributed flow graphs may be useful. This section formally describes

such a data structure as well as how support values are calculated for subpaths within it.

3.1.1 Formal Definition

Let G = {V,E,A, F,W} be an Execution Flow Graph (EFG) such that:

• V is a set of vertices.

• E is a set of edges(va, vb), whereva, vb ∈ V .

• A(v) 7→ {α1, ..., αk} is a function mapping verticesv ∈ V to a subset of attributes

{α1, ..., αk}, αi ∈ α, 1 ≤ i ≤ k whereα is the set of all possible attributes

• F (e) 7→ [0, 1] is a function assigning a normalized frequency to each edgee ∈ E. i.e.
∑

e∈E

F (e) = 1.

• W (v) 7→ [0, 1] is a function assigning a normalized weight to each vertexv ∈ V . i.e.
∑

v∈V

W (v) = 1.

The constraint below holds because G is a flow graph.

∑

(x,v0)∈E

F ((x, v0)) =
∑

(v0,y)∈E

F ((v0, y))

F and W are completely independent quantities. In fact, it is this independence on which

FlowGSP is based. Rather than define the importance of a sequence merely by its frequency

FlowGSP also considers the weight of the sequence in question.

Example

Figure 3.1 gives an example of a vertex-weighted attributedflow graph withα = {A,B,C,D,E}.

The same graph with edge weights and vertex costs normalizedis given in Figure 3.2. It is the graph

in Figure 3.2 that will be used as input to the mining algorithm.

22

A,D

15 5

5

515

6 9

6 9

10

4

18

10

1 7

9

13

A B

A,B,
C

E

A,E D,E

C

20

v1

v2 v3

v4 v5

v6 v7

v8

Figure 3.1: An example of a vertex-weighted, attributed flowgraph. Edge weights are given along
each edge and vertex weights are given next to each vertex. The letters in bold next to a vertex are
attributes of that vertex.

A,D
0.16 0.05

0.05

0.050.16

0.06 0.10

0.06 0.10

0.14

A B

A,B,
C

E

A,E D,E

C

0.14

0.18

0.01

0.13

0.10

0.06

0.25

0.21

v1

v2 v3

v4 v5

v6 v7

v8

Figure 3.2: The same graph as in figure 3.1 after edge weight and vertex cost normalization

23

3.2 Calculating Path Support

A sequence of attributes in an EFG has a direct correspondence with a subpath in the same graph.

Support metrics are defined in terms of subpaths in the graph because subpaths are more specific

than sequences. This definition is then generalized to sequences of attributes.

In our program representation, sequences correspond to frequent or costly subpaths in the graph.

A subpathpk ∈ G of lengthl is an ordered set ofl vertices. The notationpk[i] refers to theith vertex

of pk. By definition in order forpk to be a subpath,(pk[i], pk[i + 1]) ∈ E for all 0 ≤ i ≤ g − 2.

The notationpk[i : j] refers to the subpath ofpk which consists of theith to jth vertices inclusive,

i ≤ j.

The support of a path, both in terms of its cost of execution and its frequency of execution, can

now be defined.

3.2.1 Frequency Support

In GSP, the support of a sequence was defined as the number of data sequences in which the se-

quence appeared. This definition was sufficient because the type of database being mined by GSP

typically consisted of a large number of short data sequences. However, multiple occurrences of a

sequence in an EFG should all contribute towards the supportfor a sequence. The rationale for this

decision is based on the motivating application of FlowGSP.A profile is an aggregation over multi-

ple executions of the same region of code. Therefore, to onlyallow a single instance of a sequence

per EFG could potentially discard many other executions of the same region. This is not dissimilar to

the methodologies employed in some algorithms that search for frequent subgraphs [16, 39, 14, 23].

In addition, the data sequences mined by GSP are all total orderings; they do not have the edge-

weighted topological structure present in EFGs. In GSP, each occurrence of a candidate sequence

is weighted equally. However it does not make sense to assignequivalent importance to two oc-

currences of a sequence in an EFG with different edge weightsas edge weights are a measure of

frequency. Therefore the edge weights must also be taken into account when determining the fre-

quency support of a candidate sequence. Based on the two reasons discussed here, the method for

calculating the frequency support for a candidate sequencemust be redefined.

The definition of the frequency support of a pathpk is based on the frequenciesF of the edges

that comprisepk. It can only be assumed thatpk was at most executed the same number of times as

the least-frequent edge in the path.

In order to account for the degenerate case where a path consists of only a single vertex and no

24

edges, the frequency supportSf of a single vertexv is defined as follows:

Sf (v) =
∑

(va,v)∈E

F ((va, v))

In general, the frequency support of a pathpk is:

Sf (pk) = min{F (pk[0], pk[1]), . . . , F (pk[g − 2], pk[g − 1])}

3.2.2 Weight Support

In order to contrast the frequency and weight of a sequence inan EFG an additional metric of support

must be defined to represent the weight of a subpath in the EFG.The weight of a subpath is based

on the weights of its vertices. The weight support of a path iscalculated as follows:

Sw(pk) = min
0≤j≤g−1

{W (pk[j])}

Similarly to the frequency support of a subpath, the maximumweight support of a subpath is

limited by the vertex in the path with the smallest weight.

3.3 Sequences of Attributes

Attributes are the method by which information about each vertex is encoded. Each vertex may

have as many attributes as is needed. The attributes assigned to each vertex will be the items in the

frequent sequences mined by FlowGSP.

Attributes in our representation are binary, taking a valueof either true or false. If a given

attributeαi is true for a vertexva thenva has the attributeαi. Conversely ifαi is false forva

thenva does not haveαi. By convention, attributes whose value is false are simply omitted. This

interpretation leads to an efficient representation in which only true attributes need to be recorded

for each vertex. This is especially important to reduce the storage space required to process large

EFGs.

Unfortunately, not all attributes associated with a vertexare binary values. Some attributes are

measures of some quantity associated with the vertex, and others may indicate which of a number

of classes the vertex may belong to.

Attributes that take a numerical value (integer or otherwise) are converted to a binary represen-

25

tation by comparison with a set threshold. Multiple thresholds may also be used in order to separate

the attribute’s values into ranges.

Enumerated attributes that can take one ofr possible values are represented byr mutually-

exclusive binary attributes, wherer is a known positive integer.

A sequenceS = 〈s0, s1, ..., sk−1〉 of lengthk is a sequence ofk sets of attributes, denoted by

si, 0 ≤ i < k. For convenience, thesubsequence〈si, ..., sj〉 of S is denoted asS[i, j], i ≤ j. If

i = j this subsequence is denoted asS[i].

3.3.1 Matching Sequences to Paths

Section 3.3 established how the frequency and weight support of a subpathpk in an EFGG are

calculated. All that remains in order to calculate the supports of a sequenceS is to formally establish

howS maps topk. Once this has been done, the supports are aggregated over all suchpk to determine

the supports ofS.

A subpath isminimalwith respect to a candidate sequenceS if both pk[0] andpk[g − 1] contain

part of the candidate sequence, that is to say the first and last vertices in the subpath are not skipped.

Henceforth all subpaths are assumed to be minimal with respect to the candidate sequence being

examined.

A subpathpk contains a sequenceS if ∀si ∈ S, si ⊆ A(pk[i]). This is a very rigid definition

where each set of attributessi ∈ S must occur on theith vertex ofpk. This definition can be

modified to allow for a more flexible matching. Indeed, this same manner of flexible matching was

implemented in GSP by Srikantet al. [31]; this flexibility has been extended to fit the context of an

EFG.

It is not required that the entirety of each set of attributesin a sequence be contained within

the attributes of a single vertex in the graph. One of the parameters of the mining algorithm is

the maximum windows size,wmax. Attributes that are observed on any vertices withinwmax are

considered to belong to the same set within a sequence. Maximum window size can be formally

expressed as follows:

si ∈
⋃

v∈pk[l:l+w]

A(v), 0 ≤ w ≤ wmax

The shorthand notationsi ∈ A(pk[l : l + w]) will henceforth also refer to the above constraint.

Themaximum gap sizegmax is the maximum allowable distance between two verticesvx, vy ∈

pk where the following holds:

26

• vx is the last in a series of vertices that contains a set of attributess1.

• vy is the first in a series of vertices that contains a set of attributess2

• s1 ands2 are consecutive sets of attributes inS.

It is implicit in this definition that all of the vertices in the path betweenvx andvy do not contribute

any attributes toS.

Formally, we say that a subpathpk contains a sequenceS if and only if the following criteria

hold:

• ∀si ∈ S, si ∈ A(pk[l : l + w]) where0 ≤ w ≤ wmax

• ∀si, sj ∈ S, wheresi ∈ A(pk[l : l + w]) andsj ∈ A(pk[m : m + w′])

– pk[l : l + w] ∩ pk[m : m + w′] = ∅

– If j = i + 1 thenm = l + w + 1 + g whereg ≤ gmax

In all cases, the support of a pathpk must take into account every vertex ofpk regardless of

whether it contributes attributes to the sequence in question. Thus, for instance, ifv has the lowest

weight inpk, W (v) still determines the weight support for any sequenceS contained inpk even if

v contributes no attributes toS.

3.3.2 Support of a Sequence

Ultimately, it is the support of a sequence over the entiretyof the EFG being mined that is of

concern. The support ofS in the entire graph can be calculated by aggregating the supports over

every subpath that containsS. Calculating support in this manner ensures that the highest support

values are assigned to those sequences that match many subpaths in the graph and these subpaths

are frequent and/or have high weight.

Given a SequenceS, its frequency and weight supports are calculated by aggregating the fre-

quency and weight supports of every subpathpk which containsS:

Sf (S) =
∑

pk

Sf (pk)

Sw(S) =
∑

pk

Sw(pk)

The mining algorithm is searching for paths in the graph thatcorrespond to sequences of events

with high frequency and/or large weight. It may also be of interest to know which sequences have

27

disproportionate levels of frequency support compared to weight support or vice-versa. In order to

concisely capture the goals of the mining algorithm two additional measures of support are intro-

duced.

Themaximalsupport of a sequenceS is:

SM (S) = max{Sf (S), Sw(S)}

Thedifferentialsupport is:

SD(S) = |Sf (S)− Sw(S)|

The rationale behind these definitions is as follows. If one or both of Sf or Sw is high, then

it is likely that the sequence will be of interest either because it is frequent or because it is costly.

In addition, if there is a large difference betweenSf andSw then this means that the sequence in

question is either frequent but not costly, or costly but infrequent.

Example (continued)

A,D
0.16 0.05

0.05

0.050.16

0.06 0.10

0.06 0.10

0.14

A B

A,B,
C

E

A,E D,E

C

0.14

0.18

0.01

0.13

0.10

0.06

0.25

0.21

v1

v2 v3

v4 v5

v6 v7

v8

P1

P2

Figure 3.3: Pathsp1 = {v1, v3, v7} andp2 = {v2, v4, v6} containing instances of the sequence
〈(A), (B), (E)〉

Consider the candidate sequenceS1 = 〈(A), (B), (E)〉. Figure 3.3 identifies two paths,p1 =

{v1, v3, v7}, p2 = {v2, v4, v6}, containing instances of the sequenceS1 in the normalized graph

from Figure 3.2. The support of sequenceS1 is calculated as follows:

28

Sf (p1) = min{0.21, 0.05, 0.05} = 0.05

Sf (p2) = min{0.16, 0.06, 0.06} = 0.06

Sf = 0.11

Sw(p1) = min{0.14, 0.06, 0.06} = 0.06

Sw(p2) = min{0.14, 0.01, 0.14} = 0.01

Sw = 0.07

Therefore, the total support for the sequenceS1 is:

SM = 0.11, SD = 0.04

A,D
0.16 0.05

0.05

0.050.16

0.06 0.10

0.06 0.10

0.14

A B

A,B,
C

E

A,E D,E

C

0.14

0.18

0.01

0.13

0.10

0.06

0.25

0.21

v1

v2 v3

v4 v5

v6 v7

v8
P3 P4

Figure 3.4: Pathsp3 = {v6, v8} andp4 = {v7, v8} containing instances of the candidate sequence
〈(E), (C)〉.

Now consider the candidate sequenceS2 = 〈(E), (C)〉. Figure 3.4 gives two paths,p3 =

{v6, v8}, p4 = {v7, v8}, containing instances ofS2. Note thatp3 andp4 share a common vertex in

this case. The supports for sequenceS2 are:

Sf (p1) = min{0.06 + 0.10, 0.16} = 0.16

Sf (p2) = min{0.05, 0.05} = 0.05

29

Sf = = 0.21

Sw(p1) = min{0.13, 0.18} = 0.13

Sw(p2) = min{0.25, 0.18} = 0.18

Sw = 0.31

Therefore, the total support for the sequenceS2 is:

SM = 0.31, SD = 0.10

3.4 FlowGSP

This section presents FlowGSP, an algorithm for mining sequences of attributes with either high

frequency or high cost. Pseudo-code for FlowGSP is presented in algorithm 1.

The parameters to FlowGSP are an EFG G, as defined in Section 3.1, the maximum gap size

gmax, the maximum window sizewmax, the number of generations to iteratengen, the threshold for

maximal supportSMthresh, and the threshold for differential supportSDthresh.

The graphG need not be the entire EFG that is being mined. The actual graph to be mined may

be subdivided into independent single-entry single-exit regions and FlowGSP may be applied to

each region individually. Support for each candidate is then aggregated over all regions. Currently,

inter-region sequences are not considered because a JIT compiler compiles individual methods in

isolation.

EFGs may contain cycles. In order to prevent traversing the graph infinitely around a cycle, a

list of previously visited vertices is maintained. Children that appear on this list are not added to

the queue of vertices. This restriction does not prevent thediscovery of sequences that occur across

loops in the graph; the list only ensures that FlowGSP startslooking for a matching path exactly

once at each vertex.

FlowGSP uses a hash treeH in order to reduce the number of candidate sequences that be

examined at each vertex. The creation of the hash treeH and the process of fetching candidate

sequences from it is derived from the process described in Srikant et.al. [32]. Candidates are added

to the hash tree by hashing on each attribute in the sequence,in order. The retrieval of candidates

from a node in the hash tree depends on the position of the nodein the tree:

• root node: Move to the next node in the tree by hashing on each attribute of v and any vertex

30

Algorithm 1 : FlowGSP
FlowGSP(G, gmax, wmax, ngen, sMthresh, sDthresh)

1: G1 ← Create F irst Generation(α)
2: n← 1
3: while Gn 6= ∅ ∧ n < ngen do
4: H ← Create Hash Tree(Gn)
5: v0 ← First vertex inG
6: Q.push(v0)
7: alreadySeen← ∅
8: while Q 6= ∅ do
9: v ← Q.pop()

10: alreadySeen← alreadySeen ∪ v
11: C ← H.get candidates(v)
12: for S ∈ C do
13: supports← Find Paths(S, v, 0, true, gmax, wmax)
14: for (Sw, Sf) ∈ supports do
15: Sw(S)← Sw(S) + Sw

16: Sf (S)← Sf (S) + min{Sf , Sf (v)}
17: end for
18: end for
19: for v′ ∈ children(v) do
20: if v′ /∈ alreadySeen then
21: Q.push(v′)
22: end if
23: end for
24: end while
25: for S ∈ Gn do
26: if SM (S) < sMthresh ∧ SD(S) < sDthresh then
27: Gn ← Gn \ S
28: end if
29: end for
30: if n < ngen − 1 then
31: Gn+1 ←Make Next Gen(Gn)
32: end if
33: n← n + 1
34: end while

31

within wmax from v. Pass along the set of attributes that we have not yet hashed on.

• interior node: Move to the next node in the tree by hashing on each of the remaining attributes

passed in. If none remain, add the attributes of the next vertex/vertices to the set of attributes

and continue.

• leaf node: Return all candidates present on the leaf node.

Rather than hashing on the attributes of all data items with atime stamp in the given window,

FlowGSP hashes on the attributes of the current vertex and ofall its descendants that fit within the

specified window size. For instance, forwmax = 0, H.get candidates(v) in Line 11 of Algorithm 1

would return all sequences that start with an attribute associated with vertexv.

The rest of this section outlines the FlowGSP algorithm in more detail.

3.4.1 Creation of Initial Generation

Create F irst Generation takes the set of all possible attributes and returns a set of candidates,

where each candidate contains one of the possible attributes and there exists a candidate for every

attribute. Formally, this can be expressed as:

G1 = Create F irst Generation(α)

where the following two constraints hold:

G1 = {〈(αi)〉|αi ∈ α}

∀αi ∈ α, 〈(αi)〉 ∈ G1

For example, supposeα = {A,B,C,D,E}. The result of callingCreate F irst Generation(α)

would be:

G1 = {〈(A)〉, 〈(B)〉, 〈(C)〉, 〈(D)〉, 〈(E)〉}

Both the weight support and frequency support of each sequence are initialized to zero. For instance,

in this example:

Sf (〈(A)〉) = 0

Sw(〈(A)〉) = 0

32

3.4.2 Matching Path Discovery

To discover all subpaths that contain a candidate sequenceS FlowGSP employs the following strat-

egy. Each vertexv in the graph is considered as a potential starting point for asubpathpk that

contains a candidate sequenceS. The search for the subpath is conducted through a depth-first

search starting atv.

subpaths are found in a greedy fashion. That is, FlowGSP searches for the shortest subpath

pk that matches the given sequenceS starting at the current vertexv0. FlowGSP does not include

support from a subpathpn if there exists a subpathpm such that: pm ⊂ pn, pm and pn both

containS, andpm andpn share the same initial vertex. Consider again the example presented in

Section 3.3.1. The sequence〈(A), (D)〉 is contained in two minimal subpaths:pm = {va, vb}

andpn = {va, vb, vc} with vb not contributing any attributes. In this case FlowGSP wouldonly

return the subpathpm because it is the shortest. The rationale behind this decision is that any longer

subpath which also containsS has at most the same support as the shorter subpath.1 An argument

for including the supports ofpn while calculating supports forS is thatpn is capturing the event

where attributeA is observed, then attributeB is observed twice in succession. However this event

will be captured by the sequence〈(A), (B), (B)〉 that will be mined in a later iteration. Therefore,

given a starting vertexv, FlowGSP finds only the shortest path(s) that contains the current candidate

that start atv.

Algorithms 2 and 3 outlineFind Paths andFind Set, respectively, which conduct the depth-

first search for a subpath that matches a candidate sequence.Find Set searches for the next set

of attributes in the candidate sequence given the current window sizewmax. Find Paths then

searches for the starting point of the next set of attributesin the sequence within the given maximum

gap sizegmax. BothFind Paths andFind Set return a set of support tuples. Each tuple in this

set is formed by a weight supportSw and a frequency supportSf .

Find Paths andFind Set are mutually recursive. AfterFind Set finds a set of attributes,

it calls Find Paths to find the rest of the sequence.Find Paths in turn callsFind Set to find

the next set of attributes in the sequence. After the initialcall toFind Paths returns, the(Sw, Sf)

values are added to the frequency and weight support ofS. The recursion betweenFind Path and

Find Set is guaranteed to terminate. The search for a subpath that matches a sequenceS will stop

when either the sequence has been found, or when the maximum gap and maximum window size

has been exhausted and no matching subpath has been found. Therefore the search is guaranteed to

1This invariant holds because the frequency and weight supports are based on the edge with the lowest frequency or the
vertex with the lowest weight respectively.

33

terminate in a finite amount of time becausewmax, gmax, and the size ofS are all constant.

Find Paths takes a parametergremain, indicating the remaining size of gap that may occur in

the current sequence. IfFind Set returns∅ andgremain = 0, thenFind Paths returns an empty

set. Similarly,Find Set has a parameterwremain that determines how many edges the algorithm

should traverse from the current vertex to find all the attributes that belong to the current set of

attributes. Ifwremain = 0, thenFind Set will return ∅ instead of investigating further vertices.

Find Paths also takes a boolean parameterfirstSet which is set to true if and only ifFind Paths

is searching for the start of the sequence. This parameter exists solely for the purpose of passing this

information toFind Set.

The initial call toFind Paths in algorithm 1 is given zero as the remaining gap regardless

of the value ofgmax, to ensure that the first set of attributes in the sequence starts on that vertex.

Therefore the subpath found is minimal.2

Find Set returns aSf value of infinity if there are no more itemsets left to find inS. This

value ofSf is assigned on Line 5 of Algorithm 3. Infinite support indicates thatFind Set has not

traversed any edges in order to find the current set of attributes. Therefore, there is no meaningful

value to return forSf . TheSf of the entire path is calculated by taking the minimum between the

new value and a previously computed value. Therefore, assigning a value of infinity ensures that

this new value will not alter the previously calculated value ofSf .

Find Set takes two parameters that together represent the set of attributes the algorithm is

searching for.sleft contains the attributes that we have yet to find, andsfound contains the attributes

that were previously located. On the initial call toFind Set from Find Path, sleft contains the

entire set of attributes andsfound = ∅.

Find Set also takes two boolean parameters,firstSet andstartOfFirstSet. firstSet is

set to true if and only ifFind Set is looking for the first set of attributes in the sequence, and

startOfFirstSet is true if and only ifFind Set is searching for the start of the first set of at-

tributes. The rationale behind these parameters is as follows.

firstSet is used on line 21 to ensure that we find the shortest sequence of vertices which matches

the current sequence. If the current vertex contains all of the attributes previously found on the first

set of a sequence then the subpath being explored is not minimal. ThereforefirstSet returns the

empty set. The shorter subpath will be discovered on a futurecall toFind Paths.

startOfFirstSet is required on line 18 to ensure that we do not allow a vertex which does not

2No steps need to be taken to ensure thatpk[g − 1] (i.e. the last vertex on the path) contributes to the sequence because
the search for a matching path terminates at this point

34

contribute to the first item set to occur at the start of the subpath.

Algorithm 2 : Algorithm to find all paths that contain a sequenceS starting at a vertexv.

Find Paths(S, v, gremain, firstSet, gmax, wmax)

1: supports← Find Set(S[0], ∅, S, v, wmax, firstSet, firstSet, gmax, wmax)
2: if supports 6= ∅ then
3: returnsupports
4: end if
5: if gremain ≤ 0 then
6: return∅
7: end if
8: for v′ ∈ children(v) do
9: supports′ ← Find Paths(S, v′, gremain − 1, false, gmax, wmax)

10: for (Sw, Sf) ∈ supports′ do
11: Sw ← min{Sw,W (v)}
12: Sf ← min{Sf , F ((v, v′))}
13: supports← supports ∪ {(Sw, Sf)}
14: end for
15: returnsupports
16: end for

Example

Figure 3.5 gives a small example of an EFG to illustrate the behavior ofFind Path andFind Set.

For this EFGα = {A,B}, gmax = 0, andwmax = 0.

0.25

0.375 0.125

0.25

AB

A

B

0.4

0.4

0.2

v1

v2

v3

Figure 3.5: Small example of an EFG

Consider thatFlowGSP has reached the vertexv2. Hashing on the attributes contained in

A(v2), the candidates that could potentially start onv2 in generationG2 are S1 = 〈(A), (A)〉,

S2 = 〈(A), (B)〉, andS3 = 〈(A,B)〉. FlowGSP then makes the following calls toFind Paths:

• Find Paths(S1, v2, 0, true, 0, 0). Find Paths immediately calls:

35

Algorithm 3 : Algorithm to find the next set of attributes in the sequence.

Find Set(sleft, sfound, S, v, wremain, firstSet, startOfFirstSet, gmax, wmax)

1: supports← ∅
2: k ← |S|
3: if sleft ⊆ A(v) then
4: if k = 1 then
5: supports = {(W (v),∞)}
6: returnsupports
7: end if
8: for v′ ∈ children(v) do
9: supports′ ← Find Paths(S[1, k − 1], v′, gmax, false, gmax, wmax)

10: for (Sw, Sf) ∈ supports′ do
11: Sw ← min{Sw,W (v)}
12: Sf ← min{Sf , F ((v, v′))}
13: supports = supports ∪ {(Sw, Sf)}
14: end for
15: end for
16: returnsupports
17: else
18: if startOfFirstSet ∧A(v) ∩ sleft = ∅ then
19: return∅
20: end if
21: if firstSet ∧ sfound ⊆ A(v) then
22: return∅
23: end if
24: if wremain ≤ 0 then
25: return∅
26: end if
27: Sleft ← sleft \A(v)
28: Sfound ← sfound ∪ (A(v) ∩ sleft)
29: for v′ ∈ children(v) do
30: supports‘← Find Set(sleft, sfound, S, v′, wremain − 1, firstSet, false, gmax, wmax)
31: for (Sw, Sf) ∈ supports′ do
32: Sw ← min{Sw,W (v)}
33: Sf ← min{Sf , F ((v, v′))}
34: supports← supports ∪ {(Sw, Sf)}
35: end for
36: end for
37: returnsupports
38: end if

36

– Find Set({A}, ∅, S1, v2, 0, true, true, 0, 0). S1[0] = A and thereforeS1[0] ⊆ A(v2).

Find Paths is called to search forS1[1] starting with the children ofv2.

∗ Find Paths(S1[1], v1, 0, false, 0, 0). Find Paths immediately calls:

· Find Set({A}, ∅, S1[1], v1, 0, false, false, 0, 0). S1[1] = A and therefore

S1[1] ⊆ A(v1). Find Set returns the tuple(0.4,∞) because|S1[1]| = 1 and

therefore we have found the entire sequence.

Find Set returned a non-empty set, thereforeFind Paths returns the same set.

Find Set setsSw = min{0.4, 0.4} = 0.4 and Sf = min{∞, 0.125} = 0.125.

(0.4, 0.125) is added to the set of support tuples.

Find Set now callsFind Paths to search the next child ofv2.

∗ Find Paths(S1[1], v3, 0, false, 0, 0). Find Paths immediately calls:

· Find Set({A}, ∅, S1[1], v3, 0, false, false, 0, 0). A(v3) = B, and therefore

S1[1] 6⊆ A(v3). Find Set. Find Set returns∅ becausewremain = 0.

Find Paths also returns∅ becauseFind Set returned∅ andgremain = 0.

Find Set returns the supports accumulated thus far because all of thechildren ofv2

have been explored.

Find Paths returns the set of supports returned byFind Set. These supports are added to

the support values ofS1.

FlowGSP then repeats the above procedure, callingFind Paths for S2 andS3.

In this example, the role ofFind Paths is diminished becausegmax = 0. If gmax > 0 then

Find Paths would explore children of the current vertex in the event that Find Set returns∅. This

exploration continues until the maximum gap size has been reached.

3.4.3 Candidate Generation

The creation of new candidates prior to the start of the next iteration byMake Next Gen is handled

exactly as in Srikantet al. [32]. A brief description is included here.

New candidates are created by joining compatible candidates in the current generation. Candi-

dates are defined as compatible if thesuffixof the first candidate is equal to theprefixof the second.

The suffix of a sequence is created by removing the firstattribute from the sequence. Note that

this is very different from removing the first set of attributes from the sequence. For example, the

suffix of the sequence〈(A,B), (C)〉 is 〈(B)(C)〉. The prefix of a sequence is likewise formed by

37

removing the last attribute of the sequence. The prefix of〈(A,B), (C)〉 is 〈(A,B)〉. A prefix and

suffix are defined to be equal if and only if they are identical.For instance, the suffix〈(B), (C)〉 and

the prefix〈(B,C)〉 are not equal as they are similar, but not identical.

By this rule, the sequences〈(A,B), (C)〉 and〈(B), (C), (D)〉 are compatible to be joined be-

causesuffix(〈(A,B), (C)〉) = 〈(B), (C)〉 = prefix(〈(B), (C), (D)〉). The sequences〈(A,B), (C)〉

and〈(A,B), (D)〉 are not compatible as the suffix of the first sequence,〈(B), (C)〉, is not equal to

the prefix of the second sequence,〈(A,B)〉.

To join candidates, the attribute removed to create the prefix of the second sequence is appended

to the first sequence. Joining〈(A,B), (C)〉 and〈(B), (C), (D)〉 yields the sequence〈(A,B), (C), (D)〉.

Similarly, joining〈(A,B), (C)〉 with 〈(B), (C,D)〉 yields〈(A,B), (C,D)〉.

The lone exception to this rule is when two sequences with only one attribute are being joined

because both the suffix and the prefix are empty. In this case, the removed attribute must be added

both as part of the last set of attributes and as part of a new set of attributes. Joining〈(A)〉 with

〈(B)〉, for example, yields the sequences〈(A,B)〉 and〈(A), (B)〉.

The rationale behind this method of candidate generation isto only generate candidates that have

the potential to meet the minimum support requirements. A sequence cannot have higher support

than any individual subsequence [32]. Candidate sequencesare generated in this manner in order to

avoid the creation of sequences that cannot have support greater than the given threshold.

Final Comments

This Chapter defined an execution flow graph: a data structurethat models topologically-ordered,

attributed data with weights for both frequency and cost. Within this data structure, the support

of subpaths was defined both in terms of their frequency and their cost. Using this data structure,

maximal and differential support were defined. This enabledus to construct a data mining algorithm

that can search for frequent and/or costly sequences in an EFG.

FlowGSP was also formally defined to search for all sequencesthat occur with maximal or

differential support greater than a given threshold. Discussion can now turn to the application of

FlowGSP to the problem of mining frequent sequences from hardware profiles.

38

Chapter 4

Implementation

Now that FlowGSP has been established its application to WebSphere Application Server profiles

can be discussed.

Section 2.2.1 discussed CFGs and how they are used to model program behavior. However,

CFGs usually only encode information such as edge or block frequency. Frequency information is

usually sufficient for making code transformation decisions. However, there is a wealth of informa-

tion about the behavior of a program that is not captured by CFGs.

Hardware profiles are rich with low-level details about whatoccurred during program execution.

However, profile information is typically unstructured andcontains no control-flow information.

Each method in the profile merely contains a list of instructions, the sampling ticks incurred on each

instruction, and any associated hardware-counter information. Combining this detailed, low level,

information with the high-level control flow information inthe CFG creates a reasonably accurate

model of program execution that can then be mined.

The general philosophy behind the implementation of FlowGSP is that the algorithm must be

correct first, and then efficient. While a number of optimizations were required in order to ensure

that FlowGSP was able to operate entirely in main memory, forexample, there was not an extensive

amount of time spent optimizing small details of the algorithm.

The platform for this research is a cluster of 16 nodes, each node being equipped with dual quad-

core AMD 2350 CPUs with 8GB of RAM. The database containing the profiling data is hosted on a

separate machine running a dual-core AMD CPU with 2GB of RAM.The database server is running

the express edition of IBM’s DB2R© database server.

All profiles were collected using WebSphere Application Server 6.1, 64-bit edition running on

39

the IBM System z10TMarchitecture running Linux for System zTM.

FlowGSP is implemented in Java due to its portability, robust threading capabilities (discussed

in chapter 5), and mature database interaction capabilities through the Java Database Connectivity

(JDBC) libraries.

Sections 4.1 and 4.2 discuss the collection and storage of information required to construct

the EFG. Section 4.3 discusses the actual construction of the EFG. Section 4.3.1 discusses the

specific attributes used in mining z10 profiles. Considerations specific to this experimental setup are

discussed in Section 4.4. Section 4.5 discusses division ofthe EFG for mining purposes.

4.1 Data Collection

This experimental evaluation of FlowGSP uses a WebSphere Application Server profile collected

over five minutes. This profile is collected after the Application Server reaches a steady state because

it is the code which has already been natively compiled by theJIT which is of interest. WebSphere

Application Server is deemed to be in a steady state when throughput shows little to no discernible

change for a period of two minutes. An average hardware profile produces 450 MB of uncompressed

data, and the compiler log produces roughly 6 GB of data. Although many compiler attributes could

be derived from the log, the focus is on CFG information.

Five minutes was the longest profile that could be collected.The amount of hard disk space

required to collect the profiling data is much larger than the450 MB required to store the resulting

profile. Also significant is the amount of hard drive space required to output the compiler log.1 Given

the amount of available disk space on the z10 machine used forthese experiments, five minutes was

the longest profile that could be collected. Given additional disk space, there is no reason that a

longer profile could not be collected.

Many profiles were collected while developing and testing FlowGSP. Profiles were collected to

test different compiler configurations and hardware profiling features.

Only slight modifications to the IBM Testarossa JIT compilerwere required for our experiments.

An annotation was added to each instruction in the compiler log to allow the instruction to be mapped

back to its basic block.

1At the time of writing, the IBM Testarossa JIT compiler was not able to output logs in compressed format.

40

4.2 Data Storage

The profile data and CFG data to be mined is stored in a relational database. Population of hardware-

profile information in the database was done using an in-house tool provided by IBM. CFG informa-

tion is read from the compiler logs and added to the database containing the profiling information.

A relational database allows easier access to arbitrary sections of the graph at the cost of some in-

creased post-processing. Therefore, in order to allow the easy subdivision of work, a database is

more desirable than alternative formats such as a flat text file.

The information in the database is organized into the following tables:

Symbol: The symbol table contains a record for each method (or symbol) in the profile.

Disassm: The disassm table contains the raw assembly code from each method/symbol. This

table includes information such as the instruction opcode,operands, and the offset in bytes of the

instruction from the beginning of the method.

IA: The Instruction Address (IA) table contains the actual profiling information collected during

execution.

Listing: The listing table contains information gleaned from the included compiler logs. This

information includes which bytecode and basic block associated with each instruction.

CFGNode: The CFGNode table contains information pertaining to basicblocks extracted from

the compiler logs. The number, associated symbol, and frequency of each block is recorded.

CFGEdge: The CFGEdge table records all information about inter-basic block edges. The type

(in, out, exception-in, or exception-out), source block, destination block, and frequency of each edge

is recorded.

In order to reduce storage requirements only edges between basic-blocks are stored. Intra-basic

block edges are inferred based on instruction offset. As stated earlier, many Application Server pro-

files were collected. The most up to date profile contains 102,865 individual assembly instructions,

30,430 basic blocks, and 44,178 inter-basic block edges.

Most database servers enforce strict levels of isolation toensure that queries remain indepen-

dent.2 This isolation results in slower database performance but is required to ensure absolute cor-

rectness in the presence of multiple connections. However,most levels of query isolation assume

that data is both being written and read to the database. Multiple concurrent queries cannot affect

each other’s results because FlowGSP only reads information from the database. Therefore, the level

of query isolation can be reduced to the lowest possible setting in order to improve performance.

2The level of query isolation in a database management server refers to how each query obtains locks on portions of the
database to ensure the atomicity and reproducibility of eachtransaction.

41

4.3 Construction of Execution Flow Graphs from Profiling Data

This section explains how an EFG is constructed from the information contained in the compiler log

and the hardware profile.

The assembly instruction is the unit of execution used in thegraph. Therefore a vertex is created

for each assembly instruction in the profile. Instructions within the same basic block are connected

into a path according to their offsets and the frequency of each edge is set to the frequency of the

basic block. The vertices at the end of each basic block are connected to the first vertices of all

subsequent basic blocks as determined by edges in the CFG. The frequency of these edges is set to

the frequency of the corresponding edges in the control flow graph.

The weight of each vertex is equal to the number of sampling ticks incurred on the corresponding

assembly instruction. The attributes of a vertex are the attributes associated with the assembly

instruction the vertex represents. In the most recent profile the maximum number of attributes

observed on any given vertex was 70, with an average of 1.4 attributes per vertex. A detailed list of

possible attributes is given in Section 4.3.1.

Raw edge frequencies and vertex weights may be of different magnitudes. Thus, in order to di-

rectly compare frequency and weight, both quantities are normalized. Edge frequencies are normal-

ized with respect to the sum of all edge frequencies in the graph, and vertex weights are normalized

with respect to the sum of all vertex weights.

During execution, data for each method is fetched independently and used to build a single-entry

single-exit EFG. This method-based construction allows the graph to be easily partitioned as may be

required for a parallel implementation. Construction of the graph in this format is efficient because

profile data in the database is indexed by unique method id.

4.3.1 Attributes

The majority of hardware counters were directly converted into attributes. This conversion was

done by thresholding against the value zero because counters are integer-valued. In other words, an

attribute representing a counter is present on a vertex if any ticks were recorded for the corresponding

instruction.

A main goal in the development of FlowGSP is the discovery of patterns that lead to the develop-

ment of new code transformations. In light of this goal, as much information as possible is included

in the EFG. An abundance of information may lead to the discovery of false positives,i.e. patterns

that are identified as being of interest but from which no new code transformations can be developed.

42

The occasional discovery of false positives is preferable to failing to discover a sequence of genuine

interest. If some hardware counters proved to be of little use after further study they are removed.

As an example, there are many counters representing catch-all situations that are not deemed to be

of interest. These counters were initially included as attributes, however early experiments revealed

that they provided little new information about the program. Therefore, they were dropped from the

list of attributes. Other attributes were removed after they proved to be too ubiquitous to be useful;

an attribute that appears on nearly every vertex is of littleuse when attempting to identify interesting

patterns in the data because it tends to occur in nearly everysequence.

Attributes are encoded as integer values on each node and a symbol table is used to look up the

actual names of the attributes if required. Integer comparison is significantly cheaper than string

comparison. Moreover, storing attributes as strings wouldlead to both an increase in required mem-

ory as well as an increase in computation time because the EFGs being mined consist of thousands

of nodes.

Not all attributes are based purely on counter information,some are calculated based on other

attributes of the instruction. The prologue of a method is a stub automatically inserted by the com-

piler prior to the actual method code. The prologue is responsible for setting up the environment

in which the method operates. For example, to manipulate thestack pointer appropriately. If the

offset is below a given threshold, the instruction is determined to be part of the method prologue

and assigned thePrologue attribute. Whether or not an instruction is in the prologue isof interest

because the prologue of a method is more likely to incur cachemisses if the call to the method was

not predicted correctly.

Similarly theJITtarget attribute is assigned to an instruction if it is the entry point of the

method when it is called from JITted code. This entry point differs from the entry point executed

when the method is called from interpreted code. This attribute is of interest because it can help

to determine performance differences when methods are called from native code versus interpreted

code.

Some attributes are not integer-valued; rather they take onone of a finite number of discrete

values. For instance, theOpcode attribute is the opcode of the current instruction (Store, Load,

Branch, etc.). Such attributes are of interest because theytie the hardware events with the instruction

being executed at the time. TheInlineLvl attribute is the inlining level of the current instruction.

An instruction from an inlined method will have an inlining level of 1, an instruction from a method

inlined within an inlined method will have an inlining levelof 2, and so on. If the instruction was

not inlined from any other method then this attribute is not present. This attribute is relevant because

43

excessive inlining may cause performance degradation.

4.3.2 Consequences of Edge Profiling

The CFG used to create the EFG only contains frequencies on individual edges. As such the CFG,

and consequently the resulting EFG, is a form of edge profiling. Therefore, onlypossiblesequences

of attributes can be discovered.

A

B C

D

E F

G

2

2

2

2

3

3

3

3

Figure 4.1: Example of CFG annotated with edge profiling information.

Consider again the example presented in Section 2.2.2, re-illustrated in Figure 4.1. According

to the edge profiling information it could be inferred that the pathA → B → D → E → G

was executed twice because every edge on the path was executed two times. However, if the path

profiling information is examined it is discovered that the pathA→ B → D → E → G was never

actually executed. Unfortunately without path-profiling information it is impossible to determine

whether or not a path in the graph was executed with absolute certainty.

Therefore, within the limitations of edge profiling the bestthat can be expected is the identifi-

cation ofpossiblesequences of attributes in the EFG. The potential severity of this issue is directly

related to the number of junctions crossed by the sequence inquestion. Therefore shorter sequences,

which should statistically cross fewer junctions, will likely not be as significantly effected. By keep-

ing the number of generations reasonable, and therefore thelength of sequences, error due to edge

profile inaccuracy can be controlled.

4.4 Architecture Specific Considerations

As mentioned in Section 2.4, instructions on the System z10 are grouped in pairs, introducing a

small amount of noise into the profiling data. To compensate for this, most runs of FlowGSP are run

44

with wmax = 1. The idea behind this decision is that the vertices representing instructions in the

same pair are grouped into the same series of vertices. It is possible that this strategy could backfire,

i.e. instructions not in the same grouping could end up in the sameseries of vertices. However,

statistically speaking the odds of this occurring are the same as instructions from the same grouping

being associated. Therefore the amount of additional imprecision introduced is likely to be minimal.

4.5 Graph Division

As JIT compilers make most of their optimization decision atan intra-method scope, it makes sense

that the patterns most interesting to JIT compiler developers would be those that occur wholly within

methods. For this reason, FlowGSP mines each method as an independent graph. As discussed in

Section 5.1, this is also a natural way of decomposing the problem into sub-problems.

4.6 Sequential Performance

As will be outlined in Chapter 5, while sequential performance of FlowGSP is not excruciatingly

slow, in order for FlowGSP to be a useful tool in a compiler development shop the execution time

must be reduced well beyond its current time of almost six hours to mine a five-minute profile.

Given the previously discussed independent nature of the EFG produced by WebSphere Appli-

cation Server profiles, a parallel implementation may be an excellent way of increasing throughput.

Final Remarks

Chapter 3 introduced EFGs and showed that they are a useful structure for data mining. This chapter

described how to practically construct an EFG using hardware profiling data and information from

the CFG from compiler logs. This chapter also defined a set of attributes suitable for representing

the types of events found in System z10 hardware profiles.

45

46

Chapter 5

Parallel Performance

Data mining is a computationally intensive problem. It can take many hours of CPU time to mine

for all frequent or heavily weighted sequences in an EFG, especially if the number of attributes is

large. Given that FlowGSP is intended as an aid to compiler developers, decreasing the turnaround

time between runs would greatly increase the algorithm’s utility as a tool. Given the inherently

parallel nature of the EFGs created from WebSphere Application Server profile data, a parallel

implementation of FlowGSP may very well accomplish this goal.

When deciding to parallelize an algorithm, it is important toremember that the amount of poten-

tial parallelism is limited by the portion of the algorithm which must be executed sequentially. For

example, if 10% of the running time of an algorithm is spent incode that cannot be parallelized, then

the maximum possible speedup given infinite resources is a 10-fold speedup. For FlowGSP, there is

no single portion of the algorithm whichmustbe executed sequentially. There are, however, regions

for which the overhead caused by work division and resource contention out-weighs the benefits

of parallelization. Fortunately these regions occupy a small portion of the total execution time and

therefore the potential for parallelism is great.

Both a multi-threaded shared memory implementation and a multiple-processor distributed mem-

ory system are presented. These two implementations are intended to leverage the common parallel

architectures in use today. The distributed implementation is aimed at high-performance comput-

ing clusters that operate on a distributed memory model. Thethreaded implementation is aimed

at workstations with multiple-core CPUs operating under a shared memory model. While clusters

are the dominant platform for high-performance computing,workstations with 8 or more cores are

becoming increasingly common. The opportunities presented by multi-core architectures should not

47

be overlooked.

Section 5.1 discusses the decomposition of FlowGSP into parallel subproblems. Section 5.2

discusses the threaded implementation and Section 5.3 discusses the distributed implementation.

5.1 Parallel Decomposition

Prior to discussion of the two implementations, it is important to analyze how FlowGSP can be

effectively partitioned into parallel subproblems. A proper parallel implementation of an algorithm

is of little use if the underlying data can not be properly divided into parallelizable units of work.

Each iteration of FlowGSP can be broken down into the following steps:

1. Find all instances of candidate sequences in the graph andcalculate the support of each in-

stance.

2. Prune all candidate sequences that haveSM andSD below the minimum support threshold.

3. Create the next generation of candidate sequences.

Step 1 is the most likely candidate for parallelization. It accounts for the majority of execution

time and is easily decomposed. In fact, it is possible to decompose step 1 in a number of ways

depending on the graph being mined. On one hand, work could bedivided by assigning each worker

a subset of the single-entry single-exit regions in the graph, each corresponding to a method in the

profile. Work could also be divided by assigning each worker asubset of the current generation of

candidate sequences.

Steps 2 and 3 could also be potentially parallelized. However, as indicated later in this chapter,

these steps occupy a small portion of total execution time. Therefore the benefit to optimizing these

steps is unclear.

Step 3 was not parallelized for either of the implementations. The decision not to parallelize

candidate generation was made primarily due to the amount ofcommunication that would be re-

quired to distribute the work and collect the results. All the candidates would need to be distributed

to all of the worker threads because all possible pairs of candidate sequences must be checked for

join compatibility. In addition, for later generations, the number of candidates generated could be

potentially large. Aggregating the resulting lists of new candidates from all of the worker threads

is also likely to be expensive. Furthermore, candidate generation occupies a small portion of exe-

cution time. For these reasons, the overhead of work distribution and result collection would likely

outweigh the benefits of parallelization.

48

5.2 Threaded Implementation

This section presents a multi-threaded implementation of FlowGSP. This implementation is designed

to leverage the popular trend towards increased use of multi-core CPUs in workstations and personal

computers.

For the threaded implementation, work is divided by assigning each thread a subset of the meth-

ods to mine. Each thread searches for instances of all of the current candidate sequences within

the methods assigned to it. To ensure that only one thread canupdate the support of a sequence at

a time, the updating of support values for the candidates is handled via the Javasynchronized

primitive.

Work is assigned to the worker threads by a single master thread that is also in charge of pruning

candidates with inadequate support and of calculating he next generation of candidates. For the

threaded implementation neither of these operations are parallelized. Pruning is not parallelized

due to the simplicity of the operation and to the extremely low percentage of total execution time it

occupies.

All workers share a common database connection because the threaded version of the algorithm

is run in a shared memory environment.

5.2.1 Work Division

As discussed, WebSphere Application Server is comprised ofa very large number of small to

medium-sized methods. Hence, a simple round-robin scheme is adopted to assign methods to worker

threads. While this method is certainly not ideal in terms of achieving optimal load balancing among

the threads, from our experiments it appears that this strategy is adequate. The vast majority of the

methods are comprised of 50–250 instructions, with the largest method containing 725 instructions.

Therefore, mining each method independently naturally results in the over-decomposition of the

problem necessary for adequate load balancing.

5.2.2 Performance Analysis

The performance of the threaded implementation is evaluated by mining a WAS profile with the

following parameters:

1. gmax = 0

2. wmax = 0

49

3. ngen = 10

4. sthresh = 0.01

The number of threads is varied from 1 (single-threaded) to 8, because the test machine is equipped

with 2 quad-core CPUs. Testing with more than 8 threads is notlikely to yield further speedup

because there would be more threads than the number of available cores. FlowGSP was run in

each configuration ten times in order to obtain statistically significant results in the presence of

system noise. The data from our experiments is given in Tables 5.1 and 5.2. Each value reported is

the mean of ten runs with a 95% confidence interval according to the Student’s t-distribution. All

values rounded to the nearest second. In all cases executionterminated after seven iterations as no

candidates met the minimum support threshold.

Threads Execution Time
1 30,717±271
2 16,965±50
3 12,703±105
4 10,631±255
5 8,800±82
6 16,982±162
7 16,373±89
8 6,726±23

Table 5.1: Total running time for FlowGSP, in seconds.
7

Execution time (s)
N Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5 Gen. 6 Gen. 7
1 1,743±7 10,829±150 6,319±71 6,712±80 3,546±25 1,192±6 373±2
2 926±3 5,942±29 3,539±16 3,748±17 1,974±5 626±2 208±2
3 679±3 4,428±44 2,649±28 2,807±28 1,517±5 451±3 168±2
4 580±23 3,654±103 2,210±62 2,340±57 1,295±326 391±44 155±5
5 478±5 3,017±43 1,826±18 1,946±27 1,069±8 311±2 148±1
6 460±32 2,982±198 2,895±198 4,925±342 4,079±29 2,038±21 105±0
7 412±32 2,546±12 2,544±13 4,313±25 3,913±19 1,965±8 106±1
8 357±2 2,320±13 1,416±6 1,494±5 811±4 227±2 148±2

Table 5.2: Running times for FlowGSP by generation, in seconds, forN threads.

Figure 5.1 gives the speedup of the threaded implementationas a function of the number of

threads. The error bars indicate a 95% confidence interval onthe data. FlowGSP achieves excellent

speedup when the number of threads is low, as indicated by Figure 5.1. However, the rate of speedup

decreases as the number of threads increases.

Figure 5.2 breaks down the speedup by generation in order to identify the cause of the perfor-

mance degradation. Again, the error bars indicate a 95% confidence interval. Figure 5.2 shows that

50

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads, N

Figure 5.1: Total speedup as a function of the number of threadsN .

we obtained similar speedups on all iterations of the algorithm. Therefore we cannot isolate any

particular iteration or iterations as a cause of the poor speedup in later generations.

Figure 5.2 also shows that when the algorithm is run with 6 or 7threads the speedup obtained is

extremely poor. The machine used for these performance runsis a part of a cluster of machines; it

is possible that other nodes on the cluster experienced increased use during this period. Other nodes

being used would effect the results of this experiment as allnetwork traffic from each node is routed

through a single master node. It is also possible that increased network congestion at the time of the

experiment could infuence the execution time of the algorithm because the database server is hosted

on a seperate machine. However, a repeated run of the algorithm with 7 threads again produced data

consistent with the observations in Table 5.1. Therefore itis unclear exactly what is causing this

particular performance anomaly.

Time (in seconds)
Generation Mining Fetching Pruning/Joining

1 338 19 0
2 2302 18 0.2
3 1394 20 0.1
4 1476 18 0.1
5 793 18 0
6 209 18 0
7 130 18 0

Table 5.3: Breakdown of execution time with 8 worker threads.

Table 5.3 breaks down the time spent mining each generation into three sections: time spent

mining, time spent fetching data from the database, and timespent pruning and creating the next

generation for 8 threads. The amount of time spent fetching data from the database is uniform

accross all iterations of the algorithm. There is also a noticible increase in the amount of time spent

51

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads, N

(a) First Generation

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads, N

(b) Second Generation

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads, N

(c) Third Generation

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads, N

(d) Fourth Generation

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads, N

(e) Fifth Generation

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads, N

(f) Sixth Generation

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads, N

(g) Seventh Generation

Figure 5.2: Speedup for the first through seventh generations as a function of the number of threads
N .

52

Gap Size Window Size Execution Time (s)
0 0 6,726
0 1 14,068
1 0 12,748
1 1 22,314

Table 5.4: Influence of changing gap and window sizes on overall program performance.

pruning and joining the next generation of candidates, but this accounts for a small portion of total

execution time.

The amount of time spent fetching data from the database is measured by starting and stopping

a timer around each JDBC call, summing the time for all such calls from the same thread, and then

averaging the totals over all worker threads. The amount of time spent pruning/joining is measured

by a similar timer in the master thread. The time spent pruning/joining also includes the time spent

fetching results from the worker threads. The time reportedas mining time is the difference between

the time for the mining task and the sum of the fetching and pruning/joining time.

The runs which produced the data in Tables 5.1 and 5.2 were obtained with a gap size of zero

and a window size of zero. In many datasets a larger gap or window size may be required in order to

discover interesting sequences. Table 5.4 shows the running time of FlowGSP on a Websphere Ap-

plication Server profile when the gap and window sizes are increased. For this experiment FlowGSP

was again run with 8 threads for ten iterations with a supportthreshold of 1%.

Increasing either the gap or the window size results in a significant increase in execution time.

This increase can be explained by a general increase in the support values of candidate sequences and

consequently more candidates meeting the support threshold. More candidates meeting the support

threshold results in more candidates being generated at each iteration. Based on this data, it may be

prudent to increase the support threshold when running FlowGSP with non-zero gap and window

sizes in order to control the execution time. However, whileincreasing the support threshold is a

good idea for Application Server profiles, this decision is ultimately dependant on the characteristics

of the data being mined.

5.3 Distributed Implementation

This section describes a socket-based version of the algorithm for use in distributed memory ma-

chines. The scalability of the threaded implementation is limited by the number of cores on a single

machine1. In order for the distributed implementation to be of use, itmust scale beyond the capabil-

ities of the threaded implementation. The distributed implementation described in this section does

1Most standard Java Virtual Machines (JVMs) do not allow for the distribution of threads between multiple machines.

53

not scale, therefore there is little reason to deploy this implementation of FlowGSP on a large cluster

as opposed to single multi-core workstations.

5.3.1 Work Division

Similar to the threaded implementation, work is divided by asingle master. Each worker is as-

signed an equal-sized subset of the candidate sequences in the current generation. Each worker then

searches for instances of its subset of candidates over all of the methods in the profile. The deci-

sion to divide work in this manner was made after an initial attempt that divided work in the same

manner as the threaded version. Information that needs to betransmitted from the master to the

workers incurs a communication overhead because each worker has its own private address space.

The amount of overhead for early generations is small because there are few candidates, but in later

generations copying all candidates to each client is prohibitively expensive. Collecting results from

workers is even more expensive: not only do the candidates need to be copied from each worker

but the supports found by each worker need to be merged. Therefore, the method of work division

was changed to reduce both the communication between workers and the computation needed to

combine results from clients.

The only other difference between the socketed and threadedimplementations is that the work-

ers in the socketed implementation prune candidates with inadequate support prior to communicat-

ing the results of the mining to the master worker. This optimization was not implemented in the

threaded version because all workers search for instances of all candidate sequences, therefore any

pruning must wait until all workers have finished. This limitation is not present given this work dis-

tribution scheme and therefore it was convenient to implement this advanced pruning. It is unlikely,

however, that this optimization resulted in any significantperformance improvement.

5.3.2 Performance Analysis

The socketed implementation demonstrates extremely poor performance. In fact, runs with more

than 2 workers usually resulted in a significant slowdown compared to the sequential case (in this

instance, a run of the socketed implementation with only oneworker apart from the master).

Table 5.5 gives the execution times for the distributed implementation for 1,2,4,8, and 16 work-

ers. The data in Table 5.5 is from a single run of the distributed implementation and therefore may

contain a significant amount of error. However, given that the distributed implementation fails to

even achieve a speedup of two with sixteen workers, no further runs were performed and a 95%

54

Execution Time (in seconds)
N Gen. 1 Gen. 2 Gen. 3 Gen, 4 Gen. 5 Total
1 697 1,434 2,240 6,666 10,437 21,478
2 455 975 1,673 4,565 7,345 15,018
4 370 625 1,313 4,986 9,088 16,388
8 506 556 1,016 5,199 10,696 17,978
16 684 647 816 3,974 11,178 17,304

Table 5.5: Execution time for the distributed implementation of FlowGSP withN workers.

confidence interval was not calculated. It is unlikely that the amount of error represents more than a

small portion of total execution time.

In order to understand the behavior of the distributed implementation, the amount of time spent

fetching data from the database was recorded. The time spentfetching data was recorded in the same

manner as the threaded implementation. The data shows that,for 16 workers, 1,688 seconds were

spent fetching data from the database. It is unlikely that the fetching of data from the database is the

bottleneck for the distributed implementation because theamount of time spent fetching accounts

for only 9.7% of total execution time.

The amount of time spent retrieving results from workers, pruning candidates with insufficient

support, and creating the next generation of candidates wasalso recorded. The amount of time spent

on these activities accounts for twelve seconds. Twelve seconds is a relatively insignificant portion

of the total execution time listed in Table 5.5.

It seems likely that poor granularity is the reason the distributed implementation experiences

poor performance. The current method of work division was implemented only after the work-

division scheme used in the threaded implementation was used unsuccessfully. Neither of these

methods of work division result in good parallel performance. Therefore further work is required

to determine an appropriate method of dividing the mining problem among the workers. Given the

relatively good performance of the threaded implementation, the discovery of such a method is left

to future work.

Final Remarks

A threaded and distributed (via sockets) implementation of FlowGSP has been discussed. The

threaded version achieved a 78% decrease in total executiontime. The threaded implementation

of FlowGSP reduces execution time to the point where multiple runs can be easily performed in a

day, a critical feature if FlowGSP is to be used in a production compiler environment. It may be pos-

sible with further investigation to further increase the performance of the threaded implementation.

55

The distributed version, unfortunately, achieves little to no speedup because the database server

is unable to cope with the volume or frequency of requests. Itis possible that with more resources the

performance of both implementations of FlowGSP could see significant improvement. The socketed

implementation is of no use because it is outperformed by thethreaded implementation.

56

Chapter 6

Mining WebSphere Application

Server Profiles with FlowGSP

The experimental results presented in this Chapter demonstrate that FlowGSP works in the context of

mining WebSphere Application Server profiles, a large enterprise application. The execution paths

in this server consist of millions of assembly instructionsper transaction and a plethora of hardware

events per instruction. These results establish FlowGSP asa practical and effective solution for the

mining of large flow graphs.

6.1 Discovery of Previously Known Patterns

Before the development of FlowGSP, compiler developers were faced with the difficult challenge

of identifying patterns in the execution paths of large enterprise applications using nothing but in-

tuition and observation. This approach to discovery is not only tedious and time consuming, but is

also fraught with limitations of capturing the scope and respective support for improvement oppor-

tunities. The intuitive approach may lead to large investments in compiler development effort that

may not necessarily pay off. Countless person-hours of effort have been invested in such discovery

processes.

With the implementation of FlowGSP, an interesting acid test of the automatic approach is to dis-

cover patterns that had already been identified manually by compiler developers. FlowGSP passed

this acid test because it was able to identify all the patterns that were known to the developers. Some

of these patterns include:

57

• 〈(Icachemiss, TLBmiss)〉, SM = 0.529 indicates a high correlation between instruction-

cache misses and TLB misses on the host architecture.

• 〈(Prologue, Icachemiss)〉, SM = 0.1175 indicates a high occurrence of instruction-cache

misses in the prologues of methods. This is significant considering that the sequence

〈(Prologue)〉 hasSM = 0.120.

• 〈(JIT target, Icachemiss)〉, SM = 0.0935 corresponds to a significant number of instruction-

cache misses on the JIT target instructions. The JIT target instruction is the first assembly in-

struction to be called when the method is called from natively compiled code. In general, a dif-

ferent first instruction is executed when the method is called from interpreted code. The level

of support for this attribute pair is even more significant because the sequence〈(JIT target)〉

hasSM = 0.0935.

6.2 Discovery of New Characteristics

In addition to re-discovering known patterns, FlowGSP was effective in identifying an opportunity

to improve WebSphere Application Server performance by enabling large pages. By discovering a

high incidence and correlation of instruction cache and TLBmisses, FlowGSP helped identify the

use of large pages as a performance opportunity. As such, enabling large pages resulted in a 3-4%

decrease in instruction-cache misses and an overall throughput improvement of 2%.

FlowGSP was also successful at discovering many expected patterns. For instance, it is known

that the instruction-cache-miss counter exhibits a long tail because the counter continues to register

for multiple instructions following the instruction that incurred the actual delinquent cache fetch.

FlowGSP identified good support for the sequence〈(Icachemiss), (Icachemiss)〉, SM = 0.112.

A result that confirms thisa priori knowledge. FlowGSP also identified a high occurance of se-

quences which contained data cache misses and TLB misses, a result that is both typical and ex-

pected.

The sequence〈(Icachemiss,Branchmispredict)〉, SM = 0.240 shows that there is a corre-

lation between branch mispredictions and instruction-cache misses. This observation suggests that

it may be possible to improve the hardware’s branch predictor to improve WebSphere Application

Server performance.

58

Final Remarks

This chapter demonstrated that FlowGSP is able to identify known patterns in an EFG constructed

from a WebSphere Application Server profile. These patternswere identified with a level of support

proportional to their known significance. This chapter alsoshowed that FlowGSP is capable of

identifying previously unknown sequences in an EFG, and that these sequences can be used to

achieve performance improvements in the target application.

59

60

Chapter 7

Related Work

There has been a significant body of work recently investigating the possible applications of machine

learning techniques to compiler research. The applicationof machine learning could potentially

relieve many person-hours of intensive, skilled labor because compilers rely heavily on hand-tuned

heuristics. Section 7.1 discusses such applications.

Data mining techniques have been extended to mine data in a large variety of formats. While, to

the best of our knowledge, no algorithm exists that can mine EFGs, there are a number of algorithms

that mine similar types of data. These algorithms are discussed in Section 7.2.

There have also been a number of efforts to improve compiler performance through traditional

means based on hardware profiling information. Section 7.3 discusses some of these approaches.

Enterprise applications, such as the WebSphere Application Server, usually carry a very large

load in terms of responsibility for many businesses. Therefore, interest in improving their per-

formance is common. Other approaches that attempt to improve the performance of large Java

applications are covered in Section 7.4.

While all of these approaches have some elements in common with FlowGSP, none of them are

uniquely equipped to handle the challenges faced when mining for frequent sequences in hardware

profile data.

7.1 Machine Learning and Compilers

A common problem with trying to achieve optimal performancewith modern optimizing compilers

is that it is extremely difficult to predict the ideal optimization parameters for any given program.

Moreover, the number of possible parameter values for most optimizing compilers is extremely

61

large. Manually searching through them all,i.e. through iterative optimization, is prohibitively

expensive. Compiler researchers have begun to turn to the field of machine learning in order to more

efficiently find good optimization configurations.

7.1.1 Supervised Learning

There have been a number of efforts into using predictive models to improve the performance of

optimizing compilers.

Cavazoset. al. present a method for automatically selecting good compileroptimizations via

a model constructed using performance-counter data [6]. They evaluate a variety of optimization

configurations on a training set of programs and use the resulting speedups relative to a baseline

optimization level to construct a predictive model. Given anovel program, they compile it once

using the baseline compiler options. The performance-counter data from this run is fed back into

the model to produce a set of “best” optimizations. They testtheir system using cross-validation

on the PathScale EKOPath compiler and the Standard Performance Evaluation Corporation (SPEC)

1995 benchmark suite. N-fold Cross-validation involves splitting the data set into N sections, then

training on N-1 sections and testing on the remaining section. Cavazoset. al. are able to achieve a

17% performance increase over the fastest built-in optimization setting (-Ofast). While they do

produce excellent results, they are only exploring the space of all pre-existing optimization settings.

FlowGSP allows the discovery of new opportunities for code transformations that may not be within

the scope of existing compiler flags. It would not be possiblefor their system to discover any of

these opportunities.

Stephensonet al. use supervised learning techniques to determine the ideal loop unrolling factor

for a program [33]. They use both nearest-neighbor and Support Vector Machine (SVM) classifiers

[9] in their research. Using these methods they are able to improve loop unrolling performance by

5% on the SPEC 2000 benchmark suite [8]. While an adapted version of their tool could be used

to discover good parameter values for existing optimization, their method is unable to discover

opportunities for new code transformations, or even if the current set of parameters to existing

options is wanting.

7.1.2 Unsupervised Learning

Stephensonet al. (2003) use Genetic Programming to determine ideal parameters for hyperblock

formation, data prefetching, and register allocation [34]. Genetic Programming uses the principles

62

of genetics to “evolve” more suitable candidates over multiple generations. However there is some

doubt as to the usefulness of genetic algorithms in cases such as these, especially when their perfor-

mance is compared to that of pure random search [4].

7.2 Data Mining

Mining for frequent sequences in structured data has its roots in algorithms such as GSP [2], PrefixS-

pan [13], and WINEPI/MINEPI [20]. These algorithms all search for sequences or partial sequences

within a totally ordered dataset. While this assumption of a total ordering is sufficient for some ap-

plications, such as market-basket analysis, there are manyexamples of real-world data, such as

hardware profiles, that cannot be expressed using a total ordering.

One of the most commonly used data structures in both computing science and mathematics is a

graph. It should come as no surprise that there has been a significant amount of work devoted toward

developing mining algorithms that operate on topologically ordered data structures such as graphs.

AGM [16], gSpan [39], Origami [14], and Gaston [23] are all algorithms that search for frequent

substructures in graph-based data.

While mining for common substructures is a very similar goal to that accomplished by FlowGSP,

there are some crucial differences. First, FlowGSP is interested in discovering frequent sequences

of attributes on the vertices of a flow graph. The mining performed by FlowGSP is more than just

frequent substructure discovery because a frequent connected substructure need not be a sequence

of vertices. Also, none of the cited works handle multiple labels or attributes on vertices.

A traversal of a graph is an ordered sequence of connected vertices in a graph. There are a num-

ber of real-world situations for which finding frequent sequences in a collection of graph traversals

may prove useful, such as analyzing the behavior of visitorsto a web site.

Lee et al.develop an algorithm for discovering frequent patterns in traversals of a weighted,

directed graph [19]. A traversal of a graph is an ordered sequence of connected vertices in the

underlying graph. They evaluate their algorithm on a numberof randomly generated graphs.

Genget al. propose another algorithm for mining frequent patterns in traversals of graphs with

weighted edges and vertices [11]. They used a generate-and-test approach based on the Apriori

algorithm [30] to grow their candidate patterns.

The key difference between these traversal-mining algorithms and FlowGSP is the form of the

data being mined. Both Leeet al. and Genget al. mine a collection of traversals over a graph. This

difference is illustrated by Figure 7.1. Subfigure (a) is an example of a directed graph G; subfigure

63

(b) gives a list of weighted traversals. Each traversal consists of a sequence of nodes from G (under

the traversal column) and a series of weights assigned to each edge of the traversal (under the weight

column). This figure is adapted from Figure 1 in [19]. Traversals such as these are not the same as

the EFGs mined by FlowGSP: FlowGSP mines for frequent possible subpaths in a graph.

D B

A

CE

(a) G

ID Traversal Weight
1 < A,B,C > < 2.2, 2.0 >
2 < B,D,E,C,A > < 3.0, 4.3, 3.5, 3.1 >
3 < C,A,B,D > < 2.9, 2.0, 4.0 >
4 < D,C,A > < 4.0, 3.0 >
5 < B,C,A > < 2.2, 2.9 >
6 < A,B,E,C > < 1.4, 3.9, 4.4, 3.2 >

(b) Traversals on G

Figure 7.1: Example of a directed graph and a weighted traversal.

Hwanget al. perform data mining on program call graphs in order to identify recurring pat-

terns in method call sequences [15]. They successfully identify two commonly occurring “control

patterns” that occur frequently together in a collection ofJava programs. Hwanget al. only pro-

vide the mechanism for identifying these control patterns and do not provide insights into how this

information may be used to increase program performance. Also, their work relies on obtaining pro-

gram traces rather than profiles. The cost of obtaining a fulltrace for an application as large as the

WebSphere Application Server would be prohibitively expensive. Their method also only uses the

sequence of method calls and does not incorporate low-levelor performance-counter information.

Pawlak develops a method for mining association rules from labelled, weighted, flow graphs

[24]. They derive these rules by “fusing” the graph being mined and combining the normalized

edge weights. Through fusing they are able to obtain association rules between the graph’s sources

and sinks by fusing out all the intermediary nodes. Such an approach does not map well to mining

control-flow-graph data because each method has only a single source and single sink node. Also,

patterns that occur within the internal structure of a flow graph are of higher interest.

Moseleyet al. develop Optiscope, a tool for comparing multiple hardware profiles [21]. Their

goal is to allow easy comparison of multiple executions of the same program under various compiler

configurations. Loops in each profile are matched, and the differences in the profiling information

examined via a web interface. The profiling data from each loop or method is aggregated and

compared. The local focus of Optiscope is in sharp contrast to the goal of finding global patterns

that may yield performance opportunities. Optiscope is built around basic slicing operations. That is

64

to say that optiscope only performs basic aggregations; no search for frequent patterns or sequences

is performed.

7.3 Performance Counters

Choi et al. use performance counter data to enhance the performance of the Intel compiler on the

Itanium 2 platform [7]. They use performance counter data tosupplement the information usually

obtained during static FDO. However, as is usual for FDO, their process is restricted to improv-

ing the performance of existing code transformations and cannot aid in the discovery of new code

transformations.

There have been a growing body of research directed towards allowing JIT compilers access to

hardware profiling data at run-time. Schneideret al. collects information about instruction cache

misses on the Intel Pentium 4 platform in order to increase performance via object co-allocation [27].

Cuthbertsonet al. also use I-cache information from hardware event counters on the Intel Itanium

platform to improve co-allocation, as well as to influence global scheduling [10]. Shyeet al. collect

branching information from the Itanium Branch Transition Buffer (BTB) and use this information to

build partial path profiles of the executing program [28]. All of these works only operate on a very

small number of performance counters. While a small number ofcounters is enough data for the

code transformations they investigate, by discarding someperformance counters, information about

the program is lost. It may not be possible to simply increasethe amount of counter information

passed into the JVM, because it is not clear how well the strategies presented will scale as the number

of counters retrieved increases.

Buytaertet al. use hardware-performance counters (in particular sampling ticks) to increase

the accuracy and decrease the cost of the instrumentation used to detect hot methods in a Java

JIT compiler [5]. No new code transformations are introduced because their work is focused on

improving the performance of current techniques.

7.4 Enterprise Application Performance

Xu et al. investigate object copying as a symptom of bloat in large Java applications [38]. By

profiling object copy behavior they are able to hand-tune their applications and significantly increase

performance. They are able to decrease the execution time oftwo DaCapo benchmarks by 65% and

9.3% respectively. While Xuet al. also investigate large scale Java application performancetheir

65

approach is focused on hard tuning the resulting application instead of searching for opportunities for

new compiler code optimizations. While application tuning is important for overall performance, the

role of the compiler is equally important. FlowGSP addresses the needs of the compiler developer

when it comes to improving the performance of enterprise applications.

66

Conclusion

This thesis presented the EFG, a data structure that represents the information contained in hardware

profiles. This data structure was designed by supplementingthe profile data with the CFG taken from

the compiler logs. This thesis defined the notions of frequency and weight support of a subpath in

an EFG. It also presented FlowGSP, an algorithm to mine for sequences in an EFG. FlowGSP ranks

sequences by both their frequency in the graph and by the costof the subpaths in which they appear.

EFGs were constructed using profiling information obtainedfrom WebSphere Application Server

runs on the IBM z10 architecture. A list of attributes was created to represent the characterstics of

z10 profiling data. This thesis presented an implementationof FlowGSP in Java to mine these EFGs.

Two parallel implementations of FlowGSP were also introduced. The first implementation uses

Java threads and is targeted at the rapidly growing domain ofmulti-core workstations. The threaded

implementation of FlowGSP reduces the time required to minea profile of the WebSphere Appli-

cation Server by roughly 75%. This improved performance allows FlowGSP to mine such a profile

many times in a day, a necessary requirement for deployment in a production compiler develop-

ment environment. This thesis also presented a distributedimplementation of FlowGSP targeted at

cluster-based computing. However, the distributed implementation failed to show the performance

necessary to merit deployment. Future work may yield a better work-division strategy for this im-

plementation.

FlowGSP was evaluated on WebSphere Application Server hardware profiles. This thesis pre-

sented a number of sequences discovered by FlowGSP which characterize known Application Server

behavior. The discovery of previously unknown sequences was also discussed. These new sequences

may yield new performance opportunities upon further study.

There are a number of areas for future development based on the work in this thesis. The parallel

implementations of FlowGSP discussed in Chapter 5 can be greatly improved. The threaded imple-

mentation suffers from a database bottleneck. Adding additional database servers or implementing

some caching protocol may alleviate this bottleneck. The distributed implementation exhibits poor

67

granularity and does not scale to a large number of nodes. Thedevelopment of an alternate method

of work division which does not exhibit this poor granularity would increase the viability of this

implementation.

There are a number of newer data mining algorithms, PrefixSpan [25] for example, that have

improved performance compared to GSP. GSP was chosen as the basis for FlowGSP due to its

simplicity and the fact that it is well studied. Other sequence-mining algorithms could be extended to

achieve the same goals as FlowGSP, perhaps with greater efficiency. It may also be possible to extend

a graph mining algorithm such as Gaston [23] or gSpan [39] to search for frequent sequences in an

EFG. These algorithms have differing characteristics and it is possible that using an algorithm other

than GSP as the base to mine EFGs for data may result in considerable performance improvements.

FlowGSP has been extensively tested on WebSphere Application Server profiles. However, the

WebSphere Application Server is hardly representative of all programs. Other application profiles

could yield patterns of interest to compiler developers with FlowGSP’s help.

EFGs are not limited to hardware profiles. There are many other domains that could be charac-

terized in a manner similar to performance-counter data. Web traffic pattern analysis, urban traffic

planning, and purchasing pattern analysis are examples of areas that could benefit from the applica-

tion of FlowGSP.

68

Bibliography

[1] WebSphere Application Server. http://www-01.ibm.com/software/websphere/, March 2009.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. InInternational

Conference on Data Engineering (ICDE), pages 3–14. IEEE Computer Society, March 1995.

[3] Enrique Alba. Parallel evolutionary algorithms can achieve super-linear performance.Inf.

Process. Lett., 82(1):7–13, 2002.

[4] Jośe Nelson Amaral, Adalberto Tiexeira Castelo Neto, and Alessandro Valerio Dias. Genetic

algorithms in optimization: Better than random search? In1997 International Conference on

Engineering and Informatics, pages 320–326, April 1997.

[5] Dries Buytaert, Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout, and Koen

De Bosschere. Using HPM-sampling to drive dynamic compilation. volume 42, pages 553–

568. ACM, 2007.

[6] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and Olivier

Temam. Rapidly selecting good compiler optimizations using performance counters. InCode

Generation and Optimization (CGO), pages 185–197, Washington, DC, USA, 2007. IEEE

Computer Society.

[7] Y. Choi, A. Knies, G. Vedaraman, and J. Williamson. Design and experience using the Intel

Itanium 2 processor performance monitoring unit to implement feedback optimizations.EPIC2

Workshop, 2002.

[8] Standard Performance Evaluation Corporation. SPEC benchmark. http://www.spec.org.

[9] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-

based vector machines.J. Mach. Learn. Res., 2:265–292, 2002.

69

[10] John Cuthbertson, Sandhya Viswanathan, Konstantin Bobrovsky, Alexander Astapchuk, and

Eric Kaczmarek. Uma Srinivasan. A practical approach to hardware performance monitoring

based dynamic optimizations in a production JVM. InCode Generation and Optimization

(CGO), pages 190–199, Seattle, WA, USA, 2009. IEEE Computer Society.

[11] Runian Geng, Xiangjun Dong, Xingye Zhang, and Wenbo Xu.Efficiently mining closed fre-

quent patterns with weight constraint from directed graph traversals using weighted FP-tree

approach. InInternational Colloquium on Computing, Communication, Control, and Manage-

ment, pages 399–403, Guangzhou City, China, August 2008.

[12] M. Golden and T. Mudge. Comparison of two common pipeline structures.Computers and

Digital Techniques, IEE Proceedings, 143(3):161–167, May 1996.

[13] J. Han, J. Pei, and Y. Yin.Sequential Pattern Mining by Pattern-Growth: Principles and

Extensions, volume 180 ofStudies in Fuzziness and Soft Computing, pages 183–220. Springer,

2005.

[14] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, Jeremy Besson, and Mohammed J. Zaki.

Origami: Mining representative orthogonal graph patterns. In International Conference on

Data Mining (ICDM), pages 153–162, Omaha, NE, USA, 2007. IEEE Computer Society.

[15] Chung-Chien Hwang, Shih-Kun Huang, Deng-Jyi Chen, andD.T.K. Chen. Object-oriented

program behavior analysis based on control patterns. InAsia-Pacific Conference on Quality

Software (APCQS), pages 81–87, Hong Kong, China, December 2001.

[16] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda.An apriori-based algorithm for min-

ing frequent substructures from graph data. InPKDD ’00: Proceedings of the 4th European

Conference on Principles of Data Mining and Knowledge Discovery, pages 13–23, London,

UK, 2000. Springer-Verlag.

[17] K.M. Jackson, M.A. Wisniewski, D. Schmidt, U. Hild, S. Heisig, P. C. Yeh, and W. Gellerich.

IBM system z10 performance improvements with software and hardware synergy.IBM J. Res.

Dev., 53(1-16), May 2009.

[18] T. Kisuki, P.M.W. knijnenburg, Michael F. P. O’Boyle, Francois Bodin, and E. Rouhu. Iterative

compilation in a non-linear optimization space. InParallel Architectures and Compilation

Techniques (PACT), Paris, France, October 1998.

70

[19] Seong Dae Lee and Hyu Chan Park. Mining frequent patterns from weighted traversals on

graph using confidence interval and pattern priority.International Journal of Computer Science

and Network Security (IJCSNS), 6(5A):136–141, May 2006.

[20] H. Mannila, H. Toivonen, and A. I. Verkamo. DiscoveringFrequent Episodes in Sequences.

In U. M. Fayyad and R. Uthurusamy, editors,Knowledge Discovery and Data Mining (KDD),

Montreal, Canada, 1995. AAAI Press.

[21] Tipp Moseley, Dirk Grunwald, and Ramesh V. Peri. Optiscope: Performance accountability

for optimizing compilers. InCode Generation and Optimization (CGO), Seattle, WA, USA,

2009. IEEE Computer Society.

[22] Priya Nagpurkar, Harold W. Cain, Mauricio Serrano, Jong-Deok Choi, and Ra Krintz. A study

of instruction cache performance and the potential for instruction prefetching in J2EE server

applications. InWorkshop of Computer Architecture Evaluation using Commercial Workloads

(CAECW), Phoenix, AZ, USA, 2007.

[23] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure mining can make a

difference. InKnowledge Discovery and Data Mining (KDD), pages 647–652, New York, NY,

USA, 2004. ACM.

[24] Zdzislaw Pawlak. Flow graphs and data mining. InTransactions on Rough Sets III, volume

3400/2005 ofLecture Notes in Computing Science, pages 1–36. Springer, 2005.

[25] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu. PrefixSpan

mining sequential patterns efficiently by prefix projected pattern growth. InInternational Con-

ference on Data Engineering (ICDE), pages 215–226, Heidelburg, Germany, 2001.

[26] K.E. Plambeck, W. Eckert, R. R. Rogers, and C. F. Webb. Development and attributes of

z/architecture.IBM J. R. Dev., 46(4-5):367, 2002.

[27] Florian T. Schneider, Mathias Payer, and Thomas R. Gross. Online optimizations driven by

hardware performance monitoring. InProgramming language design and implementation

(PLDI), pages 373–382, New York, NY, USA, 2007. ACM.

[28] Alex Shye, Matthew Iyer, Tipp Moseley, David Hodgdon, Dan Fay, Vijay Janapa Reddi, and

Daniel A. Connors. Analyis of path profiling information generated with performance moni-

toring hardware. InWorkshop on Interaction between Compilers and Computer Architectures

(INTERACT), pages 34–43, Rome, Italy, 2005. IEEE Computer Society.

71

[29] T. J. Siegel, E. Pfeffer, and J. A. Magee. The IBM eServerz990 microprocessor.IBM J. Res.

Dev., 48(3-4):295–309, 2004.

[30] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association rules in large

relational tables. InSIGMOD International Conference on Management of Data, pages 1–12,

New York, NY, USA, 1996. ACM.

[31] Ramakrishnan Srikant and Rakesh Agrawal.Mining Sequential Patterns: Generalizations and

Performance Improvements, pages 3–17. Advances in Database Technology. Springer, 1996.

[32] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Generatlizations and

performance improvements. Technical report, IBM ResearchDivision, Almaden Research

Center, San Jose, CA, USA, 1996.

[33] Mark Stephenson and Saman Amarasinghe. Predicting unroll factors using supervised classi-

fication. InCode Generation and Optimization (CGO), pages 123–134, San Jose, CA, USA,

2005. IEEE Computer Society.

[34] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. Meta opti-

mization: improving compiler heuristics with machine learning. In Programming language

design and implementation (PLDI), pages 77–90, New York, NY, USA, 2003. ACM.

[35] Robert Tibshirani and Jerome Friedman Trevor Hastie.The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, New York, 2001.

[36] E. Tzortzatos, J. Bartik, and P. Sutton. IBM system z10 support for large pages.IBM J. Res.

Dev., 53(1-17), May 2009.

[37] C. F. Webb. IBM z10: The next generation microprocessor. IEEE Micro, 28(2):19–29, March

2008.

[38] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Sevitsky. Go with

the flow: profiling copies to find runtime bloat. InPLDI ’09: Proceedings of the 2009 ACM

SIGPLAN conference on Programming language design and implementation, pages 419–430,

Dublin, Ireland, 2009. ACM.

[39] Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern mining. InInternational

Conference on Data Mining (ICDM), page 721, Maebashi City, Japan, 2002. IEEE Computer

Society.

72

