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Well-crafted libraries deliver much higher performance than code generated by sophisticated application
programmers using advanced optimizing compilers. When a code pattern for which a well-tuned library
implementation exists is found in the source code of an application, the highest performing solution is to replace
the pattern with a call to the library. Idiom-recognition solutions in the past either required pattern matching
machinery that was outside of the compilation framework or provided a very brittle solution that would
fail even for minor variants in the pattern source code. This paper introduces KernelFaRer (Kernel Find &
Replacer), an idiom recognizer implemented entirely in the existing LLVM compiler framework. The versatility
of KernelFaRer is demonstrated by matching and replacing two linear algebra idioms, general matrix-matrix
multiplication (GEMM) and symmetric rank-2k update (SYR2K). Both GEMM and SYR2K are used extensively
in scientific computation and GEMM is also a central building block for deep learning and computer graphics
algorithms. The idiom recognition in KernelFaRer is much more robust than alternative solutions, has a much
lower compilation overhead, and is fully integrated in the broadly used LLVM compilation tools. KernelFaRer
replaces existing GEMM and SYR2K idioms with computations performed by BLAS, Eigen, MKL (Intel’s x86),
ESSL (IBM’s PowerPC), and BLIS (AMD). Gains in performance that reach 2000× over hand-crafted source
code compiled at the highest optimization level demonstrate that replacing application code with library call
is a performant solution.
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1 INTRODUCTION

General matrix-matrix multiplication (GEMM) and symmetric rank-2k update (SYR2K) are simple
to implement naively but complex when designed to optimize the memory hierarchy [1]. GEMM in
particular is idiomatic because it can be succinctly expressed and it exhibits a direct relation between
implementation complexity and performance [2]. Most generic compiler loop transformations fail
to exploit specific features of programming idioms such as GEMM [3? ]. This paper reaffirms that
both sophisticated programmers and compilers still do not generate code with the performance of
well-tuned libraries [5]. Thus, instead of optimizing an idiom, a compiler may simply replace it
with a call to a library such as the Basic Linear Algebra Subprograms (BLAS) library [6]. These
expertly crafted implementations efficiently exploit the memory hierarchy and can deliver high
throughput on their target platform [1, 7, 8]. This paper argues that idiom replacement must be
both robust and safe in order to be an effective solution.

Despite progress in recent research [5, 9], existing approaches for idiom identification are brittle
and fail to recognize minor variants of an idiom. Existing solutions require intimate knowledge of
polyhedral analysis [9] or of a new domain-specific language that describes idioms [5]. They also
have high compilation time costs evenwhen the target idiom is absent from the code (see Section 5.5).

Our solution is a new optimization pass for the LLVM framework [10]. This pass combines tree
matching and idiom recognition [2, 11–13] with a data dependence analysis to deliver a robust
idiom recognition and a safe replacement strategy. Previously, Carvalho et al. presented a work-
in-progress report of this compiler pass [? ]. This solution extends tooling already present in the
LLVM framework and is fully integrated in this widely used compiler framework. Therefore it will
be easier to adopt, maintain and update. This paper also introduces the first, to the best of our
knowledge, formulation of an analysis that determines a GEMM matrix’s access order by matching
the induction variables used in the memory access (see Section 4.1.2). Access-order detection is
crucial to enable transparent and correct usage of high-performance libraries.

This paper makes the following contributions:

(1) A robust idiom-recognition compiler pass that identifies many variants of the GEMM and
SYR2K idioms and replaces them with optimized library calls (see Section 4 and Section 4.3).
KernelFaRer1 identifies both näive implementations and hand-optimized variants of these
idioms(see Section 5.3).

(2) The first formulation of an analysis that determines a GEMM matrix’s access orders by
combining pattern matching and loop information analysis in LLVM IR (see Section 4.1.2).
The same strategy was employed to match SYR2K’s access order.

(3) An experimental evaluation that provides evidence that: (a) the pass is robust and identifies
many more idiom variants than other approaches; (b) the addition to compilation time is
significantly smaller; (c) the increase in performance is consistent across architectures and
libraries (see Section 5).

The remainder of the paper is organized as follows: Section 2 presents background material;
Section 3 describes preceding related works while adding perspective regarding the proposed
approach; Section 4 details how LLVM IR pattern matching and optimized library call insertion
are combined in KernelFaRer’s implementation (Kernel Find & Replacer); Section 5 describes
the experimental setup and analyzes the performance improvements achieved by the proposed
approach when compared with current solutions and manual library-based programming; finally,
Section 6 concludes the work.

1Source code available at https://github.com/jaopaulolc/KernelFaRer.
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for (i = 0; s[i]; i++);

(a)

(i < j) ? i : j;

(b)

Fig. 1. (a) Idiom of finding the length of a string and (b) returning the minimum of 2 numbers.

2 PATTERN MATCHING IDIOMS

This section presents programming idioms in the context of pattern matchers that target idioms in
LLVM IR code and reviews how the GEMM operation is typically programmed and optimized.

2.1 Programming Idioms

Programming idioms are recurrent constructs that express a computation, can be easily recognized
(by humans), and are simple to compose [2]. The introduction of the array-oriented APL language
in the 1960s [14] with concise statements that exhibit high memory and high runtime complexity
motivated research on idiom recognition and selection [15]. Later, recognition of idioms was used in
many programming languages [5, 9, 11–13, 16–19] (see Section 3). Existing idiom-based approaches
differ mostly on:
• the program representation — usually graph-based structures (e.g. data-dependence graphs,
expression trees);
• the matching algorithm (e.g. depth-first traversals or solver-based);
• the normalization constraints for the matching mechanism to work (e.g. memory accesses
must be affine) or to be more effective (e.g. common subexpressions elimination);
• how idioms are expressed, either through a domain-specific language (DSL) or progra-
matically via a Visitor Pattern [20], and replaced (e.g. code generation or employment of
high-performance library).

Idioms have concise syntax and convey common understanding of recurrent computations [14].
For example, Figure 1(a) shows an idiom, written in C, for finding the length of a string s. This
example relies on the NULL byte at the end of well-formed strings, a false value in C that terminates
the loop. Figure 1(b) shows how a ternary operator concisely expresses the min operation without
the need for if/else control flow. This paper identifies larger idioms that express an identifiable
and well-known operation: GEMM. These idioms often account for a significant portion of the
execution time of an application and their performance can be greatly improved by replacing them
with calls to fine-tuned libraries.

2.2 Pattern Matching in LLVM IR

The LLVM compiler framework has a PatternMatch namespace that provides a mechanism to
build simple and efficient matchers for LLVM IR [10]. PatternMatch is used for static analysis (e.g.
Demanded-Bits and Instruction-Simplify analyses), code generation (e.g. Instruction Selection) and
transformations (e.g. Instruction Combining). The code in Figure 2 illustrates how PatternMatch
can simplify instructions in the LLVM InstCombine pass.
Figure 2(b) shows the tree representation of the expression in the return statement in line 3

of Figure 2(a). Figure 2(c) has a code excerpt from the LLVM InstCombine pass that employs
PatternMatch to simplify the expression X − (−Y ) into X + Y , shown as a tree in Figure 2(d) 2.
In the code of Figure 2(c), I references an fsub (floating-point subtract) instruction. The method
match(V, P) returns true if and only if the value V matches the pattern P .

2The code in LLVM uses a visitor for fsub instructions that only matches fneg.
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1 f l o a t foo ( f l o a t X, f l o a t Y)

2 {

3 return X - (-Y);

4 }

(a)

fsub

X fneg

Y

(b)

1 // X - (-Y) => X + Y

2 i f (match(I,

3 m_FSub(

4 m_Value(X),

5 m_FNeg(

6 m_Value(Y)))))

7 {

8 return CreateFAdd(X, Y, &I);

9 }

(c)

m_FSub

m_Value m_FNeg

m_Value

(d)

Fig. 2. (a) Double negation example; (b) Tree representation of (a); (c) Matcher and replacement code; and (d)

Pattern matched.

PatternMatch provides template methods that both describe IR patterns and bind values in
the pattern to pass variables. For example, the m_FSub and m_FNeg methods shown describe the
instructions fsub and fneg. The m_Value method matches and binds the left-hand side operand of
fsub to X and the single argument of fneg to Y . PatternMatch also provides flexible commutative
versions of matcher methods (e.g. m_c_FAdd3) that avoids cumbersome code describing and testing
two symmetric patterns. Within a basic block, LLVM can find simple patterns used for instruction
selection.

The LLVM LoopIdiomRecognize attempts to recognize two idioms — memory-set and memory-
copy — to replace the loop code with the llvm.memset and llvm.memcpy intrinsics. Backends
generate inline code or runtime library calls for these intrinsics. The existing LLVM PatternMatch
cannot be used in the LoopIdiomRecognize pass because it is limited to the scope of a single basic
block. Instead, that pass employs only Data-Flow Analyses (DFAs) [21] to identify and replace both
memory idioms. KernelFaRer uses PatternMatch to find loop idioms and DFAs to assess if the
the transformations are legal.

2.3 General Matrix-Matrix Multiplication

General matrix-matrix multiplication (GEMM), already pervasive in linear algebra computa-
tions [22], regained attention because convolution kernels used in neural networks can be efficiently
implemented using GEMM as a primitive [23]. Formally, GEMM can be defined as follows.

Definition 2.1. Let A and B be matrices of dimensionsM × D and D × N respectively. Let α and
β be any value in IR. The general matrix-matrix product of A and B is a matrix C of dimensions
M × D such that:

C(i, j) = β ·C(i, j) + α ·
D∑
k=1

A(i,k) · B(k, j) (1)

Although a naïve implementation of GEMM is simple, seminal work by Goto et al. shows that a
fast GEMM must utilize the memory hierarchy well [1]. Their approach splits the computation
into blocks to increase data reuse; and creates a matrix memory layout that increases temporal and
3_c indicates that the instruction to be matched (fadd) is commutative.
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1 void cblas_dgemm (

2 const CBLAS_LAYOUT Layout ,

3 const CBLAS_TRANSPOSE transa ,

4 const CBLAS_TRANSPOSE transb ,

5 const in t m, const in t n, const in t d,

6 const double alpha ,

7 const double *a, // A's base address

8 const in t lda , // and leading dimension

9 const double *b, // B's base address

10 const in t ldb , // and leading dimension

11 const double beta ,

12 double *c, // C's base address

13 const in t ldc); // and leading dimension

Fig. 3. CBLAS interface for double-precision GEMM.

spatial access locality, a process called packing the matrices. The central idea is to focus on the data
movement from main memory, through caches, and into the processor’s registers.
The GotoBLAS library [1] inspired other BLAS libraries. Processor-manufacturer solutions

include IBM’s Engineering and Scientific Subroutine Library (ESSL) [24] and Intel’s Math Kernel
Library (MKL) [25]. Manufacturers also contribute to OpenBLAS [26]. AMD’s version is the BLAS-
like Library Instantiation Software (BLIS) framework [27]. CBLAS is a unified interface to these
libraries for C languages [6].
Figure 3 shows the interface for double-precision GEMM. The Layout specifies if the resulting

matrixC is stored in row-major or column-major order. The arguments transa and transb indicate
if the matricesA and B are transposed, allowing matrices in different storage orders to be multiplied
without the creation of copies. An idiom matcher (see Section 4) must deduce the layout of the
matrices being matched to obtain these first three parameters. The matrix dimensions (m, n, and
d) appear in line 5, followed by the scalar factors α and β (lines 6 and 11), and the base address
pointers (lines 7, 9, and 12). The leading dimensions (lines 8, 10, and 13) are the number of elements
in the first dimension of each matrix.

BLAS libraries rely heavily on direct use of assembly and thus are not portable across platforms,
thus the many versions of BLAS. In contrast, Eigen [28] implements BLAS routines using C++
template meta programming to hierarchically organize the decisions and the tuning for each
platform. The templates encode platform-specific information that allow the compiler to choose
a strategy that is tuned based on cache sizes, vectorization support and other instruction-set-
architecture features (e.g. fused multiply-add support). Eigen also relies on code transformations
available in modern compilers such as GCC (GNU’s C/C++ Compiler) and Clang [29]. There is
no routine to call to compute GEMM in Eigen because it is a header-file only library that defines
builtin vector and matrix types. Computations are overloaded operations on these types. Thus,
the programmer needs to include the header files providing Eigen’s types and operators and write
C++ expressions of the form: C = beta * C + alpha * A * B as per Definition 2.1. Using Eigen
to replace a GEMM idiom required the creation of a wrapper library encapsulating Eigen code
(see Section 4.3).

3 A BRIEF HISTORY OF IDIOMMATCHING

David Callahan’s seminal work identifies bounded-recurrence idioms in data-dependency graphs
and replaces them with hand-written parallelized implementations in FORTRAN [11]. Another
seminal work by Pinter et al. formalizes idiomatic recognition in a Computational Graph (CG) that
is used to construct a tree where pattern matching is implemented [12]. They were among the
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first to normalize loops to improve idiom matching. Their normalization includes loop unrolling
to guarantee that all loop-carried dependencies have a maximum distance of one. The goal is to
improve idiom recognition by canonicalizing the code, thus eliminating syntactic variations that
lead to subtle changes in the intermediate representation. To the best of our knowledge, there is no
experimental evaluation of Pinter et al.’s work. KernelFaRer differs from Callahan’s approach
because it is integrated in the compilation, and differs from Pinter et al.’s approach because it does
not build auxiliary structures for pattern matching, instead it relies only on the LLVM IR [10].
Menon et al. propose Abstract Matrix Form (AMF), an algebraic language, as an IR and opti-

mization language [13]. AMF expressions are transformed through a set of axioms used as rewrite
rules provided by the user. AMF targets loop-based languages, such as FORTRAN and MATLAB,
via source-to-source translation. The evaluation of AMF is restricted to simple matrix-matrix and
matrix-vector kernels on a single platform. Birkbeck et al. also define a canonical representation for
MATLAB programs and find idioms to match patterns in an extensible database [30]. In contrast,
KernelFaRer applies to any language once it is compiled to LLVM IR and is thoroughly evaluated
across three platforms (see Section 5).

Sato Hiroyuki use grammar rewriting rules based on the array semantics of FORTRAN to propose
a rule-based term rewritter for idiom recognition and replacement [16]. Later, Hiroyuki supports
graph rewriting optimizations [17]. This approach is limited to FORTRAN, vulnerable to syntactic
variations in the source code, and there is also no public evaluation of the approach.

He et al.’s tree-based idiom recognizer uses a Reduced Affinity Relation Graph (RAG), a directed
tree structure rooted at the left-hand side value of an assignment expression [18]. A RAG encodes
data-dependency relations between values in an expression. Temporaries do not appear in a
RAG. Likewise, KernelFaRer eliminates unnecessary temporaries through standard compiler
transformation passes. He et al.’s approach incurs a memory and time overhead for creating and
maintaining the RAG. In contrast KernelFaRer uses existing data representations already built
during compilation.

Kawahito et al. match idioms to perform JIT compilation of JAVA string operations and replace
them with IBM’s System Z machine instructions [19]. This pattern matcher uses the Abstract
Syntax Tree (AST) and the Control-Flow Graph (CFG). Topological Embedding [31] enables them
to implement non-exact idiom matching in the AST or CFG. Non-exact matches are made exact
via a custom transformation pipeline. However, the transformation passes needed for non-exact
matching limit the general applicability of this solution.
KernelFaRer is not the first work to recognize that customized implementations of idiomatic

operations can match the performance of specialized libraries. Spampinato et al. describe SLinGEN,
a DSL for expressing small-scale linear algebra applications [32]. SLinGEN optimizes an algebraic
description of a kernel in its high-level representation and generates a C program with architecture-
specific vector intrinsics. In contrast with KernelFaRer, SLinGEN was designed to target only
small-scale and statically sized kernels. KernelFaRer is not limited to small, static kernels and
automatically identifies the idioms in the code written in general purpose languages, no DSL
specification required. Rink et al. present CFDlang, yet another DSL that targets tensor operations
in the fluid dynamics application domain [33]. Similar to SLinGEN, CFDlang generates C programs
that implement the idiom specified in its DSL and performs high-level optimizations as source-
to-source transformations. KernelFaRer is not restricted to the fluid dynamics domain. In fact,
KernelFaRer can readily identify GEMM and SYR2K in native programs without custom DSL
specifications. The fact that KernelFaRer is integrated into LLVM, a major compiler framework,
also sets it apart from both SLinGEN and CFDlang that are external tools.
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The two most recent, closely related approaches to idiom matching are by Ginsbach et al. [5] and
by Chelini et al. [9]. Ginsbach et al. introduce the Idiom Description Language (IDL), a constraint-
based DSL to describe idioms. IDL constraints are synthesized into LLVM IR passes that perform
the matching process. While the first IDL prototype [5] had no automatic idiom-replacement
mechanism, Ginsbach et al. later proposed a new DSL called LiLAC that includes automatic idiom
replacement for both dense and sparse matrix-vector operations [34]. However, LiLAC’s passes
cannot identify the matrix layouts and the evaluation uses hard-coded calls with an assumed access
order. Adoption, maintenance, and extension of IDL is challenging because it is external to the
compilation framework. This prevents IDL users from exploiting rich debugging tools in LLVM
and makes the task of specifying idioms much more involved since IDL is composed of several
small components written in different languages. Similar limitations are found in Chelini et al.’s
Loop Tactics [35], a DSL to describe idioms to be matched in a polyhedral schedule tree — an
auxiliary structure constructed from LLVM IR, and to be replaced by either a library call or by code
generated by Polly [3]. Adopting either of the DSL approaches is nontrivial. Loop Tactics requires
understanding the polyhedral model and it is difficult to understand a complex composition of
constraints in IDL. In contrast, KernelFaRer requires no auxiliary data structures and is fully
based on standard LLVM IR passes, allowing developers experienced with LLVM’s IR to extend its
methodology to other idioms.

4 AN IDIOM RECOGNITION AND REPLACEMENT PASS

This section presents KernelFaRer, an LLVM IR pass that performs idiomatic code rewrite and is
integrated into LLVM’s standard optimization pipeline. KernelFaRer is an independent IR pass
that extends the LLVM PatternMatch API (see Section 2.2) with custom matchers to identify more
complex idioms. KernelFaRer works independently of other LLVM optimization frameworks like
Polly, but it can be of assistance to it or other paths to code generation. The description of this
pattern-matching extension is demonstrated in a GEMM case study. However, the methodology is
flexible enough to capture all IR constructs and thus enables the description of many idioms. In
fact, performance results with our prototype implementation of a SYR2K matcher and replacer are
discussed in Section 5. A standard data-flow analysis is sufficient to determine if values computed
in the idiom are used elsewhere in the program and thus can also be extended to other idioms.

The KernelFaRer’s algorithm can be divided into three phases as follows:
(1) Identify candidates that match the target idiom through IR matchers (see Section 4.1).
(2) Check data dependences and isolate the matched code (see Section 4.2).
(3) Replace the idiom with a call to a high-performance library (see Section 4.3).
Phase 1 uses LLVM’s PatternMatch to identify IR code that matches the target idiom. The

data-dependence analysis in Phase 2 determines if the replacement of the matched code with a
library call is legal. This phase also determines if code transformations, such as loop distribution or
loop invariant code motion, are needed to make the transformation legal.

4.1 GEMM Pattern Matching (Phase 1)

GEMM memory access patterns can be expressed in a higher-level programming language as
shown in Figure 4. The variables ivi , iv j , and ivk on line 1 of Figure 4(a) are induction variables
of a level-three loop nest (or deeper). The for loop syntax in Figure 4(a) indicates that the three
loops can be nested in any order. For any nesting order, the reduction on line 2 expresses a GEMM.
Parenthesis operators are used for indexing the arrays to indicate that the elements of the array
may be accessed either in column-major or in row-major order. For instance, A(i,k) means that
the element on the i-th row and k-th column is accessed. The implementation of the operators for
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1 for (0 <= ivi < M; 0 <= iv j < N; 0 <= ivk < D)

2 C(ivi ,iv j ) += A(ivi ,ivk ) * B(ivk ,iv j )

(a)

1 operator ()(iv1, iv2) {

2 return *(addr + iv2 * ld + iv1);
3 }

(b)

1 operator ()(iv1, iv2) {

2 return *(addr + iv1 * ld + iv2);
3 }

(c)

1 %41 = phi [%53 , %40], [0, %25]

2 %42 = phi [%52 , %40], [0, %25]

3 %43 = mul %41 , %17

4 %44 = add %43 , %23

5 %45 = getelementptr %4, %44

6 %46 = load %45

7 %47 = mul %41 , %16

8 %48 = add %47 , %26

9 %49 = getelementptr %6, %48

10 %50 = load %49

11 %51 = fmul %46 , %50

12 %52 = fadd %42 , %51

13 %53 = add %41 , 1

14 %55 = icmp eq %53 , %21

15 br %55 , %30 , %40

(d)

Fig. 4. (a) Memory access of GEMM in source code; (b) colum-major access order; (c) row-major access order;

(d) Simplified LLVM IR code of the innermost loop in (a) (Code in (b) and (c) is in C/C++).

column-major order is shown in Figure 4(b) while the row-major access is shown in Figure 4(c),
where addr is the base address of an array and ld is the leading dimension of the array. The
dimensions of the matrices are: AM×D , BD×N , and CM×N .
Identifying a GEMM idiom requires the identification of its two components: the loop nest

on line 1 and the reduction operation on line 2 of Figure 4(a). The multiply-and-add operations
of the reduction idiom appear on lines 11-12 of the LLVM IR of the innermost loop nest shown
in Figure 4(d). In this SSA representation the result of each instruction is assigned a unique value.
Thus, each of the instructions in Figure 4(d) can be referred to by its value V. For instance, the
fmul in line 11 is uniquely identified by the value %51 and the fadd in line 12 by the value %52. In
general, when presenting an algorithm that iterates over all the instructions in the body of a loop
L, this paper will say “for all values V in L".

A GEMMReduction is a multiply-add instruction sequence that satisfies the following conditions:
(1) it appears in the innermost level of a loop nest of at least depth three; (2) the operands are
memory accesses to arrays; (3) the address of the memory accesses are affine expressions of the
form addr+ivx×ld+ivy , where ivx and ivy are index variables in the loop nest and addr is a
loop-invariant expression — either the base address of a matrix or the base address or a block
within the matrix; and (4) the combination of induction variables used in the address expressions is
one of the combinations shown in Table 1.

The first component of the pattern, loop nests, are identified using LLVM’s LoopInfo analysis pass.
LoopInfo provides a consistent way to retrieve loop information from the IR of a program, such as the
nesting level of a given loop. The second part of the pattern, GEMMReduction, cannot be identified
with the existing LLVM PatternMatch API. Therefore, KernelFaRer extends PatternMatch by
adding new matchers and new constructs for matching more complex patterns. Figure 5 shows the
main patterns contributed by KernelFaRer, those printed in red are the proposed extensions and
those in black are the existing constructs. Themain pattern that matches a store of aGEMMReduction
to the destination matrix C is shown in Figure 5(a), a similar pattern was created to match SYR2K
reductions.
KernelFaRer introduces the OneOf combiner construct to allow a list of multiple matchers,

which usually represent subtle variations in a target pattern, to be tested in turn. OneOf only
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1 template <typename MatcherType >

2 auto MatchStoreOfMatrixC(MatcherType GEMMReduction , Value C, Value Alpha , Value

Beta , PHINode iv1, PHINode iv2, Value LDC , Value GEP) {

3 return m_Store(

4 OneOf(ScaledVOrV(Alpha , GEMMReduction),
5 ScaledVOrV(Beta , m_PHI(m_Value(), GEMMReduction)),
6 m_c_FAdd(ScaledVOrV(Beta , m_Load(GEP)),

7 ScaledVOrV(Alpha , m_PHI(m_Value(), GEMMReduction)))),
8 ArrayAccess(C, iv1, iv2, LDC));

9 }

(a)

1 i n l ine auto GEMMReduction(Value AddLHS , Value MulLHS , Value MulRHS , PHINode ivA1 ,

PHINode ivA2 , PHINode ivB1 , PHINode ivB2 , Value Alpha , Value LDA , Value LDB) {

2 return MultiplyAdd(

3 Alpha , AddLHS , m_Load(ArrayAccess(MulLHS , ivA1 , ivA2 , LDA)),

4 m_Load(ArrayAccess(MulRHS , ivB1 , ivB2 , LDB));

5 }

(b)

1 auto ArrayAccess(Value Op, PHINode iv1, PHINode iv2, Value LD) {

2 return OneOf(
3 m_GEP(m_Load(m_GEP(Op, m_PHI(iv2))), m_PHI(iv1)),
4 m_GEP(m_GEP(Op, PHITimesLD(iv1, LD)), m_PHI(iv2)),
5 m_GEP(m_GEP(Op, m_PHI(iv2)), PHITimesLD(iv1, LD)),

6 m_GEP(Op, m_PHI(iv1), m_PHI(iv2)),
7 m_GEP(Op, AffineFunctionOfPHI(iv1, iv2, LD));

8 }

(c)

Fig. 5. (a) Matcher of a store of GEMMReduction into matrix C; (b) GEMMReduction matcher; and (c) Matcher

for an array access.

returns a successful match if one of the provided sub-matchers match the underlying piece of
LLVM IR. This construct is widely used in KernelFaRer extensions to facilitate the description of
variations in the target pattern. PatternMatch provides basic disjunctive and conjunctive nodes.
Disjunction nodes allows the capturing of idioms with polymorphic components. Conjunction
nodes allow further specification and pattern component constraints. Combining OneOf with these
nodes makes KernelFaRer pattern matcher more robust. For example, ScaledVOrV (s,V ) uses the
disjunctive node to match either s ∗V orV , whereV is any value represented by a KernelFaRer &
PatternMatch matcher.
Figure 5(b) shows the matcher that captures the GEMMReduction itself, where MultiplyAdd

matches expressions of the form α ∗A ∗ B.4 ArrayAccess, shown in Figure 5(c), is the matcher that
identifies accesses to arrays in different representations. Lines 3-6 are the sub-matchers representing
different variants of access to 2D arrays, while in line 7 the matcher identifies flat-arrays. m_GEP and
m_PHI match their respective IR instructions, namely getelementptr and ϕ-nodes. Flat-arrays
have indexing expressions that are affine functions of loop induction variables and such expressions
are matched with AffineFunctionOfPHI. 2D-array accesses have an idiomatic expression that
multiplies an induction variable by a matrix leading dimension. PHITimesLD captures two variants
of this idiom, thus matching wether the multiplication is performed by a multiply (mul) or by a
shift-left (shl) LLVM IR instruction.
4α is optionally matched by using PatternMatch’s disjunctive node.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:10

João P. L. de Carvalho, Braedy Kuzma, Ivan Korostelev, José Nelson Amaral, Christopher Barton,

José Moreira, and Guido Araujo

Algorithm 1 LLVM IR Pass to find GEMM candidates.
1: function findGemmIRPass(Function F, LoopInfo LI)
2: LoopList← findInnerDeepLoops(F, LI)
3: for all Loops L in LoopList do
4: for all Values V in L do
5: if GemmPattern.Match(V) then
6: IVList← {ivA1 , iv

A
2 , iv

B
1 , iv

B
2 , iv

C
1 , iv

C
2 }

7: (OrderList, ivi , iv j , ivk )←MatrixAccessOrder(IVList)
8: (M, N, D)← LoopsUpperBound(LI, ivi , iv j , ivk )
9: if AllGemmValuesFound() then
10: A←Matrix(OrderList, M, N, D)
11: B←Matrix(OrderList, M, N, D)
12: C←Matrix(OrderList, M, N, D)
13: Gemm← (L, IVList, A, B, C)
14: Candidates.insert(Gemm)
15: function match(Value V, Pattern P)
16: return P.match(V)
17: interface Pattern<T>::match(Value V)
18: function Pattern<FAdd>::match(Value V)
19: AddOper0← V.getOperand(0)
20: AddOper1← V.getOperand(1)
21: return FAdd_Match(AddOper0, AddOper1)

4.1.1 Algorithm to match a GEMM. The central idea of this paper is that the loop information
provided by the compiler can be used to constrain the search for the target idiom’s components
to the places where it is possible for them to occur. In LLVM, the nesting level, entry, exit, and
latch basic blocks for each loop are available through the LoopInfo pass. However, there are two
limitations: (1) in a kernel that has been optimized through blocking, the inner loops are not in
canonical form; and (2) the induction-variable information is only available for canonical loops
via the LoopInfo pass [10]. KernelFaRer’s solution is to combine basic-block and loop-nesting
information from LoopInfo with PatternMatch. In LLVM IR, induction variables are lowered to ϕ
instructions with at least two incoming values: an initialization value; and a new value that comes
from the loop’s latch basic block. KernelFaRer’s general idiom recognizer uses PatternMatch to
match these ϕ instructions.
Algorithm 1 uses PatternMatch and the LoopInfo pass to identify GEMM candidates. First,

using the LLVM LoopInfo pass, find all innermost loops that are nested at the third (or deeper)
level and place these loops in a list (line 2). Then, iterate over all instructions (value V in line 4)
inside those loops, invoking the method Match of a GemmPattern object on each one of them.
The generic interface for Match is shown in line 17, where T can be any LLVM IR instruction
type. Each instruction type in a pattern must have an implementation for the Match interface. For
instance, the implementation of Match for FAdd for the GEMM pattern is shown on line 185. To
find the idiom, Match descends the IR tree matching the specified pattern.
Values from the IR are captured through matcher objects of type BindType. GemmPattern

contains such objects to capture, for instance, values associated with a GEMM’s induction variables
and memory address instructions.

5The FAdd_Match in line 21 is an algorithmic simplification of an object-oriented code structure in LLVM. It abstracts the
matching of both operands of a fadd instruction referenced by V (line 18) using the FAdd_Match object within GemmPattern.
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Table 1. Access offset expressions for all combinations of column-major (CM) and row-major (RM) order.

Access Order Offset Expressions
C A B C A B

RM
RM

RM

ivi × ldC + iv j ivi × ldA + ivk
ivk × ldB + iv j

CM iv j × ldC + ivi
RM

CM
ivi × ldC + iv j ivk × ldA + iviCM iv j × ldC + ivi

RM
RM

CM

ivi × ldC + iv j ivi × ldA + ivk
iv j × ldB + ivk

CM iv j × ldC + ivi
RM

CM
ivi × ldC + iv j ivk × ldA + iviCM iv j × ldC + ivi

Table 2. Conditions to determine the access orientation.

Access Order Equalities to derive access order of

A B A and B
C

RM CM
RM RM oA = lB lC = lA ∧ oC = oB lC = oB ∧ oC = lA

CM RM lA = lB lC = oA ∧ oC = oB lC = oB ∧ oC = oA

RM CM oA = oB lC = lA ∧ oC = lB lC = lB ∧ oC = lA

CM CM lA = oB lC = oA ∧ oC = lB lC = lB ∧ oC = oA

4.1.2 Determination of the Matrix Access Order. A crucial step to replace a GEMM idiom with a
call to a library is to determine the access order used by the idiom for each matrix (Algorithm 1,
line 7). These access orders are required by the library call that will replace the detected idiom
(see Section 4.3). This analysis differs from the work of Wolfe et al. where the iteration domain is
analyzed to identify dependencies in a loop [36]. Here the goal is to identify the access order of
each matrix in the target pattern.

Table 1 shows the offset expressions according to the access order of the matrices assuming that
the index variables are ivi , iv j , and ivk . When a multiply-and-add operation that is a candidate to
be a GEMM reduction is encountered, the expressions for the access into the matrices are identified
as lC × ldC + oC , lA × ldA + oA, and lB × ldB + oB where lC is the index variable for the leading
dimension of matrix C and oC is the offset into that dimension of C6. The same logic is applied to
the matrices A and B. The access order can be deduced by examining which of the index variables
are identical in the multiply-and-add idiom candidate.

Table 2 shows the equality conditions that determine the access order for matrices A and B. For
instance, if oA = lB , then both matrices A and B are accessed in row-major order as shown in the
first two rows of Table 1. Given that all the possible combinations for access orders for a GEMM
are given in Table 1, it follows that if none of the equality constraints shown on the second column
of Table 2 are met, then the multiply-and-add cannot be a GEMM reduction.
To illustrate how to determine the access order of C , let’s examine the two top rows of Table 1

where both matrices A and B are accessed in row-major order. There are two cases. If lC = lA
6lX and oX are also known as the angular and linear coefficients of a linear function, such as those in indexing expressions
used to access array elements.
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Algorithm 2 Data-Dependence Analysis IR Pass.
1: function AnalysisPass(Function F, Kernel K)
2: L← K.getAssociatedLoop()
3: for all Instructions I in L do
4: if I ∈ K.Values or I ∈ K.Stores then continue
5: if I.mayWriteToMemory() then
6: return False
7: if I.mayHaveSideEffects() then
8: return False
9: for all Users U of Instruction I do
10: B← BasicBlock of I
11: if B < L then
12: return False
13: return True

and oC = oB then C is accessed in row-major order. If lC = oB and oC = lA, then C is accessed in
column-major order. If neither of these conjunctions are satisfied, then the multiply-and-add is not
a GEMM reduction. Similar sets of conjunctions can be written for the other three combinations of
access order for A and B as shown in Table 2.
This strategy can also be used to detect the access order of matrices in other computational

kernels (e.g. SYR2K).

4.1.3 Loop Upper Bounds. The intuition to determine loop upper bounds is that the index
variable of a loop must be initialized prior to starting the execution of the loop and must be updated
within the loop body. Therefore, in the SSA representation there must be a ϕ instruction that
merges the initialization path with the update path at the first basic block of a loop. First, add all ϕ
instructions that are in the first basic-block of the loops and that use ivi , iv j , or ivk to a work list.
Then, match each ϕ instruction in this list against a pattern tree that represents the instruction
sequence for the loop index update and loop comparison7. The upper bound of a loop L is the
operand compared with the value defined by the ϕ instruction if the pattern belongs to the latch
block of L. All GEMM instances matched by GemmPattern that have a valid access order and for
which loop nests upper bounds can be determined are candidates for replacement with a call to a
library (see Section 4.3). Now, a data-flow analysis must establish the legality of the transformation.

In the triangular iteration space of SYR2K two out of tree induction variables are traversed in the
same way as in GEMM and the third variable’s (J ) upper (lower) bound is dependent on another
variable (I ). To detect this pattern, KernelFaRer checks for the presence of I in the ϕ instruction
for J . This detection method can be thwarted by the insertion of auxiliary induction variables.

4.2 Data-Dependence Analysis

Idiom replacement must preserve program behavior, including writes to memory and outputs.
Also, any inner-loop code that is not part of the GEMM reduction must be safely moved out of the
loop nest. A liveness and side-effects analysis of the use-def chains in the idiom’s loop nest can be
combined to determine if any intermediate value is live after the idiom or produces side-effects
during the computation. This analysis differs from the loop dependence analysis of Wolfe et al. [36].
The Data-Dependence Analysis in Algorithm 2 receives the IR for a function F and a Kernel

object found within F. It returns a boolean indicating if the idiom replacement is legal. At the
matching stage, the algorithm gathers two data structures. (K .Values) contains matrix pointers,
7This instruction sequence is idiomatic of loop-exit conditions.
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1 for ( long i = 0; i < M; i++)

2 for ( long j = 0; j < N; j++) {

3 C[i][j] = 0.0;

4 for ( long k = 0; k < D; k++)

5 C[i][j] +=

6 alpha * A[i][k] * B[k][j];

7 }

(a)

1 for ( long i = 0; i < M; i++)

2 for ( long j = 0; j < M; j++)

3 for ( long k = 0; k < N; k++) {

4 C[i][j] +=

5 alpha * A[i][k] * B[j][k];

6 C[i][j] +=

7 alpha * B[i][k] * A[j][k];

8 }

(b)

1 for ( long r = 0; r < R; r++)

2 for ( long q = 0; q < Q; q++) {

3 for ( long p = 0; p < P; p++) {

4 sum[r][q][p] = 0.0;

5 for ( long s = 0; s < P; k++)

6 sum[r][q][p] +=

7 A[r][q][s] * C4[s][p];

8 }

9 for ( long p = 0; p < P; p++)

10 A[r][q][p] = sum[r][q][p];

11 }

(c)

Fig. 6. (a) Naïve GEMM; (b) symmetric rank-2k operations (syr2k); and (c) Multiresolution analysis kernel

(doitgen).

offsets and intermediate values; (K .Stores) contains the stores in the Kernel. These data structures
afford flexible access to the Kernel parameters and enable checking that the only extra stores in the
loop nest are initializations stores.

The Data-Dependence Analysis algorithm iterates over all instructions in the kernel’s associated
loop (line 3) skipping those that are in the kernel (line 4). If an instruction may store to memory
(line 5) or produces side-effects such as throwing an exception (line 7), return False. The algorithm
also checks for data flow from definitions in the kernel innermost loop to uses after the loop (lines 9
- 12).

The kernels in Figure 6 illustrate when instructions may or may not be moved out of a GEMM
loop. Two of them, Figure 6(b) and (c), are from benchmarks in PolyBench [37]. In spite of its
simplicity, the naïve GEMM implementation in Figure 6(a) cannot be directly rewritten because of
the initialization of matrix C. This initialization must first be moved to a separate loop because
all high-performance libraries assume that matrix C is initialized prior to calling the function that
implements GEMM. Another possibility is to simply delete the GEMM reduction store that is in
line 5 and to insert a library call at the exit-block of the loop nest — dead code can be removed
later by LLVM passes. Side effects in the initialization of the matrix C could also prevent rewrite.
KernelFaRer recognizes this idiom and replaces it if no side-effects exist.
Figure 6(b) shows a symmetric rank-2k operation from the SYR2K kernel. This kernel accesses

matrixA in row-major order and B in column-major order in line 4 and then matrix B in row-major
order and A in column-major order in line 5. C is accessed in row-major order. The replacement of
the idioms in SYR2K is safe and the access order is detected by the algorithm. No copy operations
are required because a matrix stored in row-major order can be accessed in column-major order by
specifying to the library that the matrix is transposed. However, floating-point arithmetic is not
associative and, depending on the values in A and B, the result after and before the transformation
might differ for a given error tolerance. In this case there are three options: (1) do not replace it;
(2) replace it with two calls to cblas_gemm if the the user allows it; (3) replace it with a call to
cblas_syr2k. KernelFaRer replaces this idiom with a call to cblas_syr2k.
The multiresolution analysis doitgen kernel shown in Figure 6(c) has R GEMM instances, one

for each resolution r. The GEMM in each resolution can only be rewritten after the update of row
q in A with the values from sum (lines 8-9) is moved to a new loop-Q after the original one (line
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2). Loop distribution is not currently available in KernelFaRer because LLVM only distributes
innermost loops.

4.3 Idiom Rewrite

The prototype of KernelFaRer evaluates two replacement options: a custom library that leverages
Eigen [28] or the CBLAS [6] interface, which is widely used by OpenBLAS [7] and by vendor-
specific libraries such as MKL [25], ESSL [24] and BLIS8 [27]. This interface allows the evaluation
of multiple libraries without recompiling the program. CBLAS expects that matrices be stored
contiguously in memory, thus KernelFaRer does not replace any GEMM that access the matrices
through double pointer indirection, e.g. float**, because the contiguity constraint cannot be
proven. In addition, instaces where only sub-blocks of 2D arrays are accessed to compute GEMM
are also not replaced since the contiguity constrain is violated.
Unlike BLAS, Eigen [28] uses a minimum amount of assembly code; is portable; and supports

all basic types from C/C++ languages, not just single and double-precision floating-point types.
KernelFaRer creates a slim wrapper routine for each data type in Eigen. Eigen heavily exploits
C++ template meta programming and other object-oriented features (e.g. polymorphism). In Eigen’s
template type hierarchy the compiler chooses which methods to instantiate based on the target
platform (see Section 2.3).

The following steps replace a GEMM-idiom loop nest with a library call: (1) insert a call instruction
in the exit-block of the idiom’s loop nest. The values captured in the matching phase (Section 4.1)
are passed as arguments to the library call; (2) delete the idiom’s store to the resulting matrix. This
makes the computations in the idiom’s loop nest dead-code, which can be removed by LLVM passes
scheduled afterwards. (3) run LLVM’s loop deletion, dead-code elimination and CFG simplification
passes.

5 EXPERIMENTAL EVALUATION

This experimental evaluation assesses (1) the effect on performance of replacing native code idioms
with high-performance library calls on three platforms: Intel x86, AMD x86, and IBM PowerPC
(Section 5.2); (2) the robustness of KernelFaRer’s pattern matching in comparison with Polly and
IDL [5] (Section 5.3); and (3) the effects of pattern matching and analysis on compilation times
(Section 5.5).

5.1 Experimental Setup

This section presents the detailed experimental setup, methodology, and all tools used in the
experimental evaluation presented next.

5.1.1 Machine Setup. This experimental evaluation uses the three platforms shown in Table 3 to
determine if the performance trends are platform specific 910. All platforms run Linux with a 64-bit
kernel at version 4.15.0-115-generic. The processor’s frequency was locked to 3.5 GHz on the
Intel machine and to 2.3 GHz on the IBM machine. Issues with the acpi-cpufreq module prevent
the locking of the frequency on the AMD machine and thus the frequency fluctuates between 1.8
GHz and 2.2 GHz.

8BLIS is actually an open-source project but AMD provides support and advertises it as their platform-specific solution:
https://developer.amd.com/amd-aocl/blas-library/
9Core counts are per socket and thread counts are per core.
10Cache sizes are per core or per core pair.
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Table 3. Machine configuration used in the evaluation.

Component/Feature Intel® IBM® AMD®

Processor 2x Xeon™ 8268 2x Power9™ 1x EPYC™ 7742
Cores/Threads 24/2 20/4 64/2
L1 instruction cache 32KiB 32KiB 32KiB
L1 data cache 32KiB 32KiB 32KiB
L2 (unified) 256KiB 512KiB 512KiB
L3 (unified+shared) 35.75MiB 10MiB 16MiB
RAM 755GiB 1TiB 995GiB
Memory bandwidth 131.13GiB/s 140GiB/s 190.7GiB/s
FMA Latency 4 7 5
FMA Throughput 2 2 2

5.1.2 Compilation Pipeline. All benchmarks are compiled using Clang and LLVM tools from
the proprietary LLVM 12.x branch at -O3 with -mtune=native and the options -march=native
for x86 (Intel and AMD) and -mcpu=native for IBM PowerPC. IDL [5] and KernelFaRer need to
run prior to loop unrolling and vectorization passes. The solution is to disable these passes via
-fno-unroll-loops -fno-vectorize -fno-slp-vectorize before the idiom-identification pass
and to reenable them afterwards by running the opt LLVM tool using -O3. All binaries, including
the baselines, were compiled with -ffp-contract=fast and -ffast-math for a fair comparison
with libraries that assume a relaxed floating-point contract.

5.1.3 Backends. This evaluation uses the following backends: BLAS (via the OpenBLAS imple-
mentation [7, 26]), Eigen [28], MKL [25], BLIS [27], and ESSL [24]. It uses the latest stable release,
from source, of BLAS11 and Eigen12. It uses the most recent, pre-built, binaries available from the
vendors for the platform-specific backends — MKL13, BLIS14, and ESSL15.

Libraries are unmodified except for setting flags to enable multithreading. The number of threads
in each platform is chosen such that all computation is performed on a single socket and no
hyperthreading takes place. This criteria results in 24 threads for the Intel platform, 64 for the
AMD, and 20 for the PowerPC (see Table 3). The same number of threads is used in each platform
for all backends.

5.1.4 Polly. This evaluation uses the version of Polly available in the proprietary LLVM 12.x
branch. The target-specific instruction scheduling in Polly’s GEMM optimization pass requires the
following platform information: size and associativity of first and second level caches; latency and
throughput of vector fused multiply-add instruction (FMA). This information was extracted from
each vendor’s software optimization guides [38, 39] and Agner Fog’s instruction tables [40] and
included the architecture-specific information in Table 3 For the evaluation, Polly’s code uses the
same thread counts as the other approaches. Even though pattern-matching options are always
enabled in Polly, it is only successful in four out of seven programs (see Section 5.3).

5.1.5 IDL. IDL [5] does not provide a replacement pass (see Section 4.3). This evaluation focuses
on the idiom identification mechanism of IDL. The performance improvement of replacing idioms
identified by IDL should be the same as when using KernelFaRer. Normally, IDL also has the

11Default branch at 1f62a8278983f7afec8c9c28ecbb2f4892f7ce52.
12Default branch at b5df8cabd7b9dcaf3eb0ab93416f3f25352c55f2.
13Version 2020.0 build 20191122.
14Version 1.3 build 20190901.
15Version 6.2.1.
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Fig. 7. The speedup of benchmarks when compared to the same benchmark run at -O3 on the respective

platform.

ability to detect multiple idioms at once, but in this evaluation, all other idioms have been disabled,
leaving only GEMM.

5.1.6 PolyBench. This evaluation uses all of the benchmarks in the PolyBench/C 4.2 benchmark
suite [37], a set of benchmarks originally curated for the testing of Polly. Choosing the extra-large
datasets ensures that the input and output matrices do not fit in cache, thus allowing assessment
of the cache and memory-hierarchy awareness of each evaluated library and strategy. This study
evaluated all the benchmarks in the suite but presents results only for benchmarks where at least
one of the approaches recognized a GEMM pattern. Section 5.2 discusses the impact on the other
benchmarks.

5.1.7 Experimental Methodology. The methodology proceeds as follows. (1) Compile each bench-
mark, for each platform, with aggressive optimization flags (see Section 5.1.2) using five strategies:
baseline, Polly, and replacement with BLAS, Eigen, and a platform-specific library (MKL for Intel,
BLIS for AMD, and ESSL for PowerPC). (2) Create a list containing all the executables. (3) Measure
the execution time of each element of the list once. (4) Randomize the list of executables before
the next set of measurements. (5) Repeat until there are twenty measurements for each executable.
This methodology ensures that changes to the execution environment that may affect performance
manifest in a higher variance between executions of the same executable rather than introduce
bias in the results of the experimental evaluation. All speedups are relative to the platform-specific,
baseline application code compiled with -O3, and are the average of these twenty measurements.
The confidence intervals (95%) are computed using Kalibera et al.’s formulation [41].

5.2 Performance Comparison

Figure 7 shows the speedup for each library or strategy for each of the platforms for the four
PolyBench/C 4.2 benchmarks where the idioms are recognized and replaced. The outstanding
performance of the BLAS libraries is due to a macro/micro-level design strategy. Such strategy
enables higher performance gains with SYR2K than with other kernels as only half of the output
matrix is accessed.
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Fig. 8. The ratio of runtimes of OpenBLAS and vendor libraries

KernelFaRer never negatively affects performance in the case where no GEMM is detected
because no transformation is imposed. Polly improves performance of other benchmarks in the
PolyBench/C 4.2 suite that do not contain a GEMM idiom, but it occasionally causes a degradation.
For instance, the performance for atax is only 70% performance of the baseline in the AMD
environment.

Replacing a native GEMM idiom with a call to the BLAS library on the Intel platform leads up to
a 2000 times speedup for the 2mm benchmark. Polly also produces non-trivial performance gains —
up to 200× for SYR2K on AMD. Polly only targets the first two levels of cache but the third-level
cache is significantly larger (see Table 3) and its effective utilization is key for performance [1].
Polly also only applies thread-level parallelism to the outermost loop in a GEMM [9] while the
libraries implement a dynamic run-time strategy to decide how to divide the GEMMReduction across
multiple threads [27]. Polly’s current GEMM-packing strategy could be improved by carefully
choosing packing parameters for multithreading [42].

In the results shown in Figure 7, OpenBLAS [26] outperforms MKL, BLIS and ESSL, the vendor-
specific solutions from Intel, AMD and IBM, respectively. This result contradicts the expectation
that the performance of vendor-specific libraries should be on par with, or superior to, OpenBLAS.
This is due to the largest dataset sizes in PolyBench/c 4.2 — M = 2000, N = 2300, and K = 2600
— not being in the optimal range for the vendor-specific libraries. Figure 8 shows the ratio of
running times between a vendor-provided library (ESSL and MKL) and OpenBLAS. The results
were measured for for matrix sizes M = K = N = 2i , i ∈ [7, 15] and averaged over 10 runs. ESSL
is up to 5× faster for 3mm and on average 2× faster for GEMM and 2mm than OpenBLAS for sizes
smaller than 4K. The cblas_syr2k routine is better optimized in OpenBLAS than in ESSL, which
explains the significantly poorer performance of ESSL. PPC’s baseline binares (compiled with only
-O3) also ran three times faster than Intel’s baseline, which could explain its lower library speedups.
MKL has been optimised for larger matrix operations, visible in its consistent improvment as
dimension sizes increase. This is undoubtedly due to the insight that saving a percentage of time
from an operation that takes several hours to complete is much more impactful than that same
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Table 4. Comparison of pattern matching tool robustness to different patterns. KernelFaRer is the presented

method. Cells marked “X” indicate that the tool recognized and replaced the kernel idiom. “M” indicates

instances where the tool only matched the kernel but was not able to replace it.

gemm syr2k 2mm 3mm S1 S2 S3 S4
KernelFaRer X X X X X X X M
Polly X X X X
IDL

Table 5. Comparison of time spent in LLVM passes implementing a GEMM & SYR2K detection method.

Times are in milliseconds.

gemm syr2k 2mm 3mm S1 S2 S3 S4
KernelFaRer 26.1 31.1 30.6 31.5 99.0 99.0 99.5 102.4
Polly 348.0 225.1 898.2 1400.5 390.0 616.3 2130.3 3268.5
IDL 255.0 - 959.6 2204.7 40.8 40.7 50.0 451.5

percent taken from one that takes a fraction of a second. Starting with the matrix sizes of 4K, all
libraries show comparable performance for all kernels.

5.3 Robustness of Pattern Matching

Sophisticated programmers may attempt to improve the performance of a native-code implemen-
tation of GEMM by applying source-code level transformations. The BLISLab tutorial [43], made
available by the Science of High-Performance Computing Group [44], provides a sequence of in-
creasingly more sophisticated, high-level-code-only implementations of GEMM16. S0 is the simplest
naïve form of GEMM where neither α nor β are used, all matrices are accessed in column-major
order and can be expressed as C = C + A ∗ B. In S1 the matrix A is transposed. In S2, instead of
transposing A, the loop nest (i, j,k) is interchanged to (j,k, i). S3 both interchanges the loop nest,
as in S2, and tiles the loop nest by 128, 64, and 128, respectively. S4 interchanges the loop nest as in
S2, tiles as in S3, and performs a gather operation to pack matrices A and B into blocks of tiles. The
values used for tiling and packing are chosen to allow effective cache usage.

The more complex source code makes idiom recognition more challenging as shown in Table 4.
KernelFaRer idiom recognition is robust in comparison with the two alternatives. Outside of
the patterns in Polybench, the test suite used in its development, Polly recognizes only S3. IDL’s
recognition expects the result of the GEMMReduction to be stored into a scalar variable that is
then later used to update the destination matrix — in all benchmarks the reduction is performed
directly into the destination matrix. IDL is not expressive enough for the writing of an alternative
specification to capture variants of GEMM. Capturing such variants would require modifications to
the DSL compiler. This limitation highlights the brittleness of IDL’s approach: a programmer must
specify in a DSL the exact form of the code to be matched. A different specification is need for each
subtle variation in the way the pattern is written. Operating in the LLVM IR, KernelFaRer avoids
this gap between the pattern description and the code to be matched because nodes in the pattern
tree are explicitly made to match LLVM IR.

Figure 9 shows that even when a programmer spends significant effort to improve the source code
of a GEMM kernel, highly specialized library implementations still deliver significantly superior
16Pattern matching assembly code is platform-specific and is out of the scope of this paper.
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Fig. 9. The speedup relative to each hand optimization by replacing GEMM in each platform.

performance. Note the different scales in the vertical axis of each of the graphs; the amount of work
required to calculate the GEMM does not change, so the only varying factor is the effectiveness of
the hand optimized version. For S4 KernelFaRer identifies a GEMM reduction but the additional
memory access needed to gather tiles of matrices A and B lead the KernelFaRer analysis to
conclude that it is not safe to replace the GEMM idiom with library calls.
Polly improves the performance of the kernels S1 and S2 through loop tiling, unrolling and

fusion. In the case of S3 however, after applying GEMM specific optimizations, Polly produces a
result matrix C that differs from that computed by Eigen and BLAS for the same input matrices A,
B, and C17.

In addition to the programs listed in Table 4, we also created sixteen variants of the GEMM idiom
by varying the presence of the scaling factors α and β , and the choice of first storing the result
of the GEMM reduction into a scalar variable or storing it directly into matrix C18. KernelFaRer
recognizes all 16 variants of GEMM; IDL only recognizes the four instances that accumulate into a
scalar; and Polly does not recognize any of these variant as a GEMM. Polly always fails because all
variants have an extra loop that stores the expression C = β ×C , or variants of it, generated by the
compiler to guarantee correctness for cases where the innermost loop trip count is zero.

5.3.1 No False Positives Occurred. An important question is whether or not KernelFaRer
ever detects a GEMM idiom where it does not exist. No such occurrences were detected while
compiling the following benchmark suites: Rodinia 3.1 [45], SPEC CPU 2006 [46] and 2017 [47],
and Nekbone[48]. None of the approaches found any instances of the GEMM idiom in these suites,
though Nekbone already uses the CBLAS interface to perform GEMM operations. Both its design
and the compilation of this extensive corpus of code provides confidence that KernelFaRer does
not detect a GEMM idiom when none exists.

5.4 Flexibility

The matching code for GEMM is largely reused to match SYR2K pointing to the potential to extend
this pattern matching approach to other kernels. The flexibility of this pattern-matching approach
is underscored in this demonstration because SYR2K is different from GEMM in two principal

17A communication to the authors resulted in no response up to the time of this writing.
18All the code used in this evalution is part of an Artifact submitted together with this manuscript.
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ways: two matrix multiplication operations instead of one and a triangular output matrix iteration
space. Matching SYR2K requires additional checks for the induction variables and their bounds
and matrix layouts (similar to Table 1). Integrating the SYR2K pattern in KernelFaRer consists
simply of adding a match invocation to the if statement of the Algorithm 1. When extending the
matching to other kernels, developer’s time will be spent on filtering out false positive cases (e.g.,
rectangular iteration space) and matching corner cases, such as the addition of temporary variables
by earlier compiler passes.

5.5 Effect on Compilation Times

Pattern matching consumes compilation time whether a program contains the pattern or not. Using
LLVM’s built-in pass-timing mechanism, this evaluation applies each of the idiom recognition
methods to each benchmark and sums the wall-clock times for each of the passes added as part of
the recognition method. Some analysis or transformation passes that are already performed for
high levels of optimizations also support the recognition passes but these are not included in the
summation because they are performed whether or not the idiom recognition is also performed.
Table 5 shows the averages of 20 compilation-time measurements on PPC. Intel and AMD times
differ by no more than 20% on average. The presented times include the time it takes to perform
the corresponding pass (KernelFaRer, Polly or IDL) plus the time for -O3 for KernelFaRer and
Polly (because Polly requires -O3).
KernelFaRer has low impact in the compilation pipeline, scaling slowly as the complexity of

the program increases. IDL’s constraint solver method is inherently more costly than tree matching
and must also analyse all function code, unlike KernelFaRer which knows that the idiom can only
occur in loops of at least depth three and so limits its scope. The times from IDL are also solely for
detection of the GEMM idiom because there is no replacement strategy. The higher compilation
time of Polly includes more than idiom recognition as it also computes the polyhedral model of
the loops, performs extra transformations beyond idiom recognition, and finally code generation
back to IR. The additional compilation time in this evaluation are all from singular compilation
units; these impacts will be magnified in larger programs or with more files. For instance, both
PolyBench’s gemm and S1 are simple GEMM kernels; the only difference between the two is that
S1 transposes A. However, a verification loop elsewhere in the file that prints the result matrix in
gemm significantly increases the compilation time for Polly and IDL.
As Table 5 shows, the time KernelFaRer spends to detect and replace GEMM and SYR2K is

about the same. This indicates that KernelFaRer’s matching strategy runtime is not significantly
affected by the complexity of the kernel. Polly does not have a specific matcher for SYR2K, but
it is able to optimize SYR2K’s loop nests in 225.1ms. The compilation time for IDL is not shown
because, at the time of writing, there is no description of the SYR2K idiom in IDL.

6 CONCLUSION

This paper presents KernelFaRer, an idiom recognizer coupled with a data-flow analysis that
finds and replaces idiomatic instances of a computing kernel with calls to high-performance
libraries. KernelFaRer is implemented entirely within LLVM’s compiler framework and extends
its PatternMatch namespace to build a robust and effective tree-matching based pattern recognizer.
The idiom recognition in KernelFaRer is robust: for GEMM it recognizes many more idioms
than state-of-the-art approaches, e.g. Polly and IDL, including more complex instances of GEMM
that were hand-optimized following well-known source-code transformations. No false-positives
were produced when KernelFaRer analyzed extensive codebases from SPEC CPU 2016 & 2017,
Rodinia, and Nekbone. This paper also introduced a novel strategy to identify the access order
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of matrices in LLVM IR. Access-order information is central to correctly replacing kernels with
calls to high-performance Basic Linear Algebra Subprograms (BLAS) libraries. KernelFaRer is a
sophisticated idiomatic recognizer that only relies on standard data-flow analysis and extensions to
tree-matching support in LLVM, a production-ready compiler framework.
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