Generalized Index-Set Splitting

Christopher Barton!, Arie Tal?, Bob Blainey?, and José Nelson Amaral®

! Department of Computing Science,
University of Alberta, Edmonton, Canada
{cbarton, amaral}@cs.ualberta.ca
2 IBM Toronto Software Laboratory, Toronto, Canada
{arietal, blainey}@ca.ibm.com

Abstract. This paper introduces Indez-Set Splitting (ISS), a technique
that splits a loop containing several conditional statements into sev-
eral loops with less complex control flow. Contrary to the classic loop
unswitching technique, ISS splits loops when the conditional is loop vari-
ant. ISS uses an Index Sub-range Tree (IST) to identify the structure of
the conditionals in the loop and to select which conditionals should be
eliminated. This decision is based on an estimation of the code growth for
each splitting: a greedy algorithm spends a pre-determined code growth
budget. ISTs separate the decision about which splits to perform from
the actual code generation for the split loops. The use of ISS to improve
a loop fusion framework is then discussed. ISS opportunity identification
in the SPEC2000 benchmark suite and three other suites demonstrate
that ISS is a general technique that may benefit other compilers.

1 Introduction

This paper describes Indez-Set Splitting (ISS), a code transformation motivated
by the implementation of loop fusion in the commercially distributed IBM XL
Compilers. ISS is an enabling technique that increases the code scope where
other optimizations, such as software pipelining, loop unroll-and-jam, unimodu-
lar transformations, loop-based common expression elimination, can be applied.

A loop that does not contain branch statements is a Single Basic Block Loop
(SBBL). A loop that contains branches is a Multi-Basic Block Loop (MBBL).
SBBLs are easier to optimize than MBBLs. For instance, MBBLs with com-
plex control flow are not candidates for conventional software pipelining. Loop
unswitching is a transformation that can convert a MBBL into two non-control
flow equivalent SBBLs by moving a branch statement out of the original loop [I].
Loop unswitching is applicable only to loop invariant branches.

ISS recursively splits a loop with several branches into loops with smaller
index ranges and fewer branches. Contrary to loop unswitching, ISS splits loops
based on loop variant branches. In order to minimize its impact on compilation
time and code growth, ISS performs a profitability analysis to control the number
of loops that are generated. ISS is effective in removing branches that are found

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. [[02HIT6 2005.
© Springer-Verlag Berlin Heidelberg 2005

Generalized Index-Set Splitting 103

in the original code as well as branches that are inserted into the code by the
compiler.

Loop fusion is a code transformation that may insert branches into a loop.
Barton et al. list three fusion-preventing conditions that, if present, must be
dealt with before two control flow equivalent loops can be fused: (1) intervening
code; (2) non-identical loop bounds; and (3) negative distance dependencies
between loop bodies [2]. The classical solution to deal with the second and third
conditions requires the generation of compensatory code outside of the loops.
This compensatory code will contain one or more iterations of the loop. If this
code is generated during the loop fusion process, it becomes intervening code
between other fusion candidates. This new intervening code has, in turn, to be
moved elsewhere. Thus a cumbersome loop fusion code transformation is created.

The proliferation of intervening code during the loop fusion process can be
avoided by inserting guard branches within the loops. Guards are conditional
statements that prevent a portion of the loop code from being executed on
certain iterations. Once the loop fusion process has completed, ISS can be run
to remove the guard branches from inside the fused loops, thereby turning a
single MBBL into many SBBLs.

The main contributions of this paper are:

— A description of the new index-set splitting technique that selectively elimi-
nates loop variant branches from a loop.

— An example of the use of guards followed by index-set splitting to improve
the loop fusion framework.

— An example of the use of index-set splitting to enable other optimizations.

— Measurements indicating the changes caused by ISS in the compilation time
of applications in the development version of the IBM XL compiler.

— Run-time measurements indicating the impact of ISS on the performance of
the code generated.

The paper is organized as follows. Section [2] presents an example to motivate
ISS. Section Bl introduces the Index Sub-range Tree that is used to handle loops
with multiple split points. Section [describes how code growth is controlled
by the ISS algorithm. Section [0l describes how ISS is used to produce a cleaner
framework for loop fusion. Section [Glshows the use of guards for run-time bounds
checks in loop fusion. These guards are then split points for the ISS algorithm.
A discussion of how ISS can be used to enable other optimizations is provided
in Section [ll An experimental evaluation of ISS is presented in Section [§

2 A Motivating Example

The code in Figure[I{a) executes a branch in every iteration of the loop. Although
in most modern architectures this branch is likely to be predicted correctly, the
execution of the branch requires an additional instruction in each loop itera-
tion and has the potential of disrupting the operation of the execution pipeline.
Removing a branch from inside a loop by splitting the loop into two separate,

104 C. Barton et al.

for(i=0; i<100; i++) { for(i=0; i<m; i++) {
if(i < m) A[i] = A[i] * 2;
A[i] = A[i] * 2; B[i] = A[i]=*A[i];
else ¥
A[i] = A[i] * 5; for(i=m; i<100; i++) {
B[i] = A[i]*A[i]; A[i] = A[i] * 5;
} B[i] = A[il*A[i];
}
(a) Original loops (b) Incorrect ISS
for(i=0; i<min(m,100); i++) { for(i=1lb; i<min(m,ub); i++) {
A[i] = A[i] * 2; A[i]l = A[i] * 2;
B[i] = A[i]*A[i]; B[i] = A[i]l=*A[i];
} }
for (i=max(m,0); i<100; i++) { for(i=max(m,1b); i<ub; i++) {
A[i] = A[i] * 5; A[i]l = A[i] * 5;
B[i] = A[i]=A[i]; B[i] = A[il*A[i];
} }
(c) Correct ISS (d) General code generated by ISS

Fig. 1. Example of application of ISS

control flow equivalent, loops is desirable because it results in a reduction of the
number of instructions executed. This splitting also produces loops with simpler
control flow that are easier to optimize.

However, the code in Figure [(b) may produce incorrect results. Consider
the case in which m > 100. The first loop in Figure [[b) would execute more
iterations than the original loop. A similar problem occurs with the second loop
if m < 0. Thus the correct transformation must replace these loop bounds by
min(m, 100) and max(m, 0), respectively, as shown in Figure [[[c). In general,
for a loop with lower bound 1b, upper bound ub, and split point m, the code
shown in Figure [I[d) should be produced. This code transformation is called
Index-Set Splitting (ISS).

ISS is always safe, i.e., no other condition besides the structure of the loop
has to be analyzed. ISS can be applied even when the bounds and the split points
are not known at compile time. However, if relations between these values can
be discovered at compile time, loops may be eliminated or their bodies may be
simplified.

3 Index Sub-Range Tree

When a loop contains two split points, ISS could be applied iteratively. For
example, ISS could be applied on the original loop creating two new loops, both
containing a single split point. ISS would then be applied to each of the new

Generalized Index-Set Splitting 105

0,min (m,100) max(0,n),100

max (m,0) ,min(n,100)

0,min(m,n,100) max(0,n),min(m,100)

Fig. 2. Index sub-range tree (IST)

max(m,n,0),100

loops, creating two new SBBLs. However, iterative ISS would make estimating
the potential gain of ISS and controlling the amount of code growth difficult. An
alternative solution is to build an Index Sub-range Tree (IST). For instance, the
following loop contains two split points, m and n:

for(i=0; i < 100; i++) {
if(i < m)
A[i] = A[i] * 2;
else
Afi]
B[i] =
}

The IST for the loop above is shown in Figure 2l The root of the IST cor-
responds to the index range for the original loop. The second level of the tree
corresponds to the two loops that are created to eliminate the first test, (i < m),
from the loop. If ISS stops at this level of the tree, two loops, each with one
branch, are created as shown in Figure Bl(a). The nodes in the leaf level in the
IST correspond to the four loops that have to be created in order to eliminate
all split points, as shown in Figure B(b).

Edges in the IST labeled with T represent the true or “then” branch of a test,
and edges labeled with E represent the “else” branch of a test. This labeling is a
convenience for the generation of code for the loop representing each node in the
tree. The code generation algorithm for a node v; starts with the original loop
code, and traverses the tree from the root to v;. At each level, if the then path
is taken, the corresponding branch is eliminated and its then code is preserved.
If the else path is taken, the else code is preserved. This process is referred to
as the elimination of “dead” inductive branches.

Figure @ shows the elimination of dead inductive branches to generate the
loop body for the leaf node max(0,n), min(m,100) in the IST of Figure 2] (the
second loop in Figure B(b)). Starting at the root, to reach this leaf node, the
algorithm first follows the then path, thus the text if (i < m) is eliminated but
its then code is preserved. At the next level the else path is taken. Because the
else code of the test if (i < n) is empty, the entire if statement is eliminated.

The IST correctly models nested branches. In the case of a nested branch,
the inner level branch only splits the range of the nodes for which they apply.
The IST for the loop with nested branch of Figure [l is shown in Figure [l

= A[i] * 5;
A[i]*A[i];

106 C. Barton et al.

for(i=0; i < min(m,n,100); i++) {
for(i=0; i < min(m,100); i++) { A[i] = A[i] * 2;
A[i] = A[i] * 2; A[i] = A[i] * 5;
if(i < n) B[i] = A[i]*A[i];
Ali] = A[i] * 5; }
B[i] = A[i]*A[i]; for(i=max(0,n); i < min(m,100); i++) {
} A[i] = A[i] * 2;
for(i=max(m, 0); i < 100; i++) { B[i] = A[i]l*A[i];
if(i < n) }
A[i] = A[i] * 5; for(i=max(m, 0); i < min(n,100); i++) {
B[i] = A[i]=*A[i]; A[i] = A[i] * 5;
} B[i] = A[i]*A[i];
}
for(i=max(m,n,0); i < 100; i++) {
B[i] = A[i]*A[i];
}
(a) Elimination of first (b) Elimination of second
split point split point
Fig. 3. Handling loops with multiple split points
for(i=max(0,n); i < min(m,100); i++) { for(i=0; i < 100; i++) {
ifG < m) if(i < m)
A[i] = A[i] * 2; Afi] = A[i] * 2;
if(i-<n) else
A—=Afil—+5+ if(i < n)
B[i] = A[i]*A[i]; A[i] = A[i]*5;
} B[i] = A[i]l=*A[i];

}

Fig. 4. Elimination of dead inductive branches Fig. 5. A loop with nested branches

max(m,0),100

0,min(m,100)

max(m,n,0),100

Fig. 6. Index sub-range tree for nested branches

max (m,0) ,min(n, 100)

Generalized Index-Set Splitting 107

4 Controlling Code Growth

Each index splitting requires the duplication of the loop that it splits. There-
fore, there is a potential for significant code growth. If this code growth is left
unchecked it may (1) prohibitively slow down the compiler by consuming compi-
lation time that would be put to better use elsewhere and (2) generate negative
instruction cache effects at run time.

To control code growth the ISS algorithm marks the root of the sub-range
tree with the code size estimate for the original loop. The code size estimate is
based on the number of machine instructions that would have been generated
for the loop being analyzed. Each node of the subtree is annotated with an
estimate of the code size that would be produced by ISS. This estimate is based
on doubling the size of the loop at the current level and subtracting the code
that is removed from each loop because of the splitting.

In the resulting IST each node is annotated with a code size estimate for
its children. The ISS is a greedy algorithm that executes a top-down breadth
first traversal of this annotated tree until either all the leaves are processed or a
specified code growth budget is consumed. If the budget is exhausted, the lowest
nodes that were visited in each branch of the tree represent the loops that are
generated by ISS.

5 Applying ISS to Loop Fusion

A loop is normalized if it has a lower bound of 0, and an increment of 1. Thus
all normalized loops have the same lower bound, increment, and direction (both
loops increase their indexes). If L; and L; are normalized and their upper bounds
are not the same, the loops are non-conforming. Non-conforming loops can be
fused if iterations are peeled from the longer loop. However peeling iterations
from a loop is not desirable in a loop fusion framework because the peeled
iterations may become intervening code that, in turn, has to be moved to allow
future loop fusions. For instance, to fuse loops L1 and L2 of Figure [[(a), two
iterations of L2 have to be peeled as shown in Figure [f[(b). Once L1 and L2 are
fused (forming L4) the code for the peeled iterations becomes intervening code

L1: for(i=0; i<n-2; i++)

L1: for(i=0; i<n-2; i++) A[i] = A[i] * 2;
A[i] = A[i] * 2; L2: for(j=0; j<n-2; j++)

L2: for(j=0; j<mn; j++) A[j]1 = A[3]1 + 3;
Alj]1 = A[]1 + 3; A[n-2] = A[n-2] + 3;

L3: for(k=0; k<n-2; k++) Aln-1] = A[n-1] + 3;
Alk] = A[k] - 5; L3: for(k=0; k<n-2; k++)

Alk] = A[k] - 5;

(a) Original loops (b) After peeling second loop

Fig. 7. Loop peeling example

108 C. Barton et al.

L4: for(i=0; i<n-2; i++) { L5: for(i=0; i<n-2; i++) {
Ali]l = A[i] * 2; A[i] = A[i] * 2;
A[i] = A[i] + 3; A[i] = A[i] + 3;
} A[i] = A[i] - 5;
A[n-2] = A[n-2] + 3; }
Aln-1] = A[n-1] + 3; A[n-2] = A[n-2] + 3;
L3: for(k=0; k<n-2; i++) A[n-1] = A[n-1] + 3;

Alx] = A[k] - 5;

(a) First fusion (b) Last fusion

Fig. 8. Loop fusion and movement of intervening code example

L5: for(i=0; i<n; i++)

if (i < n-2)
if (i < n-2)
L4: for(i=0; i<n; i++) A[i]=A[il%2;
L1: for(i=0; i<n-2; i++) if (i < n-2) A[i]=A[i]+3;
A[il=A[i]*2; A[i]l=A[i]*2; else
L2: for(j=0; j<n; j++) A[j1=A[j1+3; A[i]=AT[il+3;
A[j1=A[31+3; else Alk]=A[k]-5;
L3: for(k=0; k<n-2; k++) A[j1=A[;1+3; else
Alk]=A[k]-5; L3: for(k=0; k<n-2; k++) if (i<n-2)
A[k]=A[k]-5; A[i]=A[i]*2;
A[j1=A[j1+3;
else

A[j1=A[j1+3;

(a) Original loops (b) First fusion (c) Second fusion

Fig. 9. Loop fusion using guards

between L4 and L3, as shown in Figure §(a). This new intervening code has to
be moved before the next fusion, as shown in Figure B(b).

An alternative to iteration peeling is to introduce guards in the fused loop,
as shown in Figure [l The introduction of guards prevents the generation of
additional intervening code. However, it creates fused loops with complex con-
trol flow. These complex control structures: (1) cause the dynamic execution of
more branch operations, (2) may prevent future optimizations such as software
pipelining, and (3) make instruction scheduling and register allocation more dif-
ficult. Thus once all fusions are performed, ISS separates loops fused with guards
into individual simpler loops.

6 Runtime Bounds Check

When the relationship between the upper bounds of the two loops cannot be
determined at compile time, a run-time bounds check must be performed. The

Generalized Index-Set Splitting 109

S = max(n,m);
T = min(n,m); S=max(n,m) ;
for(i=0; i<S; i++) { T=min(n,m) ;
for(i=0; i<n; i++) if (i<T) { for (i=0; i < T; i++) {
Afi] = A[i] * 2; ATi] = A[i] * 2; Ali] = A[i] * 2 ;
A[i] = A[i] * 3; A[i] = A[i] * 3
} }
for(j=0; j<m; j++) else { for (i=max(T,0); i < n; i++)
A[j]1 = A[3]1 * 3; if (i<n) A[i]l = A[i] * 2 ;
A[i] = A[i] * 2; | for (i=max(n,0); i < S; i++)
else A[i] = A[i] * 3 ;
Ali] = A[i] * 3;
}
}
(a) Original loops (b) After Fusion (c) After ISS

Fig. 10. Run time bounds check example

fused loop combines the bodies of the two original loops for the minimum iter-
ation count. Residuals of the two loops can then be executed depending on the
iteration counts of the original loops.

For instance, assume that n and m in Figure [[0[(a) are not known at compile
time. During loop fusion we want to generate the code shown in Figure [IQ(Db).
The upper bound of the fused loop is the maximum of the two original upper
bounds. The execution of the composition of the bodies of the two loops is
guarded by a test comparing with the minimum of the original bounds. Finally,
the remainder iterations of the longer loop are executed. Applying ISS results
in the code shown in Figure [I0{(c). The max(T,0) and max(n,0) in the resulting
loops are necessary to preserve program semantics.

7 ISS as an Enabling Technique

The previous sections showed that ISS can be used to simplify code generated
by optimizations such as loop fusion. ISS also enables optimizations that could
not be performed in the presence of dynamic branches. For example, consider
the loop in Figure [[T{(a).

This loop initializes the first 25 columns of each row in the two dimensional
array A to zero and doubles all other entries in the array. However, A is traversed
in column-major order while multidimensional arrays are stored in row-major
order in the C programming language. Thus the data reference in this loop is
extremely inefficient as it will result in a cache miss for every iteration of the
inner loop (provided that the dimensions of A are larger than a cache line). Loop
interchange, is an optimization that detects this type of memory access and
interchanges the outer and inner loops to improve cache performance [3]. Un-

110 C. Barton et al.

for (int j=0; j < 10000; j++) { for (int j=0; j < 25; j++) {
if (j < 25) { for (int i=0; i < 10000; i++) {
for (int i=0; i < 10000; i++) { ATil[j] = 0O;
A[i1[3] = o; }
} }
} for (int j=25; j < 10000; j++) {
else { for (int i=0; i < 10000; i++) {
for (int i=0; i < 10000; i++) { A[i1[3]1 += A[i1(31;
A[i1[3] += ATi1[51; }
} }
}
}
(a) Original Loop (b) After ISS-enabled interchange

Fig. 11. Loop interchange enabled by ISS

fortunately, these loops cannot be interchanged because of the dynamic branch
guarding the innermost loop. After ISS has removed the dynamic branch, the
code shown in Figure [[TI(b) is generated. Loop interchange will then be able
to interchange the outer loop with the inner loop, resulting in a more efficient
traversal of A.

Using a small test program containing the above code example, the runtime
went from 12.88 seconds without Index-Set Splitting to 0.40 seconds using Index-
Set Splittingﬁ This performance improvement is a result of the two loops being
interchanged, resulting in increased cache performance. However, this transfor-
mation would not be possible if ISS did not eliminate the dynamic branch guard-
ing the inner loops, thereby creating perfect loop nests. This demonstrates the
ability of ISS to enable other optimizations, resulting in improved performance.

8 Experimental Evaluation

This section presents an experimental evaluation of a robust implementation of
ISS in the development version of the IBM XL compiler suite. When introduced
by itself in a compiler suite, ISS has the potential to degrade both compilation
time and execution time. The appeal of ISS is its integration with other loop
optimizations, as discussed in Section [} Compile time degradation can be at-
tributed to the processing of additional loops by later optimizations. Runtime
degradation will occur if ISS creates many loops with small iteration counts or
loops that are not executed at all. When control flow reaches a loop that is not
executed, it still has to execute a test for the loop terminating condition. Also,
if the compiler is not able to eliminate min and maz computations introduced
by ISS in hot paths, performance may also degrade. A careful implementation

3 This test program was run on the same machine used to collect results in Section [

Generalized Index-Set Splitting 111

of ISS should have only minor impact on compilation and execution time, and
thus enable subsequent optimizations to profit from a simpler loop structure in
the code. The results of this experimental study can be summarized as follows:

— A total of 107 opportunities for ISS are found in several benchmark suites
before loop fusion is applied. With the application of loop fusion, the number
of ISS opportunities increased to 133.

— ISS does not increase compilation time. For the SPEC 2000 suite the compila-
tion time is reduced by 17 seconds (0.3%). For a combination of benchmarks
from Perfect, Quetzal and NAS, this reduction is of 34 seconds (1.6 %).

— Execution time variations due to ISS alone are very small for the SPEC 2000
benchmark suite (less than 3%). For benchmarks in the Perfect suite this
variation can be larger (from 8% slower to 8% faster), but these benchmarks
have very short runtimes (less than 5 seconds).

We prototyped ISS in the development version of the IBM XL compiler suite.
Benchmarks were compiled using this development compiler and run on an IBM
p630 machine, equipped with two POWER4™ processors, 2048 MB of memory
and running AIX®5.1.

8.1 Opportunities for ISS

Table [I] shows the number of opportunities to apply ISS in standard benchmark
suites. These opportunities were counted using compile-time instrumentation.
The benchmark suites listed on Table [Il were tested in their entirety. The bench-
marks not shown had no opportunities for ISS. An opportunity to apply ISS
is a loop that contains a loop variant branch that splits the range of the loop
index. The table shows that in some benchmarks there is a significant number of
loops to which ISS applies even when loop fusion is not performed. This empirical
result is evidence that ISS is a general technique that may benefit the implemen-
tation of optimizations in a compiler beyond the loop restructuring framework.
The results also show that loop fusion creates additional ISS opportunities that
can be detected and handled by our implementation.

8.2 Variations in Compilation and Execution Time.

The variations in compilation time and execution time are presented in Fig-
ure The bar graphs show the percentage increase in compilation time and
the percentage reduction in execution time. Thus, a negative number in Fig-
ures [[2)(a) and [[2(c) means the compilation process is taking less time when
ISS is applied (i.e., a larger-magnitude negative number is better). Similarly, a
positive number in Figures[I2(b) and [[2(d) means the program execution time is
lower when ISS is applied (i.e., a higher positive number is better). The baseline
for the comparison is an optimized compilation (at level -O3 -ghot) without ISS.
In both the baseline and the ISS versions of the compiler all standard, and most
advanced, optimizations found in a commercial compiler are performed. ISS has
complex interactions with other optimizations.

112 C. Barton et al.

Table 1. Number of times that an opportunity to apply ISS was identified

Bench- | No Loop Fusion Loop Fusion
mark |ISS Opportunities||Loops Fused ISS Opportunities
bzip2 1 2
crafty
eon
gap
gzip
perlbmk
twolf
vpr
applu
apsi
equake
fma3d
galgel
lucas
sixtrack
W.CS
W.LG
W.MT
W.SR
W.0C
W.TF
W.AP
W.SD
W.NA
W.TI
Quetzal lu
rnflow
BT
NAS PBN-S| LU
SP
BT
FT
LU
SP
Total 107 133

Suite

SPEC2000

= O = = 00N R NO S =N
— O W 00 W R N W O

,i
=
N
=

Perfect

NAS PBN-H

DVoolocDxloRerbhbrbrorrorRoRR®orprocorhoan

HD—‘)—‘H)—‘HD—‘G}:@MM@P—‘[\DMP—‘OM
»A»—AH»A»—!»A»—A@:»J;»POOOOMMOONHM

The normalization to the baseline times in the presentation of percentage
variations may be misleading. Thus, for convenience, the benchmarks in Fig-
ure [[2] are sorted from left to right based on their baseline compilation time. In
Figure [12(a)| benchmarks located to the left of apsi have a compilation time
of less than one minute. apsi and twolf have a compilation time of less than
two minutes. Similarly, in Figure all benchmarks to the left of W.TF have
a compilation time of less than one minute and all benchmarks to the left of

Generalized Index-Set Splitting 113

1SS Compilation Time Variations

1SS Runtime Variations
2 — T

Compilation Time Increase(%)
Run Time Reduction(%)

RN SRS SN e SR S TR O S S P T DO E R D
FF " DL S ’DQQQ ks q‘;\ &P § \@@: R ,29‘1 PR %:\ E&
'SPEC2000 Benchmarks
(a) Compilation Time Variations. (b) Execution Time Variations.

1S Compilation Time Variations 18S Runtime Variations

Compilation Time Increase(%)
Time Reduction(%)

sl

I IR T ERE ORI R DL R I I TR LB OIS S DA K
: BRI BN < &N
RO NGO RN Qi ‘\Q%e /‘\/Jiﬁé 5% RO RO N SN ‘*l%: (\Z :\%z 2
ST SIS
Perfect, Quetzal and NAS Benchmarks Perfect, Quetzal and NAS Benchmarks
(¢) Compilation Time Variations. (d) Execution Time Variations.

Fig.12. Variation in the compilation time and run time using ISS on SPEC2000 (a
and b) and on the Perfect, Quetzal and NAS (c and d) benchmark suite

W.LG have a compilation time of less than two minutes. The compilation time
of most benchmarks is not significantly impacted by ISS. applu’s compile time
increases from 207 seconds to 214 seconds. Furthermore, compilation is faster
for the benchmarks with the longest compilation times: gap, gcc, sixtrack and
fma3d. The total aggregated compilation time for the SPEC2000 suite does not
change significantly: it is reduced by 17 seconds (or 0.3%) when ISS is applied.
Thus the simplified loop structure provided to later optimizations compensates
for the time spent on ISS. Similarly, the aggregated compilation time for bench-
marks listed in Figure is reduced by 34 seconds (1.6 %) with ISS.

The variations on execution time because of ISS are very small. As shown in
Figure[12(b)|execution time variations are under 3% (reductions of 3.3 seconds in

5 Measurements did not use the official SPEC tools.

114 C. Barton et al.

lucas and fma3d and additional 3.5 seconds in crafty and 12.5 seconds in twolf
are the largest time variations). While the percentage variation in run times for
the benchmarks in Figure are larger, the W.* benchmarks from the Perfect
suite have very short running time. The largest runtime variation in the W.x*
benchmarks is 0.11 seconds. The largest variation in runtime in Figure is
for the PBN-H-SP benchmark whose runtime increases by 1.7 seconds.

The small variations in execution time is evidence that the implementation
of ISS in this industry-strong compiler is robust. Further improvements to loop
optimizations, currently underway, that were enabled by ISS should produce
overall performance improvements.

8.3 Micro-architecture Study

ISS does not have a significant impact on the runtime performance of the bench-
marks tested. However, a large number of loops contained ISS opportunities.
Thus, the question still arises as to the effects that ISS code changes have on
the execution of the program. Since ISS removes loop variant branches from
loops, one metric that should be affected by ISS is the number of branch mispre-
dictions incurred during the execution of a program. By monitoring hardware
performance counters, we examined the execution of several benchmarks to de-
termine the number of target address branch mispredictions.

The study revealed that crafty has a 30% increase in the number of branch
mispredictions (from 5.7 billion to 7.4 billion), while twolf’s branch mispredic-
tions increased from approximately 122 million without ISS to 1.1 billion with
ISS. These additional mispredictions should contribute to the increased running
time of these benchmarks. An analysis of the code generated for twolf and
crafty reveals that the values of the min and maz statements inserted by ISS
could not be computed at compile time. The runtime execution of these min and
maz statements should be the cause of the performance degradation.

Significant reductions in branch mispredictions occur in apsi (82%, from 630
million to 111 million) and fma3d (31%, from 15 billion to 10 billion). However,
these reductions did not translate into improved running times. A possible ex-
planation is that the hardware was able to recover effectively from these branch
mispredictions in the code generate by the baseline compiler.

9 Related Work

Loop unswitching is a similar technique to index-set splitting in the sense that a
loop with a condition is converted into two non-control flow equivalent simpler
loops [I]. However, as defined by Frances Allen and John Cocke, unswitching
only does the conversion when the test’s conditional is loop-independent [4]. In
contrast index-set splitting performs multiple unswitches of tests on the value
of the index variable of the loop. Another distinction between loop unswitching
and ISS is that the separate loops created by unswitching are not control flow
equivalent, while ISS creates control flow equivalent loops.

Generalized Index-Set Splitting 115

Loop fusion has been implemented in compilers for over twenty years [5].
Optimizations to loop fusion have been proposed by Gao [6], Ding [71[8], McKin-
ley [9,[I0], Allen, and Kennedy [IT] among others. Most research papers on loop
transformations prescribe selective fusion of loops, i.e., a decision about the
profitability of fusing two or more loops is made during the loop fusion phase.
Placing the decision about loop groupings in the fusion leads to several graph-
based optimization algorithms. The IBM XL compilers take a different approach
to loop restructuring: maximal loop fusion is applied first and then selective loop
distribution, using several heuristics, takes place.

Allen, Callahan, and Kennedy described loop alignment as a solution to elim-
inate synchronization in the execution of parallel loops [5]. Alignment is used
to describe the Global Alignment Network (GAN) by Padua et al. GAN dis-
tributes data in a multiprocessor system. For instance GAN could partition a
vector and distribute its elements to several processors in the system to eliminate
cross-iteration dependencies when creating fully parallel loops [12].

Yang et al. propose a technique to improve the order of branches based on
run-time profile [I3]. However, their technique does not reverse the order of loops
and conditionals.

10 Conclusions

This paper introduced a new code transformation that enables the unswitching
of loops that contain conditionals that are loop-dependent. Index-set splitting
was implemented in the development version of the commercial IBM XL com-
pilers and tested with four benchmark suites, including the industry standard
SPEC2000 suite. The use of ISS as a convenient tool to implement a cleaner loop
fusion transformation was also discussed.

ISS removes loop variant branches from inside a loop body, splitting the orig-
inal loop into several loops with varying ranges. The compiler can then remove
ranges that it can prove will never execute. ISS significantly impacts the gen-
erated code: the resulting loop bodies are smaller, making it easier to perform
resource allocation and instruction scheduling (including modulo scheduling).
ISS enables loop interchange, resulting in improved cache performance. ISS can
also benefit other loop optimizations, such as loop parallelization, by removing
loop-carried dependencies. On architectures where predicated instructions are
available, the removal of the loop variant branch will remove the necessity of
predicating the instructions that are control dependent on the branch. This will
prevent aborted predicated instructions from polluting execution streams.

The static evaluation of ISS discovered opportunities for application of ISS
even when loop fusion is not performed, thus indicating that ISS is a general
technique that may benefit other compilers. The dynamic measurements of per-
formance indicate that there is no significant variation in compile time and run
time due to ISS alone. Thus downstream optimizations enabled by ISS shall
produce overall performance improvements.

116 C. Barton et al.

Acknowledgments

This research was supported by the IBM Center for Advanced Studies (CAS),
and by a grant from the Collaborative Research Development (CRD) Grants
program of the National Sciences and Engineering Council of Canada (NSERC)
of Canada. Some of the infrastructure used for the experimental evaluation was
acquired through a grant from the Canadian Foundation for Innovation (CFI).

Trademarks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:
IBM, POWERA4, AIX and pSeries. Other company, product, and service names
may be trademarks or service marks of others.

References

1. Cooper, K.D., Torczon, L., Engineering a Compiler. Morgan Kaufmann (2004)

2. Blainey, B., Barton, C., Amaral, J.N.,; Removing impediments to loop fusion
through code transformations. Workshop on Languages and Compilers for Par-
allel Computing, College Park, MD (2002)

3. Wolfe, M., High Performance Compilers for Parallel Computing. Addison Wesley,
Longman (1994)

4. Allen, F.E., Cocke, J., A catalogue of optimizing transformations. In Rustin, R.,
ed., Design and Optimization of Compilers. Prentice-Hall (1972) 1-30

5. Allen, R., Callahan, D., Kennedy, K., Automatic decomposition of scientific pro-
grams for parallel execution. Symposium on Principles of Programming Languages,
Munich, Germany (1987) 63-76

6. Gao, G.R., Olsen, R., Sarkar, V., Thekkath, R., Collective loop fusion for array
contraction. Workshop on Languages and Compilers for Parallel Computing, New
Haven, Conn., Berlin: Springer Verlag (1992) 281-295

7. Ding, C., Kennedy, K., The memory bandwidth bottleneck and its amelioration by
a compiler. International Parallel and Distributed Processing Symposium, Cancun,
Mexico (2000) 181-189

8. Ding, C., Kennedy, K., Improving effective bandwidth through compiler enhance-
ment of global cache reuse. International Parallel and Distribute Processing Sym-
posium, San Francisco, CA (2001)

9. Kennedy, K., McKinley, K.S., Maximizing loop parallelism and improving data
locality via loop fusion and distribution. Workshop on Languages and Compilers
for Parallel Computing, Portland, Ore., (1993) 301-320

10. Singhai, S., McKinley, K., A parameterized loop fusion algorithm for improving
parallelism and cache locality. The Computer Journal, 40 (1997) 340-355

11. Allen, R., Kennedy, K., Optimizing Compilers for Modern Architectures, Morgan
Kaufmann Publishers (2002)

12. Padua, D.A., Kuck, D.J., Lawrie, D.H., High-speed multiprocessors and compila-
tion techniques, IEEE Transactions on Computers, 29 (1980) 763-776

13. Yang, M., Uh, G.R., Whalley, D.B., Improving performance by branch reordering.
Programming Language Design and Implementation (PLDI), Montreal, Canada,
(1998) 130-141

	Introduction
	A Motivating Example
	Index Sub-Range Tree
	Controlling Code Growth
	Applying ISS to Loop Fusion
	Runtime Bounds Check
	ISS as an Enabling Technique
	Experimental Evaluation
	Opportunities for ISS
	Variations in Compilation and Execution Time.
	Micro-architecture Study

	Related Work
	Conclusions

