
An Evaluation of Automatic Object Inline Allocation Techniques

Julian Dolby Andrew A. Chien
Department of Computer Science Department of Computer Science and Engineering
University of Illinois at IJrbana University of California, San Diego

dolby@cs.uiuc.edu achien@cs.ucsd.edu

Abstract

Object-oriented languages such as Java and Smalltalk
provide a uniform object reference model, allowing ob-
jects to be conveniently shared. If implemented directly,
these uniform reference models can suffer in efficiency
due to additional memory dereferences and memory
management operations. Automatic inline allocation of
child objects within parent objects can reduce overheads
of heap-allocated pointer-referenced objects.

We present three compiler analyses to identify inlin-
able fields by tracking accesses to heap objects. These
analyses span a range from local data flow to adaptive
whole-program, flow-sensitive inter-procedural analy-
sis. We measure their cost and effectiveness on a. suite
of moderate-sized C++ programs (up to 30,000 lines
including libraries). We show that aggressive inter-
procedural analysis is required to enable object inlin-
ing, and our adaptive inter-procedural analysis [23] com-
putes precise information efficiently. Object inlining
eliminates typically 40% of object accesses and alloca-
tions (improving performance up to 50%). Furthermore,

1 introduction

Object-oriented languages provide abstraction, allowing
programmers to isolate conceptual portions of a given
program behind opaque interfaces, with attendant ben-
efits in code modularity and reusability. Languages such
as Java [32], Lisp [30], Pool [2] and Sather [31] provide
this abstraction with opaque objects for which clients
have a reference and an interface specification. This
isolates the clients from any changes in a given object’s
implementation. Even fine-grained portions of a pro-
gram, such as individual points for a graphics library,
can be conveniently expressed in this manner.

But these same interfaces create overhead if imple-
mented in the manner of a traditional Lisp or Java run-
time system, using dynamic dispatch to call methods
and heap-allocated objects accessed via pointers. Ad-
ditionally, an object-oriented programming style gcner-
ally encourages the use of small methods and objects

Permwlon to make dtgltal or hard copes of all or pan of this work for
personal or classroom use is granted without tee provfded that
copes are not made or distributed for protut or commercial advan-
tage and that copses bear this not!ce and the full citation on the tlrst page
To copy otherwlse, to republish, to post on servers or to
redlstrlbuw to IIsts. requres pnor specific perm#ss~on and/or a tee.
OOPSLA ‘98 10198 Vancouver, B.C.
0 1998 ACM l-581 13.005.8/98/0010...$5.00

[5]. The combination of small methods and dynamic
dispatch is a well-studied problem: dynamic dispatches
are optimized statically by type inference [l, 6, 21, 241,
dynamically by inline caching [16] or with hybrid ap-
proaches like type feedback [17]. Static or hybrid type
analysis has been combined with method specialization
[S, 251 to allow inlining, removing the small functions
common in object-oriented code.

Pervasive use of heap-allocated objects introduces
overhead for memory management and repeated pointer
dereference. This can both increase memory traffic and
hurt local code efficiency by reducing opportunities for
register allocation which inhibits many scalar optimiza-
tions. Pointer dereference (called pointer chasing) over-
head not only incurs additional memory traffic, but
given performance sensitivity to data locality, typically
reduces cache efficiency. This topic has been studied by
many researchers, using both runtime techniques (e.g.
fine grained multi threading [22]) and compile time ap-
proaches (e.g. representations that explicate dependen-
cies thru pointers [19]). But it remains a challenging
open problem. Object inlining coalesces objects by in-
line allocating child objects within their container ob-
jects. This attacks pointer chasing by eliding the point-
ers and converts an unpredictable memory reference into
one with spatial locality.

But object inlining poses challenges of its own: it
requires an analysis capable of distinguishing individual
container and containee objects, both to ensure that
merging them does not change sharing relationships,
and to generate appropriate code for accessing state of
merged objects where that is needed. A whole-program
analysis that does this was presented in [9], and showed
speedups of up to three-fold on a set of object-intensive
benchmarks. However, that study did not assess much
analysis power is really required, and how many fields
can be inlined on a wider range of benchmarks. In this
paper, we address those questions.

So to assess the feasibility and benefit of object in-
lining, we study its effectiveness using several analysis
frameworks of varying power and cost, and a bench-
mark suite including the NIHCL [14] and OATH class
libraries, which together provide multiple implementa-
tions of a range of common data structures. These codes
range from a few hundred lines to over 10,000 lines of
C++ code (plus 20,000 lines of library). We imple-
mented three different program analyses. They all use
data-flow properties to track how object fields are used

and defined; the analysis frameworks employed are lo-
cal data flow, traditional control flow analysis [27] and
adaptive flow analysis [24]. The control flow analysis
and adaptive analysis variants are based upon the tech-
niques in our prior work [9]; however, our study revealed
deficiencies in those techniques so we generalized them
substantially for this study.

Our results indicate object inlining optimizations
eliminate typically 40% and as much as 90% of the ob-
ject accesses and allocations, and can deliver significant
performance benefits (averaging 10% faster but rang-
ing from no improvement to 50%). However, reaping
these benefits requires powerful inter-procedural analy-
sis that must focus effort to avoid excessive cost. Both
the simple local technique nor the traditional flow anal-
ysis proved insufficent. Fortunately, the adaptive inter-
procedural analysis we employed [24] computes precise
information efficiently.

We begin by discussing our approach to inline alloca-
tion in Section 2 and presenting an example program in
Section 3. Next, Section 4 describes the Concert System
[7] in which work was done, and Section 5 details our
three program analyses. These analyses are evaluated
on a suite of C++ programs in Section 6. This suite
is summarized in Section 6.2 and performance metrics
and results are given in Sections 6.3 and 6.4. Finally,
we contrast related work in Section 7 and conclude with
Section 8.

2 Automatic Object Mining

The idea behind automatic object-inlining is provide
a more efficient implementation without altering the
model seen by the programmer. Thus, the source pro-
gram might describe a logical structure (which we call
the literal stmcture) of several objects, connected by
references, and the resulting implementation after ob-
ject inlining might be these objects fused into a single
object. The literal and optimized data structure imple-
mentations for an example pair of classes is illustrated
by Figure 1.

The literal implementation requires multiple mem-
ory operations to allocate and reclaim the storage for
the objects, and pointer dereferences to reach the Point
objects. In contrast, the optimized implementation can
be allocated and reclaimed in a single operation and
the fields directly accessed with a single load with offset
instruction.

2.1 Analysis and Transformation Requirements

For inlining to be semantics preserving’, program analy-
sis must provide two pieces of information for each inlin-
able field. First, the analysis must precisely identify all
accesses to the child object, and, second, to ensure that
sharing relationships are correctly preserved, the analy-
sis must ensure that the child is not stored into multiple
parents via the given field. The need for precision is sig-
nificant and difficult to achieve in many cases. Thus, the
goal of the analysis is to identify the object fields (and

‘The transformation must be semantics preserving in order
for the program to continue to correctly implement the source
pKlgG3Itl.

contours’) for which the object inlining transformation
is semantics preserving. More successful analyses will
find more field, contour pairs which can be inlined.

If the analysis produces the requisite information,
then the object inlining transformation consists of the
following steps3:

1.

2.

3.

2.2

Create a new definition for the parent object which
includes the inlined child object (fields and meth-
ods), including constructor/destructor methods

Modify the allocation points to use the new object
definitions

Rewrite all accesses to the child object’s state as
accesses to the inlined child object.

Explicit Mine Allocation

Some programming languages [lo, 331, notably C++, al-
low programmers to manually specify inline object allo-
cation to improve performance. As with the automatic
approaches, the objective is to reduce storage manage-
ment overhead as well as the number of pointer deref-
erences required to execute a program. An example of
explicit inline allocation is shown in Figure 2.

class Rectangle C
// Points are inlined
Point upper-left;
Point lower-right; 1;

class Point C
int x-~0.5;
int y-pos; 1;

C++ Source (>++ Implementation

Figure 2: Explicit Inline Allocation in C++

In our explicitly inlined example, there are still mul-
tiple objects. References to child objects allocated in-
side parents are allowed.

There are two basic differences between automatic
and explicit object inlining: whether inline allocation is
visible to the programmer--that is, whether it is part of
the programming model-and whether the parent and
child objects are fused. As can be seen in Figure 2, ex-
plicit inline allocation requires the programmer to ex-
plicitly indicate which of the child objects are to be
inlined. This requires explicit effort, and a change to
the code structure by the programmer. Further, it is
not a semantics-preserving transformation in general -
as the the inlining operation changes the sharing se-
mantics. The inlined child objects are by-value whereas
outlined objects are by reference. Thus the advantages

‘The separately customizable contexts of use of the objects.
30nce a given field has been found inlinable, a policy decision

must determine whether or not it actually is inlined. Since we
are exploring the feasibility of object inlining, we currently inline
whenever possible.

class Rectangle C
// (*’ declares references
Point *upper-left;
Point *lower-right; 1;

class Point <
int x-pos;
int y-pos; 1;

C++ Source Literal Inlined (Optimized)

Figure 1: Literal and Optimized Implementations

of automatic object inlining is that it can provide the
performance benefits without requiring programmer ef-
fort and that automation ensures the correctness of the
inlining transformation (and “undoes it” should the ad-
dition of code invalidate the transformation).

Fusing parent and child objects into a single layout
has two advantages. First, it allows optimizing per-
object operations, such as concurrency control in a con-
current object-oriented model (this was one of our orig-
inal motivations). Second, it enables code generation
for targets, such as the Java Virtual Machine and the
Concert runtime system, that do not permit interior
pointers.4

These challenges will be illustrated by our running
example, introduced in Section 3.

3 An Example

To provide continuity, we employ a single example
throughout for exposition of our analyses. The code
example consists of the two class definitions from Fig-
ure 1, and some methods (Figure 3). A Rectangle is
defined by two Points, each of which in turn consists of
two integer coordinate values in 2-dimensional Carte-
sian space.

The example methods and main0 program create
several Points and a Rectangle, checking the validity
of the rectangle (lower right corner is really right of and
below the other corner). Finally, the program prints the
x coordinates of two points.

The example illustrates the analysis requirements.
To safely inline the Points (p, q) in the Rectangle (r),
all uses of p and q must be identified. This includes all of
the uses within the Rectangle class’s methods and the
main program. In addition, the analysis must determine
the sharing properties of the Points relative to its use in
the Rectangle. This is required because inlined objects
have by-value semantics, that is, they cannot be shared
by multiple parents thru inlined fields.

Note that the Point class cannot be inlined indis-
criminately, and thus the analysis must identify the sets
of creations of Points which are to be optimized. Cre-
ations of p and q must be deleted, and their construc-
tors redirected to the corresponding inlined fields of r.
The two constructors for the inlined versions of p and
q must be specialized differently as one works upon the

4Additionally, some issues such as garbage collection are more
difficult - but not impossible - with interior pointers.

Point::belowRight?fp) 1
if (p.x-pos > this->x-pas)
return (p. y-pos < this->y-pm) ;

else
return false ;

Point: :Pointfx. y) C
this->x-pos = x;
this->y-pos = y;

3

Rectangle: :Rectangleful, lr) c
if (lr . belowRight? (ul) > 1

this->upper-left = ul;
this->lower-right = lr;

3 else
error (“invalid rectangle”) ;

3

main I
p = new Point (3, 8) ;
q = new Point (8. 6) ;
r = new Rectanglecp, q);
s = new Point(8, 7);
tout << r.upper-left.x-pos << s.x-Pas;

Figure 3: Example Methods

lower-left and on the upperlight point. Finally, the
creation of s must be left alone.

Automatic inlining analysis must determine the
sharing properties of the object to be inlined to deter-
mine unambiguously which child object is assigned into
which container. Since p, q and r are created in the
same block of code, the relationship is apparent: the in-
stances p and q are assigned into r. However, in general
these creations could be separated by function calls and
even assignments thru global state.

Accesses to the objects must also be transformed.
For example, the tout << statement in main gets two
x-pos values, one from a Point inlined into upper-left
and one from a free-standing Point. These two x-pos
operations must have different implementations, as one
must access the inlined field and the other a free-
standing one.

3

4 Background: The Concert Compiler

The implementation of our object inlining analyses was
done in the Illinois Concert System [7], and so a brief
discussion of the relevant aspects of the system is given
here to provide context for subsequent description of
the optimization. Most relevant is the program repre-
sentation and the analysis and cloning frameworks, all
discussed below.

4.1 Program Representation

The primary program representation used by the Con-
cert Compiler is the Program Dependence Graph (PDG
[12]) in Static Single Assignment (%A) form, of which
a brief sketch is provided here mostly to introduce ter-
minology we use while describing our analyses. Fig-
ure 4 shows an example PDG fragment from the
Point : : belowRight? method from Figure 3.

The PDG represents methods as a tree of control
dependence regions and conditional (including loop)
nodes. Each region is the child of the conditional node
that governs whether or not it executes, so loop nodes
have one child region for the body and if nodes have one
child each for true and false branches. The phi nodes of
SSA form are attached to these conditional nodes. ev-
ery other node - our graph has function calls, primitive
operations and field accesses - is contained in the re-
gion of the conditional governing its execution. Within
a single region, ordering between nodes is represented
explicitly by a set of data constraints.

_. ----ad,,ldr,mdem’c

Figure 4: Program Dependence Graph

Note how dominance and post-dominance is implicit
in this representation: if p. y-pos < y-pos executes then
p.x-pos > x-pos must already have done so because it
is in a parent region and has a data dependence. We
use this property for our inlining analyses. In our sub-
sequent discussion, we use aspects of this representation
which we formalize below. For single nodes, we use their
region and kind properties and, for pairs of nodes within
a single region, we use the ordering constraint >:

region(n) t the region containing n

nl >- n2 t ni must execute after nz does

if for conditional nodes
while for loop nodes
phi for all phi nodes

kind(n) t call for function calls
access for all field accesses
creation for new statements
primitive for all other primitives

For regions, we query their parent conditional, i.e.
the conditional that controls whether or not the nodes
within the region execute:

parent(r) t the conditional node governing r

For individual SSA values, we require knowing their
creation, which is the node responsible for generating
that value, and their reaching definitions. We assume
that unnecessary moves are eliminated, so the kind of
creation(v) be one of call, phi, access, primitive or cre-
ation.

creation(n) t the node which creates n

reaching(n) t the set of nodes using n

4.2 The Analysis Framework

The Concert compiler has a global analysis framework
- adaptive analysis [24, 231 - that performs context
sensitive flow analysis. The flow analysis ultimately
builds a program-wide data-flow graph connecting the
values within and across the individual method program
graphs, with those values being specialized as needed by
context sensitivity. Context sensitivity adapts to pro-
gram structure, focusing analysis effort on interesting
portions of the program.

The unit of context sensitivity is the contour [29],
each of which represents an execution environment. For
a given method, method contours can discriminate arbi-
trary data-flow properties of its caller and creator:

caller - the calling statement and contour. This cov-
ers arguments, allowing discrimination based upon
data-flow properties of caller and its arguments.

creator - the object contour representing self. This
permits a limited form of alias analysis based upon
properties of the target object.

An object contour represents a set of method con-
tours of statements that create a given object. That is,
each new statement is analyzed with some number of
method contours, and the object contours correspond-
ing to that new statement each group some set of those
method contours. Thus, an object contour represents a
new statement called in some context.

In traditional control flow analysis (nCFA), contours
are statically created to analyze a method separately for
different callers from one or more level. But in adaptive
analysis, contours are created and split on demand: they
are created when the analysis needs to distinguish some
property. An initial coarse data flow graph is built and
then scanned for imprecisions; these imprecisions are
used to direct selective adding of contours - splitting
existing ones - to improve information quality. This
process iterates until no more contours improve infor-
mation.

The original use of this framework was type infer-
ence, which creates contours to distinguish type infor-
mation. Method contours are created for different sets
of argument types; for polymorphic fields, different ob-
ject contours are built for the containing object to dif-
ferentiate the types in the field. The analysis framework

4

includes a mechanism for distinguishing object contours
with respect to uses of objects. We also use this frame-
work to implement the object-inlining analysis.

Figure 5 illustrates analysis on the program fragment
from Figures 1 and 3. For simplicity, we ignore the
last two statements in main. Figure 5(a) illustrates the
initial coarse graph. In the example, there is one contour
per method and per class: the contours in the figures
are labeled with the function and (m,o), which records
the method contour and object contour numbers. In
Figure 5(a), the object contour 0 represents Points and
1 represents Rectangles. The main function has - as its
object contour because it is not a method on any object.

Object inlining analysis needs to distinguish ob-
jects assigned into different fields, and currently ob-
jects from contour 0 are assigned into but upper-left
and lowerlight. So the demand driven specialization
mechanism tracks the values assigned to these slots back
to the creations of p and q; it then splits contour 0 into
two contours - 0 and 2 - to distinguish these two cre-
ations. This also causes all method contours to be split
so that this always has one contour. The resultant re-
fined graph is shown in Figure 5(b).

Subsequent discussion of our analysis distinguishes
specialized values by subscripting them with a given
contour, so that v, is the value v specialized to con-
tour c. Furthermore, we use the following aspects of
our representation:

‘ulq * ‘u2cz : data may flow from vicl to vzc2

Vlc, 4 v2cz : data may flow from vscZ to r/icl

Creators(v,) t object contours of vc.
self(c) t object contour of this,

Recall the object contours represent specializations
of classes, so Creators(v,) is essentially the type of vc.

5 Analysis

We explore three different analyses for automatic object
inlining, each of increasing analysis power. Recall that
the goal of object inlining analysis is to identify the ob-
ject fields (and contours (See Section 4.2)) for which the
object inlining transformation is semantics preserving.
More successful analyses will find more field, contour
pairs which can be inlined. For a field to be safely inlin-
able, the analysis must be able to precisely enumerate
uses of the child object, and the sharing relationship be-
tween the parent and child objects. These properties are
are formalized in Section 5.1. The three different analy-
ses for inlining, each of increasing power, are described
in subsequent sections.

5.1 Criteria for lnlinable Fields

To prove a field is safely inlinable, an object inlining
analysis must compute the following information. All
of the results must be precise. Let f denote a single field
in a contour for a single class.

Rf: the set of references to a container object of field f

Ef: the set of references to a containee object of field f

Upf : Ef 6 Rf: a map from containees to their cor-
responding containers

Computing these properties requires precise resolu-
tion of control flow and data flow in large programs.
These definitions are independent of the program rep-
resentation used, so the exact meaning of reference and
class depend the analysis framework being used. For
example, a reference could be a value in an SSA graph
or something more precise for a context-sensitive data-
flow graph. Further, a class could be a declared class,
an object contour (see Section 4.2), or just the results
of a specific set of new statements.

Figure 6 shows this information for the lower-right
field of the Rectangle object in our example. The
table labels values with the contours shown in Fig-
ure 5(b). All values that contain objects assigned to
or read from lower-left in Elower-right and all val-
ues that hold Rectangles from the creation of r are
in Rl am-right. In Figure 6, the results for these sets
are precise; the variables in Elower-,.ight are only used
as the lower-left field of a Rectangle. If this were
not the case - i.e. if some member of Elower-r+t only
might be from a Rectangle - there would be no way to
generate a single sequence of code for the field reference.

Elower-right + (this4, qo,lrz, this31
R lower-right t {ro, thisa}

(this4 -+ ro I

UPI ower-right +
-+ 7-o

-+ this2
-+ this2

Figure 6: Example R, E and Up

For a field to be inlinable, not only must Rf and
Ef be precise, but Upf must be a realizable function.
This is because object inlining requires Upf to direct a
program transformation - substituting container values
for containee values - and realizability ensures that con-
tainer values need not be used in places where they do
not exist (e.g. before they are created). For example,
in Figure 6, Ups maps this4 to rs, but the two vari-
ables are in different scopes, so it must be possible to
pass re into the constructor (or alternately inline the
constructor) in order to replace this4 with it.

5.2 Analysis Frameworks

Analyses to derive inlinable fields can use any data-flow
analysis framework, but the choice critically affects cost
(space and time) and effectiveness (inlinable fields iden-
tified). We explore three different analysis frameworks,
ranging from local data-flow analysis to adaptive flow-
sensitive analysis [24]. These frameworks allow us to
explore the cost-effectiveness space of inlining analyses.

Local Data Flow Conventional intra-procedural
analysis which is fast, but limits the identification
of inlinable fields to those for which both Ef and
Rf confined to a single procedure. This limitation
could be mitigated by good procedure inlining
heuristics.

CO”, <c << s.xgos;

(a) Pass One (b) Pass Two

Figure 5: Adapt ;ive Flow Analysis

nCFA A conventional form of inter-procedural analysis
with flow-sensitivity based on n of levels of calling
context [28]. Because of compute cost exponential
in n, only small values of n are practical. The con-
text sensitivity of nCFA allows inlining of objects
for which Ef and Rf span procedure boundaries.

Adaptive Analysis (described in Section 4.2) An in-
herently whole-program analysis with demand-
driven - and arbitrarily deep - context sensitivity.
It is capable of distinguishing Ef and Rf thru arbi-
trarily many levels of procedure calls. A significant
advantage of adaptive analysis over nCFA is that
data flow is tracked even thru assignments to other
object fields via object contours.

5.3 Local Data Flow

The local data flow analysis uses a single mechanism,
tagging, to compute Ef, Rf and Ups simultaneously
for each field in a given method. Local data flow works
on individual methods, for which the Concert Compiler
uses SSA and the PDG (see Section 4.1) and values
are tagged with information about object fields to which
they are assigned or from which they are read. We first
define precisely what a tag is, then discuss how they are
propagated by local data flow, and finally show how to
compute Ef, Rf and UpF from them.

5.3.1 Tags

A tag is associated with a given program value; it is a
sequence ((object @ field), , . . . , (object @ field),) in-
dicating the object fields to which that value is assigned
or from which it is read. The objects are the SSA values
representing the value from which the field was accessed
and fields are the fields accessed. For instance, a = b.f
would yield a tag of ((b 8 f)) for a. Manipulation of
tags is defined as follows:

NoTag a value not from any field
Object((o@ f)) q o

FieZd((0 @ f)) a f
fy$;1 @J f), 7.. . 7 (0 @ f,,), *

M~~eTagl((o~f),((o~f),,... ,(o@ff),))=
((0 @ f) 1 (0 8 f), > > (0 @ f,,)

5.3.2 Tag propagation

The tags defined above are propagated by a standard
data-flow algorithm thru the program graph of an in-
dividual method in order to compute Ef, Rj and Upf
for all fields f of all objects created in that method. In
defining our data-flow equations, we will use the =+ and
+= relations to indicate forward and backward data-flow
relationships between values, and + to signify transitive
closure.

We use two sets of tags for each value in the program
graph, ForwardTags and BackwardTags, to record fields
from which the value is read and to which it is assigned
respectively. Tag propagation conceptually starts at the
creation sites (i.e. new statements) of all uncontained
objects, that is, objects that are not assigned into any
field of any object. The set of uncontained objects,
which we call Top, is defined as follows:

Top t

kind(creation(v)) = creationA

(v +;,, (::dLj~;;) }

Propagation proceeds from the uncontained objects
according to data-flow rules that tag all definitions and
uses of object fields with tags corresponding to the ap-
propriate object and field values. The rule for object
creations is straightforward: for each creation site in
Top, its result is given the forward tag NoTag:

v = new Obj A v E Top ==+

ForwardTags c {NoTag}

Local data flow must treat field access nodes specially,
as fields represent global state rather than SSA values;
there are two rules for these field accesses - one for reads
and one for writes - that propagate the appropriate tag
based upon the field accessed and the container’s tag:

Tags(v) t ForwardTags U BackwardTags

v = o .f ----LI ForwardTags c

{MakeTag((o@ f) ,tl)ltl E Tags(o)}

o.f = v * BackwardTags t

{MakeTag((o @ f) , tl)ltl E Tags(o)})

Finally, there are the rules for propagating tags across
data-flow constraints:

ForwardTags t

ForwardTags U U {t It E ForwardTags(
{iIi*u}

BackwardTags t

BackwardTags(v)U U {t It E BackwardTags(
{ilie=v}

5.3.3 Computing Ef, Rf and Upf

Once the tag propagation is done, we compute Ef, Rf
and Upf for each field of each object created in the
method. We will give the definitions in terms of an ar-
bitrary field fof an object n where II is the result of an
object creation (i.e. a new statement). Rf is the transi-
tive closure, forward and backward, across the data flow
from ‘u throughout the method, and Ef is all the val-
ues tagged with a pair representing the field f and an
object in Rf. Note that the tags have recorded the con-
tainer value from which the field was extracted, which
allows us to find the corresponding container for a given
member of Ef by looking the the Object of its tag.

Rf t {vi Iv@= u =x)+vi }

There are no criteria for the precision of Rf for it is
defined rather than calculated; however, both Ef and
Upf must be checked for ambiguity. If a value in Ef has
more than one tag, then that value could be from mul-
tiple containers, making inlining invalid. Similarly, Upf
must be a many-to-one mapping, so a given member of
Ef must not be mapped to more than one member
Rf:

of

Ef :
IForwardTags(v)l > 1V
IBa&wardTags(v)l > 1

UPf : --&,q,q (e, 7-1) E Upf A (e, 7-2) E Upf

5.3.4 Realizability

We mentioned in Section 5.1 that the mapping Upf
must be checked for realizability: we must ensure that
the specified transformation is legal. Recall that the
transformation is simply substituting container values
for uses of containee values according to Upf Values
with a ForwardTag are no problem, for the correspond-
ing container must exist; for values with a Backward-
Tag, we are pushing the corresponding container back-
ward along data-flow paths to control conditions where
it may not exist. Since we are using the PDG (see Sec-
tion 4.1), the control conditions can be verified simply:

for each mapping (e, r) where e has a BackwardTag,
check that the creation of e is below the creation of r
in the PDG and the node in r’s region that controls e
(or is e) is not constrained to happen before the node
creating r. These constraints are formalized in Figure 7

5.4 nCFA Analysis

The nCFA analysis, just like the local one, uses tag-
ging to compute Ef, Rf; then we will use the resultant
Ef, Rf and inter-procedural data-flow graph to con-
struct Upf . Tagging is used to identify uses of different
containee objects, relying upon the statically created
contours to provide needed context sensitivity. We first
define precisely what a tag is, then discuss how they are
propagated using nCFA analysis. Finally we detail how
to compute Ef, Rf and Upf.

This analysis-and the similar adaptive analysis dis-
cussed next-is based upon techniques we devised pre-
viously [9]. The tag propagation for forward tags is
exactly the same, but our prior technique worked by
copying fields of the child object into the fused object,
which we called definition specialization. That proved
inadequate when evaluated on larger programs, so we
replaced that mechanism with backward tags.

5.4.1 Tags

A tag is a sequence (f ieldl , . . . , field,) indicating from
or to which fields a given value is read or assigned. The
fields are field names from the program’s classes. Ma-
nipulation of tags is defined as follows:

NoTag =+ not from field.

MakeTw(f,(fl,... ,fn)) * (f,fl,... ,fn)
Head((fl,. . , fn)) - fl

5.4.2 Tag propagation

The tags defined above are propagated by a standard
data-flow algorithm thru the inter-procedural data-flow
graph in order to compute Ef, Rf. In defining our data-
flow equations, we will use the + and -+ relations to
indicate forward and backward data-flow relationships
between values.

Tag propagation conceptually starts at the creation
sites (i.e. new statements) of classes, that is, classes
values of which type are not assigned into any field of
any object. The set of uncontained classes, which we
call Top, is defined as follows:

Top t

{C 1~3C~AI1Clas~=~3~~~ields(C) c E Creators(F) }

Tags are propagated thru the inter-procedural data-
flow graph along forward and back data-flow paths, with
special rules for the results of object creations and field
accesses. The rule for object creations is straightfor-
ward: for each creation site in Top, its result is given

RegionAbove(rl, rz)

Above(nl, nz)

After(m, nz)
LocalDominates(n1, nz)

Realizable(Upj)

t r-1 = r-2 V (parent(r2) A RegionAbove(rr, region(parent(rz)))

t RegionAbove(region(nl), region(n2))

t nl > nz V After(nl,parent(region(nz))) V After(parent(region(nr)),nz)
+ Above(nl, n2) A -After(nl, 7~2)

t V(e,r)Eupf LocaZDominates(creation(r), creation(e))

Figure 7: Realizability

the forward tag NoTag:

v = new Class A Class E Top *
ForwardTags t { NoTag}

There are two rules for field accesses - one for reads
and one for writes - that propagate the appropriate tag
based upon the field accessed and the container’s tag (in
the subsequent equations, recall that n, is w specialized
to contour c):

v = o .f s ForwardTags t

MakeTag(f, t)
c~creators(o,)

o . f = v q BackwardTags t

Finally, there are the rules for propagating tags across
data-flow constraints (the restrictive clauses prevent
extraneous propagation of tags across dynamic dis-
patches):

ForwardTags t

” {I

t t E ForwardTags(x)A

{zl~*vc 1
Creators(Head(t)) fl Creators(w,)

BackwardTags t

” {I

t t E BackwardTags(x)A

{=I%*= j
Creators(Head(t)) n Creators(v,)

5.4.3 Computing Ef, Rj and Upf

Ef and Rf are each defined in terms of a class. Rj is
values flowing from the creations of the class containing
f, and Ej is values flowing from the creations of the
classes of the child (i.e. the type of f):

Container(f) t the class containing field f
CreationPoints t results of news of C

U
CECreators(f)cECreationPoints(C)

Computing Upf requires mapping from a given con-
tainee value from Ef to the appropriate container value
in Rj, which involves finding the value to or from which
the containee goes or comes. We tackle finding the value
differently for forward and backward tagged values. For-
ward tagged values flowed from a container (hence the
tag) and that is the one to use in place of it. At the
points where the containee is extracted (i.e. at field
reads), we have an association between the container
and containee values, and so we can use the container
value instead. This gives us Upj for forward tagged
values:

e E Ej A ForwardTag ==+-

0 = r.f Ao*+ e -+ (e,r) E Upj

Unhappily, backward tagged values are more com-
plex. There is the same association at points where the
containee is inserted (i.e. at field writes), and that does
tell us which container object to use. However, in order
to use this container value, we must pass it backwards
along the data-flow paths for the containee values, which
may not be possible. We deal with this by trying to find
some value in Rj that dominates (denoted E) both the
place where the containee is assigned (so that we are
using the right container) and the creation of the con-
tainee (so that we can replace the right containee). We
need a very strict notion of dominance: i 3 j means the
statement creating of j executes at most once for each
execution of the statement creating i.

(e,r) E Upf -----r.

o.f = eA
rr+oA

VcEcteators(e)VcEcreationPoints(C)T c+ c

iizjt

(i + j A kind(j) = argument) V
LocalDominates(creation(i), creation(j))

5.5 Adaptive Analysis

The adaptive flow analysis (see Section 4.2) uses tugging
and adaptive splitting together to compute Ef, Rf; then
we will use the resultant Ef, Rf and inter-procedural
data-flow graph to construct Upf. Tagging and adap-
tive method splitting is used to disambiguate uses of
different containee objects, and adaptive object split-
ting creates individual object contours representing the
creations of containee objects. It is similar to the nCFA
analysis, but is defined on object contours rather than
classes, and creates object contours as needed. We first
define precisely what a tag is, then discuss how they are
propagated using adaptive analysis. Finally we detail
how to compute Ef , Rf and Upf .

5.5.1 Tags

A tag is a sequence (f ieldcountor l, , f ieldcontour,) in-
dicating from or to which fields of which contours (see
Section 4.2) a given value comes or goes: contoun are
the object contours representing the creator of the ob-
ject accessed and fields are field names from their respec-
tive contours’ classes. Manipulation of tags is defined
as follows:

NoTag a not from field.

MakeTag(f,,(f,,,... ,fc,)) * (.fc~fc~l... yfcm)

Head((fCl,... ,fc,)) ---r’ fc~

5.5.2 Tag propagation

The tags defined above are propagated by a standard
data-flow algorithm thru the inter-procedural data-flow
graph in order to compute Ef, Rf. Adaptive analysis
is an iterative algorithm, and this tag propagation is
repeated for each iteration of the analysis framework.
In defining our data-flow equations, we will use the +
and X= relations to indicate forward and backward data-
flow relationships between values.

Tag propagation conceptually starts at the creation
sites (i.e. new statements) summarized by uncontained
contours, that is, objects that are not assigned into any
field of any object. The set of uncontained contours,
which we call Top, is defined as follows:

Top t

4 CEnllCIasses
hGWds(C)

3c1~~PeatorS(~)~ E Creators(F,,)

Tags are propagated thru the inter-procedural data-
flow graph along forward and back data-flow paths, with
special rules for the results of object creations and field
accesses. The rule for object creations is straightfor-
ward: for each creation site in Top, its result is given
the forward tag NoTag:

v = new Clbj A (Creators(v,) - Top) = 0 ==+

ForwardTags c {NoTag}

There are two rules for field accesses - one for reads
and one for writes - that propagate the appropriate tag
based upon the field accessed and the container’s tag:

v = o.f ===s ForwardTags c

MakeTag(f,,lf(,), t) cECreators(o,)
o . f = v ===+ BackwardTags t

ttT:(o,) (.,Ci!~~(.,) MakeTag(fse’f(c)l ‘))

Finally, the rules for propagating tags across data-flow
constraints are exactly the same as for nCFA.

5.5.3 Adaptive splitting

The propagated tags are used to guide adaptive split-
ting to disambiguate the uses and creations of different
containee objects. The analysis framework allows indi-
vidual analyses to register discriminator functions that
determine whether a given contour needs to be split.
Uses of different containees are disambiguated using the
forward tags by splitting contours of methods in which
differing tags from different callers merge. Each contour
has a set of edges representing the calls it summarizes.
Contours are split so that all incoming edges have com-
patible tags. The edges of a contour are partitioned into
sets that become new contours as shown in Equation (1)
of Figure 8; note that Arg(e,i) is the ith argument of
edge e.

The object contours representing the creation of con-
tainee objects are created by using the backward tags.
These backward tags will be propagated from assign-
ments to fields back toward the creations of the objects
being assigned into that field, which must ultimately
be object creation statements, which are represented by
object contours. Two steps are involved in splitting ob-
ject contours: first, the data-flow path from the field
back to the creation must be separated by splitting all
intermediate methods according to the backward tags
of their values as given in the formula. In Equation (2)
of Figure 8 Ret(e, i) is the ith return value of edge e.

Then the object contours themselves must be split.
The object contours represent the result of a new oper-
ation, so the backward tags will ultimately flow all the
way back to that value, and so these tags can be used
to partition the object contour into a set of contours.
This is shown in Equation 3 of Figure 8; the result of
the new statement is v in that equation.

5.5.4 Computing Ef, Rf and Upf

In the adaptive analysis, an object contour is created
to represent the containee objects, so Ef and RI are
each defined in terms of an object contour. A field f
is discriminated by the object contour of its container,
which we designate fc. The computation is exactly the
same as for nCFA, except that fields are specialized to

{{el,... , e,} 113i,j,kForwardTags(Arg(e;, k)) # ForwardTags(Arg(e~, k)) }

{{el, . , e,} 113i,j,kBackwardTags(Ret(ei, k)) # BackwardZ’ags(Ret(ej, k)) }

{{Cl,... , cn} pi,j,aa c k wardTags(u,i) # BackwardTags(v,j) }

Figure 8: Criteria for Adaptive Splitting

(1)
(2)

(3)

object contours. So, Rf and Ef for a field f0 become

CreationPoints t results of news of c

U CJ+U

cECreationPoints(0) 1

EJ ---+ 1 V

iI
u U

Rf -t

U c*+v
(~CECreators(f,)cECreationPoints(C) 1

Computing UpJ is exactly the same as for nCFA,
except that it is done for the EJ and Rf specialized for
a given contour.

5.6 Object lnlining Transformation

Once we have Ef , RJ and UPJ for a given field f,
the object inlining transformation is simplicity itself, at
least conceptually: replace uses e of the containee with
UpJ(e), move the containee’s storage into the container,
and delete all creations of a containee5.

6 Evaluation

We set out to determine how much analysis power is
required for effective automatic inline object allocation
on a range of programs. Thus, we must measure how
effective and costly each analysis option is at compile
time, and their effects at runtime. Our primary met-
rics measure the compile-time benefits and costs - in-
lined field counts and analysis costs - and dynamic run-
time changes, field accesses and object allocations elim-
inated. We also measure the impact of object inlining
on the program overall. First, we describe what compil-
ers (Section 6.1), benchmarks (Section 6.2) and metrics
(Section 3) we used. We present our results in Sec-
tion 6.4.

6.1 Methodology

Our evaluation uses a range of C++ programs to com-
pare our three inlining analyses - local, 1-cfa and adap-
tive - with a base program compiled by the Concert
compiler with no ob$ect inlining. For calibration, we
compare the runtime and code size these four program

6Having El allows us to precisely find all creations because
the results of such creations will be in E,.

eAll runs are done on a 266MHz Pentium Pro system with
128M of memory.

versions with the same programs compiled with the lat-
est gee (2.8.1). Both compilers are run with full opti-
mization (03 for g++) and given the whole program.
Thus, we use the five versions of each program compiled
as shown in Figure 1. In this table, analysis is the object
inlining analysis used (l-CFA is the traditional Control
Flow Analysis), and policy whether inlining was done by
hand, automatically or not at all. For the l-CFA and
adaptive analyses, analysis was performed before any
transformation had taken place; in order to make the
local scheme as effective as possible, we performed the
local analysis and transformation after method inlining.

I object inlining 1 I
name analysis 1 policy 1 compiler
base I none I none I Concert

1 N.A. 1 manual 1 G++ 2.8.1 1

Table 1: Compared Analysis and Compiler Parameters

Since the benchmark programs are in C++, they in-
clude a lot of low-level information - e.g. specifying
virtual versus non-virtual functions, and denoting reg-
ister, stack, heap and inlined storage allocation - that
is not compatible with the high-level model expected by
the Concert compiler. The Concert compiler discards all
such information’, ignores type information and uses a
reference model for all objects.

6.2 Benchmarks

We evaluate our object inlining techniques on the wide
range of commonly-used standard data structures con-
tained in two class libraries: the National Institutes of
Health Class Library (NIHCL) and the Object Abstract
Type Hierarchy (OATH) libraries. We use them as they
are freely available and comprehensive. Both libraries
come with a range of test programs that exercise the
library, and we evaluate object inlining both on these
test codes and also third-party programs written us-
ing the libraries. The NIHCL codes include the 20,000
line NIHCL library, and the OATH codes include the
18,000 line OATH library. In addition, we use some
benchmark programs commonly used to evaluate ob-
ject oriented systems; these programs exhibit a variety
of data and control structures. These codes - and the
inlining opportunities they exhibit - are summarized in
Figure 2. The lines column has the lines of code in the

‘Obviously, the generated code respects the semantics of dif-
ferent storage allocations, such as the meaning of assignment

10

program followed by the lines of library code in paren-
theses. These codes represent a superset of the bench-
marks used in our prior work 191; that work used only
silo, richards, polyover and oopack.

6.3 Metrics

To assess the respective benefits and costs of our ap-
proaches to object inlining, we measure compile-time
cost and effectiveness and the runtime impact. Our
whole-program compiler makes no distinction between
a program and the libraries it uses, so all metrics cover
the program and all libraries together. Our metrics are
summarized in Table 3 and described below.

Compile-Time Effectiveness We use a count of the to-
tal number of fields found to be inlinable. To calibrate
the effectiveness of our techniques, we compare these
counts with the number of fields manually declared in-
1ine.s

Compile-Time Cost We use the amount of analysis
precision required, which we measure as the amount of
context-sensitivity required per method and per class.
For the adaptive analysis, these counts are the total
number of contours created across all iterations.

Direct Dynamic Effects By fusing objects, inline allo-
cation should reduce the number of field accesses and
object allocations during program execution, and we
measure these as our primary metric for runtime effec-
tiveness.

Overall Dynamic Effects To assess the impact of ob-
ject inlining on the program overall, we measure run-
time, executable size and memory usage. The special-
ization required by inlining could increase code size, and
reducing the number of objects allocated should reduce
total memory usage.

6.4 Results

We present our metrics in same four groups as for Ta-
ble 3: compile-time effectiveness, compile-time cost, di-
rect dynamic effects and overall dynamic effects.

6.4.1 Compile-Time Effectiveness

Figure 9(a) presents the counts of inlinable fields discov-
ered for each analysis and program; polymorphic fields
are counted as a fraction based on how many of the poly-
morphic uses were found to be inlinable. The counts
range from 0 in some cases for 1-cfa and local analy-
ses to 9 for stack and options for the adaptive analysis.
These are raw counts, so the trend is for more fields to
be inlinable in larger programs as they typically have
more classes.

‘It would be nice to calibrate by determining the numbers
of fields “really” inlinable, but this is problematic. One can-
not determine this automatically - our automatic determination
is what we are evaluating - and counting by hand is difficult
and error-prone for codes the size and complexity of NIHCL and
OATH.

Adaptive analysis proved most effective, finding at
least as many fields as any other analysis, and a superset
of those declared inline in C++. The 1-cfa analysis was
as effective as adaptive analysis on some programs, but
dramatically less so for others. It sometimes did not
find all the fields declared inline in C++. The local
analysis was ineffective: it found no fields inlinable on
several programs, and it never found more than two
fields inlinable.

Adaptive analysis - and sometimes 1-cfa as well -
found fields not declared inline in C++ when there were
objects conceptually in a dynamic relationship - such as
cons cells - that were used statically in a given context.
This demonstrates an advantage of automatic object in-
lining: the ability to discover fortuitously static uses of
normally dynamic structures. The most common case
was fusing a cons cell with its associated data in situ-
ation where analysis determined there was no sharing
amongst the list elements. This happened for options,
pdl2a, silo and polyover. Adaptive analysis could fuse
polymorphic lists in options.

The 1-cfa analysis, lacking context sensitivity based
upon object values, generally could not handle polymor-
phic structures; and, in each of sets, addcontentsto and
OTdeTech, the sensitivity limits of l-CFA prevented it
from specializing two fields actually declared inline in
C++. Aside from those six fields, all other differences
between adaptive and 1-cfa analysis are attributable to
data sensitivity. The local data-flow analysis found very
few fields, primarily because most of the inlinable fields
were in core program data structures used throughout
the program and hence not amenable to local analysis
techniques. For oopack, the local analysis had trouble
because all major data structures are passed thru global
variables.

For several of the NIHCL benchmarks, one array in
the core data structures could not be inlined because
it may be reallocated dynamically to resize it if it over-
flows. This never actually happens in some of the bench-
marks, but our compiler does not do sufficient range
propagation to figure this out.

6.4.2 Compile-Time Cost.

The cost of our analyses is measured by the numbers of
contours per method and class, as shown in Figures 9(b)
and (c). The general trends for method contours are
different for the different analyses. Adaptive analysis
has fairly flat costs - between 2 and 4 contours per
method - across the programs, whereas 1-cfa cost rises
as program size grows, peaking for our largest bench-
mark, options. Local and base both use adaptive anal-
ysis without the object inlining component, and they
both show flat costs of between 1.5 and 3.5 contours
per method. A notable features of this graph is that
adaptive object-inlining analysis does not raise the cost
much over the base adaptive analysis, except on add-
contentsto for which cost doubles.

The rise in cost of 1-cfa for larger programs is ex-
pected, and has been observed before; the small varia-
tions in cost for adaptive analysis track the structural
complexity of the programs. More polymorphic codes
such as richards and options - which each use a polymor-
phic core data structure - have higher costs than stack,

11

10.0
Adaptiva Analysts

8.0

C++ Dedaralions

(a) Unable Fields

v) 14.0
3
G 12.0

5 10.0
!!2
2 8.0

5 6.0

z 4.0

gj 2.0

0.0

(b) Contours Per Method

2 2.8 Adaptive Analysis

$ 2.4

g 2.0

$ 1.6

5 1.2

3 0.8

8 0.4

0.0

(c) Contours Per Class

Figure 9: Compile Measurements (absolute counts)

12

I Prooram I M lanes I mam data structures I znlznable oblects I
NIHCL

options 30K polymorphic lists list elements, empty, 1,2d-arrays
orderedcltn 20.11K dynamic arrays iterators, collection wrappers, arrays
stack 20K stacks parent/child, iterators, wrappers, arrays
addcontentsto 20K sets, dynamic arrays iterators, wrappers, arrays

OATH
CSl 18.1K arrays, smart pointers wrappers, parent/child, smart pointers
pdl2a 18.1K queues, smart pointers wrappers, list elements

other programs
oopack 3.3K arrays, numbers array of objects
silo 1.3K queues conses, list wrappers
polyover 1.2K lists, objects array of objects, conses
richards l.OK objects simple parent/child

Table 2: Benchmark Summary

Name

inlinable fields

Units Description
Compile time effectiveness

count 1 number of inlined fields
Comuile time cost

method contours) per method 1 method contours generated
object contours per class object contours generated

I Direct dvnamic effects 1
reads
news

.,
count relative to base number of object field reads
count relative to base number of object allocations

Overall dvnamic effects
runtime
memory usage
code size

time relative to base program runtime
bytes relative to base total heap allocation
bytes relative to base executable image size

Table 3: Metrics

silo and oopack which have no polymorphism whatso-
ever. An anomaly is the relatively small difference be-
tween adaptive and l-cfa on the OATH codes csl and
pdZ2a. These codes use an idiom for nil that creates
type ambiguities throughout the program, which causes
substantial demand-driven splitting in an attempt to
resolve them.

Figure 9(c) shows that few object contours are
needed in general - none of the bars go much above
two. The costs are fairly constant between analyses, ex-
cept for some peaks for adaptive analysis. These peeks
represent the extra precision needed for the most poly-
morphic codes, particularly options and richards. This
extra precision is what allows adaptive analysis to in-
line polymorphic fields. There are two anomalies. The
first is that some bars are below one, which happens
because some classes - such as abstract base classes -
are not instantiated at all and so do not generated ob-
ject contours. Even though 1-cfa does not create object
contours, some of its numbers are still greater thau one
due to splitting of the array class required due to im-
plementation artifacts.

The actual runtime of our analysis system varies
about two minutes on the simplest program (oopaclc)
without object inlining analysis to about 30 minutes for
object inlining analysis on the largest code (options).

This varies from one quarter to one half of the total
compile time depending upon how much adaptive anal-
ysis is required. Asymptotically, the runtime varies both
in accordance with program size and with the amount of
demand-driven sensitivity required; however, the actual
ruutimes for individual programs are not shown since
they are dominated by implementation details rather
than directly by properties of the programg.

6.4.3 Direct Dynamic Effects

The charts in Figure 10(a) and (b) present details of
the changes in object accesses and allocations induced
by object inlining. They show the fraction of field reads
removed and of object allocations removed respectively.
The results are very varied for the adaptive and 1-cfa
analyses; the peaks of both charts are high: for some
programs, almost all allocation and references can be
eliminated. On the other hand, some programs -- such as
options and the OATH codes show little gain on either
metric. The average fraction of reads and allocations
eliminated are 37% and 43% respectively over the base
Concert program. The local analysis proved ineffective:

‘For example, we use unsorted lists to record types, so com-
puting a type difference is an O(n*) operation. Programs with
lots of classes suffer unnecessarily from this artifact.

13

2 80--
2 70--
$ GO--
cr" 50--
5 40--
al 30--
3 20--
8 10-I

o- ! I !. I I I I I I IB I 'i
a

-lO-

Figure 1

(a) Field Reads Reduction

Adaptive Analysis
1 -CFA Analysis
Local Analysis
Base Analysis

(b) Object Allocations Reduction

Direct Runtime Measurements (relative to base)

14

only one program showed noticeable gains, due to how
few inlinable fields the local analysis found.

There is some correlation with the inlinable field
counts - as one might expect. The stacS code - which
tied the larger options for the most inlinable fields at 9
- shows dramatic gains on both metrics: about 80’% of
reads and 50% of objects both vanish. Large reductions
of reads for addcontentsto, oopack and polyover with
adaptive analysis are due to removal of object deref-
erences from critical paths in tight loops.

The most dramatic reduction of object allocation is
for oopack: almost 100% are eliminated. One array of
complex numbers accounts for the vast bulk of the ob-
jects in this benchmark, so inline allocating the arrays
elements removes almost all the objects. The same is
true to a lesser degree in polyover.

On the other hand, a couple of programs show little
improvement in either metric even with adaptive analy-
sis. The options code shows relatively modest gains de-
spite having the most inlinable fields because it makes
heavy use of strings, which implementation details pre-
vent us from inline allocating. The csl code - and the
oath library in general - have relatively few inlinable
fields due to type ambiguities caused by its idiom for
nil objects.

6.4.4 Overall Dynamic Effects

Runtime. The relative execution times of our bench-
marks are shown in Figure 11(a); this chart shows the
fractional performance improvement relative to the base
Concert code. We are evaluating the effects of object
inlining relative to the base Concert code, as that is a
controlled experiment simply turning object inlining on
and off. Given the completely different implementations
of g++ and Concert, the comparison with g++ is meant
only as calibration of Concert’s base performance. Com-
pared with g++, the Concert compiler produces slower
code on 6 of the benchmarks and faster code on 5 of
them.

The chart show mostly performance gains up to 50%
(for polyover) for object inlining using adaptive analy-
sis. The average runtime gains are 3% for 1-cfa and 10%
for adaptive analysis. The local analysis makes no ap-
preciable difference on any code. The most significant
performance gains are for stack, oopack and polyouer.
These gains come partially from the removed objects
and reads, but are also due in large part to object in-
lining enabling other optimizations, especially caching
fields in registers and allocating objects with provably
limited lifetimes on the stack.

The scarcity of performance gains from object inlin-
ing - two programs are even slightly slower - on the
other codes despite sometimes dramatic drops in read
and object counts can be explained in part by our com-
piler. Our research focuses on high-level analysis and
transformation, and we have a relatively simple code
generator that is unambitious with local code optimiza-
tions”. Thus, when object inlining produces tighter
bodies of code, that does not always translate into bet-

“The register allocator is especially unhelpful on the Intel
architecture with its scarcity of registers.

ter performance.” However, object inlining dramti-
tally reduces references and allocations, and making our
backend take advantage of the better code is continuing
work.

Memory Usage. Figure 11(b) shows the reduction in
memory usage for the inlined program versions as a frac-
tion of that used by the base Concert program. Both
the adaptive and 1-cfa programs show significant reduc-
tions for many programs; the reduction is due to the
reduced overhead of fewer objects in our garbage col-
lected model and the space saved by the elided pointer
fields. The average reduction in memory allocation is
3% for 1-cfa and 13% for adaptive analysis. In general,
the correlation between reduced object allocations and
reduced storage use is weak because of the variance in
the size of single objects.

The greatest reduction occurs for the stack code with
adaptive analysis: in this case, in addition to remov-
ing objects, object inlining enabled object state caching
that allowed other objects to be pruned completely.
Conversely, the increase in object allocation caused by
the local analysis on richards is caused by inlining in-
hibiting other code optimizations, particularly object
stack allocation.

Code Size. Figure 11 shows the size of the final pro-
gram relative to the base executable produced by Con-
cert. The various version produced by the Concert com-
piler are of almost identical size for each program, show-
ing the specialization required by inline allocation does
not result in significant code expansion. This is because
it by and large the specialized methods would have to
copied by inlining anyway. Compared with G++, the
Concert compiler produces smaller executables for the
large programs because it does a better job of tree-
shaking the class libraries.

7 Related Work

Related work falls into two broad categories: there are
other mechanisms for affecting inline allocation of ob-
jects, and there are other analyses that function sim-
ilarly to a given aspect of object inlining but serve a
different purpose.

The idea of doing automatic object inlining dates
back at least to the Emerald system, which has a refer-
ence object model [3] that was designed so that the com-
piler [18] could optimize object structures. However,
while our adaptive analysis can produce the information
needed for inline allocation (see Section 5.1), the sim-
ple, graph-algorithm-based analysis system of the Emer-
ald compiler was sufficient only to allow the inlining of
(boxed) immediate types. Immediate types in Emerald
posed fewer analysis challenges for they had by defini-
tion the value semantics required for inlining. Budimlic
and Kennedy [4] sketch a combined object and method
inlining optimization which they call object inlining. In
their scheme, for an object created within a method, all
its called methods are inlined and the state of the ob-
ject replaced with local variables. Our inter-procedural

“This is also why Concert is slower than g++ on several of
the benchmarks.

15

P
er

ce
nt

ag
e

of
 C

od
e

R
em

ov
ed

2
in

0

G

0
iG

’

s
0 0

ul

0

I
I

‘I+
’

I
I

P
er

ce
nt

ag
e

B
yt

e
A

llo
ca

tio
n

R
ed

uc
ed

P

er
ce

nt
ag

e
of

 R
un

tim
e

R
em

ov
ed

analyses track field usage throughout the program - re-
gardless of procedure boundaries - which was vital for
inlining on our benchmarks; their scheme, like our local
analysis, does not. But a detailed comparison is impos-
sible as they give only a rough outline of their trans-
formation which ignores the obvious aliasing concerns
which we resolve by tagging.

Runtime optimizations analogous to object inlining
have also been tried; witness cdr-coding as done in the
Symbolics Lisp machines. The basic idea is that list el-
ements are stored adjacently, eliminating the need for a
tail pointer; this adjacency can be due to happenstance
or can be arranged e.g. by a compacting garbage col-
lector. Unlike our compile-time transformations, cdr-
coding does not depend upon static analysis, and so
can be applied to portions of lists and other entities to
fine to be distinguishable by current static analysis tech-
niques. On the other hand, our static techniques have
no runtime overhead, whereas the fact that a cons cell is
cdr-coded must be recorded and checked whenever the
cell is accessed.

There has been much work in the functional commu-
nity on unboxing, in which specialized representations
are used to reduce storage and access overhead. Our
adaptive flow analysis is able to compute precise inlin-
ing information in the presence of assignments to object
fields; the unboxing work does not need to address this
as there is no structure assignment in functional lan-
guages. The unboxing transformation of [20] handles
polymorphism by generating specialized code only for
monomorphic functions and coercing between general
and unboxed representations as needed. On the other
hand, our optimization is a global transformation that
specializes polymorphic functions as needed.

In [15], Cordelia Hall and company present a trans-
formation for Haskell that does generate specialized
code to exploit unboxing for polymorphic functions.
Their transformation resembles ours in that it propa-
gates “unboxedness” throughout the program generat-
ing specialized code wherever needed. Our optimization
is fully automatic and handles arbitrary user-defined
object types. Due to the lazy semantics of Haskell,
the transformation must be told what variables can be
safely unboxed; furthermore, this transformation only
unboxes immediate types.

In [26], Shao et al. unroll linked lists-essentially in-
line allocating tail pointers-in a functional subset of
ML. Their analysis works using refinement types [13]
that distinguish odd and even length lists. These re-
fined types are propagated using an abstract interpreta-
tion, with rules for the refined types generated by cons
statements. All functions that take list parameters are
cloned and specialized with all possible combinations of
refinement types for their list parameters. Our inter-
procedural analyses have two advantages. First, our
field tags are more general, as they handle arbitrary
object structures, rather than lists. Second, our inter-
procedural analysis analyzes only specializations that
are actually used.

In [ll], the authors describe access paths, which are
used in various kinds of pointer analyses. The basic idea
is that access paths keep track of object fields traversed
during pointer dereferences. The major difference be-
tween access paths and our tags is that access paths

start with stack variables, and are used for instance-
based alias analysis, whereas our tags start from object
creation sites and our analysis is class-based (actually
object contour based). Object inlining analysis does not
require the precision of instance-based aliasing, and so
we can use a potentially cheaper class-based mechanism.

8 Summary

We have studied three compiler analyses to identify
safely inlinable fields. These analyses span a range of
cost and complexity, and all track field (member) ac-
cesses in heap objects. These analyses span a range
of complexity from local data flow to adaptive whole-
program, flow-sensitive inter-procedural analysis. Mea-
suring the cost and effectiveness of these analyses on
a suite of moderate-sized C++ programs (up to 30,000
lines including libraries), we find that object inlining op-
timizations eliminate 40% typically and as much as 90%
of the object accesses and allocations, and can deliver
significant performance benefits (averaging 10% faster
but ranging from no improvement to 50%). But reaping
these benefits requires powerful inter-procedural analy-
sis that must focus effort to avoid excessive cost. For-
tunately, the adaptive inter-procedural analysis we em-
ployed [24] computes precise information efficiently.

Acknowledgments

The Concert Compiler used for the experiments de-
scribed in this paper has been the work of John Plevyak,
Vijay Karamcheti, Xingbin Zhang and Hao-Hua Chu in
addition to the present authors. In particular, the adap-
tive analysis techniques we use are the work of John
Plevyak and Andrew Chien.

The research described in this paper is supported in
part by DARPA orders #E313 and #E524 through the
US Air Force Rome Laboratory Contracts F30602-96-1-
0286 and F30602-97-2-0121, and NSF Young Investiga-
tor award CCR-94-57809. Support from Microsoft, Intel
Corporation, Hewlett-Packard, and Tandem Computers
is also gratefully acknowledged.

References

PI

PI

131

]41

0. Agesen, J. Palsberg, and M. Schwartzbach.
Type inference of SELF: Analysis of objects with
dynamic and multiple inheritance. In Proceedings
of ECOOP ‘93, 1993.

P. America. Inheritance and subtyping in a
parallel object-oriented language. In Proceedings
of ECOOP, pages 234-42. Springer-Verlag, June
1987.

A. Black, N. Hutchinson, E. Jul, and H. Levy. Ob-
ject structure in the emerald system. In Proceedings
of OOPSLA ‘86, pages 78-86. ACM, September
1986.

Zoran Budimlic and Ken Kennedy. Optimizing
java: Theory and practice. Concurrency: Practice
and Experience, 9(6), June 1997.

17

[51

PI

[71

PI

[91

1101

[III

WI

[I31

[I41

[I51

WI

Brad Calder, Dirk Grunwald, and Benjamin Zorn.
Quantifying differences between C and C++ pro-
grams. Technical Report CU-CS-698-94, Univer-
sity of Colorado, Boulder, January 1994.

C. Chambers and D. Ungar. Iterative type analysis
and extended message splitting. In Proceedings of
the SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 150-60,
1990.

Andrew Chien, Julian Dolby, Bishwaroop Ganguly,
Vijay Karamcheti, and Xingbin Zhang. Support-
ing high level programming with high performance:
The Illinois Concert system. In Proceedings of the
Second International Workshop on High-level Par-
allel Programming Models and Supportive hhviron-
merits, pages 15-24, April 1997.

Jeffrey Dean, Craig Chambers, and David Grove.
Selective specialization for object-oriented lan-
guages. In Proceedings of the ACM SIGPLAN ‘95
Conference on Programmin g Language Design and
Implementation, pages 93-102, La Jolla, CA, June
1995.

Julian Dolby. Automatic inline allocation of ob-
jects. In Proceedings of the 1997 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 7-17, Las Vegas, Nevada,
June 1997.

Margaret A. Ellis and Bjarne Stroustrup. The An-
notated C++ Reference Manual. Addison-Wesley,
1990.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hen-
dren. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In
Proceedings of the 1994 ACM SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, pages 242-256, 1994.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D.
Warren. The program dependence graph and its
use in optimization. ACM fiansactions on Pro-
gramming Languages and Systems, 9(3):319-49,
July 1987.

Tim Freeman and Frank Pfenning. Refinement
tvnes for ML. In Proceedinos of the 1991 ACM

“. Y I

SIGPLAN Conference on Programming Language
Design and Implementation, June 1991.

Keith E. Gorlen, Sanford M. Orlow, and Perry S.
Plexico. Data Abstraction and Object-Oriented
Programming in C++. John Wiley and Sons, 1991.

Cordelia Hall, Simon L. Peyton-Jones, and
Patrick M. Sansom. finctional Programming,
Glasgow 1994, chapter Unboxing Using Specializa-
tion. Workshops in Computing Science. Springer-
Verlag, 1995.

Urs Hiilzle, Craig Chambers, and David Un-
gar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches.

[I71

[I81

PI

1201

[2Il

[221

[231

1241

[251

PI

[271

1281

In ECOOP’91 Conference Proceedings. Springer-
Verlag, 1991. Lecture Notes in Computer Science
512.

Urs Hijlzle and David Ungar. Optimizing
dynamically-dispatched calls with run-time type
feedback. In Proceedings of the 1994 ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, pages 326-336, June
1994.

Norman C. Hutchinson. Emerald: An Object-Based
Language for Distributed Programming. PhD the-
sis, University of Washington, Department of Com-
puter Science, Seattle, Washington, 1987. TR-87-
01-01.

Christopher Lapkowski and Laurie Hendren. Ex-
tended ssa numbering: Introducing ssa properties
to languages with multi-level pointers. In Proceed-
ings of CASCON, 1996.

Xavier Leroy. Unboxed objects and polymorphic
typing. In Proceedings of the 19th Symposium on
the Principles of Programming Languages, pages
177-188, 1992.

J. Palsberg and M. Schwartzbach. Object-oriented
type inference. In Proceedings of OOPSLA ‘91,
pages 146-61, 1991.

James Philbin, Jan Edler, Otto J. Anshus, Craig C.
Douglas, and Kai Li. Thread scheduling for cache
locality. In Proceedings of the Seventh Sympo-
sium on Architectural Support for Programming
Languages and Operating Systems (ASPLOS- VII),
pages 60-71, 1996.

John Plevyak. Optimization of Object-Oriented
and Concurrent Programs. PhD thesis, University
of Illinois at Urbana-Champaign, Urbana, Illinois,
1996.

John Plevyak and Andrew A. Chien. Precise con-
crete type inference of object-oriented programs. In
Proceedings of OOPSLA’94, Object-Oriented PTO-
gramming Systems, Languages and Architectures,
pages 324-340, 1994.

John Plevyak and Andrew A. Chien. Type directed
cloning for object-oriented programs. In Proceed-
ings of the Workshop for Languages and Compilers
for Parallel Computing, pages 566-580, 1995.

Zhong Shao, John H. Reppy, and Andrew W. Ap-
pel. Unrolling lists. In ACM Conference on Lisp
and Functional Programming, June 1994.

Olin Shivers. Control flow analysis in scheme. In
SIGPLAN Conference on Programming Language
Design and Implementation, pages 164-74. ACM,
1988.

Olin Shivers. Control-Flow Analysis of Higher-
Order Languages. PhD thesis, Carnegie Mellon
University Department of Computer Science, Pitts-
burgh, PA, May 1991. also CMU-CS-91-145.

18

[29] Olin Shivers. Topics in Advanced Language Imple-
mentation, chapter Data-Flow Analysis and Type
Recovery in Scheme, pages 47-88. MIT Press,
Cambridge, MA, 1991.

[30] Guy L. Steele Jr. Common LISP: The Language.
Digital Press, second edition, 1990.

[31] David Stoutamire and Stephen Omohundro.
Sather 1.1, draft. Available online from http://
www.icsi.berkeley.adu/Sather/Sather-l.l.ps,
August 1995.

[32] Sun Microsystems Computer Corporation. The
Java Language Specification, March 1995. Avail-
able at http://java.sun.com/l.Oalpha2/doc/java-
whitepaper.ps.

[33] N. Wirth and J. Gutknecht. Project Oberon: The
Design of an Operating System and Compiler. Ad-
dison Wesley, 1992.

A Benchmark Programs

options is a command-line argument processing pack-
age. It’s central data structure is a polymor-
phic list of command line options, in which dif-
ferent kinds of options-integer, real, string, etc-
are represented by different subclasses of a generic
Option class.

orderedcltn is a test program for the ordered collec-
tion classes of NIHCL; it uses sets and ordered col-
lections, both of which in turn use expandable ar-
rays; it also uses a variety of other NIHCL classes
for handling I/O, iteration are other support func-
tions.

addcontentsto is a test that creates a few ordered col-
lections, and then loops adding 10,000 point ob-
jects to them. It uses sets and ordered collections,
both of which in turn use expandable arrays; it also
uses a variety of other NIHCL classes for handling
I/O, iteration are other support functions.

stack tests the stack class of NIHCL. It creates stacks,
ordered collections and other support objects, and
pushes and pops objects of different classes (so the
stacks are polymorphic) into them.

sets is another a test program for the ordered collection
and set classes of NIHCL; it uses sets and ordered
collections, both of which in turn use expandable
arrays; it also uses a variety of other NIHCL classes
for handling I/O, iteration are other support func-
tions.

csl tests character sets, and creates lists, character ob-
jects and streams for doing I/O and inserting and
deleting elements.

pdl2a tests doubly-linked lists. It creates lists, charac-
ter objects and streams for doing I/O and inserting
and deleting elements.

oopack is a set of tight numerical loops that use ob-
ject extensively inside the loops. It uses iterator
objects, matrix wrapper objects and complex num-
ber objects.

silo is a discrete event simulator benchmark. Its pri-
mary data structure is a list of events, which it uses
as a queue. It has event objects, resource objects
and various support objects.

polyover performs an overlay of two polygon maps. It
uses lists and arrays of polygon objects to represent
polygon maps.

richards is an operating system simulation bench-
mark; it uses a central task queue to which tasks
are added in an event driven fashion when they
receive messages.

6 Raw Evaluation Results

Pw~m
options

orderkdcltn
addcontentsto

stack
sets
CSl

pdl2a
oopack

silo

Analysis

polyover 3 1 0
richards 3 3 0

c++
6
6
6
8
6
5
3
1
2
2

Table 4: Counts of Inlinable Fields

program
options

orderedcltn
addcontentsto

stack
sets
CSl

pdl2a
oopack

silo
polyover
Richards

-
T adaptive

1730
888

1066
600
971

1657
1523

166
208
131
455

Anal:
1-cfa
6154
4067
2301
3042
3761
3099
2651

567
531
653
934

-

5
local
1449

666
496
512
622

1383
1286

140
148

85
344 =:

1

:

1
1

-

-
base T
449
666
496
514
622
383
286
140
148

85
344 Z

Table 5: Method Contour Counts

methods
441
327
267
284
300
423
417

89
106

60
155

19

Analysis
progmm adaptive 1-cfa local base
options 12413096 14149096 14169245 14169245

orderedcltn 15566973 29626973 28227122 29627122
addcontentsto 967943 1583828 1583977 1583977

stack 246973 306973 1177122 1127122
sets 23046973 58046973 58047122 58047122
csl 3204709 3204709 4005523 4005523

pdl2a 6222357 6222537 6377612 6377612
oopack 710523016 1220703514 1220703514 1220703514

silo 11291623 11693779 14338618 14338618
polyover 454847146 1480582168 1480582168 1480582168
richards 11884990 11884990 13334790 13334790

Table 7: Field Read Counts

=i= Analy 3
1-cfa local

150 159
120 121
118 118
120 120
119 119
216 221
215 223

30 30
16 16
12 12
16 16

- -

base classes
159 90
121 72
118 72
120 72
119 72
221 94
223 94

30 20
16 21
12 17
16 24

t

program
options

orderedcltn
addcontentsto

stack
sets
csl

pdl2a
oopack

silo
polyover -L rlchards 24

adaptive
205
125
133
123
128
222
218

33
17
13

- r -

base T
597
466
452
437
480
503
484
310
333
316
311

E

Analy 9

local
597
466
452
437
480
503
484

310,
333
316
311

E

c++
899
697
686
692
694
668
730
309
342
319
313

adaptive 1-cfa
628 600
485 467
457 450
438 437
483 477
507 507
485 485
311 311
333 333
316 316

program
ootions

ordered&n
addcontentsto

stack
sets
csl

pdl2a
oopack

silo
polyover . .
rlchards 311 311

1
base ’

284700 Table 10: Code Sizes in kB

Table 6: Object Contour Counts

lysis =i= Ana
I-cfa

278507
220433

10468
50432

320432
645

340643
2018

465670
149164

141

local
284700
210627

10661
80625

320625
652

500634
2018

787899
149164

282

adaptive
204506
120433

10444
30432

140432
645

340633
13

465668
41616

141

program
options

ordered&n
addcontentsto

stack
sets
csl

pdl2a
oopack

silo
polyover
richards

210626
10661
70625

320625
652

500634
2018

787899
149164

282

progmm
Analvsis I
1-cfa local base ’
5236 5318 5318
7818 7700 7700

164 167 167
978 1420 1220

17738 17740 17740
15 16 16

12975 14255 14255
132 132 132

12606 15184 15184
2914 2094 2094

41 5 1 5992

adaptive
4676
6538

164
818

15178
15

12975
116

12606
2053

4

Table 8: Object Allocation Counts

I Analysis

optlons
ordered&n

addcontentsto
stack

sets
csl

pdl2a
oopack

silo
polyover
-richards

- -r base
1.99
1.93
0.05
0.08
1.84
0.08
0.70

18.16
1.1

24.43
40 -

adaptive
1.97
1.79
0.05
0.07
1.97
0.09
0.68
14.9

1.0
12.71

38

c++
1.07
1.57
0.05
0.09
1.09
0.11
1.69

19.83

program
options

orderedcltn
addcontentsto

stack
sets
csl

pdl2a
oopack

silo 1.8
12.83

30 -

Table 11: Memory Usage in kB polyover
richards

Table 9: Runtimes in Seconds

20

