
Data Structure Analysis: An Efficient

Context-Sensitive Heap Analysis

Chris Lattner, Vikram Adve

University of Illinois at Urbana-Champaign

Abstract. This paper presents an efficient context-sensitive heap analysis algorithm

called Data Structure Analysis designed to enable analyses and transformations on

entire disjoint recursive data structures. The analysis has several challenging properties

needed to enable such transformations: context-sensitivity with cloning (essential for

proving disjointness), field-sensitivity, and the use of an explicit heap model rather than

just alias information. It is also applicable to arbitrary C programs. To our knowledge

no prior work provides all these properties and is efficient and scalable enough for large

programs. Measurements for 29 programs show that the algorithm is extremely fast,

space-efficient, and scales almost linearly across 3 orders-of-magnitude of code size.

1 Introduction

There has been extensive research on alias analysis for programs containing
complex pointer-based data structures. This work has been successful guiding
traditional scalar and memory hierarchy optimizations, which operate at the
level of individual memory references or data objects. Such transformations rely
on disambiguating pairs of memory references and on identifying local and in-
terprocedural side-effects of statements.

In contrast, there has been much less success with transformations that ap-
ply to entire logical data structures such as an entire list, heap, or graph. Many
reasons exist for this disparity, including the possibility of non-type-safe memory
accesses in common programming languages (e.g., C and C++), the inability of
traditional analyses to distinguish between different instances of a data structure,
and high compilation time required to perform the necessary analyses and trans-
formations. In the long-term, we believe that such techniques, which we term
macroscopic data-structure analyses and transformations, could provide new op-
portunities for program optimization, safety checking, and debugging tools. An
example of such a technique is automatic pool allocation, which transforms an
ordinary C program with dynamic allocation so as to segregate disjoint instances
of logical data structures into separate memory pools within the heap [15]. This
transformation has a number of interesting applications, including static check-
ing of heap safety for a large class of type-safe C programs [6].

Such transformations require a powerful memory analysis capable of iden-
tifying disjoint logical data structures, building a static representation of the
run-time heap, and detecting type-unsafe data structures. Traditional alias and
pointer analysis algorithms do not attempt to provide such information because

of the potential cost, as explained below. In contrast, “shape analysis” algo-
rithms are powerful enough to provide the information we require and more, e.g.,
enough to identify a particular structure as a “linked-list” or “binary tree” [10,
19]. Shape analysis, however, is too expensive to be practical for use in commer-
cial compilers.

Our goal in this work is to develop an analysis algorithm that is somewhat
more powerful than traditional pointer analysis but not as powerful as shape
analysis, and which has the properties required to provide the information above.
In particular, the analysis we require must include the following key properties,
each of which is challenging to achieve efficiently, especially for languages like C:

– Context-sensitivity with cloning: Identifying disjoint data structures
requires distinguishing (or “cloning”) heap objects created via different call
paths in a program, even if the objects are allocated at a common allocation
site. Näıve cloning can lead to an explosion in the size of the heap repre-
sentation (because there may be an exponential number of call paths), and
can make recursion tricky to handle. In practice, therefore, most pointer
or alias-analysis algorithms use more restricted naming schemes for heap
objects such as distinguishing objects based on static allocation site alone.
Even many context-sensitive algorithms do not attempt to distinguish heap
objects by call paths [7, 24, 8, 23]. Although the naming scheme in many al-
gorithms can be replaced to use cloning, making this efficient and scalable
is a fundamental challenge.

– Field-sensitivity: Identifying the internal connectivity pattern of a logical
data structure requires distinguishing the points-to properties of different
structure fields. Such “field-sensitivity” is also difficult to support efficiently
in languages lacking strict type enforcement (like C) (e.g., see [21]).

– An explicit heap model: An explicit heap model includes information
about all the relevant memory objects visible in each procedure, and is re-
quired to extract the internal connectivity of relevant data structure in-
stances. In contrast, many algorithms only record alias pairs that determine
the aliasing behavior of pointers within each procedure [7, 3, 12] because
building an explicit heap model can be more expensive.

In this paper, we develop a practical, scalable algorithm called “Data Struc-
ture Analysis” which provides the properties above and applies to arbitrary C
programs. The key technical contributions of the Data Structure Analysis algo-
rithm are as follows:

(i) Data Structure Analysis provides a scalable, context-sensitive, field-sensitive
heap analysis with full cloning. The algorithm handles the full generality
of C programs, including type-unsafe code, incomplete programs, function
pointers and recursion.

(ii) The algorithm includes several novel features. First, it explicitly and effi-
ciently tracks “incomplete” memory nodes, which ensures that it is sound
even at intermediate stages, and that it can analyze incomplete programs
safely. Second, the algorithm does not require the call graph to be provided

as input. It discovers the call graph during the analysis (similar to [8]), and
uses a novel technique to handle strongly connected components (SCCs) of
the call graph explicitly (in order to avoid iteration), even when recursion
happens via function pointers. Finally, the algorithm is not iterative either
within or across procedures in the sense that it visits every instruction only
once in the local phase and incorporates the effect of a particular callee pro-
cedure at a particular call site only once during the interprocedural phases.

(iii) We show that the worst case complexity (with a graph-size-limiting heuristic
that has never been invoked in practice) is Θ(nα(n) + ks2) where n, k, and
s denote the number of instructions, the maximum size of a data structure
graph for a single procedure, and the maximum number of functions in an
SCC of the call graph, respectively.

(iv) We experimentally evaluate the algorithm on 29 C programs, showing that
the algorithm is extremely efficient in practice (in both performance and
memory consumption), including programs that contain complex heap struc-
tures, recursion, and function pointers. For example, it requires less than 2.5
seconds of analysis time and less than 9MB to analyze povray31, a program
consisting of over 130,000 lines of code. We evaluate the impact of some of
the key design choices on the analysis precision by comparing several con-
figurations of the algorithm as well as Steensgaard’s [22] and Andersen’s [1]
algorithms.

The two closest previous algorithms to ours are those by Fähndrich et al. [8]
and by Liang and Harrold [17]. Both algorithms are context-sensitive, flow-
insensitive, and appear comparable to ours in terms of analysis time. The former,
however, is implemented by naming heap objects based only on allocation site,
i.e., would not identify disjoint data structure instances in many common pro-
grams, as discussed above. It also uses a more limited form of context-sensitivity.
The algorithm by Liang and Harrold [17] is similar to ours in several key ways,
particularly the use of local, bottom-up, and top-down passes, and in the use
of a separate globals graph to avoid duplicating globals in procedures that do
not use them. Their algorithm, however, has several practical limitations com-
pared with ours: it requires a complete C program, it does not correctly handle
non-type-safe programs (except by turning off field-sensitivity entirely), and it
requires the call graph to be computed previously for programs with function
pointers1. This algorithm is contrasted with ours in more detail in Section 5.

The remainder of the paper is organized as follows: Section 2 describes the
semantics of the analysis graph representation. Section 3 then describes the
algorithm used to construct the graph. Section 4 evaluates the analysis time,
memory usage, and precision of our alias analysis. Section 5 compares our work
with prior work in the field in more detail. Finally, Section 6 summarizes the
results of the paper and outlines some directions for future work.

1 An outline for a fairly complex iterative scheme is presented to compute the call
graph on the fly, but it is not described in detail or evaluated.

typedef struct l i s t { struct l i s t ∗Next ;
int Data ; } l i s t ;

int G = 10;
void d o a l l (l i s t ∗L1 , void (∗FP)(int ∗)) {

do { L2 = phi (L1 , L3) ; /∗ SSA phi node ∗/
FP(&L2−>Data) ;
L3 = L2−>Next ;

} while (L3) ;
}
void addG(int ∗X) { (∗X) += G; }
void addGToList (l i s t ∗L) { d o a l l (L , addG) ; }
l i s t ∗ makeList (int Num) {

l i s t ∗New = malloc (s izeof (l i s t)) ;
New−>Next = Num ? makeList (Num− 1) : 0 ;
New−>Data = Num; return New;

}
int main () { /∗ X & Y l i s t s are d i s j o i n t ∗/

l i s t ∗X = makeList (1 0) ;
l i s t ∗Y = makeList (1 0 0) ;
addGToList (X) ;
addGToList (Y) ;

}

Fig. 1. C code, in SSA form, for running example

Scalar

<name>
<type>: <flags>

<field0> <field1>

Memory Object

Call Site / Call Node

call

r f

Return
Value

Called
Function

First
Argument

Fig. 2. Graph Notation

list: HMR

list* int

list: HMR

list* int

X Y
int: GMR

G

Fig. 3. Graph for main

2 The Data Structure Graph

Data Structure Analysis summarizes a program’s memory composition and con-
nectivity patterns by building a Data Structure Graph (DS graph) for each
available function in the program. Many design features of DS graphs have been
carefully chosen to make the analysis very efficient in practice. The major com-
ponents are described in turn below.

The code in Figure 1 will be used as a running example throughout the
paper. We use the notation illustrated in Figure 2 to represent all data structure
graphs. Despite the complexity of the example, Data Structure Analysis is able
to prove that the two lists X and Y are disjoint, as shown by the final DS graph
for function main in Figure 3. Figure 4 shows the initial DS graph computed for
the do all function without interprocedural information. We refer to this graph
in the description below.

2.1 Data Structure Nodes

A DS graph contains memory nodes and call nodes. Each memory node repre-
sents a set of memory objects, and edges represent may-point-to relationships. We
restrict each pointer to point to a single target node (i.e., we use a “unification-
based” approach similar to Steensgaard’s algorithm [22]). If the analysis discovers
two different nodes that may be pointed to by the same pointer, it merges the two
nodes together. Unification allows an efficient non-iterative analysis of pointer
assignments [22]. More importantly for us, unification is crucial for preventing
exponential growth of the graph representation when doing a context-sensitive
analysis with full cloning.

Each memory node in a DS graph includes 3 pieces of information: (a) an
array of fields; (b) a program type for the objects represented by the node; and

(c) a set of flags. The field array and flags make node merging very efficient,
while the type allows merging to detect incompatible merges, causing nodes to
be collapsed as neccesary.

Formally, “fields” denote potential outgoing edges. They are stored as an
array of (possibly null) edges, with one entry for each sizeof(pointer) bytes
in the node 2. A node may be “Collapsed”, in which case the entries in the field
array are folded into a single field, thus forcing the destination nodes for all
outgoing edges to be merged. This loses field sensitivity for the node but retains
correctness (this can happen under 3 situations, described below). In Figure 4,
the node list has two fields, with an outgoing edge from the first field, and
incoming edges both to the node (byte 0) and to the second field (byte 8).

If a potential pointer value (or

void: I
list: IR

list* int

L1FP L2 &L2->DataL3
call

r f

Fig. 4. Local DSGraph for do all

bytes thereof) is stored to a node
at any other offset (i.e., is mis-
aligned), the node is collapsed. In
practice we find that misaligned
pointers are rare because they cause
run-time faults on some proces-
sors. Tracking only aligned pointer

fields greatly improves analysis efficiency and space requirements for most C pro-
grams.

Each node in the graph tracks a type for the objects it represents, e.g.,
void and list at the top of the memory nodes in the figure. When two nodes
are merged, their type information is merged if the node types are compatible
element-wise; otherwise the node is collapsed.

Memory Allocation Classes Data Structure Analysis distinguishes between
four different classes of objects: Heap-allocated, Stack-allocated, Globals, and
Unknown objects, denoted H, S, G and U in our examples. Merging may cause
a single node may represent memory objects of different allocation classes, i.e.,
to have multiple flags set. Functions are explicitly represented as Global memory
objects. Memory objects are marked as Unknown when a constant value is cast
to a pointer value (for example, to access a memory-mapped hardware device), or
when unanalyzable address arithmetic is found. These cases occur infrequently
in portable programs.

We use a low-level code representation that distinguishes memory locations
and virtual registers, where automatic (i.e., local) scalar variables that do not
have their address taken can be promoted to virtual registers. Virtual registers
are not represented as nodes in the graph since they cannot have incoming
edges (although they are shown as ellipses in our figures, e.g., FP, L1, L2, L3,

&L2->Data in Figure 4). Instead, a ScalarMap maps each register with a pointer-
compatible type to the node the register points to. Conceptually, a map entry
is just a very simple node that can have a single outgoing edge but no incoming
edges.

2
Incoming edges, however, may point to any byte offset within a node as described in Section 2.2.

Representing Incomplete Information DS graphs correctly represent in-
complete programs where some functions are unavailable for analysis. To do this
efficiently, each node in the data structure graph contains a bit to indicate if it
is “Incomplete”. If this bit is set for a node, there may be some missing informa-
tion, specifically, missing outgoing edges, type information, or flag information.
If the bit is clear, the node is fully represented. Two different memory nodes
in a DS graph may represent a common runtime memory location if they both
have the “Incomplete” flag set. In all other cases, two memory nodes represent
disjoint memory locations.

In Figure 4, both memory nodes (labelled void and list) have the I flag set
because the pointers from formal arguments L1 and FP imply that those nodes
may be modified outside the context of the current function, and even may be
aliased. These I flags will be eliminated later using interprocedural information.

Because we track which nodes in the graph may contain incomplete infor-
mation, the DS graph is sound regardless of how much information has been in-
corporated into it. This also dramatically simplifies the construction algorithms
presented in Section 3. Note that client analyses must be aware of the potential
for incomplete nodes: for example, an alias analysis can only conclude that two
pointers are distinct if the pointers point to different nodes and at least one of
the nodes is complete.

Mod/Ref Information The last two bits tracked by a DS graph node, Mod
and Ref, indicate whether or not any of the objects represented by node have
been modified or read. The partitioning of memory objects in the DS graph
provides a natural granularity to represent this information. In Figure 4, the
“ref” bit is set on the list node because the Next field is read.

2.2 Data Structure Edges

In a DS graph, an edge goes from a field or a scalar to a <node,offset> pair. If
the node entry is not NULL, the offset identifies a byte offset within the node to
which the edge points, permiting field-sensitivity for C programs. In Figure 4,
the edges from FP, L1, L2, and L3 all have an offset of zero, but the edge from
&L2->Data has a node offset of 8 bytes (which is the size of a pointer in our
target system).

2.3 Call Site Information and Return Values

The DS graph for a function may contain “call nodes” in addition to traditional
memory nodes. The presence of a call node indicates an unresolved function call,
which may occur either due to an incomplete program or unfinished analysis. In
the local DS graph in Figure 4, a call node exists representing the unresolved
call to the function pointed to by FP.

Call nodes contain fields for the return value of the call (marked ’r’), the
called function (’f’), and each pointer compatible argument. Note that call

nodes model all calls as general indirect calls for uniformity. Finally, if the func-
tion returns a pointer type, the function’s graph represents the returned object
as a special scalar labeled “returning” with an edge to the object being returned.

3 Construction Algorithm

Data structure graphs are created in a three step process. First, an intraproce-
dural phase processes each function in the program, abstracting the behavior of
each into a “Local” data structure graph, ignoring callers and turning call sites
into call nodes. Next, a “Bottom-Up” analysis clones and merges callee graphs
into their callers. The final “Top-Down” phase clones and merges caller graphs
into their callees. The local analysis phase is the only phase that inspects the ac-
tual program representation. The other two phases operate solely on DS graphs
because our analysis is flow-insensitive and because call sites are recorded in the
graphs.

All three phases of the algorithm use a common set of routines to update
and merge nodes, which are defined in Appendix A. Below, we continue to use
the example program of Figure 1 as a motivating example. It illustrates some of
the high-level challenges that our algorithm can handle.

3.1 Local Analysis Phase

The local analysis phase captures the memory usage behaviors of individual
functions without including calling or caller context. Due to the potential for
type-unsafe pointer arithmetic and casts, we consider any value capable of hold-
ing a pointer to be a pointer type (our implementation assumes C programs and
therefore considers actual pointer types and any integers of pointer size or larger
to be potentially a pointer type). We process all operations on any values of
these types.

X = &Y → Z: (address of struct field)
mergeType(ScalarMap[Y], typeof(*Y))
mergeEdges(ScalarMap[X], addOffset(ScalarMap[Y], Z))

X = &Y [idx]: (address of array element)
mergeType(ScalarMap[Y], typeof(*Y))
mergeEdges(ScalarMap[X], ScalarMap[Y])

X = load Y : (in C, X = *Y)
mergeType(ScalarMap[Y], typeof(*Y))
Set R bit in node ScalarMap[Y]
mergeEdges(ScalarMap[X], linkAt(ScalarMap[Y]))

store X into Y : (in C, ∗Y = X)
mergeType(ScalarMap[Y], typeof(*Y))
Set M bit in node ScalarMap[Y]
mergeEdges(ScalarMap[X], linkAt(ScalarMap[Y]))

X = malloc ... or X = alloca ...:
mergeEdges(ScalarMap[X], new Node)
Set H or S bit in node ScalarMap[X]

X = cast Y to τ : (in C, X = (τ)Y)
mergeEdges(ScalarMap[X], ScalarMap[Y])

X = φ(Y1, Y2, ...):
∀Yi ∈ Args: mergeEdges(ScalarMap[X], ScalarMap[Yi])

return X:
mergeEdges(ReturnEdge, ScalarMap[X])

X = call Y (Z1, Z2, ...)

CallSite CS = new CallSite
mergeEdges(ScalarMap[X], retval(CS))
mergeEdges(ScalarMap[Y], callee(CS))
∀Zi ∈ Args: mergeEdges(ScalarMap[Zi], CS.getArg(i))

Otherwise: (Arithmetic instructions, etc...)
Collapse nodes and set U bit for any pointer args

Fig. 5. ProcessInstruction actions for the LLVM Intermediate Representation

Since local analysis must examine the code, we describe this phase in terms
of the LLVM instruction set [14], for which we implemented the analysis. This
is a simple 3-address language with virtual registers in Static Single Assignment
(SSA) form [4]. Memory locations are not in SSA form, and can only be accessed
via load or store operations on typed pointers. All heap and stack memory

(including variables retained on the stack because their address is taken) are
allocated using the primitive operations malloc and alloca, respectively.

The analysis starts by creating entries in the “ScalarMap” (§2.1) for any
memory value directly referenced by the function, such as globals and constants.
For example, in Figure 6(a), the two Global nodes are created. The next phase
of the analysis is a flow-insensitive linear pass over the program representation
(which is similar to Steensgaard’s algorithm, but calculated one function at a
time). In LLVM, each instruction is processed as shown in Figure 5. We describe
a few cases in detail here.

malloc and alloca operations create a new memory node with the appro-
priate memory class bit set. load instructions update type information for the
value loaded, updates mod/ref information, and then merge the source and des-
tination pointers. The operations used to perform these tasks are defined in
Appendix A. cast instructions (a copy is just a degenerate cast) simply merge
the source and destination pointers, and do not update type information. This
allows our algorithm to handle casts to and from void* pointers (i.e., generic C
data structures) without collapsing nodes in most cases, simply by deferring the
type determination to instructions (like load) where the type is actually used.

return instructions are handled by updating the return value for the current
DS graph (§2.3). Each call instruction is represented as a new call site object
in the graph. Note that the mergeType call is responsible for collapsing a node
into a single field if the memory object is used in a non-type-safe manner. For all
other instructions involving a pointer-compatible operand or result (these can
only be arithmetic operations like add or shift), we set the “Unknown” bit and
collapse the node to indicate that something untrackable occurred.

The final step in the Local graph construction is to calculate which data
structure nodes are complete and which are incomplete. For a Local graph, any
node reachable from a formal argument, global, passed as an argument to a call
site, or returned by a call site is marked as incomplete.

3.2 Bottom-Up Analysis Phase

The Bottom-Up (BU) analysis phase creates a graph for each function in the
program, summarizing the total effect of calling that function (imposed aliases
and mod/ref information) without any calling context information. It computes
this graph by cloning the BU graphs of all known callees into the caller’s Local
graph, merging nodes pointed to by corresponding formal and actual arguments.
We first describe a single graph inlining operation, and then explain how the call
graph is discovered and traversed.

Consider a call to a function F with formal arguments f1,. . . , fn, where
the actual arguments passed are a1,. . . , an. We first copy the BU graph for F ,
clearing all Stack node markers. Any unresolved call nodes in F ’s BU graph
are retained. For each actual argument ai of pointer type, we merge the node
pointed to by ai with the copy of the node pointed to by fi. If applicable, we
also merge the return value with the return marker from the call node.

The Bottom-Up algorithm for traversing calls is shown in Figure 7, but we
explain it for four different cases. In the simplest case of a program with only
direct calls to non-external functions, no recursion, and no function pointers,
the call nodes in each DS graph implicitly define the entire call graph. The BU
phase simply has to traverse this acyclic call graph in post-order (visiting callees
before callers), cloning and inlining graphs as described above.

To support programs that have function pointers and external functions (but
no recursion), we simply restrict our post-order traversal to only process call-sites
that are fully resolved, i.e., direct calls or indirect calls where the function pointer
targets a “complete” nodes (§2.1). An unresolved call copied from a callee may
become resolved if the function passed to a function pointer argument becomes
known. This allows the indirect call to be resolved by copying and inlining the
indirect callee’s BU graph into the graph of the function where the call site
became resolved. This technique of resolving call nodes as their function pointer
targets are completed effectively discovers the call-graph on the fly.

void: I
void (list*, void (int*)*): G

do_all
void (int*): GI

addG

L
call

r f

(a) Local addGToList graph

void (int*): G
addG

list: IR

list* int

L
call

r f

(b) After inlining do all

list: IMR

list* int

L
int: GR

G

(c) Finished

Fig. 6. BU DSGraphs for addGToList

For example, Figure 6(a) shows the the local graph of addGToList, and
Figure 6(b) shows the graph obtained by inlining the graph of do all. This
brings in a new call node that was not resolvable in do all (see Figure 4), but is
now known to call addG. This call node is now complete and we inline the graph
for the addG function. This yields the finished graph for addGToList shown in
Figure 6(c). Note that the BU graph for do all still contains the unresolved call
node, and that will not be resolved until the top-down phase.

Relaxing the final constraint, recursion, is trickier. We use an adaptation
of Tarjan’s linear-time algorithm for finding Strongly Connected Components
(SCCs) to visit the SCCs of the call-graph in postorder. Given a simple Tarjan
SCC iterator, the final Bottom-Up analysis algorithm is shown in Figure 7.

Assume first that there are only direct calls, i.e., the call graph is known. At
the highest level, the BU phase iterates over all of the SCCs as they are identified
by the Tarjan SCC iterator. For each SCC, all call sites to functions outside the
SCC are cloned and resolved as before. Once this step is complete, all of the
functions in the SCC have empty lists of call sites, except for intra-SCC calls
and calls to external functions.

At this point, simply traversing the SCC in some order (e.g., postorder)
and inlining intra-SCC calls is not guaranteed to terminate, so we use a simple
heuristic to make our algorithm halt. In an SCC, each function will eventually
need to inline the graphs of all other functions in the SCC at least once (either
directly or through the graph of a callee). Our heuristic simply achieves this
directly by cloning the graph of each SCC function exactly once into each others

BottomUpAnalysis(Program P)
∀ Function F ∈ P

BUGraph{F} = LocalGraph{F}
∀ SCC S ∈ CallGraph(P) - using Tarjan’s algorithm

ProcessSCC(S)

ProcessSCC(SCC S)
∀ Function F ∈ S

(1) CallSiteList CSL = getUnresolvedCallSites(BUGraph{F})
(2) ∀ <Function,CallSite> <Callee,CS>∈ CSL

if (Callee /∈ S) - Process funcs not in SCC
CloneAndResolve(BUGraph{F}, BUGraph{Callee}, CS)

(3) ∀ Function F ∈ S
CallSiteList CSL = getUnresolvedCallSites(BUGraph{F})
CloneGraphs(S − {F}) - Copy SCC graphs except self
∀ <Function,CallSite> <Callee,CS>∈ CSL

if (Callee ∈ S) - Process funcs in SCC
ResolveArguments(Callee, CS, BUGraph{F})

(4) mark nodes incomplete - Section 3.1
(5) remove unreachable nodes
(6) ∀ Function F ∈ S

if (ContainsResolvableCallSites(BUGraph{F}))
MarkSCCUnvisited(S) - Reevaluate SCC if funcpointer resolved
TarjanVisitNode(SomeEntry(S))

Fig. 7. Bottom-Up Closure Algorithm

graph, and then resolving arguments without any further inlining. In particular,
inlining graphs into F1 may result in one or more unresolved call nodes for some
other SCC function F2. Rather than inline the graph of F2 again, we simply
merge the corresponding nodes for each actual argument in the different calls,
and then mark all call nodes to F2 resolved. This may sacrifice some context-
sensitivity for multiple intra-SCC calls to a single function (compared to a more
complex SCC-traversal scheme) but the difference seems unlikely to be significant
in practice, and this scheme has the advantage of being simple and efficient.

After the cloning and merging is complete for a function in the SCC, we
identify incomplete nodes (§3.1). Finally, we remove unreachable nodes from the
graph since copying and inlining callee graphs can bring in excess nodes not
accessible within the current function (e.g., unused globals or heap nodes).

The final case to consider is a recursive program with indirect calls. Indirect
calls that never induce any cycle in the call graph get resolved just as before, i.e.,
in each context where the function pointer gets fully resolved. Some indirect calls,
however, may induce cycles in the SCC and these cycles will not be discovered
until the indirect call is resolved. We make a key observation, however, that
yields a simple strategy to handle such a situation: If A calls B and B calls C,
the BU graph for A is the same regardless of which order the graphs are inlined:
(i) C into B then B into A, or (ii) B into A then C into A. In both cases, the
graph for A will reflect the side-effects of both calls. The difference is that in
case (i), the graph for B will reflect the call to C but not in case (ii).

Based on this observation, we have slightly adapted Tarjan’s algorithm to
revisit partial SCCs as they are discovered. After the current SCC is fully pro-
cessed (i.e., after step (5) in Figure 7), we check each SCC function to see if
any newly inlined call nodes are now resolvable. If so, we reset the “Visit” flags

F

A

B

C D

E

(a) Recursive Call Graph
(indirect call is dotted)

A

B

C D

(b) Call Node Edges,
After inlining F & E

1. { F }
2. { E }
3. { D }: mark unvisited
4. { B, D, C }
5. { A }

(c) SCCs visited

Fig. 8. Handling recursion due to an indirect call in the Bottom-Up phase

used in Tarjan’s algorithm to mark if a node has been completely visited, for
all functions in the SCC[20]. This causes the nodes in the SCC to be revisited,
but only the new call sites are processed (since other resolvable call sites have
already been resolved, and will not be included in the list in step (1)).

For example, consider the recursive call graph shown in Figure 8(a), where
the call from E to C is an indirect call. Assume this call is resolved in function
D, e.g., because D passes C explicitly to E as a function pointer argument.
Since the edge E → C is unknown when visiting E, Tarjan’s algorithm will first
discover the SCCs { F }, { E }, and then { D } (Figure 8(c)). Now, it will find
a new call node in the graph for D, find it is resolvable as a call to C, and
mark D as unvisited (Figure 8(b)). This causes Tarjan’s algorithm to visit the
“phantom” edge D → C, and therefore to discover the partial SCC { B, D, C }.
After processing this SCC, no new call nodes are discovered. At this point, the
graphs for B, D and C will all correctly reflect the effect of the call from E to
C, but the graph for E will not (exactly as illustrated in the observation above).
The top-down pass will resolve the call from E to C (within E) by inlining the
graph for D into E.

Note that even in this case, the algorithm only resolves each callee at each
call site once: no iteration is required, even for SCCs induced by indirect calls.

The graph of Figure 3 shows the BU graph calculated for the main function
of our example. This graph has disjoint subgraphs for the lists pointed to by
X and Y . These were proved disjoint because we cloned and then inlined the
BU graph for each call to addGToList(). This shows how the combination of
context sensitivity with cloning can identify disjoint data structures, even when
complex pointer manipulation is involved.

3.3 Top-Down Analysis Phase

The Top-Down analysis pass is used to propagate information from callers to
callees. The goal of this phase is to construct a graph for each function which
describes the memory access behavior of the function within all of the possible
contexts in which the function is invoked. This allows us to reduce the number
of nodes that are marked incomplete.

Because the Top-Down construction phase is very similar to the Bottom-
Up construction phase, we omit the pseudo-code here. There are 3 differences
between the BU and TD phases: First, the Top-Down pass visits SCCs of the
call graph computed by the Bottom-Up traversal in reverse postorder instead of

postorder. Second, in the ProcessSCC function, the Top-Down pass inlines the
caller graph into each of its callees (rather than its callers). The third difference
is that argument nodes are not marked incomplete if all callers of a function have
been identified by the analysis. Similarly, global variables need only be marked
incomplete if they may be visible to external functions.

An important aspect of Data Structure Analysis is that different graphs may
be useful for different purposes. For example, the BU graphs provide parame-
terized pointer information [17], useful for accurately determining the effect of a
particular call site. The TD graphs are useful for applications like alias analysis,
which want the most “complete” information possible. Even the local graphs are
useful: we have built an field-sensitive implementation of the standard Steens-
gaard’s algorithm using the local graphs as input.

3.4 The Globals Graph

One reason the DS graph representation is so compact is that each function
graph need only contain the data structures reachable from that function. If
there were a caller of main in the example, that graph would not contain any
of the nodes defined in main: unreachable node elimination would remove them.
However, Figures 6(c) and 3 illustrate a fundamental violation of this strength.
In both of these graphs, the global variable G makes an appearance even though
it is not directly referenced and no edges target it.

If left untreated, all global variables defined in the program would propagate
bottom-up to main, then top-down to all functions in the program. This would
balloon the size of each graph to include every global variable in the program,
allowing a potential O(N2) size explosion.

In order to prevent this unacceptable behavior, our implementation moves
all global variables and call sites to a “Globals Graph” if they are not used in the
current function. All nodes reachable by scalars are considered to be locally used,
and all call sites which have a locally used node as an argument are considered
to be locally used. All other nodes and data structures may safely be moved
and merged into the Globals graph, which eliminates the two G nodes the the
example graphs. This happens for each function at the end of the Bottom-Up
phase. Finally, when the Bottom-Up phase is complete, all global nodes in main

(if the function main is available) are also copied to the globals graph.
In practice, we have found the Globals graph to make a remarkable difference

in running time for global-intensive programs, and for programs with call sites
which invoke external functions.

3.5 Bounding Graph Size

In the common case, the merging behavior of the unification algorithm we use
keeps individual data structure graphs very compact, which occurs whenever a
data structure is processed by a loop or recursion. Nevertheless, the combination
of field sensitivity and cloning makes it theoretically possible for a program to
build data structure graphs that are exponential in the size of the input program.

Such cases can only occur if the program builds and processes a large complex
using only non-loop code, and are thus extremely unlikely to occur in practice.

Using a technique like k-limiting [12] to guard against such unlikely cases is
unattractive because it could reduce precision for reasonable data structures with
paths more than k nodes long. Instead, we propose that implementations simply
impose a hard limit on graph size (10,000 nodes, for example, which is much
larger than any real program is likely to need). If this limit is exceeded, node
merging can be used to reduce the size of the graph. Our results in Section 4
show that the maximum graph size we have observed in practice is only 144
nodes, which is quite small.

3.6 Complexity Analysis

The local phase adds at most one new node, ScalarMap entry, and/or edge
for each instruction in a procedure (before nodes merging). Furthermore, node
merging or collapsing only reduces the number of nodes and edges in the graphs.
Implementing node merging using a Union-Find data structure therefore guar-
antees that this phase requires O(nα(n)) time and O(n) space for a program
containing n instructions in all.

For the BU and TD phases, the size of the program and number of memory
instructions are inconsequential, because thee phases operate on the DS graphs
directly. Instead, their performance depends on the size of the graphs being
cloned and the time to clone and merge each graph (which we will denote K
and l respectively, where l is O(Kα(K)) in the worst case). These phases also
depend on the average number of callee functions per caller, which we denote c.

For the BU phase, each function must inline the graphs for c callee functions.
Because each inlining operation requires l time, this requires fcl time if there
are f functions in the program. Handling SCCs requires no additional time for a
single node SCC (the most common), whereas building the final graph for each
function in an s node SCC requires Θ(ls2) time (because each function needs to
be inlined into each other function’s graph). Thus, the time to compute the BU
graph is Θ(fcl + ls2) where s is the size of the largest SCC. The space required
to represent the Bottom-Up graphs is Θ(fK). The TD phase is identical in
complexity to the BU phase, with the role of callers and callees exchanged.

Asymptotically, the worst-case running time is dominated by the time to
process SCCs in the call graph, which occurs when the entire program is one
SCC. In this case, our worst-case analysis time is Θ(ls2). Note that s is much
smaller than the number of memory instructions in the program. In the worst
case, it is equal to the number of functions in the program. Even in the worst
case however, we find that processing functions in SCCs in postorder allows our
algorithm to scale nearly linearly with the size of the program, and in practice,
our algorithm is able to handle large SCCs without a problem.

4 Experimental Results

We have implemented the complete Data Structure Analysis algorithm in the
LLVM Compiler Infrastructure, using a C front-end based on GCC [14]. The
analysis is performed entirely at link-time, using stubs for standard C library
functions to reflect their aliasing behavior as in other work [3, 11].

We evaluated Data Structure Analysis on four sets of benchmark programs:
the Olden benchmark suite, the “ptrdist” 1.1 benchmark suite, the SPEC 2000
integer benchmarks3 and a set of other, unbundled, programs. The Olden bench-
marks are widely-used pointer and recursion-intensive codes [18, 2], while the
“ptrdist” and SPEC codes, and some of the other codes have been frequently
used to evaluate pointer analysis algorithms. Note that the povray31 test in-
cludes the sources for the zlib and libpng libraries.

Code Size Analysis Time (sec) Mem (KB) # of Nodes
Benchmark LOC MInsts SCC Local BU TD Total BU TD Total Max Collapsed

Olden-treeadd 245 41 1 0.0004 0.0004 0.0004 0.0012 15 11 18 7 0
Olden-bisort 348 103 1 0.0006 0.0006 0.0009 0.0021 18 17 24 8 0
Olden-mst 432 144 1 0.0008 0.0025 0.0013 0.0046 32 23 87 14 4
Olden-perimeter 484 106 1 0.0006 0.0007 0.0006 0.0019 17 16 20 6 0
Olden-health 508 213 1 0.0010 0.0012 0.0015 0.0037 34 25 62 15 6
Olden-tsp 579 181 1 0.0008 0.0008 0.0009 0.0025 28 20 27 9 0
Olden-power 615 286 1 0.0008 0.0008 0.0011 0.0027 32 24 52 12 0
Olden-em3d 682 239 1 0.0013 0.0016 0.0019 0.0048 46 36 158 23 1
Olden-voronoi 1106 740 1 0.0026 0.0032 0.0047 0.0105 88 53 136 13 30
Olden-bh 2085 646 1 0.0024 0.0024 0.0033 0.0081 78 56 119 12 47

ptrdist-anagram 647 198 1 0.0014 0.0015 0.0023 0.0052 50 39 127 16 7
ptrdist-ks 782 338 1 0.0018 0.0021 0.0031 0.0070 64 35 190 29 0
ptrdist-ft 2157 330 1 0.0018 0.0024 0.0033 0.0075 71 44 173 17 0
ptrdist-yacr2 3979 1384 1 0.0064 0.0091 0.0116 0.0271 194 118 859 58 18
ptrdist-bc 7295 2599 1 0.0102 0.0164 0.0274 0.0540 267 171 632 36 80

181.mcf 2405 662 1 0.0034 0.0037 0.0054 0.0125 98 49 161 26 45
256.bzip2 4649 1303 1 0.0053 0.0050 0.0077 0.0180 138 89 311 28 10
164.gzip 8616 2028 1 0.0083 0.0079 0.0103 0.0265 179 109 413 23 45
197.parser 11391 5273 3 0.0251 0.0417 0.0918 0.1586 462 509 1404 71 318
300.twolf 20468 16319 1 0.0439 0.0448 0.0831 0.1718 459 449 2116 84 351
255.vortex 67221 28447 38 0.0907 0.2642 0.8326 1.1875 1756 2479 8215 95 774

sgefa 1218 311 1 0.0017 0.0033 0.0057 0.0107 94 79 88 26 0
sim 1569 1090 1 0.0029 0.0026 0.0040 0.0095 74 45 226 54 0
burg 6392 3756 2 0.0156 0.0272 0.0451 0.0879 512 319 1578 58 223
gnuchess 10595 6194 1 0.0277 0.0449 0.0774 0.1500 380 406 1946 144 213
larn 15179 2398 1 0.0111 0.0227 0.0291 0.0629 305 219 992 63 100
flex 20534 5608 3 0.0190 0.0258 0.0658 0.1106 323 319 1391 70 112
moria 36010 13372 30 0.0585 0.1174 0.4998 0.6757 1029 1672 3156 63 891
povray31 136951 42178 103 0.1454 0.7030 1.6435 2.4919 4139 4408 8648 96 2738

Table 1. Program information, analysis time, memory consumption, and graph statistics

Table 1 describes relevant properties of the benchmarks. “LOC” is the raw
number of lines of C code for each benchmark, “MInsts” is the number memory
instructions4 for each program in the LLVM representation, and “SCC” is the
size of the largest SCC in the call-graph for the program.

4.1 Analysis Time & Memory Consumption

We evaluated the time and space usage of our analysis on a Linux workstation
running a 1.7GHz AMD Athlon processor. For these experiments, we compiled
the LLVM infrastructure with GCC 3.2 at the -O3 level of optimization. Table 1
shows information about the running times and memory usage of DS Analysis.

3 Those which the LLVM C front-end is currently capable of compiling.
4 Memory instructions are load, store, malloc, alloca, call, and addressing instruc-

tions.

The columns labelled “Local”, “BU”, and “TD” show the breakdown of analysis
time for the three phases of the analysis.

The two largest programs in out test suite, 255.vortex and povray31 are
both respectably large and contain non-trivial SCCs in the call graph. It takes
1.19 and 2.5 seconds, respectively, to calculate Data Structure Analysis for these
programs. To put these numbers in perspective, we compared them to the total
time to compile the benchmarks with GCC 3.2 at the -O3 level of optimization.
Data Structure Analysis required 4.3% and 6.7% of time to compile 255.vortex
and povray31 with GCC, respectively. Note that GCC 3.2 includes no aggressive
interprocedural optimization, indicating that this is a very reasonable cost for an
aggressive interprocedural analysis which has many potential applications.

The table shows that memory consumption of DS Analysis is also quite small.
The “Mem” column shows the amount of memory used by results of the BU
and TD the analysis algorithm. The total memory consumed for the largest
code (for both BU and TD) is less than 9MB, which seem very reasonable for a
modern optimizing compiler. These numbers are noteworthy considering that the
algorithm is performing a context-sensitive whole-program analysis with cloning,
and memory consumption (not running time) can often be the bottleneck in
scaling such analyses to large programs5.

The “# of Nodes” columns show statistics collected during the construction
process. The “Total” column shows the aggregate number of nodes contained in
the TD graphs for all functions in the program, “Max” is the maximum size
of any particular function’s graph, and “Collapsed” indicates the number of
nodes in the TD graphs which had to be collapsed due to type-safety violations.
Unfortunately, a substantial fraction of nodes are collapsed for some programs
because the LLVM C front-end fails to extract type information for large func-
tions (and not due to any weakness of our analysis). As we see in Section 4.2,
this can substantially impact the precision of client analyses. We expect that
improvements to its type inference algorithms (unrelated to this analysis) will
help reduce collapsing significantly6.

4.2 Analysis Accuracy Comparison

Data Structure Analysis is designed to support aggressive new macroscopic
data structure transformations. For these applications, context-sensitivity with
cloning is crucial, field-sensitivity makes the analysis much more precise (espe-
cially with unification), and unification is necessary to making cloning scalable.
In order to evaluate the benefit/loss due to these specific choices, we compared

5 Even in the closest comparable analysis [17], for example, field-sensitivity had to
be disabled for the povray3 program for the analysis to fit into 640M of physical
memory. Judging by LOC, it appears that the zlib and libpng libraries were not
linked into the program for analysis.

6 We do not expect fewer collapsed nodes to lead to longer analysis times because
collapsing nodes causes many spurious globals to be pulled into the graphs, slowing
down the current analysis significantly.

the precision of four different configurations of our analysis: context-sensitive
(DS) and context-insensitive (St), with field-sensitivity (fs) and without (fi).
Note that “St-fi” is effectively the classical Steensgaard’s algorithm [22], and
DS-fs is the algorithm evaluated in Table 1. We also include data for Ander-
sen’s [1] algorithm, for comparison with a non-unification based approach.

As a metric to compare Benchmark Basic St-fi St-fs DS-fi DS-fs And

Olden-treeadd 82% 68% 68% 68% 61% 68%
Olden-bisort 87% 82% 82% 82% 55% 82%
Olden-mst 88% 48% 28% 48% 34% 75%
Olden-perimeter 59% 57% 57% 57% 32% 57%
Olden-health 83% 61% 61% 61% 22% 59%
Olden-tsp 88% 87% 87% 87% 34% 86%
Olden-power 74% 26% 22% 26% 8% 23%
Olden-em3d 89% 54% 25% 54% 17% 17%
Olden-voronoi 56% 28% 28% 24% 23% 22%
Olden-bh 73% 20% 20% 20% 16% 19%

ptrdist-anagram 86% 26% 26% 26% 25% 18%
ptrdist-ks 92% 48% 39% 48% 32% 35%
ptrdist-ft 95% 77% 55% 77% 35% 64%
ptrdist-yacr2 98% 27% 27% 25% 19% 24%
ptrdist-bc 75% 57% 56% 43% 28% 47%

181.mcf 64% 57% 57% 44% 43% 47%
256.bzip2 76% 27% 27% 27% 26% 27%
164.gzip 77% 34% 34% 29% 29% 27%
197.parser 91% 78% 77% 71% 69% 73%
300.twolf 97% 94% 94% 34% 19% 93%
255.vortex 83% 72% 75% 63% 64% 77%

sgefa 94% 28% 28% 24% 19% 24%
sim 98% 12% 12% 12% 9% 12%
burg 88% 67% 51% 36% 30% 31%
gnuchess 68% 35% 35% 31% 30% 17%
larn 83% 27% 27% 22% 23% 27%
flex 98% 92% 92% 46% 46% 48%
moria 72% 64% 64% 54% 54% 50%
povray31 78% 66% 67% 50% 50% 67%

Table 2. Percent of “may alias” responses (smaller is better)

the four analyses, we mea-
sure how well the analyses
support alias analysis queries.
Note, however, that we are
explicitly not advocating alias
analysis as the primary ap-
plication of Data Structure
Analysis: it simply provides
a well-understood client that
is useful to evaluate preci-
sion. To gather alias analysis
precision numbers, we per-
form pairwise queries of all
pointers visible in each func-
tion, leading to n2/2 queries
for each function, where n is
the number of pointers in the function. In Table 2, we show the percentage of
queries which return “May-Alias” for each analysis, i.e., which were not disam-
biguated (smaller is better).

All of the alias analyses in LLVM use the “basic” analysis algorithm if they
cannot answer a query, thus the “basic” column of Table 2 is the baseline for all
analyses. The “basic” algorithm uses purely local techniques to answer queries,
and it thus limited to handling simple cases (e.g., A[1] does not alias A[2]). We
chose this strategy because it most closely models usage in a real compiler [11].

The results have several interesting aspects. First, we find that field sensitiv-
ity does not help the context-insensitive “St” analysis significantly (even in cases
where excessive node collapsing does not happen): it only improves 7 of the 29
programs by 10% or more. Context-sensitivity helps about as much: 7 programs
are improved by 10% or more between the “St-fi” and “DS-fi” columns, although
the amount of improvement due to context-sensitivity is often much greater than
field sensitivity (e.g., 94% to 34% for 300.twolf). Perhaps the most interesting
result is that the combination of field-sensitivity and context-sensitivity seems
to make a much greater difference than either of the two individually. Compar-
ing St-fi to DS-fs shows that 10 programs improve by more than 20%, some
much more than that (e.g., health, tsp, bc, and twolf). Of the remaining pro-
grams, 12 have substantial node collapsing, implying that they may show larger
improvements if node collapsing were reduced by a better C front-end.

A key choice in our algorithm is to accept node merging (i.e., unification)
in order to enable context-sensitivity with cloning and field-sensitivity. Com-

parison’s between the “St-fi” and “And” columns shows us the (well known
and substantial) loss of precision due to using a unification based algorithm
rather than an iterative one. More interestingly, comparing the “DS-fs” and
“And” columns shows that combining field-sensitivity and context-sensitivity
provides an analysis which is substantially more precise than Andersen’s algo-
rithm in some cases (e.g., bisort, mst, perimeter, health, tsp, ft, bc,

and 300.twolf), and roughly comparable in the others. Furthermore, Ander-
sen’s analysis is incapable of supporting macroscopic data structure transforma-
tions because it is context insensitive, and we believe the real long-term value of
Data Structure Analysis lies in such applications.

5 Related Work

There is a vast literature on pointer analyses (e.g., see the survey by Hind [12]),
but the majority of that work focuses on context-insensitive alias information
and does not attempt to extract properties that are fundamental to our goals
(e.g., identifying disjoint data structure instances). Due to limited space, we
focus on techniques whose goals are similar to ours.

The most powerful class of related algorithms are those referred to as “shape
analysis” [13, 10, 19]. These algorithms are strictly more powerful than ours,
allowing additional queries such as “is a given data structure instance a singly-
linked list?” However, this extra power comes at very significant cost in speed
and scalability, particularly due to the need for flow-sensitivity, field-sensitivity,
and detailed tracking of aliases [19]. Significant research is necessary before such
algorithms are scalable enough to be used for moderate or large programs.

The prior work most closely related to our goals is the recent algorithm by
Liang and Harrold [17], named MoPPA. The structure of MoPPA is similar to
our algorithm, including Local, Bottom-Up, and Top-Down phases, and using a
separate Globals Graph. The analysis power and precision of MoPPA both seem
very similar to Data Structure Analysis. Nevertheless, their algorithm has several
limitations for practical programs. MoPPA can only retain field-sensitivity for
completely type-safe programs, and otherwise must turn it off entirely. MoPPA
requires a precomputed call-graph in order to analyze indirect calls through
function pointers. MOPPA also requires a complete program, which can be a
significant limitation in practice. Finally, MoPPA’s handling of global variables
is much more complex than Data Structure Analysis, which handles them as
just another memory class. Both algorithms have similar compilation times, but
MoPPA seems to require much higher memory than our algorithm for larger
programs: MoPPA runs out of memory analyzing povray3 with field-sensitivity
on a machine with 640M of memory.

Both the FICS algorithm of Liang and Harrold [16] and the Connection
Analysis of Ghiya and Hendren [9] attempt to disambiguate pointers referring
to disjoint data structures. But both ignore heap locations not relevant for alias
analysis, and both algorithms have higher complexity.

Cheng and Hwu [3] describe a flow-insensitive, context-sensitive algorithm for
alias analysis, which has two limitations relative to our goals: (a) they represent
only relevant alias pairs, not an explicit heap model; and (b) they use a k-limiting
technique that would lose connectivity information for nodes beyond k links.
They allow a pointer to have multiple targets (as in Andersen’s algorithm), which
is more precise but introduces several iterative phases and incurs significantly
higher time complexity than our algorithm (O(n3) and O(n2) respectively).

Deutsch [5] presents a powerful heap analysis algorithm that is both flow-
and context-sensitive and uses access paths represented by regular expressions,
instead of k-limiting, to represent recursive structures efficiently. His algorithm
appears to have higher complexity and seems much more expensive in practice.

In our earlier work on the automatic pool allocation [15] we presented a pre-
liminary algorithm similar to, but much weaker than, Data Structure Analysis.
That algorithm only used a bottom-up traversal, was exponential in the worst
case, and much more expensive in common cases. The lack of a top-down pass
made it produce many more incomplete results.We also did not evaluate the
algorithm since it was not the primary goal of that paper.

As discussed in the Introduction, even many context-sensitive algorithms
do not clone heap objects in different calling contexts. Instead, it is common
to use a more limited naming schemes for heap objects (often based on static
allocation site7) [7, 24, 8, 23]. This precludes obtaining information about disjoint
data structure instances, which is fundamental to all applications of macroscopic
data structure transformations. In the case of Figure 1, for example, all nodes of
both lists are created at the same malloc site, which would force these algorithms
to merge the memory nodes for the X and Y lists, preventing them from proving
that the lists are disjoint.

6 Conclusion

This paper presented a heap analysis algorithm that is designed to enable anal-
yses and transformations on disjoint instances of recursive data structures. The
algorithm uses a combination of techniques that balance heap analysis precision
(context sensitivity, cloning, field sensitivity, and an explicit heap model) with
efficiency (flow-insensitivity, unification, and a completely non-iterative analy-
sis). We showed that the algorithm is extremely fast in practice, uses very little
memory, and scales almost linearly in analysis time for 29 benchmarks span-
ning 3 orders-of-magnitude of code size. We believe this algorithm could enable
novel approaches to the analysis and transformation of pointer-intensive codes,
by operating on entire recursive data structures (in a sense, achieving some of
the goals of shape analysis, via a weaker but more efficient approach). We are
exploring several such applications in our research, including automatic pool al-
location [15], static analysis of heap safety [6], transparent pointer compression,
pointer prefetching, and automatic parallelization.

7 In principle, such algorithms can be implemented to use cloning, but the cost would
become exponential [24, 8]. Making cloning efficient is the key challenge.

References

1. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, May 1994.

2. B. Cahoon and K. McKinley. Data flow analysis for software prefetching linked
data structures in java. In International Conference on Parallel Architectures and
Compilation Techniques, Barcelona, Spain, Sept. 2001.

3. B.-C. Cheng and W. mei Hwu. Modular interprocedural pointer analysis using
access paths: Design, implementation, and evalutation. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 57–69, Vancouver,
British Columbia, Canada, June 2000.

4. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, pages 13(4):451–490, Oc-
tober 1991.

5. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In SIGPLAN Conference on Programming Language Design and Implementation,
pages 230–241, June 1994.

6. D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety without runtime
checks or garbage collection. Submitted for publication, Feb 2003.

7. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 242–256, Orlando, FL,
June 1994.

8. M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis using
instantiation constraints. In Proc. 2000 ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI00), Vancouver, Canada, June 2000.

9. R. Ghiya and L. J. Hendren. Connection analysis: A practical interprocedural
heap analysis for C. International Journal of Parallel Programming, 24(6):547–
578, 1996.

10. R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In Symposium on Principles of Programming
Languages, pages 1–15, 1996.

11. R. Ghiya, D. Lavery, and D. Sehr. On the importance of points-to analysis and
other memory disambiguation methods for C programs. In Proceedings of the ACM
SIGPLAN’01 conference on Programming language design and implementation,
pages 47–58. ACM Press, 2001.

12. M. Hind. Pointer analysis: haven’t we solved this problem yet? In ACM SIGPLAN
— SIGSOFT workshop on on Program analysis for software tools and engineering,
pages 54–61. ACM Press, 2001.

13. J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses.
In SIGPLAN Conference on Programming Language Design and Implementation,
pages 21–34, July 1988.

14. C. Lattner. LLVM: An infrastructure for multi-stage optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL,
Dec 2002. See http://llvm.cs.uiuc.edu.

15. C. Lattner and V. Adve. Automatic Pool Allocation for Disjoint Data Structures.
In Proc. ACM SIGPLAN Workshop on Memory System Performance, Berlin, Ger-
many, Jun 2002.

16. D. Liang and M. J. Harrold. Efficient points-to analysis for whole-program analysis.
In ESEC / SIGSOFT FSE, pages 199–215, 1999.

17. D. Liang and M. J. Harrold. Efficient computation of parameterized pointer infor-
mation for interprocedural analysis. In Static Analysis Symposium, 2001.

18. A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting dynamic data
structures on distributed memory machines. ACM Transactions on Programming
Languages and Systems, 17(2), Mar. 1995.

19. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1), Jan. 1998.

20. R. Sedgewick. Algorithms. Addison-Wesley, Inc., Reading, MA, 1988.
21. B. Steensgaard. Points-to analysis by type inference of programs with structures

and unions. In Computational Complexity, pages 136–150, 1996.
22. B. Steensgaard. Points-to analysis in almost linear time. In Symposium on Prin-

ciples of Programming Languages, pages 32–41, Jan 1996.
23. F. Vivien and M. Rinard. Incrementalized pointer and escape analysis. In Proceed-

ings of the ACM SIGPLAN’01 conference on Programming language design and
implementation, pages 35–46. ACM Press, 2001.

24. R. P. Wilson and M. S. Lam. Effective context sensitive pointer analysis for C
programs. In SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 1–12, June 1995.

7 Appendix: Common Graph Manipulation Routines

All three phases of data structure analysis use a shared set of routines that
centralize common operations (such as merging two nodes) along with code for
creation, manipulation, and destruction of nodes and graphs. Data Structure
Analysis uses four main data types: graphs (§2), nodes (§2.1), edges (§2.2), and
call sites (§2.3). Operations on these data types include:

collapseNode(Node A) - This routine collapses the specified node down to a
single byte of memory and a single field. This is used to maintain conservative
correctness with non-type-safe programs. Note that collapsing and merging are
two very different operations.

mergeType(Edge E, Type τ) - This is used to check to see if the node and
offset specified by E can be treated as the specified type. If it would not be type
safe to merge the two types together8, the node is collapsed.

mergeNodes(Node A, Node B, uint Offset) - This routine implements unification-
style merging of two nodes. First, all edges targeting B are changed to point
to A. If not already collapsed, mergeType is used to collapse the nodes if not
type-compatible. Finally, all outgoing edges of A and B are recursively merged
together, the flags are bitwise or’d together, and B is destroyed.

mergeEdges(Edge A, Edge B) - This routine uses mergeNodes to ensure that
two edges to point to the same node. If both edges target NULL nodes (i.e., they
haven’t been set yet), a dummy node is created for both of them to target (for
example, the void node in Figure 4). Otherwise the two nodes targeted by the
edges are merged, at an offset specified by the edge offsets in A and B.

8
Type-safety details depend on the type-system used.

