
An Evaluation of Automatic Object Inline Allocation Techniques 

Julian Dolby Andrew A. Chien 
Department of Computer Science Department of Computer Science and Engineering 
University of Illinois at IJrbana University of California, San Diego 

dolby@cs.uiuc.edu achien@cs.ucsd.edu 

Abstract 

Object-oriented languages such as Java and Smalltalk 
provide a uniform object reference model, allowing ob- 
jects to be conveniently shared. If implemented directly, 
these uniform reference models can suffer in efficiency 
due to additional memory dereferences and memory 
management operations. Automatic inline allocation of 
child objects within parent objects can reduce overheads 
of heap-allocated pointer-referenced objects. 

We present three compiler analyses to identify inlin- 
able fields by tracking accesses to heap objects. These 
analyses span a range from local data flow to adaptive 
whole-program, flow-sensitive inter-procedural analy- 
sis. We measure their cost and effectiveness on a. suite 
of moderate-sized C++ programs (up to 30,000 lines 
including libraries). We show that aggressive inter- 
procedural analysis is required to enable object inlin- 
ing, and our adaptive inter-procedural analysis [23] com- 
putes precise information efficiently. Object inlining 
eliminates typically 40% of object accesses and alloca- 
tions (improving performance up to 50%). Furthermore, 

1 introduction 

Object-oriented languages provide abstraction, allowing 
programmers to isolate conceptual portions of a given 
program behind opaque interfaces, with attendant ben- 
efits in code modularity and reusability. Languages such 
as Java [32], Lisp [30], Pool [2] and Sather [31] provide 
this abstraction with opaque objects for which clients 
have a reference and an interface specification. This 
isolates the clients from any changes in a given object’s 
implementation. Even fine-grained portions of a pro- 
gram, such as individual points for a graphics library, 
can be conveniently expressed in this manner. 

But these same interfaces create overhead if imple- 
mented in the manner of a traditional Lisp or Java run- 
time system, using dynamic dispatch to call methods 
and heap-allocated objects accessed via pointers. Ad- 
ditionally, an object-oriented programming style gcner- 
ally encourages the use of small methods and objects 
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[5]. The combination of small methods and dynamic 
dispatch is a well-studied problem: dynamic dispatches 
are optimized statically by type inference [l, 6, 21, 241, 
dynamically by inline caching [16] or with hybrid ap- 
proaches like type feedback [17]. Static or hybrid type 
analysis has been combined with method specialization 
[S, 251 to allow inlining, removing the small functions 
common in object-oriented code. 

Pervasive use of heap-allocated objects introduces 
overhead for memory management and repeated pointer 
dereference. This can both increase memory traffic and 
hurt local code efficiency by reducing opportunities for 
register allocation which inhibits many scalar optimiza- 
tions. Pointer dereference (called pointer chasing) over- 
head not only incurs additional memory traffic, but 
given performance sensitivity to data locality, typically 
reduces cache efficiency. This topic has been studied by 
many researchers, using both runtime techniques (e.g. 
fine grained multi threading [22]) and compile time ap- 
proaches (e.g. representations that explicate dependen- 
cies thru pointers [19]). But it remains a challenging 
open problem. Object inlining coalesces objects by in- 
line allocating child objects within their container ob- 
jects. This attacks pointer chasing by eliding the point- 
ers and converts an unpredictable memory reference into 
one with spatial locality. 

But object inlining poses challenges of its own: it 
requires an analysis capable of distinguishing individual 
container and containee objects, both to ensure that 
merging them does not change sharing relationships, 
and to generate appropriate code for accessing state of 
merged objects where that is needed. A whole-program 
analysis that does this was presented in [9], and showed 
speedups of up to three-fold on a set of object-intensive 
benchmarks. However, that study did not assess much 
analysis power is really required, and how many fields 
can be inlined on a wider range of benchmarks. In this 
paper, we address those questions. 

So to assess the feasibility and benefit of object in- 
lining, we study its effectiveness using several analysis 
frameworks of varying power and cost, and a bench- 
mark suite including the NIHCL [14] and OATH class 
libraries, which together provide multiple implementa- 
tions of a range of common data structures. These codes 
range from a few hundred lines to over 10,000 lines of 
C++ code (plus 20,000 lines of library). We imple- 
mented three different program analyses. They all use 
data-flow properties to track how object fields are used 



and defined; the analysis frameworks employed are lo- 
cal data flow, traditional control flow analysis [27] and 
adaptive flow analysis [24]. The control flow analysis 
and adaptive analysis variants are based upon the tech- 
niques in our prior work [9]; however, our study revealed 
deficiencies in those techniques so we generalized them 
substantially for this study. 

Our results indicate object inlining optimizations 
eliminate typically 40% and as much as 90% of the ob- 
ject accesses and allocations, and can deliver significant 
performance benefits (averaging 10% faster but rang- 
ing from no improvement to 50%). However, reaping 
these benefits requires powerful inter-procedural analy- 
sis that must focus effort to avoid excessive cost. Both 
the simple local technique nor the traditional flow anal- 
ysis proved insufficent. Fortunately, the adaptive inter- 
procedural analysis we employed [24] computes precise 
information efficiently. 

We begin by discussing our approach to inline alloca- 
tion in Section 2 and presenting an example program in 
Section 3. Next, Section 4 describes the Concert System 
[7] in which work was done, and Section 5 details our 
three program analyses. These analyses are evaluated 
on a suite of C++ programs in Section 6. This suite 
is summarized in Section 6.2 and performance metrics 
and results are given in Sections 6.3 and 6.4. Finally, 
we contrast related work in Section 7 and conclude with 
Section 8. 

2 Automatic Object Mining 

The idea behind automatic object-inlining is provide 
a more efficient implementation without altering the 
model seen by the programmer. Thus, the source pro- 
gram might describe a logical structure (which we call 
the literal stmcture) of several objects, connected by 
references, and the resulting implementation after ob- 
ject inlining might be these objects fused into a single 
object. The literal and optimized data structure imple- 
mentations for an example pair of classes is illustrated 
by Figure 1. 

The literal implementation requires multiple mem- 
ory operations to allocate and reclaim the storage for 
the objects, and pointer dereferences to reach the Point 
objects. In contrast, the optimized implementation can 
be allocated and reclaimed in a single operation and 
the fields directly accessed with a single load with offset 
instruction. 

2.1 Analysis and Transformation Requirements 

For inlining to be semantics preserving’, program analy- 
sis must provide two pieces of information for each inlin- 
able field. First, the analysis must precisely identify all 
accesses to the child object, and, second, to ensure that 
sharing relationships are correctly preserved, the analy- 
sis must ensure that the child is not stored into multiple 
parents via the given field. The need for precision is sig- 
nificant and difficult to achieve in many cases. Thus, the 
goal of the analysis is to identify the object fields (and 

‘The transformation must be semantics preserving in order 
for the program to continue to correctly implement the source 
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contours’) for which the object inlining transformation 
is semantics preserving. More successful analyses will 
find more field, contour pairs which can be inlined. 

If the analysis produces the requisite information, 
then the object inlining transformation consists of the 
following steps3: 

1. 

2. 

3. 

2.2 

Create a new definition for the parent object which 
includes the inlined child object (fields and meth- 
ods), including constructor/destructor methods 

Modify the allocation points to use the new object 
definitions 

Rewrite all accesses to the child object’s state as 
accesses to the inlined child object. 

Explicit Mine Allocation 

Some programming languages [lo, 331, notably C++, al- 
low programmers to manually specify inline object allo- 
cation to improve performance. As with the automatic 
approaches, the objective is to reduce storage manage- 
ment overhead as well as the number of pointer deref- 
erences required to execute a program. An example of 
explicit inline allocation is shown in Figure 2. 

class Rectangle C 
// Points are inlined 
Point upper-left; 
Point lower-right; 1; 

class Point C 
int x-~0.5; 
int y-pos; 1; 

C++ Source ( >++ Implementation 

Figure 2: Explicit Inline Allocation in C++ 

In our explicitly inlined example, there are still mul- 
tiple objects. References to child objects allocated in- 
side parents are allowed. 

There are two basic differences between automatic 
and explicit object inlining: whether inline allocation is 
visible to the programmer--that is, whether it is part of 
the programming model-and whether the parent and 
child objects are fused. As can be seen in Figure 2, ex- 
plicit inline allocation requires the programmer to ex- 
plicitly indicate which of the child objects are to be 
inlined. This requires explicit effort, and a change to 
the code structure by the programmer. Further, it is 
not a semantics-preserving transformation in general - 
as the the inlining operation changes the sharing se- 
mantics. The inlined child objects are by-value whereas 
outlined objects are by reference. Thus the advantages 

‘The separately customizable contexts of use of the objects. 
30nce a given field has been found inlinable, a policy decision 

must determine whether or not it actually is inlined. Since we 
are exploring the feasibility of object inlining, we currently inline 
whenever possible. 



class Rectangle C 
// (*’ declares references 
Point *upper-left; 
Point *lower-right; 1; 

class Point < 
int x-pos; 
int y-pos; 1; 

C++ Source Literal Inlined (Optimized) 

Figure 1: Literal and Optimized Implementations 

of automatic object inlining is that it can provide the 
performance benefits without requiring programmer ef- 
fort and that automation ensures the correctness of the 
inlining transformation (and “undoes it” should the ad- 
dition of code invalidate the transformation). 

Fusing parent and child objects into a single layout 
has two advantages. First, it allows optimizing per- 
object operations, such as concurrency control in a con- 
current object-oriented model (this was one of our orig- 
inal motivations). Second, it enables code generation 
for targets, such as the Java Virtual Machine and the 
Concert runtime system, that do not permit interior 
pointers.4 

These challenges will be illustrated by our running 
example, introduced in Section 3. 

3 An Example 

To provide continuity, we employ a single example 
throughout for exposition of our analyses. The code 
example consists of the two class definitions from Fig- 
ure 1, and some methods (Figure 3). A Rectangle is 
defined by two Points, each of which in turn consists of 
two integer coordinate values in 2-dimensional Carte- 
sian space. 

The example methods and main0 program create 
several Points and a Rectangle, checking the validity 
of the rectangle (lower right corner is really right of and 
below the other corner). Finally, the program prints the 
x coordinates of two points. 

The example illustrates the analysis requirements. 
To safely inline the Points (p, q) in the Rectangle (r), 
all uses of p and q must be identified. This includes all of 
the uses within the Rectangle class’s methods and the 
main program. In addition, the analysis must determine 
the sharing properties of the Points relative to its use in 
the Rectangle. This is required because inlined objects 
have by-value semantics, that is, they cannot be shared 
by multiple parents thru inlined fields. 

Note that the Point class cannot be inlined indis- 
criminately, and thus the analysis must identify the sets 
of creations of Points which are to be optimized. Cre- 
ations of p and q must be deleted, and their construc- 
tors redirected to the corresponding inlined fields of r. 
The two constructors for the inlined versions of p and 
q must be specialized differently as one works upon the 

4Additionally, some issues such as garbage collection are more 
difficult - but not impossible - with interior pointers. 

Point::belowRight?fp) 1 
if (p.x-pos > this->x-pas) 
return (p. y-pos < this->y-pm) ; 

else 
return false ; 

Point: :Pointfx. y) C 
this->x-pos = x; 
this->y-pos = y; 

3 

Rectangle: :Rectangleful, lr) c 
if (lr . belowRight? (ul) > 1 

this->upper-left = ul; 
this->lower-right = lr; 

3 else 
error (“invalid rectangle”) ; 

3 

main I 
p = new Point (3, 8) ; 
q = new Point (8. 6) ; 
r = new Rectanglecp, q); 
s = new Point(8, 7); 
tout << r.upper-left.x-pos << s.x-Pas; 

Figure 3: Example Methods 

lower-left and on the upperlight point. Finally, the 
creation of s must be left alone. 

Automatic inlining analysis must determine the 
sharing properties of the object to be inlined to deter- 
mine unambiguously which child object is assigned into 
which container. Since p, q and r are created in the 
same block of code, the relationship is apparent: the in- 
stances p and q are assigned into r. However, in general 
these creations could be separated by function calls and 
even assignments thru global state. 

Accesses to the objects must also be transformed. 
For example, the tout << statement in main gets two 
x-pos values, one from a Point inlined into upper-left 
and one from a free-standing Point. These two x-pos 
operations must have different implementations, as one 
must access the inlined field and the other a free- 
standing one. 

3 



4 Background: The Concert Compiler 

The implementation of our object inlining analyses was 
done in the Illinois Concert System [7], and so a brief 
discussion of the relevant aspects of the system is given 
here to provide context for subsequent description of 
the optimization. Most relevant is the program repre- 
sentation and the analysis and cloning frameworks, all 
discussed below. 

4.1 Program Representation 

The primary program representation used by the Con- 
cert Compiler is the Program Dependence Graph (PDG 
[12]) in Static Single Assignment (%A) form, of which 
a brief sketch is provided here mostly to introduce ter- 
minology we use while describing our analyses. Fig- 
ure 4 shows an example PDG fragment from the 
Point : : belowRight? method from Figure 3. 

The PDG represents methods as a tree of control 
dependence regions and conditional (including loop) 
nodes. Each region is the child of the conditional node 
that governs whether or not it executes, so loop nodes 
have one child region for the body and if nodes have one 
child each for true and false branches. The phi nodes of 
SSA form are attached to these conditional nodes. ev- 
ery other node - our graph has function calls, primitive 
operations and field accesses - is contained in the re- 
gion of the conditional governing its execution. Within 
a single region, ordering between nodes is represented 
explicitly by a set of data constraints. 

_. ----ad,,ldr,mdem’c 

Figure 4: Program Dependence Graph 

Note how dominance and post-dominance is implicit 
in this representation: if p. y-pos < y-pos executes then 
p.x-pos > x-pos must already have done so because it 
is in a parent region and has a data dependence. We 
use this property for our inlining analyses. In our sub- 
sequent discussion, we use aspects of this representation 
which we formalize below. For single nodes, we use their 
region and kind properties and, for pairs of nodes within 
a single region, we use the ordering constraint >: 

region(n) t the region containing n 

nl >- n2 t ni must execute after nz does 

if for conditional nodes 
while for loop nodes 
phi for all phi nodes 

kind(n) t call for function calls 
access for all field accesses 
creation for new statements 
primitive for all other primitives 

For regions, we query their parent conditional, i.e. 
the conditional that controls whether or not the nodes 
within the region execute: 

parent(r) t the conditional node governing r 

For individual SSA values, we require knowing their 
creation, which is the node responsible for generating 
that value, and their reaching definitions. We assume 
that unnecessary moves are eliminated, so the kind of 
creation(v) be one of call, phi, access, primitive or cre- 
ation. 

creation(n) t the node which creates n 

reaching(n) t the set of nodes using n 

4.2 The Analysis Framework 

The Concert compiler has a global analysis framework 
- adaptive analysis [24, 231 - that performs context 
sensitive flow analysis. The flow analysis ultimately 
builds a program-wide data-flow graph connecting the 
values within and across the individual method program 
graphs, with those values being specialized as needed by 
context sensitivity. Context sensitivity adapts to pro- 
gram structure, focusing analysis effort on interesting 
portions of the program. 

The unit of context sensitivity is the contour [29], 
each of which represents an execution environment. For 
a given method, method contours can discriminate arbi- 
trary data-flow properties of its caller and creator: 

caller - the calling statement and contour. This cov- 
ers arguments, allowing discrimination based upon 
data-flow properties of caller and its arguments. 

creator - the object contour representing self. This 
permits a limited form of alias analysis based upon 
properties of the target object. 

An object contour represents a set of method con- 
tours of statements that create a given object. That is, 
each new statement is analyzed with some number of 
method contours, and the object contours correspond- 
ing to that new statement each group some set of those 
method contours. Thus, an object contour represents a 
new statement called in some context. 

In traditional control flow analysis (nCFA), contours 
are statically created to analyze a method separately for 
different callers from one or more level. But in adaptive 
analysis, contours are created and split on demand: they 
are created when the analysis needs to distinguish some 
property. An initial coarse data flow graph is built and 
then scanned for imprecisions; these imprecisions are 
used to direct selective adding of contours - splitting 
existing ones - to improve information quality. This 
process iterates until no more contours improve infor- 
mation. 

The original use of this framework was type infer- 
ence, which creates contours to distinguish type infor- 
mation. Method contours are created for different sets 
of argument types; for polymorphic fields, different ob- 
ject contours are built for the containing object to dif- 
ferentiate the types in the field. The analysis framework 
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includes a mechanism for distinguishing object contours 
with respect to uses of objects. We also use this frame- 
work to implement the object-inlining analysis. 

Figure 5 illustrates analysis on the program fragment 
from Figures 1 and 3. For simplicity, we ignore the 
last two statements in main. Figure 5(a) illustrates the 
initial coarse graph. In the example, there is one contour 
per method and per class: the contours in the figures 
are labeled with the function and (m,o), which records 
the method contour and object contour numbers. In 
Figure 5(a), the object contour 0 represents Points and 
1 represents Rectangles. The main function has - as its 
object contour because it is not a method on any object. 

Object inlining analysis needs to distinguish ob- 
jects assigned into different fields, and currently ob- 
jects from contour 0 are assigned into but upper-left 
and lowerlight. So the demand driven specialization 
mechanism tracks the values assigned to these slots back 
to the creations of p and q; it then splits contour 0 into 
two contours - 0 and 2 - to distinguish these two cre- 
ations. This also causes all method contours to be split 
so that this always has one contour. The resultant re- 
fined graph is shown in Figure 5(b). 

Subsequent discussion of our analysis distinguishes 
specialized values by subscripting them with a given 
contour, so that v, is the value v specialized to con- 
tour c. Furthermore, we use the following aspects of 
our representation: 

‘ulq * ‘u2cz : data may flow from vicl to vzc2 

Vlc, 4 v2cz : data may flow from vscZ to r/icl 

Creators(v,) t object contours of vc. 
self(c) t object contour of this, 

Recall the object contours represent specializations 
of classes, so Creators(v,) is essentially the type of vc. 

5 Analysis 

We explore three different analyses for automatic object 
inlining, each of increasing analysis power. Recall that 
the goal of object inlining analysis is to identify the ob- 
ject fields (and contours (See Section 4.2)) for which the 
object inlining transformation is semantics preserving. 
More successful analyses will find more field, contour 
pairs which can be inlined. For a field to be safely inlin- 
able, the analysis must be able to precisely enumerate 
uses of the child object, and the sharing relationship be- 
tween the parent and child objects. These properties are 
are formalized in Section 5.1. The three different analy- 
ses for inlining, each of increasing power, are described 
in subsequent sections. 

5.1 Criteria for lnlinable Fields 

To prove a field is safely inlinable, an object inlining 
analysis must compute the following information. All 
of the results must be precise. Let f denote a single field 
in a contour for a single class. 

Rf: the set of references to a container object of field f 

Ef: the set of references to a containee object of field f 

Upf : Ef 6 Rf: a map from containees to their cor- 
responding containers 

Computing these properties requires precise resolu- 
tion of control flow and data flow in large programs. 
These definitions are independent of the program rep- 
resentation used, so the exact meaning of reference and 
class depend the analysis framework being used. For 
example, a reference could be a value in an SSA graph 
or something more precise for a context-sensitive data- 
flow graph. Further, a class could be a declared class, 
an object contour (see Section 4.2), or just the results 
of a specific set of new statements. 

Figure 6 shows this information for the lower-right 
field of the Rectangle object in our example. The 
table labels values with the contours shown in Fig- 
ure 5(b). All values that contain objects assigned to 
or read from lower-left in Elower-right and all val- 
ues that hold Rectangles from the creation of r are 
in Rl am-right. In Figure 6, the results for these sets 
are precise; the variables in Elower-,.ight are only used 
as the lower-left field of a Rectangle. If this were 
not the case - i.e. if some member of Elower-r+t only 
might be from a Rectangle - there would be no way to 
generate a single sequence of code for the field reference. 

Elower-right + (this4, qo,lrz, this31 
R lower-right t {ro, thisa} 

( this4 -+ ro I 

UPI ower-right + 
-+ 7-o 

-+ this2 
-+ this2 

Figure 6: Example R, E and Up 

For a field to be inlinable, not only must Rf and 
Ef be precise, but Upf must be a realizable function. 
This is because object inlining requires Upf to direct a 
program transformation - substituting container values 
for containee values - and realizability ensures that con- 
tainer values need not be used in places where they do 
not exist (e.g. before they are created). For example, 
in Figure 6, Ups maps this4 to rs, but the two vari- 
ables are in different scopes, so it must be possible to 
pass re into the constructor (or alternately inline the 
constructor) in order to replace this4 with it. 

5.2 Analysis Frameworks 

Analyses to derive inlinable fields can use any data-flow 
analysis framework, but the choice critically affects cost 
(space and time) and effectiveness (inlinable fields iden- 
tified). We explore three different analysis frameworks, 
ranging from local data-flow analysis to adaptive flow- 
sensitive analysis [24]. These frameworks allow us to 
explore the cost-effectiveness space of inlining analyses. 

Local Data Flow Conventional intra-procedural 
analysis which is fast, but limits the identification 
of inlinable fields to those for which both Ef and 
Rf confined to a single procedure. This limitation 
could be mitigated by good procedure inlining 
heuristics. 



CO”, <c << s.xgos; 

(a) Pass One (b) Pass Two 

Figure 5: Adapt ;ive Flow Analysis 

nCFA A conventional form of inter-procedural analysis 
with flow-sensitivity based on n of levels of calling 
context [28]. Because of compute cost exponential 
in n, only small values of n are practical. The con- 
text sensitivity of nCFA allows inlining of objects 
for which Ef and Rf span procedure boundaries. 

Adaptive Analysis (described in Section 4.2) An in- 
herently whole-program analysis with demand- 
driven - and arbitrarily deep - context sensitivity. 
It is capable of distinguishing Ef and Rf thru arbi- 
trarily many levels of procedure calls. A significant 
advantage of adaptive analysis over nCFA is that 
data flow is tracked even thru assignments to other 
object fields via object contours. 

5.3 Local Data Flow 

The local data flow analysis uses a single mechanism, 
tagging, to compute Ef, Rf and Ups simultaneously 
for each field in a given method. Local data flow works 
on individual methods, for which the Concert Compiler 
uses SSA and the PDG (see Section 4.1) and values 
are tagged with information about object fields to which 
they are assigned or from which they are read. We first 
define precisely what a tag is, then discuss how they are 
propagated by local data flow, and finally show how to 
compute Ef, Rf and UpF from them. 

5.3.1 Tags 

A tag is associated with a given program value; it is a 
sequence ((object @ field), , . . . , (object @ field),) in- 
dicating the object fields to which that value is assigned 
or from which it is read. The objects are the SSA values 
representing the value from which the field was accessed 
and fields are the fields accessed. For instance, a = b.f 
would yield a tag of ((b 8 f)) for a. Manipulation of 
tags is defined as follows: 

NoTag a value not from any field 
Object((o@ f)) q o 

FieZd((0 @ f)) a f 
fy$;1 @J f), 7.. . 7 (0 @ f,,), * 

M~~eTagl((o~f),((o~f),,... ,(o@ff),))= 
((0 @ f) 1 (0 8 f), > > (0 @ f,,) 

5.3.2 Tag propagation 

The tags defined above are propagated by a standard 
data-flow algorithm thru the program graph of an in- 
dividual method in order to compute Ef, Rj and Upf 
for all fields f of all objects created in that method. In 
defining our data-flow equations, we will use the =+ and 
+= relations to indicate forward and backward data-flow 
relationships between values, and + to signify transitive 
closure. 

We use two sets of tags for each value in the program 
graph, ForwardTags and BackwardTags, to record fields 
from which the value is read and to which it is assigned 
respectively. Tag propagation conceptually starts at the 
creation sites (i.e. new statements) of all uncontained 
objects, that is, objects that are not assigned into any 
field of any object. The set of uncontained objects, 
which we call Top, is defined as follows: 

Top t 

kind(creation(v)) = creationA 

(v +;,, ( ::dL$j$~;;) } 

Propagation proceeds from the uncontained objects 
according to data-flow rules that tag all definitions and 
uses of object fields with tags corresponding to the ap- 
propriate object and field values. The rule for object 
creations is straightforward: for each creation site in 
Top, its result is given the forward tag NoTag: 

v = new Obj A v E Top ==+ 

ForwardTags c {NoTag} 

Local data flow must treat field access nodes specially, 
as fields represent global state rather than SSA values; 
there are two rules for these field accesses - one for reads 
and one for writes - that propagate the appropriate tag 
based upon the field accessed and the container’s tag: 

Tags(v) t ForwardTags U BackwardTags 

v = o .f ----LI ForwardTags c 

{MakeTag((o@ f) ,tl)ltl E Tags(o)} 



o.f = v * BackwardTags t 

{MakeTag((o @ f) , tl)ltl E Tags(o)}) 

Finally, there are the rules for propagating tags across 
data-flow constraints: 

ForwardTags t 

ForwardTags U U {t It E ForwardTags( 
{iIi*u} 

BackwardTags t 

BackwardTags(v)U U {t It E BackwardTags( 
{ilie=v} 

5.3.3 Computing Ef, Rf and Upf 

Once the tag propagation is done, we compute Ef, Rf 
and Upf for each field of each object created in the 
method. We will give the definitions in terms of an ar- 
bitrary field fof an object n where II is the result of an 
object creation (i.e. a new statement). Rf is the transi- 
tive closure, forward and backward, across the data flow 
from ‘u throughout the method, and Ef is all the val- 
ues tagged with a pair representing the field f and an 
object in Rf. Note that the tags have recorded the con- 
tainer value from which the field was extracted, which 
allows us to find the corresponding container for a given 
member of Ef by looking the the Object of its tag. 

Rf t {vi Iv@= u =x)+vi } 

There are no criteria for the precision of Rf for it is 
defined rather than calculated; however, both Ef and 
Upf must be checked for ambiguity. If a value in Ef has 
more than one tag, then that value could be from mul- 
tiple containers, making inlining invalid. Similarly, Upf 
must be a many-to-one mapping, so a given member of 
Ef must not be mapped to more than one member 
Rf: 

of 

Ef : 
IForwardTags(v)l > 1V 
IBa&wardTags(v)l > 1 

UPf : --&,q,q (e, 7-1) E Upf A (e, 7-2) E Upf 

5.3.4 Realizability 

We mentioned in Section 5.1 that the mapping Upf 
must be checked for realizability: we must ensure that 
the specified transformation is legal. Recall that the 
transformation is simply substituting container values 
for uses of containee values according to Upf Values 
with a ForwardTag are no problem, for the correspond- 
ing container must exist; for values with a Backward- 
Tag, we are pushing the corresponding container back- 
ward along data-flow paths to control conditions where 
it may not exist. Since we are using the PDG (see Sec- 
tion 4.1), the control conditions can be verified simply: 

for each mapping (e, r) where e has a BackwardTag, 
check that the creation of e is below the creation of r 
in the PDG and the node in r’s region that controls e 
(or is e) is not constrained to happen before the node 
creating r. These constraints are formalized in Figure 7 

5.4 nCFA Analysis 

The nCFA analysis, just like the local one, uses tag- 
ging to compute Ef, Rf; then we will use the resultant 
Ef, Rf and inter-procedural data-flow graph to con- 
struct Upf . Tagging is used to identify uses of different 
containee objects, relying upon the statically created 
contours to provide needed context sensitivity. We first 
define precisely what a tag is, then discuss how they are 
propagated using nCFA analysis. Finally we detail how 
to compute Ef, Rf and Upf. 

This analysis-and the similar adaptive analysis dis- 
cussed next-is based upon techniques we devised pre- 
viously [9]. The tag propagation for forward tags is 
exactly the same, but our prior technique worked by 
copying fields of the child object into the fused object, 
which we called definition specialization. That proved 
inadequate when evaluated on larger programs, so we 
replaced that mechanism with backward tags. 

5.4.1 Tags 

A tag is a sequence (f ieldl , . . . , field,) indicating from 
or to which fields a given value is read or assigned. The 
fields are field names from the program’s classes. Ma- 
nipulation of tags is defined as follows: 

NoTag =+ not from field. 

MakeTw(f,(fl,... ,fn)) * (f,fl,... ,fn) 
Head((fl,. . , fn)) - fl 

5.4.2 Tag propagation 

The tags defined above are propagated by a standard 
data-flow algorithm thru the inter-procedural data-flow 
graph in order to compute Ef, Rf. In defining our data- 
flow equations, we will use the + and -+ relations to 
indicate forward and backward data-flow relationships 
between values. 

Tag propagation conceptually starts at the creation 
sites (i.e. new statements) of classes, that is, classes 
values of which type are not assigned into any field of 
any object. The set of uncontained classes, which we 
call Top, is defined as follows: 

Top t 

{C 1~3C~AI1Clas~=~3~~~ields(C) c E Creators(F) } 

Tags are propagated thru the inter-procedural data- 
flow graph along forward and back data-flow paths, with 
special rules for the results of object creations and field 
accesses. The rule for object creations is straightfor- 
ward: for each creation site in Top, its result is given 



RegionAbove(rl, rz) 

Above(nl, nz) 

After(m, nz) 
LocalDominates(n1, nz) 

Realizable(Upj) 

t r-1 = r-2 V (parent(r2) A RegionAbove(rr, region(parent(rz))) 

t RegionAbove(region(nl), region(n2)) 

t nl > nz V After(nl,parent(region(nz))) V After(parent(region(nr)),nz) 
+ Above(nl, n2) A -After(nl, 7~2) 

t V(e,r)Eupf LocaZDominates(creation(r), creation(e)) 

Figure 7: Realizability 

the forward tag NoTag: 

v = new Class A Class E Top * 
ForwardTags t { NoTag} 

There are two rules for field accesses - one for reads 
and one for writes - that propagate the appropriate tag 
based upon the field accessed and the container’s tag (in 
the subsequent equations, recall that n, is w specialized 
to contour c): 

v = o .f s ForwardTags t 

MakeTag(f, t) 
c~creators(o,) 

o . f = v q BackwardTags t 

Finally, there are the rules for propagating tags across 
data-flow constraints (the restrictive clauses prevent 
extraneous propagation of tags across dynamic dis- 
patches): 

ForwardTags t 

” {I 

t t E ForwardTags(x)A 

{zl~*vc 1 
Creators(Head(t)) fl Creators(w,) 

BackwardTags t 

” {I 

t t E BackwardTags(x)A 

{=I%*= j 
Creators(Head(t)) n Creators(v,) 

5.4.3 Computing Ef, Rj and Upf 

Ef and Rf are each defined in terms of a class. Rj is 
values flowing from the creations of the class containing 
f, and Ej is values flowing from the creations of the 
classes of the child (i.e. the type of f): 

Container(f) t the class containing field f 
CreationPoints t results of news of C 

U 
CECreators(f)cECreationPoints(C) 

Computing Upf requires mapping from a given con- 
tainee value from Ef to the appropriate container value 
in Rj, which involves finding the value to or from which 
the containee goes or comes. We tackle finding the value 
differently for forward and backward tagged values. For- 
ward tagged values flowed from a container (hence the 
tag) and that is the one to use in place of it. At the 
points where the containee is extracted (i.e. at field 
reads), we have an association between the container 
and containee values, and so we can use the container 
value instead. This gives us Upj for forward tagged 
values: 

e E Ej A ForwardTag ==+- 

0 = r.f Ao*+ e -+ (e,r) E Upj 

Unhappily, backward tagged values are more com- 
plex. There is the same association at points where the 
containee is inserted (i.e. at field writes), and that does 
tell us which container object to use. However, in order 
to use this container value, we must pass it backwards 
along the data-flow paths for the containee values, which 
may not be possible. We deal with this by trying to find 
some value in Rj that dominates (denoted E) both the 
place where the containee is assigned (so that we are 
using the right container) and the creation of the con- 
tainee (so that we can replace the right containee). We 
need a very strict notion of dominance: i 3 j means the 
statement creating of j executes at most once for each 
execution of the statement creating i. 

(e,r) E Upf -----r. 

o.f = eA 
rr+oA 

VcEcteators(e)VcEcreationPoints(C)T c+ c 

iizjt 

(i + j A kind(j) = argument) V 
LocalDominates(creation(i), creation(j)) 



5.5 Adaptive Analysis 

The adaptive flow analysis (see Section 4.2) uses tugging 
and adaptive splitting together to compute Ef, Rf; then 
we will use the resultant Ef, Rf and inter-procedural 
data-flow graph to construct Upf. Tagging and adap- 
tive method splitting is used to disambiguate uses of 
different containee objects, and adaptive object split- 
ting creates individual object contours representing the 
creations of containee objects. It is similar to the nCFA 
analysis, but is defined on object contours rather than 
classes, and creates object contours as needed. We first 
define precisely what a tag is, then discuss how they are 
propagated using adaptive analysis. Finally we detail 
how to compute Ef , Rf and Upf . 

5.5.1 Tags 

A tag is a sequence (f ieldcountor l, , f ieldcontour,) in- 
dicating from or to which fields of which contours (see 
Section 4.2) a given value comes or goes: contoun are 
the object contours representing the creator of the ob- 
ject accessed and fields are field names from their respec- 
tive contours’ classes. Manipulation of tags is defined 
as follows: 

NoTag a not from field. 

MakeTag(f,,(f,,,... ,fc,)) * (.fc~fc~l... yfcm) 

Head((fCl,... ,fc,)) ---r’ fc~ 

5.5.2 Tag propagation 

The tags defined above are propagated by a standard 
data-flow algorithm thru the inter-procedural data-flow 
graph in order to compute Ef, Rf. Adaptive analysis 
is an iterative algorithm, and this tag propagation is 
repeated for each iteration of the analysis framework. 
In defining our data-flow equations, we will use the + 
and X= relations to indicate forward and backward data- 
flow relationships between values. 

Tag propagation conceptually starts at the creation 
sites (i.e. new statements) summarized by uncontained 
contours, that is, objects that are not assigned into any 
field of any object. The set of uncontained contours, 
which we call Top, is defined as follows: 

Top t 

4 CEnllCIasses 
hGWds(C) 

3c1~~PeatorS(~)~ E Creators(F,,) 

Tags are propagated thru the inter-procedural data- 
flow graph along forward and back data-flow paths, with 
special rules for the results of object creations and field 
accesses. The rule for object creations is straightfor- 
ward: for each creation site in Top, its result is given 
the forward tag NoTag: 

v = new Clbj A (Creators(v,) - Top) = 0 ==+ 

ForwardTags c {NoTag} 

There are two rules for field accesses - one for reads 
and one for writes - that propagate the appropriate tag 
based upon the field accessed and the container’s tag: 

v = o.f ===s ForwardTags c 

MakeTag(f,,lf(,), t) cECreators(o,) 
o . f = v ===+ BackwardTags t 

ttT:(o,) (.,Ci!~~(.,) MakeTag(fse’f(c)l ‘)) 

Finally, the rules for propagating tags across data-flow 
constraints are exactly the same as for nCFA. 

5.5.3 Adaptive splitting 

The propagated tags are used to guide adaptive split- 
ting to disambiguate the uses and creations of different 
containee objects. The analysis framework allows indi- 
vidual analyses to register discriminator functions that 
determine whether a given contour needs to be split. 
Uses of different containees are disambiguated using the 
forward tags by splitting contours of methods in which 
differing tags from different callers merge. Each contour 
has a set of edges representing the calls it summarizes. 
Contours are split so that all incoming edges have com- 
patible tags. The edges of a contour are partitioned into 
sets that become new contours as shown in Equation (1) 
of Figure 8; note that Arg(e,i) is the ith argument of 
edge e. 

The object contours representing the creation of con- 
tainee objects are created by using the backward tags. 
These backward tags will be propagated from assign- 
ments to fields back toward the creations of the objects 
being assigned into that field, which must ultimately 
be object creation statements, which are represented by 
object contours. Two steps are involved in splitting ob- 
ject contours: first, the data-flow path from the field 
back to the creation must be separated by splitting all 
intermediate methods according to the backward tags 
of their values as given in the formula. In Equation (2) 
of Figure 8 Ret(e, i) is the ith return value of edge e. 

Then the object contours themselves must be split. 
The object contours represent the result of a new oper- 
ation, so the backward tags will ultimately flow all the 
way back to that value, and so these tags can be used 
to partition the object contour into a set of contours. 
This is shown in Equation 3 of Figure 8; the result of 
the new statement is v in that equation. 

5.5.4 Computing Ef, Rf and Upf 

In the adaptive analysis, an object contour is created 
to represent the containee objects, so Ef and RI are 
each defined in terms of an object contour. A field f 
is discriminated by the object contour of its container, 
which we designate fc. The computation is exactly the 
same as for nCFA, except that fields are specialized to 



{{el,... , e,} 113i,j,kForwardTags(Arg(e;, k)) # ForwardTags(Arg(e~, k)) } 

{{el, . , e,} 113i,j,kBackwardTags(Ret(ei, k)) # BackwardZ’ags(Ret(ej, k)) } 

{{Cl,... , cn} pi,j,aa c k wardTags(u,i) # BackwardTags(v,j) } 

Figure 8: Criteria for Adaptive Splitting 

(1) 
(2) 

(3) 

object contours. So, Rf and Ef for a field f0 become 

CreationPoints t results of news of c 

U CJ+U 

cECreationPoints(0) 1 

EJ ---+ 1 V 

iI 
u U 

Rf -t 

U c*+v 
( ~CECreators(f,)cECreationPoints(C) 1 

Computing UpJ is exactly the same as for nCFA, 
except that it is done for the EJ and Rf specialized for 
a given contour. 

5.6 Object lnlining Transformation 

Once we have Ef , RJ and UPJ for a given field f, 
the object inlining transformation is simplicity itself, at 
least conceptually: replace uses e of the containee with 
UpJ(e), move the containee’s storage into the container, 
and delete all creations of a containee5. 

6 Evaluation 

We set out to determine how much analysis power is 
required for effective automatic inline object allocation 
on a range of programs. Thus, we must measure how 
effective and costly each analysis option is at compile 
time, and their effects at runtime. Our primary met- 
rics measure the compile-time benefits and costs - in- 
lined field counts and analysis costs - and dynamic run- 
time changes, field accesses and object allocations elim- 
inated. We also measure the impact of object inlining 
on the program overall. First, we describe what compil- 
ers (Section 6.1), benchmarks (Section 6.2) and metrics 
(Section 3) we used. We present our results in Sec- 
tion 6.4. 

6.1 Methodology 

Our evaluation uses a range of C++ programs to com- 
pare our three inlining analyses - local, 1-cfa and adap- 
tive - with a base program compiled by the Concert 
compiler with no ob$ect inlining. For calibration, we 
compare the runtime and code size these four program 

6Having El allows us to precisely find all creations because 
the results of such creations will be in E,. 

eAll runs are done on a 266MHz Pentium Pro system with 
128M of memory. 

versions with the same programs compiled with the lat- 
est gee (2.8.1). Both compilers are run with full opti- 
mization (03 for g++) and given the whole program. 
Thus, we use the five versions of each program compiled 
as shown in Figure 1. In this table, analysis is the object 
inlining analysis used (l-CFA is the traditional Control 
Flow Analysis), and policy whether inlining was done by 
hand, automatically or not at all. For the l-CFA and 
adaptive analyses, analysis was performed before any 
transformation had taken place; in order to make the 
local scheme as effective as possible, we performed the 
local analysis and transformation after method inlining. 

I object inlining 1 I 
name analysis 1 policy 1 compiler 
base I none I none I Concert 

1 N.A. 1 manual 1 G++ 2.8.1 1 

Table 1: Compared Analysis and Compiler Parameters 

Since the benchmark programs are in C++, they in- 
clude a lot of low-level information - e.g. specifying 
virtual versus non-virtual functions, and denoting reg- 
ister, stack, heap and inlined storage allocation - that 
is not compatible with the high-level model expected by 
the Concert compiler. The Concert compiler discards all 
such information’, ignores type information and uses a 
reference model for all objects. 

6.2 Benchmarks 

We evaluate our object inlining techniques on the wide 
range of commonly-used standard data structures con- 
tained in two class libraries: the National Institutes of 
Health Class Library (NIHCL) and the Object Abstract 
Type Hierarchy (OATH) libraries. We use them as they 
are freely available and comprehensive. Both libraries 
come with a range of test programs that exercise the 
library, and we evaluate object inlining both on these 
test codes and also third-party programs written us- 
ing the libraries. The NIHCL codes include the 20,000 
line NIHCL library, and the OATH codes include the 
18,000 line OATH library. In addition, we use some 
benchmark programs commonly used to evaluate ob- 
ject oriented systems; these programs exhibit a variety 
of data and control structures. These codes - and the 
inlining opportunities they exhibit - are summarized in 
Figure 2. The lines column has the lines of code in the 

‘Obviously, the generated code respects the semantics of dif- 
ferent storage allocations, such as the meaning of assignment 
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program followed by the lines of library code in paren- 
theses. These codes represent a superset of the bench- 
marks used in our prior work 191; that work used only 
silo, richards, polyover and oopack. 

6.3 Metrics 

To assess the respective benefits and costs of our ap- 
proaches to object inlining, we measure compile-time 
cost and effectiveness and the runtime impact. Our 
whole-program compiler makes no distinction between 
a program and the libraries it uses, so all metrics cover 
the program and all libraries together. Our metrics are 
summarized in Table 3 and described below. 

Compile-Time Effectiveness We use a count of the to- 
tal number of fields found to be inlinable. To calibrate 
the effectiveness of our techniques, we compare these 
counts with the number of fields manually declared in- 
1ine.s 

Compile-Time Cost We use the amount of analysis 
precision required, which we measure as the amount of 
context-sensitivity required per method and per class. 
For the adaptive analysis, these counts are the total 
number of contours created across all iterations. 

Direct Dynamic Effects By fusing objects, inline allo- 
cation should reduce the number of field accesses and 
object allocations during program execution, and we 
measure these as our primary metric for runtime effec- 
tiveness. 

Overall Dynamic Effects To assess the impact of ob- 
ject inlining on the program overall, we measure run- 
time, executable size and memory usage. The special- 
ization required by inlining could increase code size, and 
reducing the number of objects allocated should reduce 
total memory usage. 

6.4 Results 

We present our metrics in same four groups as for Ta- 
ble 3: compile-time effectiveness, compile-time cost, di- 
rect dynamic effects and overall dynamic effects. 

6.4.1 Compile-Time Effectiveness 

Figure 9(a) presents the counts of inlinable fields discov- 
ered for each analysis and program; polymorphic fields 
are counted as a fraction based on how many of the poly- 
morphic uses were found to be inlinable. The counts 
range from 0 in some cases for 1-cfa and local analy- 
ses to 9 for stack and options for the adaptive analysis. 
These are raw counts, so the trend is for more fields to 
be inlinable in larger programs as they typically have 
more classes. 

‘It would be nice to calibrate by determining the numbers 
of fields “really” inlinable, but this is problematic. One can- 
not determine this automatically - our automatic determination 
is what we are evaluating - and counting by hand is difficult 
and error-prone for codes the size and complexity of NIHCL and 
OATH. 

Adaptive analysis proved most effective, finding at 
least as many fields as any other analysis, and a superset 
of those declared inline in C++. The 1-cfa analysis was 
as effective as adaptive analysis on some programs, but 
dramatically less so for others. It sometimes did not 
find all the fields declared inline in C++. The local 
analysis was ineffective: it found no fields inlinable on 
several programs, and it never found more than two 
fields inlinable. 

Adaptive analysis - and sometimes 1-cfa as well - 
found fields not declared inline in C++ when there were 
objects conceptually in a dynamic relationship - such as 
cons cells - that were used statically in a given context. 
This demonstrates an advantage of automatic object in- 
lining: the ability to discover fortuitously static uses of 
normally dynamic structures. The most common case 
was fusing a cons cell with its associated data in situ- 
ation where analysis determined there was no sharing 
amongst the list elements. This happened for options, 
pdl2a, silo and polyover. Adaptive analysis could fuse 
polymorphic lists in options. 

The 1-cfa analysis, lacking context sensitivity based 
upon object values, generally could not handle polymor- 
phic structures; and, in each of sets, addcontentsto and 
OTdeTech, the sensitivity limits of l-CFA prevented it 
from specializing two fields actually declared inline in 
C++. Aside from those six fields, all other differences 
between adaptive and 1-cfa analysis are attributable to 
data sensitivity. The local data-flow analysis found very 
few fields, primarily because most of the inlinable fields 
were in core program data structures used throughout 
the program and hence not amenable to local analysis 
techniques. For oopack, the local analysis had trouble 
because all major data structures are passed thru global 
variables. 

For several of the NIHCL benchmarks, one array in 
the core data structures could not be inlined because 
it may be reallocated dynamically to resize it if it over- 
flows. This never actually happens in some of the bench- 
marks, but our compiler does not do sufficient range 
propagation to figure this out. 

6.4.2 Compile-Time Cost. 

The cost of our analyses is measured by the numbers of 
contours per method and class, as shown in Figures 9(b) 
and (c). The general trends for method contours are 
different for the different analyses. Adaptive analysis 
has fairly flat costs - between 2 and 4 contours per 
method - across the programs, whereas 1-cfa cost rises 
as program size grows, peaking for our largest bench- 
mark, options. Local and base both use adaptive anal- 
ysis without the object inlining component, and they 
both show flat costs of between 1.5 and 3.5 contours 
per method. A notable features of this graph is that 
adaptive object-inlining analysis does not raise the cost 
much over the base adaptive analysis, except on add- 
contentsto for which cost doubles. 

The rise in cost of 1-cfa for larger programs is ex- 
pected, and has been observed before; the small varia- 
tions in cost for adaptive analysis track the structural 
complexity of the programs. More polymorphic codes 
such as richards and options - which each use a polymor- 
phic core data structure - have higher costs than stack, 

11 



10.0 
Adaptiva Analysts 

8.0 

C++ Dedaralions 

(a) Unable Fields 

v) 14.0 
3 
G 12.0 

5 10.0 
!!2 
2 8.0 

5 6.0 

z 4.0 

gj 2.0 

0.0 

(b) Contours Per Method 

2 2.8 Adaptive Analysis 

$ 2.4 

g 2.0 

$ 1.6 

5 1.2 

3 0.8 

8 0.4 

0.0 

(c) Contours Per Class 

Figure 9: Compile Measurements (absolute counts) 

12 



I Prooram I M lanes I mam data structures I znlznable oblects I 
NIHCL 

options 30K polymorphic lists list elements, empty, 1,2d-arrays 
orderedcltn 20.11K dynamic arrays iterators, collection wrappers, arrays 
stack 20K stacks parent/child, iterators, wrappers, arrays 
addcontentsto 20K sets, dynamic arrays iterators, wrappers, arrays 

OATH 
CSl 18.1K arrays, smart pointers wrappers, parent/child, smart pointers 
pdl2a 18.1K queues, smart pointers wrappers, list elements 

other programs 
oopack 3.3K arrays, numbers array of objects 
silo 1.3K queues conses, list wrappers 
polyover 1.2K lists, objects array of objects, conses 
richards l.OK objects simple parent/child 

Table 2: Benchmark Summary 

Name 

inlinable fields 

Units Description 
Compile time effectiveness 

count 1 number of inlined fields 
Comuile time cost 

method contours ) per method 1 method contours generated 
object contours per class object contours generated 

I Direct dvnamic effects 1 
reads 
news 

., 
count relative to base number of object field reads 
count relative to base number of object allocations 

Overall dvnamic effects 
runtime 
memory usage 
code size 

time relative to base program runtime 
bytes relative to base total heap allocation 
bytes relative to base executable image size 

Table 3: Metrics 

silo and oopack which have no polymorphism whatso- 
ever. An anomaly is the relatively small difference be- 
tween adaptive and l-cfa on the OATH codes csl and 
pdZ2a. These codes use an idiom for nil that creates 
type ambiguities throughout the program, which causes 
substantial demand-driven splitting in an attempt to 
resolve them. 

Figure 9(c) shows that few object contours are 
needed in general - none of the bars go much above 
two. The costs are fairly constant between analyses, ex- 
cept for some peaks for adaptive analysis. These peeks 
represent the extra precision needed for the most poly- 
morphic codes, particularly options and richards. This 
extra precision is what allows adaptive analysis to in- 
line polymorphic fields. There are two anomalies. The 
first is that some bars are below one, which happens 
because some classes - such as abstract base classes - 
are not instantiated at all and so do not generated ob- 
ject contours. Even though 1-cfa does not create object 
contours, some of its numbers are still greater thau one 
due to splitting of the array class required due to im- 
plementation artifacts. 

The actual runtime of our analysis system varies 
about two minutes on the simplest program (oopaclc) 
without object inlining analysis to about 30 minutes for 
object inlining analysis on the largest code (options). 

This varies from one quarter to one half of the total 
compile time depending upon how much adaptive anal- 
ysis is required. Asymptotically, the runtime varies both 
in accordance with program size and with the amount of 
demand-driven sensitivity required; however, the actual 
ruutimes for individual programs are not shown since 
they are dominated by implementation details rather 
than directly by properties of the programg. 

6.4.3 Direct Dynamic Effects 

The charts in Figure 10(a) and (b) present details of 
the changes in object accesses and allocations induced 
by object inlining. They show the fraction of field reads 
removed and of object allocations removed respectively. 
The results are very varied for the adaptive and 1-cfa 
analyses; the peaks of both charts are high: for some 
programs, almost all allocation and references can be 
eliminated. On the other hand, some programs -- such as 
options and the OATH codes show little gain on either 
metric. The average fraction of reads and allocations 
eliminated are 37% and 43% respectively over the base 
Concert program. The local analysis proved ineffective: 

‘For example, we use unsorted lists to record types, so com- 
puting a type difference is an O(n*) operation. Programs with 
lots of classes suffer unnecessarily from this artifact. 

13 



2 80-- 
2 70-- 
$ GO-- 
cr" 50-- 
5 40-- 
al 30-- 
3 20-- 
8 10-I 

o- ! I !. I I I I I I IB I 'i 
a 

-lO- 

Figure 1 

(a) Field Reads Reduction 

Adaptive Analysis 
1 -CFA Analysis 
Local Analysis 
Base Analysis 

(b) Object Allocations Reduction 

Direct Runtime Measurements (relative to base) 

14 



only one program showed noticeable gains, due to how 
few inlinable fields the local analysis found. 

There is some correlation with the inlinable field 
counts - as one might expect. The stacS code - which 
tied the larger options for the most inlinable fields at 9 
- shows dramatic gains on both metrics: about 80’% of 
reads and 50% of objects both vanish. Large reductions 
of reads for addcontentsto, oopack and polyover with 
adaptive analysis are due to removal of object deref- 
erences from critical paths in tight loops. 

The most dramatic reduction of object allocation is 
for oopack: almost 100% are eliminated. One array of 
complex numbers accounts for the vast bulk of the ob- 
jects in this benchmark, so inline allocating the arrays 
elements removes almost all the objects. The same is 
true to a lesser degree in polyover. 

On the other hand, a couple of programs show little 
improvement in either metric even with adaptive analy- 
sis. The options code shows relatively modest gains de- 
spite having the most inlinable fields because it makes 
heavy use of strings, which implementation details pre- 
vent us from inline allocating. The csl code - and the 
oath library in general - have relatively few inlinable 
fields due to type ambiguities caused by its idiom for 
nil objects. 

6.4.4 Overall Dynamic Effects 

Runtime. The relative execution times of our bench- 
marks are shown in Figure 11(a); this chart shows the 
fractional performance improvement relative to the base 
Concert code. We are evaluating the effects of object 
inlining relative to the base Concert code, as that is a 
controlled experiment simply turning object inlining on 
and off. Given the completely different implementations 
of g++ and Concert, the comparison with g++ is meant 
only as calibration of Concert’s base performance. Com- 
pared with g++, the Concert compiler produces slower 
code on 6 of the benchmarks and faster code on 5 of 
them. 

The chart show mostly performance gains up to 50% 
(for polyover) for object inlining using adaptive analy- 
sis. The average runtime gains are 3% for 1-cfa and 10% 
for adaptive analysis. The local analysis makes no ap- 
preciable difference on any code. The most significant 
performance gains are for stack, oopack and polyouer. 
These gains come partially from the removed objects 
and reads, but are also due in large part to object in- 
lining enabling other optimizations, especially caching 
fields in registers and allocating objects with provably 
limited lifetimes on the stack. 

The scarcity of performance gains from object inlin- 
ing - two programs are even slightly slower - on the 
other codes despite sometimes dramatic drops in read 
and object counts can be explained in part by our com- 
piler. Our research focuses on high-level analysis and 
transformation, and we have a relatively simple code 
generator that is unambitious with local code optimiza- 
tions”. Thus, when object inlining produces tighter 
bodies of code, that does not always translate into bet- 

“The register allocator is especially unhelpful on the Intel 
architecture with its scarcity of registers. 

ter performance.” However, object inlining dramti- 
tally reduces references and allocations, and making our 
backend take advantage of the better code is continuing 
work. 

Memory Usage. Figure 11(b) shows the reduction in 
memory usage for the inlined program versions as a frac- 
tion of that used by the base Concert program. Both 
the adaptive and 1-cfa programs show significant reduc- 
tions for many programs; the reduction is due to the 
reduced overhead of fewer objects in our garbage col- 
lected model and the space saved by the elided pointer 
fields. The average reduction in memory allocation is 
3% for 1-cfa and 13% for adaptive analysis. In general, 
the correlation between reduced object allocations and 
reduced storage use is weak because of the variance in 
the size of single objects. 

The greatest reduction occurs for the stack code with 
adaptive analysis: in this case, in addition to remov- 
ing objects, object inlining enabled object state caching 
that allowed other objects to be pruned completely. 
Conversely, the increase in object allocation caused by 
the local analysis on richards is caused by inlining in- 
hibiting other code optimizations, particularly object 
stack allocation. 

Code Size. Figure 11 shows the size of the final pro- 
gram relative to the base executable produced by Con- 
cert. The various version produced by the Concert com- 
piler are of almost identical size for each program, show- 
ing the specialization required by inline allocation does 
not result in significant code expansion. This is because 
it by and large the specialized methods would have to 
copied by inlining anyway. Compared with G++, the 
Concert compiler produces smaller executables for the 
large programs because it does a better job of tree- 
shaking the class libraries. 

7 Related Work 

Related work falls into two broad categories: there are 
other mechanisms for affecting inline allocation of ob- 
jects, and there are other analyses that function sim- 
ilarly to a given aspect of object inlining but serve a 
different purpose. 

The idea of doing automatic object inlining dates 
back at least to the Emerald system, which has a refer- 
ence object model [3] that was designed so that the com- 
piler [18] could optimize object structures. However, 
while our adaptive analysis can produce the information 
needed for inline allocation (see Section 5.1), the sim- 
ple, graph-algorithm-based analysis system of the Emer- 
ald compiler was sufficient only to allow the inlining of 
(boxed) immediate types. Immediate types in Emerald 
posed fewer analysis challenges for they had by defini- 
tion the value semantics required for inlining. Budimlic 
and Kennedy [4] sketch a combined object and method 
inlining optimization which they call object inlining. In 
their scheme, for an object created within a method, all 
its called methods are inlined and the state of the ob- 
ject replaced with local variables. Our inter-procedural 

“This is also why Concert is slower than g++ on several of 
the benchmarks. 
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analyses track field usage throughout the program - re- 
gardless of procedure boundaries - which was vital for 
inlining on our benchmarks; their scheme, like our local 
analysis, does not. But a detailed comparison is impos- 
sible as they give only a rough outline of their trans- 
formation which ignores the obvious aliasing concerns 
which we resolve by tagging. 

Runtime optimizations analogous to object inlining 
have also been tried; witness cdr-coding as done in the 
Symbolics Lisp machines. The basic idea is that list el- 
ements are stored adjacently, eliminating the need for a 
tail pointer; this adjacency can be due to happenstance 
or can be arranged e.g. by a compacting garbage col- 
lector. Unlike our compile-time transformations, cdr- 
coding does not depend upon static analysis, and so 
can be applied to portions of lists and other entities to 
fine to be distinguishable by current static analysis tech- 
niques. On the other hand, our static techniques have 
no runtime overhead, whereas the fact that a cons cell is 
cdr-coded must be recorded and checked whenever the 
cell is accessed. 

There has been much work in the functional commu- 
nity on unboxing, in which specialized representations 
are used to reduce storage and access overhead. Our 
adaptive flow analysis is able to compute precise inlin- 
ing information in the presence of assignments to object 
fields; the unboxing work does not need to address this 
as there is no structure assignment in functional lan- 
guages. The unboxing transformation of [20] handles 
polymorphism by generating specialized code only for 
monomorphic functions and coercing between general 
and unboxed representations as needed. On the other 
hand, our optimization is a global transformation that 
specializes polymorphic functions as needed. 

In [15], Cordelia Hall and company present a trans- 
formation for Haskell that does generate specialized 
code to exploit unboxing for polymorphic functions. 
Their transformation resembles ours in that it propa- 
gates “unboxedness” throughout the program generat- 
ing specialized code wherever needed. Our optimization 
is fully automatic and handles arbitrary user-defined 
object types. Due to the lazy semantics of Haskell, 
the transformation must be told what variables can be 
safely unboxed; furthermore, this transformation only 
unboxes immediate types. 

In [26], Shao et al. unroll linked lists-essentially in- 
line allocating tail pointers-in a functional subset of 
ML. Their analysis works using refinement types [13] 
that distinguish odd and even length lists. These re- 
fined types are propagated using an abstract interpreta- 
tion, with rules for the refined types generated by cons 
statements. All functions that take list parameters are 
cloned and specialized with all possible combinations of 
refinement types for their list parameters. Our inter- 
procedural analyses have two advantages. First, our 
field tags are more general, as they handle arbitrary 
object structures, rather than lists. Second, our inter- 
procedural analysis analyzes only specializations that 
are actually used. 

In [ll], the authors describe access paths, which are 
used in various kinds of pointer analyses. The basic idea 
is that access paths keep track of object fields traversed 
during pointer dereferences. The major difference be- 
tween access paths and our tags is that access paths 

start with stack variables, and are used for instance- 
based alias analysis, whereas our tags start from object 
creation sites and our analysis is class-based (actually 
object contour based). Object inlining analysis does not 
require the precision of instance-based aliasing, and so 
we can use a potentially cheaper class-based mechanism. 

8 Summary 

We have studied three compiler analyses to identify 
safely inlinable fields. These analyses span a range of 
cost and complexity, and all track field (member) ac- 
cesses in heap objects. These analyses span a range 
of complexity from local data flow to adaptive whole- 
program, flow-sensitive inter-procedural analysis. Mea- 
suring the cost and effectiveness of these analyses on 
a suite of moderate-sized C++ programs (up to 30,000 
lines including libraries), we find that object inlining op- 
timizations eliminate 40% typically and as much as 90% 
of the object accesses and allocations, and can deliver 
significant performance benefits (averaging 10% faster 
but ranging from no improvement to 50%). But reaping 
these benefits requires powerful inter-procedural analy- 
sis that must focus effort to avoid excessive cost. For- 
tunately, the adaptive inter-procedural analysis we em- 
ployed [24] computes precise information efficiently. 
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A Benchmark Programs 

options is a command-line argument processing pack- 
age. It’s central data structure is a polymor- 
phic list of command line options, in which dif- 
ferent kinds of options-integer, real, string, etc- 
are represented by different subclasses of a generic 
Option class. 

orderedcltn is a test program for the ordered collec- 
tion classes of NIHCL; it uses sets and ordered col- 
lections, both of which in turn use expandable ar- 
rays; it also uses a variety of other NIHCL classes 
for handling I/O, iteration are other support func- 
tions. 

addcontentsto is a test that creates a few ordered col- 
lections, and then loops adding 10,000 point ob- 
jects to them. It uses sets and ordered collections, 
both of which in turn use expandable arrays; it also 
uses a variety of other NIHCL classes for handling 
I/O, iteration are other support functions. 

stack tests the stack class of NIHCL. It creates stacks, 
ordered collections and other support objects, and 
pushes and pops objects of different classes (so the 
stacks are polymorphic) into them. 

sets is another a test program for the ordered collection 
and set classes of NIHCL; it uses sets and ordered 
collections, both of which in turn use expandable 
arrays; it also uses a variety of other NIHCL classes 
for handling I/O, iteration are other support func- 
tions. 

csl tests character sets, and creates lists, character ob- 
jects and streams for doing I/O and inserting and 
deleting elements. 

pdl2a tests doubly-linked lists. It creates lists, charac- 
ter objects and streams for doing I/O and inserting 
and deleting elements. 

oopack is a set of tight numerical loops that use ob- 
ject extensively inside the loops. It uses iterator 
objects, matrix wrapper objects and complex num- 
ber objects. 

silo is a discrete event simulator benchmark. Its pri- 
mary data structure is a list of events, which it uses 
as a queue. It has event objects, resource objects 
and various support objects. 

polyover performs an overlay of two polygon maps. It 
uses lists and arrays of polygon objects to represent 
polygon maps. 

richards is an operating system simulation bench- 
mark; it uses a central task queue to which tasks 
are added in an event driven fashion when they 
receive messages. 

6 Raw Evaluation Results 

Pw~m 
options 

orderkdcltn 
addcontentsto 

stack 
sets 
CSl 

pdl2a 
oopack 

silo 

Analysis 

polyover 3 1 0 
richards 3 3 0 

c++ 
6 
6 
6 
8 
6 
5 
3 
1 
2 
2 

Table 4: Counts of Inlinable Fields 

program 
options 

orderedcltn 
addcontentsto 

stack 
sets 
CSl 

pdl2a 
oopack 

silo 
polyover 
Richards 

- 
T adaptive 

1730 
888 

1066 
600 
971 

1657 
1523 

166 
208 
131 
455 

Anal: 
1-cfa 
6154 
4067 
2301 
3042 
3761 
3099 
2651 

567 
531 
653 
934 

- 

5 
local 
1449 

666 
496 
512 
622 

1383 
1286 

140 
148 

85 
344 =: 

1 

: 

1 
1 

- 

- 
base T 
449 
666 
496 
514 
622 
383 
286 
140 
148 

85 
344 Z 

Table 5: Method Contour Counts 

methods 
441 
327 
267 
284 
300 
423 
417 

89 
106 

60 
155 

19 



Analysis 
progmm adaptive 1-cfa local base 
options 12413096 14149096 14169245 14169245 

orderedcltn 15566973 29626973 28227122 29627122 
addcontentsto 967943 1583828 1583977 1583977 

stack 246973 306973 1177122 1127122 
sets 23046973 58046973 58047122 58047122 
csl 3204709 3204709 4005523 4005523 

pdl2a 6222357 6222537 6377612 6377612 
oopack 710523016 1220703514 1220703514 1220703514 

silo 11291623 11693779 14338618 14338618 
polyover 454847146 1480582168 1480582168 1480582168 
richards 11884990 11884990 13334790 13334790 

Table 7: Field Read Counts 

=i= Analy 3 
1-cfa local 

150 159 
120 121 
118 118 
120 120 
119 119 
216 221 
215 223 

30 30 
16 16 
12 12 
16 16 

- - 

base classes 
159 90 
121 72 
118 72 
120 72 
119 72 
221 94 
223 94 

30 20 
16 21 
12 17 
16 24 

t 

program 
options 

orderedcltn 
addcontentsto 

stack 
sets 
csl 

pdl2a 
oopack 

silo 
polyover -L rlchards 24 

adaptive 
205 
125 
133 
123 
128 
222 
218 

33 
17 
13 

- r - 

base T 
597 
466 
452 
437 
480 
503 
484 
310 
333 
316 
311 

E 

Analy 9 

local 
597 
466 
452 
437 
480 
503 
484 

310, 
333 
316 
311 

E 

c++ 
899 
697 
686 
692 
694 
668 
730 
309 
342 
319 
313 

adaptive 1-cfa 
628 600 
485 467 
457 450 
438 437 
483 477 
507 507 
485 485 
311 311 
333 333 
316 316 

program 
ootions 

ordered&n 
addcontentsto 

stack 
sets 
csl 

pdl2a 
oopack 

silo 
polyover . . 
rlchards 311 311 

1 
base ’ 

284700 Table 10: Code Sizes in kB 

Table 6: Object Contour Counts 

lysis =i= Ana 
I-cfa 

278507 
220433 

10468 
50432 

320432 
645 

340643 
2018 

465670 
149164 

141 

local 
284700 
210627 

10661 
80625 

320625 
652 

500634 
2018 

787899 
149164 

282 

adaptive 
204506 
120433 

10444 
30432 

140432 
645 

340633 
13 

465668 
41616 

141 

program 
options 

ordered&n 
addcontentsto 

stack 
sets 
csl 

pdl2a 
oopack 

silo 
polyover 
richards 

210626 
10661 
70625 

320625 
652 

500634 
2018 

787899 
149164 

282 

progmm 
Analvsis I 
1-cfa local base ’ 
5236 5318 5318 
7818 7700 7700 

164 167 167 
978 1420 1220 

17738 17740 17740 
15 16 16 

12975 14255 14255 
132 132 132 

12606 15184 15184 
2914 2094 2094 

41 5 1 5992 

adaptive 
4676 
6538 

164 
818 

15178 
15 

12975 
116 

12606 
2053 

4 

Table 8: Object Allocation Counts 

I Analysis 

optlons 
ordered&n 

addcontentsto 
stack 

sets 
csl 

pdl2a 
oopack 

silo 
polyover 
-richards 

- -r base 
1.99 
1.93 
0.05 
0.08 
1.84 
0.08 
0.70 

18.16 
1.1 

24.43 
40 - 

adaptive 
1.97 
1.79 
0.05 
0.07 
1.97 
0.09 
0.68 
14.9 

1.0 
12.71 

38 

c++ 
1.07 
1.57 
0.05 
0.09 
1.09 
0.11 
1.69 

19.83 

program 
options 

orderedcltn 
addcontentsto 

stack 
sets 
csl 

pdl2a 
oopack 

silo 1.8 
12.83 

30 - 

Table 11: Memory Usage in kB polyover 
richards 

Table 9: Runtimes in Seconds 
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