
Field Analysis: Getting Useful and Low-cost

Interprocedural Information

Sanjay Ghemawat � Keith H. Randall Daniel J. Scales

Systems Research Center Systems Research Center Western Research Laboratory

Compaq Computer Corp. Compaq Computer Corp. Compaq Computer Corp.

sanjay@google.com randall@pa.dec.com scales@pa.dec.com

Abstract

We present a new limited form of interprocedural analy-
sis called �eld analysis that can be used by a compiler to
reduce the costs of modern language features such as object-
oriented programming, automatic memorymanagement, and
run-time checks required for type safety. Unlike many pre-
vious interprocedural analyses, our analysis is cheap, and
does not require access to the entire program. Field analy-
sis exploits the declared access restrictions placed on �elds
in a modular language (e.g. �eld access modi�ers in Java)
in order to determine useful properties of �elds of an object.

We describe our implementation of �eld analysis in the
Swift optimizing compiler for Java, as well a set of opti-
mizations that exploit the results of �eld analysis. These
optimizations include removal of run-time tests, compile-
time resolution of method calls, object inlining, removal of
unnecessary synchronization, and stack allocation. Our re-
sults demonstrate that �eld analysis is eÆcient and e�ective.
Speedups average 7% on a wide range of applications, with
some times reduced by up to 27%. Compile time overhead
of �eld analysis is about 10%.

1 Introduction

Modern languages such as Java and Modula-3 provide fea-
tures such as object-oriented method dispatch, automatic
memory management, and type safety that improve pro-
grammer productivity, reduce bugs, and improve security.
However, because of the run-time cost of these features,
applications written in these languages and compiled with
standard optimizations are often slower than similar appli-
cations written in languages such as C and Fortran. For
example, type safety requires that all array references in-
clude bounds checks. Virtual method calls are more expen-
sive than direct calls to procedures. Allocating an object
on the heap typically introduces more overhead than stack
allocation of the object.

�Author's current aÆliation is Google, Inc., 2400 Bayshore Park-
way, Mountain View CA 94043

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for pro�t or commercial
advantage and that copies bear this notice and the full citation on
the �rst page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior speci�c permission and/or
a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006 . . . $5.00.

These overheads can often be eliminated by compiler op-
timizations. For example, a bounds check can be eliminated
if the compiler can prove that the index of the array refer-
ence is non-negative and less than the length of the array.
A virtual method call can be converted to a direct call if
the compiler can prove that there is only one possible target
method. Similarly, a new object can be allocated in a stack
frame if, among other things, the compiler can show that a
reference to the object never escapes to another thread or
to a method higher in the stack.

Compiler analyses for these optimizations traditionally
have been whole-program analyses such as class hierarchy
analysis (CHA), where the entire set of classes is examined
to determine the exact class hierarchy [7], or some type of
interprocedural data
ow analysis. Both of these methods
can be quite expensive in terms of compile time because
they must examine many classes simultaneously.

We have been investigating �eld analysis, a cheaper form
of interprocedural analysis that is applicable to modular,
object-oriented languages. In particular, the scope of analy-
sis is a single class or a limited set of classes, and no form of
interprocedural data
ow analysis is required. Field analysis
is therefore less dependent on an ability to determine the
exact call graph, which is often diÆcult in object-oriented
applications. Because of these properties, �eld analysis is
cheap enough to be used in a compiler which is invoked dy-
namically at run-time on frequently executed methods.

Field analysis determines useful properties of a �eld of an
object by scanning the code that could possibly access that
�eld, as dictated by language access rules. For example, a
private �eld in Java can only be accessed by methods in
the local class, while a package �eld1 can only be accessed
by methods in classes that are in the same package as the
containing class. An example of a �eld property is type
information that is more exact than the declared type of
the �eld. Field analysis can often show that a �eld, if non-
null, only references objects of class C, and never objects
of any of C's subclasses. Similarly, �eld analysis can often
prove that a �eld, if non-null, always contains an array of a
particular constant size.

These simple �eld properties can be used to attack a va-
riety of overheads. Exact type information can help resolve
virtual method calls, and other properties can be used to
prove that null checks and bounds checks are unnecessary.
Field analysis can be used in addition to or as an alterna-
tive to optimizations like CHA that assume that all classes

1A Java �eld without any access modi�ers is visible to its entire
package and therefore we call it a package �eld.

334

Class Field Code to scan

public private containing class
public package containing package
public protected containing package and

subclasses
non-public private containing class
non-public non-private containing package

Table 1: Field Access Regions

(i.e. all application code) are known at compile time. Per-
forming CHA is not always desirable, because if it is used in
cases when additional classes may be loaded later, then it
may be necessary to invalidate code that has used the CHA
assumption. Field analysis is therefore useful when loading
the entire class hierarchy is too expensive or it is undesirable
to invalidate code later. Even if CHA with code invalidation
is used, it is bene�cial to apply �eld analysis �rst, since a
method call resolved using �eld analysis will not have to be
invalidated later.

In this paper, we describe our implementation of �eld
analysis in the Swift compiler. Swift [18] is a complete opti-
mizing Java compiler for the Alpha architecture which uses
static single-assignment form for its internal representation.
The compiler is written in Java and it translates Java byte-
codes to Alpha code. We describe the basic set of �eld prop-
erties that are checked and their use in a number of simple
optimizations. We then describe several more complex �eld
properties, and their use in performing inexpensive analyses
for object inlining, stack allocation, and synchronization re-
moval. We then present performance results and statistics
for a variety of optimizations enabled by �eld analysis on a
number of applications, including the SpecJVM98 applica-
tions.

2 Basic Field Analysis

In this section, we describe an implementation of �eld anal-
ysis and a basic set of useful �eld properties. Our approach
to �eld analysis is to scan all the code that can access a �eld
and then deduce properties of the �eld from the properties
of all the accesses to the �eld. Field analysis is therefore ap-
plicable to any modular, object-based language. However,
because the particular details and the useful properties de-
pend on the language, we will describe our implementation
for the Java language.

Most of the �eld properties that are currently checked
are relevant only for reference �elds (i.e. �elds that contain
references to objects or arrays, rather than scalar types such
as integers). Therefore our current implementation ignores
�elds with scalar types.

2.1 Finding All Accesses to a Field

We use Java �eld modi�ers to determine the subset of the
program that must be checked for accesses to a given �eld.
This mechanism is summarized in Table 1. The �rst two
columns contain the class and �eld modi�er respectively and
the third column describes the subset of the program that
has to be scanned for accesses to a �eld with the speci�ed
modi�ers. For a final �eld, the above rules are used for
�nding all the reads, but only the containing class has to be
scanned for writes to the �eld.

Note that for a protected �eld in a public class T, we
scan all subclasses of T. Dynamic loading could introduce

new subclasses of T, and therefore our compiler analyzes
such �elds only if CHA is also being used (or if the class
is declared final). Public �elds in public classes could be
handled by scanning the entire program, but Swift currently
ignores them for eÆciency considerations.

Dynamic loading could also potentially create problems
in our handling of package-visible �elds by introducing a new
class into a package. However, the three most widely used
class loaders, namely the system loader, the installed exten-
sions loader, and the application loader, simply load from
predetermined portions of the �le system. Swift can there-
fore scan those portions of the �le system to determine the
base set of packages and can be sure that dynamic loading
will not introduce any new classes into these packages. (We
assume that the contents of these parts of the �le system do
not change between compilation time and run time.)

2.2 Computing Field Properties

Field analysis uses a table that holds information about the
properties of the �elds being analyzed. The Swift com-
piler does the analysis by converting each method being
scanned from Java bytecode to its standard machine-inde-
pendent intermediate representation (IR) based on static
single-assignment (SSA) form. The SSA graph is essentially
a factored use-def graph, and Swift also incrementally main-
tains def-use information for each node in the graph while
building and modifying the graph. Once the SSA form is
built, Swift iterates through all nodes in the graph which
represent loads of �elds or stores to �elds and incrementally
updates the information known about the accessed �eld. For
each load of a �eld, it analyzes each use of the load. For
each store of a �eld, it analyzes both the value stored into
the �eld and any other uses of that value. Because of the
use of SSA form, the extracted properties are
ow-sensitive.
However, Swift only uses local information in proving prop-
erties and does not derive any context-sensitive properties.
No optimizations are applied to the SSA form before it is
analyzed.

Some of the �eld properties can be best expressed in
terms of a generalized type for objects stored in a �eld.
Swift has a simple but e�ective system of types which is
used to summarize the possible results of nodes in an SSA
graph or contents of �elds of an object. The Swift type sys-
tem includes the standard Java type system as a subset, but
also allows speci�cation of the following additional proper-
ties about a value with a particular Java type T:

� the value is known to be an object of exactly class T,
not a subclass of T

� the value is an array with a particular constant size
� the value is known to be non-null

By incorporating these properties into the type system, we
can describe important properties of any node in the SSA
graph by its type. In addition, we can easily indicate prop-
erties for di�erent levels of recursive types, such as arrays.
One possible generalization of the type system is to allow
union types. However, we have not found this extension to
be very useful for the applications that we have examined.

While building the SSA graph, Swift automatically as-
signs the appropriate types to nodes representing method
arguments, loads of �elds of objects, and loads of global
variables. In addition, it assigns non-null exact types to
nodes representing newly allocated objects. It may also be
able to give constant-size array types to nodes representing
newly allocated arrays. Swift then does a standard type

335

Property De�nition

exact type(�eld) the �eld is always assigned a value of the speci�ed type
always init(�eld) the �eld is assigned exactly once in each constructor

no constructor accesses the �eld before assigning it
no constructor \leaks" this

only init(�eld) the �eld is not assigned anywhere outside a constructor
source type(�eld) an indication of what kind of values are assigned to the �eld:

new, new/null, new/null/param, or other
uses header(�eld) the header of the object referenced by the �eld is possibly used
may leak(�eld) the object referenced by the �eld may be stored into the heap or

returned by a method

nonnull(�eld) exact type(�eld).nonnull && always init(�eld)
final(�eld) always init(�eld) && only init(�eld)
inlineable with header(�eld) final(�eld) && source type(�eld) == new &&

exact type(�eld) == static type(�eld)
inlineable without header(�eld) inlineable with header(�eld) &&

!uses header(�eld) && !may leak(�eld)
encapsulated(�eld) !may leak(�eld) && source type(�eld) == new/null
never leaks(�eld) !may leak(�eld) && source type(�eld) == new/null/param

Table 2: Basic and Derived Properties of Fields

propagation to determine types for the remaining nodes in
the graph. The type propagation provides extra information
that is immediately usable for �eld analysis.

Building the SSA graph from bytecode involves build-
ing the CFG, calculating the dominator tree, determining
phi-node placement [20], and doing abstract interpretation
over the bytecodes to create and connect the SSA nodes.
The dominator-�nding algorithm [15] is super-linear in the
worst case, but is in practice linear, and the remaining passes
are linear. Hence, the analysis time is approximately linear
in the amount of code to be analyzed, and requires stor-
age only for the table of analyzed �elds, plus the IR for
a single method. For some properties (e.g. always init,
as described below), additional storage is required to save
some information about methods, so that methods are not
repeatedly analyzed.

2.3 Basic Properties

The basic properties of �elds that we compute are shown
in Table 2. The �rst property, exact type, records the
known information about the type of the values assigned
to the �eld. Thus, exact type can indicate that a �eld is
always assigned values from a single class, values that are
non-null, or values that are a constant-sized array. In our
current implementation, we only use the type of a node in
the SSA graph to determine if it represents a value that is
non-null, has an exact type, or has an exact array length.
Hence, we will most often prove useful properties about the
exact type of a �eld if it is only assigned newly allocated
objects. For eÆciency, we do not currently try to prove that
a value is non-null or an exact type in any other way. Note
that exact type describes the type of a �eld after its �rst
assignment, so a non-null type does not necessarily imply
that all accesses return non-null values.

The second property, always init, is useful in proving
that a �eld is always non-null. always init indicates that
the �eld has always been initialized (assigned) before it is
accessed. To simplify analysis, we use somewhat conser-
vative conditions. As shown, we require that the �eld is
assigned exactly once in any normally-terminating call to a
constructor for the containing class, and that no construc-

tors access the �eld before it is assigned.2 An operation will
occur exactly once in a method call if the operation does
not occur in a loop and it dominates the normal exit of the
method. Additionally, we require that a reference to the
new object (accessed via the this keyword) is not \leaked"
in a constructor.

We consider this to leak if it is stored into the heap or
passed to an unanalyzed method. If this is leaked before a
�eld is initialized, then another thread (or even the current
thread) may be able to use the reference to this to access
the uninitialized state of the �eld. Because most construc-
tors invoke superclass constructors, we recursively analyze
all resolvable method calls with this as a receiver (which
includes all superclass constructor calls, as well as others).
However, it is not common in constructors to pass this as a
non-receiver, so we do not recursively analyze methods calls
which take this as a non-receiver argument. This restric-
tion often limits the set of extra methods that need to be
analyzed to those in the current class and its superclasses.
Hence, this computation is very cheap, even though it may
involve methods that are not in the local class or package.

The third property, only init, indicates that a �eld is
not assigned outside of a constructor. The remaining ba-
sic properties in Table 2 are used for our more advanced
optimizations and will be described in later sections.

Table 2 also indicates some properties derived from these
basic properties. For example, a �eld is always non-null
when read if it is always init and its exact type property
indicates that it is non-null. A �eld is final (unmodi�ed
after being initialized) if it is always init and only init.

As an example, consider the code in Figure 1. Because
the �eld points is private, the compiler only needs to scan
the instance methods in class Plane to determine its proper-
ties. It is easy to see that exact type(points) must indicate
a non-null array with base-type Point and a �xed size of
3. In addition, the basic properties always init(points)
and only init(points) are both true, implying that the
derived properties nonnull(points) and final(points) are
both true as well.

2We also allow an assignment to a �eld to be implicitly performed
by calling another constructor in the same class.

336

public class Plane {
private Point[] points;

public Plane() {
points = new Point[3];

}

public void SetPoint(Point p, int i) {
points[i] = p;

}

public Point GetPoint(int i) {
return points[i];

}
}

Figure 1: Example Class for Field Properties

2.4 Basic Optimizations

These �eld properties can be used in a number of simple op-
timizations. If the exact type property of a �eld indicates
that it contains objects only of a certain class, then a virtual
method call whose receiver is the contents of the �eld can
be resolved to a direct call. In the same way, exact type
information can be used to statically evaluate type-inclusion
tests, such as instanceof or array store checks3 in Java. If
exact type(�eld) indicates that �eld only contains arrays
of a �xed size, then bounds checks and other expressions
that use the length of the array can be simpli�ed and often
eliminated. If nonnull(�eld) is true, then any null check (re-
quired in Java for all non-static �eld and method accesses)
on the contents of the �eld can be eliminated. While most
Java systems can use page protection to implement null
checks without any extra code, eliminating the null check
is still useful because it gives the compiler more
exibility
in doing code motion.

For example, in the SetPoint method in Figure 1, some
possible optimizations include eliminating the null check on
points, using the constant 3 in the bounds check computa-
tion, and eliminating the array store check.

Field properties can even make standard optimizations
more e�ective. If final(�eld) is true, then �eld is known
not to be modi�ed in any method except the constructor for
its containing class. A constructor can only be called imme-
diately after allocating a new instance of an object, or by a
constructor of the same class or a subclass. A method which
is not a constructor cannot possibly call the constructor on
a preexisting reference and so cannot possibly modify the
�nal �eld of the reference. Therefore, if we have two loads
of a �eld of the same object separated by method call which
is not a constructor, we can apply common subexpression
elimination (CSE) to the two loads, even if we cannot ana-
lyze the method call.

2.5 Limitations of Field Analysis

Our �eld analysis has a number of potential limitations.
First, native methods cannot be analyzed by the compiler.
The compiler therefore assumes that a native method reads
and writes all �elds that are accessible to a non-native meth-
od de�ned in the same class. (The compiler is augmented
with built-in knowledge about the e�ects of some widely

3Storing to an array in Java requires a run-time check, called an
array store check, to ensure that the object being stored into the
array is compatible with the base type of the array.

used native methods to make this analysis less conservative.)
If any native method bypasses normal �eld protections, our
�eld analysis will be incorrect and should be disabled on
these �elds.

The re
ection facilities in Java can also be used to by-
pass �eld protections via the setAccessible method in the
java.lang.reflect package. However, code must be explic-
itly granted permission to use setAccessible by the current
security policy. Such bypassing of �eld protections is typ-
ically only used for system functions such as debugging or
serialization of data for writing to disk. Again, our �eld
analysis should be disabled on the �elds in question. If the
compiler is integrated with the run-time system, the imple-
mentation of setAccessible could potentially be modi�ed
to invalidate compiled code that has been optimized based
on properties of the associated �eld.

Finally, the applicability of some optimizations may be
a�ected by the Java memory model. In a multi-threaded
program, a �eld may potentially be seen in an uninitial-
ized state even if always init(�eld) is true. Suppose one
thread creates an instance of a class containing that �eld
and stores a reference to the object in a global variable. On
the local processor, the initializing write to the �eld precedes
the write of the reference to the global variable. However,
these writes are not required to appear in this order on a
remote processor, unless there is proper synchronization on
both processors.

Note that this problem can only occur on a multiproces-
sor with a weak memory consistency model for an object
whose reference is stored in the heap without any synchro-
nization. Under these conditions, it would be improper for
safety reasons to remove a null check on the contents of
the �eld for which nonnull(�eld) is true. However, it may
be acceptable to give the compiler extra freedom in moving
such null checks, since there is a data race between the ini-
tialization of and access to the object, so results are likely
to be unpredictable anyway. Similarly, accesses to a �eld
for which final(�eld) is true could yield an uninitialized
value as well as the initialized value. The CSE optimization
described above for �nal �elds may be improper if the inter-
vening method has synchronization, since the second load
of the �eld might be required to see the initialized value of
the �eld, according to the current Java memory model.

3 Object Inlining

We have also used the �eld analysis approach to determine
�elds that are candidates for object inlining. Object inlin-
ing [12] is a method of reducing the overhead of accessing
objects by allocating the storage of an object within its con-
taining object. If object B is inlined in object A, the cost
for accessing object B is reduced by a pointer dereference.
Also, garbage collection costs are reduced, since there is only
a single allocation unit to be scanned, rather than two. Ob-
jects A and B are likely to be frequently accessed together,
so cache locality may be improved by inlining if A and B
are now stored in the same cache line. As an example of
object inlining, Figure 2(a) shows the storage layout for a
Ray object which references two Point objects. Figure 2(b)
shows the storage layout when the two Point objects are
inlined into the Ray object.

3.1 Analysis

Our analysis is unique in that it �nds both objects that
can be inlined without a header for the inlined object, and

337

Ray

start
end

Point

int x;
int y;

int x;
int y;

(a)

Ray

start

end

int x;
int y;

int x;
int y;

(b)

Figure 2: Example of Object Inlining

objects that can be inlined, but require an object header.
The object header contains an indication of the type of the
object and its method table, and is also typically used for
synchronizing on the object. The header is therefore neces-
sary if the program might execute certain operations, such
as virtual method invocations, synchronization, and type-
inclusion checks, on the object. In addition, if an object is
inlined with a header, then a reference to the object can be
allowed to escape into the heap. The garbage collector can
determine via the header that a reference accesses an inlined
object, and can therefore avoid collecting the containing ob-
ject. We are not aware of any other implementations of
object inlining that allow references to inlined objects to be
stored in the heap. However, unlike some other systems,
our approach is not context-sensitive, so we inline object B
at �eld f of object A, only if it is provable that the con-
tents of �eld f can be inlined for any instance of the class
of object A.

By using the �eld analysis information described in Ta-
ble 2, we can easily determine if the contents of a �eld can be
inlined in the containing object. The �rst property that we
use, source type, indicates what is known about the source
of the values stored into the �eld. It indicates that the
�eld has only been assigned newly allocated objects (new),
only new objects or null (new/null), only new objects, null,
or method parameters (new/null/param), or none of these.
(The new/null or new/null/param properties will be useful
for escape analysis, as described in the next section.) In the
case of object inlining, we are interested in �elds which are
only assigned newly allocated objects. The second property,
uses header, is used for determining if an inlineable object
must contain the standard object header. The third prop-
erty we use, may leak, indicates that the contents of a �eld
may \leak" out of the containing object by being stored into
the heap or being returned by a method.4

Given these properties, we can specify when the contents
of a particular �eld can be inlined, either without or with
an object header, as shown in Table 2. If a �eld is to be
inlined with a header, we require that the �eld be initialized
with a single, �nal value which is a newly allocated object.
For simplicity, we require that the class of the inlined object
must be the same as the static type of the �eld. In this
way, object layout is simpler for the underlying Java Virtual
Machine (JVM), because inlined objects always have the
same class as their static type. If a �eld is to be inlined
without a header, we additionally require that the header
of the object referenced by the �eld is never used and a

4Our implementation of may leak for object inlining is quite con-
servative but fast (it assumes that an object leaks if it is passed as
a non-this argument to a method), whereas our escape analysis de-
scribed below uses a more general implementation.

Initial code Code after inlining �eld f in y's class

x = y.f; x = y + offset(y, f);
x = new T; if necessary, initialize header of y.f

x = y + offset(y, f);
y.f = x; < deleted >

Table 3: Code Generation for Inlined Fields

reference to this object never leaks.5

Our analysis also allows us to inline a �eld that refer-
ences an array. In that case, there is one extra condition
(not mentioned in Table 2) that the allocated array must
have a statically �xed constant size. Instances of the con-
taining class (with the inlined array) then have a constant
size and can be allocated using the normal object allocation
mechanisms.

3.2 Implementation

Our analysis allows references to inlined objects to escape
into the heap as long as the object includes a header. We
have modi�ed the underlying JVM to mark the headers of
such inlined objects. The garbage collector can therefore
determine when it encounters a reference to an inlined ob-
ject. In such cases, the garbage collector scans from the start
of the current virtual memory page to �nd the object that
contains the referenced inlined object. It then preserves the
storage for the entire enclosing object, not just the inlined
part.

Code generation for inlined objects is fairly simple and
the required transformations are listed in Table 3. A load of
a reference to an inlined object is transformed into a simple
address calculation. The additions in the transformed code
can often be combined with other additions by standard
compiler optimizations, so dereferencing an inlined object
typically has zero cost. Code that initializes a �eld with an
inlined object is transformed into code that initializes the
header of the object, if necessary, and creates a reference
to the inlined object. In our current implementation, the
body of the inlined object does not have to be initialized
separately from the enclosing object, because the new op-
eration returns a zeroed block of memory. For an inlined
multi-dimensional array, the inlined array may need to be
initialized with references to the necessary subarrays. Any
null checks on the contents of the inlined �eld are eliminated,
since the �eld is guaranteed to be non-null at all accesses.

4 Escape Analysis

Escape analysis is used to determine if a reference to an
object escapes a thread (i.e. can be accessed by another
thread) or a particular method call (i.e. can still be accessed
by the current thread after the call completes). Escape anal-
ysis is a necessary component for determining if an object
can be allocated on the stack, rather than the heap. If a
reference to an object does not escape a particular method
call (along with a few other conditions), then the object can
be allocated on the stack frame of that call. Escape analysis
can also be used for eliminating or reducing the cost of un-
necessary synchronization. If a reference to an object does
not escape a thread, then synchronization on the object is

5This optimization could be generalized by allowing multiple as-
signments to the �eld, as long as all of the assigned values are new
objects with the correct type, and the contents of the �eld are not
involved in any pointer-equality comparisons.

338

Property De�nition

returns unaliased(method) method returns a new, unaliased object or null
may return param(method, i) input parameter i may be returned by method

may store param(method, i) input parameter i may be stored into the heap or returned by method

may contain param(method, i) the method may store a reference to input parameter i in a \never leaks" �eld
of the object referenced by param 0, but does not otherwise store parameter i

may store param2(method, i) may store param(method, i) && !may contain param(method, i)

Table 4: Basic and Derived Properties of Methods

unnecessary.6 In the discussion below, we will focus on de-
termining if an object escapes a method call; proving that an
object does not escape a thread involves only a little extra
analysis related to the thread creation routines. For conve-
nience, we will simply say that \an object escapes" when we
mean that a reference to the object escapes a method call.

Escape analysis has typically involved either fairly sim-
ple analyses or highly complex and expensive computations.
The simplest analysis [13] assumes that an object escapes if
a reference to the object is ever stored into a global variable
or a heap object (including arrays). For convenience, we
will simply say in this case that the object is stored into the
heap.7 When a simple interprocedural analysis is used to
determine the e�ects of method calls, this analysis is typi-
cally e�ective at �nding many objects that don't escape. In
contrast, other forms of escape analysis [5] do a full inter-
procedural and context-sensitive data
ow that builds up a
\points-to graph" that summarizes the storage relationship
of sets of objects. These kinds of analyses can prove that
an object doesn't escape, even if a reference to the object is
stored into the �eld of another object. However, these anal-
yses can be very expensive in terms of computation time and
memory, because of their manipulations of points-to graphs
and their context-sensitive summaries of methods.

We have developed an extension of the simple analysis
which uses some additional �eld properties to �nd more ob-
jects that don't escape. Because the �eld analysis is so
cheap, our extension costs little more than the simple es-
cape analysis, yet �nds signi�cantly more objects that don't
escape. We �rst describe our implementation of the simple
analysis, and then our extension using �eld properties.

4.1 Simple Analysis

Our simple escape analysis proceeds by �nding a candidate
value in a method M, and then proving that the value is
never stored into the heap and is not returned by M. A can-
didate value is an object that is allocated directly in M, or
a newly allocated object O returned by a method call in
M such that O is known not to have been otherwise stored
into the heap. To determine which methods return candi-
date values, the returns unaliased property in Table 4 is
calculated for each resolvable method call in M.

The compiler then proves that a candidate value does not
escape by examining all uses of the value in M and check-
ing that none return the value or store the value in the
heap. When the candidate value is used in a method call,

6Under the current Java memory model, the synchronization can-
not necessarily be removed, since the use of synchronization must
cause all updates by the local processor to be committed and all up-
dates by other processors to be seen. However, the Java memory
model will likely be revised so that synchronization only has such ef-
fects for accesses that are connected by chains of synchronizations on
the same objects [1].

7For the purposes of escape analysis, we also consider an object to
be stored if it is thrown as an exception.

Pair p = new Pair();
Integer x = new Integer(5);
p.first = x;

class Pair {
private Object first;
private Object second;

}

Figure 3: An Encapsulated Field Example

we use the second and third properties in Table 4 to deter-
mine if the value escapes. If the property may store param
is true, the value is assumed to escape, and if the property
may return param is true, the value is assumed to escape
if the return value of the method call escapes (the truth of
which is computed recursively).

The �rst three properties in Table 4 can be determined
using a simple depth-�rst analysis of methods that makes
the conservative assumption that an unanalyzable method
call returns and stores all parameters and does not return
an unaliased object. This assumption is also made for a
call to a method that is currently being analyzed (i.e. for a
recursive method call). Alternatively, a full interprocedural
data
ow analysis that handles recursive method calls less
conservatively could be used.

4.2 Field Properties for Escape Analysis

Unfortunately, the simple analysis presented in the previous
section fails to �nd many objects that don't escape. The
main idea in improving the simple analysis is to discover
�elds which are encapsulated, in the sense that the �eld is
initialized with a reference to new object by methods in
the object's class or package, can only be accessed by these
methods, and is never \leaked" by these methods. If we
discover an object that does not escape, then the contents
of any encapsulated �elds of that object do not escape, and
so on, recursively.

There are two conditions needed to ensure that the con-
tents of a �eld never escape the containing object: (1) the
value does not escape via a method that accesses the con-
tents of the �eld; and (2) any value assigned to the �eld
has not already escaped. Condition (1) is equivalent to
!may leak(�eld), and condition (2) is trivially true if we re-
quire that the values assigned to the �eld are always a newly
allocated object or null. The property encapsulated(�eld)
in Table 2 exactly covers these two conditions. If we have
discovered an object that does not escape and a �eld of that
object is encapsulated, then the object stored in that �eld
also does not escape. Note that we have proved that the
object in the �eld does not escape even though a reference
to the object has been stored in the heap. For example, in
the code in Figure 3, we can prove that x does not escape if

339

Vector v = new Vector();
...
Enumeration e = v.elements();
while (e.hasMoreElements()) {

Object o = e.nextElement();
...

}

class Vector {
Enumeration elements() {

return new VectorEnumerator(this);
}
...

}
class VectorEnumerator

implements Enumeration {
Vector vec;
VectorEnumerator(Vector v) {

vec = v;
}
...

}

Figure 4: Encapsulation of a Constructor Argument. The
vector v is encapsulated in the enumerator e.

p does not escape, as x is only stored into the encapsulated
�eld first of p.

We also handle, via a small extension, a more general
case when condition (2) is not trivially true. An object B
is sometimes created in method M and then passed as a
parameter to a constructor of another object A and stored
in a �eld of A. In this case, if A does not escape and the
may leak property of the �eld is false, then B does not escape
by being stored in A. A common example is the creation of
an enumeration object to iterate through the contents of a
list or vector. In this case, the vector is usually stored in
the enumeration object, but the enumeration is used locally
and does not escape. Figure 4 shows an example in Java
in which an Enumeration object is used to enumerate the
elements of a vector. The call to elements returns a new
VectorEnumerator object e into which v has been stored,
but v does not escape if e does not escape.

To handle this case, we de�ne a derived property never
leaks, which is like encapsulated, but allows the source
of the �eld to be a new object, null, or a parameter to a
method or constructor in the �eld's class. If never leaks is
true, then the question of whether the �eld's contents can
escape becomes equivalent to whether the input parameter
can escape in the calling method. We can then use never
leaks to de�ne the additional property may contain param
for methods as shown in Table 4, which indicates whether a
parameter is only stored into a �eld of the method receiver
that does not \leak". We also de�ne a more precise derived
property may store param2(method, i) to be false in the case
that may contain param(method, i) is true.

With these new properties, we can extend our analy-
sis in the following manner. Suppose a candidate value B
is passed to a method whose receiver is the object A, and
the may store param2 property is false for that method, but
may contain param indicates that B may be stored into a
�eld of A. Then, in determining if B escapes, we simply add
the extra requirement that A must not escape either, be-
cause the only place a reference to B can be stored is into a
never leaks �eld of A.

problem domain lines Swift run-time

of base+ base+

code CHA CHA+FA

compress text compression 910 9.78s 9.75s

jess expert system 9734 4.11s 4.12s

cst data structures 1800 5.79s 5.35s

db database retrieval 1026 12.65s 12.32s

si interpreter 1707 6.03s 5.87s

javac Java compiler �18000 7.15s 7.16s

mpeg audio decompr. �3600 6.41s 5.77s

richards task queues 3637 4.78s 4.72s

mtrt ray tracing 3952 2.01s 1.61s

jack parser generator �7500 5.08s 5.03s

jlex scanner generator 7590 4.11s 3.23s

Table 5: Java Applications

5 Performance Results

In this section, we give results showing the bene�ts of using
�eld analysis. We �rst describe the experimental platform,
the applications used in our study, and some overall perfor-
mance results for �eld analysis. We then analyze in detail
how often each �eld property is applicable, and how much
Java overhead can be eliminated by using this �eld property
information.

5.1 Experimental Platform

Our performance results are for the Swift compiler system
running under Tru64 Unix (formerly known as Digital Unix)
on an Alpha workstation. The workstation has one 667 MHz
Alpha 21264 out-of-order processor, which has 64 Kbyte on-
chip instruction and data caches, and a 4 Mbyte combined
board-level cache. Swift is a complete Java optimizing com-
piler that implements numerous optimizations in addition to
those described above, including: method inlining, method
splitting, global common subexpression elimination, global
code motion, conditional constant propagation, interproce-
dural alias analysis, exact type analysis, peephole optimiza-
tions, and trace scheduling. It also includes an e�ective
register allocator based on biased graph coloring. Swift is
written in Java and translates Java bytecodes to Alpha ma-
chine code. The generated code is installed into a high-
performance JVM for Java 1.2 that has a mostly-copying
garbage collector and extremely fast synchronization [6]. All
results are for applications running with the Java 1.2 stan-
dard library and using a 100 Mbyte heap.

5.2 General Results

We measure our results for a number of applications, includ-
ing those in the SpecJVM98 suite. Table 5 lists the applica-
tions and problem domains, as well as the number of lines
of code. Column 4 contains the running times of each ap-
plication when compiled via Swift in the base con�guration,
with the addition of class hierarchy analysis (CHA). The
base con�guration includes all optimizations except those
enabled by CHA and �eld analysis (FA). The results in col-
umn 4 are 1.18-2.33 times faster than the results for the
underlying JVM. Column 5 contains the running time when
�eld analysis and the related optimizations described in this
paper are added to the results measured in column 4. The
overall results show that �eld analysis improves performance
by about 0-27%, with a geometric mean of about 7%.

Field analysis for all of these properties takes only about
10% of the compiler's processing time, which is signi�cantly
smaller than the time for register allocation. Also, we can
process an average of about 15000 lines per second during

340

||0

|

10

|

20

|

30

|

40

|

50

|

60

|

70

|

80

|

90

|

100

 P
er

ce
nt

NFCB
compr

NFCB
jess

NFCB
cst

NFCB
db

NFCB
si

NFCB
javac

NFCB
mpeg

NFCB
richards

NFCB
mtrt

NFCB
jack

NFCB
jlex

Figure 5: Timing Results

�eld analysis. These results include the time to read the
class �les from the disk. The overall compilation speed is
approximately the same as the speed of the platform C com-
piler at its highest level of optimization.

The performance improvements achieved by Swift are
strongly a�ected by the decision to use class-hierarchy anal-
ysis. The use of CHA converts many virtual method calls
to direct calls and improves the e�ectiveness of method in-
lining. In addition, its use enhances the precision of other
analyses, such as alias analysis and escape analysis. How-
ever, in some situations, CHA cannot be used either because
of its startup overhead, or because of the possibility of dy-
namically loaded classes that could invalidate the closed-
world assumption made by CHA. Figure 5 shows that even
without CHA, our cheap �eld analysis can provide signi�-
cant performance improvements. The �gure shows run times
when using neither �eld analysis nor CHA (N) with the base
con�guration, using �eld analysis (F), using CHA (C), and
using both (B). The times are normalized so that the base
case (N) in each application is 100%.8 The results for �eld
analysis alone (F) �nd properties for package �elds, but not
protected �elds, while the results using both (B) also �nd
properties for protected �elds, since all the subclasses of a
class are known when CHA is used.

We observe from the graph that db, mpeg, mtrt, and jack
bene�t signi�cantly from the optimizations based on �eld
analysis, in the absence of CHA. Conversely, si, richards,
and mtrt bene�t strongly from CHA. Hence, �eld analysis
is clearly useful and often helps the performance of applica-
tions in cases in which CHA does not help. There is also
often synergy between the two analyses, since the combina-
tion is better than either alone in applications such as cst,
mtrt, and jlex.

5.3 Detailed Results

Table 6 shows the static distribution of �eld properties in
our applications. The last column indicates the total num-
ber of reference �elds in each application. The preceding
columns indicate the number of reference �elds with each
property. These numbers are obtained for the base con�g-
uration with CHA enabled. The number of �eld properties

8In some cases, using CHA or �eld analysis increases run times by
a small amount. These increases are likely due to code layout changes
that result in increased instruction-cache con
icts.

exact non- const �nal inline- encap- total

type null size able sulated �elds

compr 5 9 8 13 2 13 22

jess 33 23 0 32 22 30 73

cst 11 5 0 6 5 16 24

db 3 3 0 4 3 1 6

si 8 5 3 6 3 9 19

javac 45 29 9 77 13 26 271

mpeg 65 103 54 109 52 70 140

richards 0 7 15 21 7 14 80

mtrt 16 11 4 27 9 12 42

jack 21 21 6 24 13 14 90

jlex 21 38 32 39 33 55 98

total 228 254 131 352 162 260 865

Table 6: Static Property Statistics for Reference Fields

discovered when CHA is disabled is slightly smaller than the
number discovered when CHA is enabled. The numbers be-
come signi�cantly smaller in most cases if package �elds are
not analyzed, since some applications make minimal use of
private �elds.9 Overall, the table shows that useful proper-
ties can be proved about a high percentage of the reference
�elds. In particular, the number of �elds that are encapsu-
lated within their containing object is quite high.

Figure 6 shows changes in dynamic counts of run-time
checks. The height of the bars indicate the number of run-
time checks of each kind, and all bars are normalized so that
the total checks in the base case (C) is 100%. The base case
includes CHA, but does not include method inlining, since
inlining might change the counts in unexpected ways. Nu-
merous run-time checks have already been eliminated in the
base case because of Swift's standard optimizations based
on common-subexpression elimination, exact type analysis
of values, and induction variable analysis. The second bar
(B) includes both CHA and �eld analysis. We observe that
�eld analysis is highly e�ective at removing run-time null
checks and bounds checks, but not cast checks. Field anal-
ysis is also e�ective at removing many of the small number
of array store exception checks. (These checks are included
in the cast check segment, but are never more than 1% of
the total checks.)

Though not shown in the graph, signi�cant run-time
checks are removed in the case when only private �elds are

9The default access for �elds without modi�ers is package, so pro-
grammers often declare �elds with package access, even if they could
be private.

341

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100
 P

er
ce

nt Cast
 Bounds
 Null

CB

compr

CB

jess

CB

cst

CB

db

CB

si

CB

javac

CB

mpeg

CB

richards

CB

mtrt

CB

jack

CB

jlex

Figure 6: Dynamic Counts of Run-time Checks

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
er

ce
nt Interface

 Virtual

NF C

compr

NF C

jess

NF C

cst

NF C

db

NF C

si

NF C

javac

NF C

mpeg

NF C

richards

NF C

mtrt

NF C

jack

NF C

jlex

Figure 7: Dynamic Counts of Unresolved Method Calls

analyzed, but the results are usually much better when pack-
age �elds are also analyzed. Similarly, signi�cant checks are
also eliminated when �eld analysis is used without CHA, but
having CHA helps in the analysis of protected �elds. CHA
alone eliminates only a small number of checks, mostly by
increasing opportunities for common subexpression elimina-
tion.

Figure 7 shows changes in dynamic counts of virtual and
interface method calls. Again, method inlining is not used.
The bars are normalized so that the total number of non-
static method calls (including resolved direct calls) in each
applications is 100%. As before, the bar labeled 'F' rep-
resents �eld analysis only applied to private and package

�elds. CHA is highly useful for resolving method calls in
most of the benchmarks. However, �eld analysis is nearly
as e�ective in resolving method calls in cst, si, and jack.
Also, in the results for db, javac, and jack, we see that �eld
analysis can be useful for resolving interface calls, since it
can help in determining the exact class of an object with an
interface type.

As indicated in Table 6, our analysis found a signi�cant
number of �elds with inlineable objects. However, the ef-
fects of inlining on performance depend, of course, on which
objects are most heavily used. In our current system, we ob-
tain a 11% improvement in mtrt because of object inlining.

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
er

ce
nt

N S F X

cst

N S F X

db

N S F X

si

N S F X

si-mod

N S F X

javac

N S F X

jack

N S F X

jlex

Figure 8: Dynamic Synchronization Counts

We expected to get an improvement in the db benchmark be-
cause of the inlining of a �eld in the database entry objects,
but the performance improvement was only a few percent.
In other applications, we found little or no improvement.
We expect that there will be other applications that show
signi�cant improvement from object inlining.

Stack allocation has been fully implemented (including
the case where a method M allocates an object O that is
returned to one of M's callers and therefore the storage for
O has to be allocated in the caller). Stack allocation results
in performance improvements of 4-21% on four applications,
and minimal improvements for other applications. We have
not included more detailed results in this paper, because,
even though �eld analysis can help identify extra oppor-
tunities for stack allocation, in our current benchmarks it
does not actually �nd any new opportunities (but it does
identify more opportunities for synchronization removal, as
described next). Our current implementation will allocate
String and StringBuffer objects on the stack, but does not
allow stack allocation of variable-sized arrays, so stack allo-
cation of the arrays inside String and StringBuffer objects
is not currently possible.

Swift also implements synchronization removal. For each
object which does not escape a thread, Swift descends the
call chain of methods that take that object as an argument
and compiles special unsynchronized versions of the meth-
ods where necessary. It may also have to compile alter-
nate versions of any intermediate methods in the call chain,
even if they don't synchronize. Swift also removes synchro-
nization from any encapsulated �elds of the object during
the same traversal. Figure 8 shows the percentage of syn-
chronizations that are eliminated by our optimizations for
the applications that actually do synchronization. For each
application, the �rst bar ('N') represents the total number
of synchronizations with no optimizations, the second bar
('S') represents the number when the simple analysis of Sec-
tion 4.1 is applied, the third bar ('F') represents the number
when the additional information about encapsulated �elds
is used, and the last bar ('X') represents the number when
the extension in Section 4.2 is used.

Our techniques are sometimes foiled by complicated Java
library code. A large percentage of the synchronization in
javac and si is on encapsulated �le stream handles that don't
escape, but our analysis is defeated by the many subclasses
of the standard �le stream classes, some of which have un-

342

usual e�ects on the common �elds. To handle this case, we
would need to do extensive context-sensitive analysis and
cloning or change the applications to use a less complex �le
stream hierarchy. As an experiment, we modi�ed si to use
a private version of PushbackInputStream that is modi�ed
so it does not inherit from FilterInputStream, which is the
source of many of the analysis problems. The results for
the modi�ed version of si (which has no other changes) are
labeled as 'si-mod'.

Figure 8 shows that the simple analysis eliminates 5-20%
of the synchronizations in most of the applications. How-
ever, the use of encapsulated �eld information dramatically
improves the success of the analysis for cst, si-mod, and jlex.
In addition, the extension described in Section 4.2 is crucial
for eliminating the synchronizations in si-mod. The reason
is that most synchronizations occur on a ByteArrayInput-

Stream object, which is �rst created, and then stored inside
a PushbackInputStream object. Hence, our extension is im-
portant for handling the common structure of the multi-
layer input streams created using the Java library. Overall,
our synchronization removal improves the performance of
cst, si-mod, and jlex by 8-27%.

6 Related Work

There has been a variety of recent work that attempts to
use exact type or �eld information to improve the eÆciency
or accuracy of some kind of analysis. Type-based alias anal-
ysis [10] makes use of the strong typing properties of lan-
guages like Java to eliminate potential aliases between ref-
erences because they access di�erent �elds or base types.
Ruf [17] has used type information to partition data
ow
problems for eÆciency. However, we are unaware of any
such type- or �eld-based analysis that attempts to prove
properties about the contents of �elds.

Diwan et al. [11] proposes the use of aggregate analy-
sis to detect when a polymorphic data structure is used in a
monomorphic way by looking at the types of all assignments
to a particular �eld. For example, the analysis is used to
show that a linked list of general objects actually contains
only objects of a certain class or its subclasses. This analysis
is related to our �eld analysis that determines exact types,
but aggregate analysis does not make use of any modularity
properties in the language, or investigate any other proper-
ties of �elds. Detlefs and Agesen [8] describe a use for the
final property of �elds, which they call \immutability",
when deciding whether to inline a resolved virtual method
call in the presence of dynamic loading. For their appli-
cation, they compute immutability for private �elds only,
and do not appear to detect the case when this might be
\leaked" in a constructor.

Program checkers such as ESC-Java [9] allow annotations
that specify properties of �elds that are veri�ed as part of
the checking process. These properties include a speci�ca-
tion that a �eld is non-null or that a method returns a new,
unaliased object. Our compiler attempts to discover these
properties automatically, rather than using programmer an-
notations.

Dolby and Chien [12] describe an object inlining opti-
mization for C++ programs. Their analysis uses a fully
context-sensitive interprocedural framework and thus allows
object inlining in speci�c cases on a �eld that cannot be in-
lined in general. In particular, they do not require that
the �eld be initialized with a new object in the construc-
tor. However, their analysis times are measured in minutes,
whereas our analysis is always only a small number of sec-

onds. Also, we allow an object to be inlined (with a header),
even if a reference to the object escapes the local context. A
large amount of related work with respect to object inlining
(or unboxing) also exists for functional languages [14, 16, 19],
as described in [12].

There have been several recent descriptions of optimiza-
tions based on escape analysis. Most of these have focused
on converting heap allocations to stack allocations and re-
moving unnecessary synchronization. Blanchet [3] describes
a technique where type information is summarized by an in-
teger height. Interprocedural analysis is then used to com-
pute what is leaked by each method. The approximation
of types by integers leads to some imprecision, but in ex-
periments, this lack of precision has not made a di�erence.
The analysis itself is quite fast and e�ective. Bogda and
Holzle [4] use a two-pass interprocedural analysis to remove
unnecessary synchronization. Their scheme extends the sim-
ple analysis of Section 4.1 to one more level (although it is

ow-insensitive), and can prove that an object O does not
escape if it is only reachable via a path containing one heap
object (not including itself). The performance results are
fairly promising, but the paper has no data on the eÆciency
of the analysis itself. Our approach also extends the simple
analysis, but can potentially prove objects don't escape even
if reachable by a path of multiple heap objects.

Whaley and Rinard [21] and Choi et. al. [5] perform es-
cape analysis by using a variation on the points-to graph gen-
erally used in alias analysis. The precision of these schemes
can by tuned by changing the context sensitivity of the anal-
yses. Aldrich [2] �nds all groups of objects that might be
accessible via a global variable (and hence escape a thread).
The analysis requires the entire program, since it proceeds
by marking sets of objects that might be stored in global
variables, then sets of objects that might be stored in these
objects, and so on, until a �xed point is reached. Only
Blanchet [3] reports on analysis eÆciency, so it is hard to
compare most of these systems with our system in terms of
compilation time.

As far as we know, none of the preceding systems use �eld
access properties to aid in their escape analysis. Some Java
compilers no doubt perform extra optimizations for final

�elds, but none seem to have exploited �eld properties to
the same extent as Swift.

7 Conclusion

We have described �eld analysis, an interprocedural analy-
sis that determines useful properties of �elds in a low-cost
manner by exploiting the modularity properties of a lan-
guage. Field analysis does not require analysis of an entire
program and can eliminate numerous run-time checks that
are not eliminated by other optimizations. In addition, it
can also be e�ective in resolving virtual method calls, and
is useful in situations where class hierarchy analysis is not
appropriate. Field analysis takes only about 10% of the
compile time and is inexpensive enough to be useful in a
compiler that is invoked dynamically during the execution
of an application.

We have also shown that �eld analysis can help reduce
the analysis burden of optimizations such as object inlining,
stack allocation, and synchronization removal. By making
use of properties discovered via �eld analysis, we have imple-
mented useful versions of these optimizations that are much
less inexpensive than corresponding versions which do full
interprocedural data
ow analysis. Overall, speedups for all
the optimizations enabled by �eld analysis average 7% on

343

a set of programs, including the SpecJVM98 applications,
with some application times reduced by up to 27%.

There are many other �eld properties that might be use-
ful to investigate. If analysis shows that an integer �eld
is always assigned values within a certain range, then the
storage size for the �eld can potentially be reduced by the
compiler. It would also be useful to prove that elements of
an array referenced by a �eld are always assigned objects of
a speci�c class. Finally, even more complex properties may
be useful. A common idiom in object-oriented programs is
to have a class that contains an array and also a \current"
index into the array. With �eld analysis, the compiler may
be able to prove that the index �eld is always less than the
length of the array. If so, the compiler will be able to elim-
inate bounds checks whenever the index is used to load an
element from the array.

Acknowledgments

We would like to thank Je� Dean, Raymie Stata, and Mark
Vandevoorde, who worked on the early design and imple-
mentation of Swift, and Girish Kumar, who worked on the
�rst implementation of stack allocation. We would also like
to thank Amer Diwan and the anonymous referees for their
comments.

References

[1] Java Memory Model Mailing List. At URL http:
//www.cs.umd.edu/�pugh/java/memoryModel/.

[2] J. Aldrich, C. Chambers, E. G. Sirer, and S. Eggers.
Static Analyses for Eliminating Unnecessary Synchro-
nization from Java Programs. In Sixth International
Static Analysis Symposium, Sept. 1999.

[3] B. Blanchet. Escape Analysis for Object Oriented Lan-
guages. Application to Java. In 1999 ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications, Nov. 1999.

[4] J. Bogda and U. H�olzle. Removing Unnecessary Syn-
chronization in Java. In 1999 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications, Nov. 1999.

[5] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midki�. Escape Analysis for Java. In 1999
ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, Nov.
1999.

[6] Compaq Computer Corporation. Compaq Fast Virtual
Machine V1.2.2-1 for Alpha. At URL http://www.
compaq.com/java.

[7] J. Dean, D. Grove, and C. Chambers. Optimization
of Object-Oriented Programs Using Static Class Hier-
archy Analysis. In ECOOP '95, pages 77{101, Aug.
1995.

[8] D. Detlefs and O. Agesen. Inlining of Virtual Methods.
In ECOOP '99, pages 258{278, June 1999.

[9] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended Static Checking. Technical Report 159,
Compaq, 1998.

[10] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-
Based Alias Analysis. In 1998 ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, June 1998.

[11] A. Diwan, J. E. B. Moss, and K. S. McKinley. Sim-
ple and E�ective Analysis of Statically-Typed Object-
Oriented Programs. In 1996 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications, Nov. 1996.

[12] J. Dolby and A. Chien. An Evaluation of Auto-
matic Object Inline Allocation Techniques. In 1998
ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, Nov.
1998.

[13] D. Gay and B. Steensgaard. Stack Allocating Objects
in Java. At URL http://www.research.microsoft.
com/apl/stackalloc-abstract.ps.

[14] C. Hall, S. L. Peyton-Jones, and P. M. Sansom. Un-
boxing Using Specialization. In Functional Program-
ming, Glasgow 1994. Workshops in Computing Science.
Springer-Verlag, 1995.

[15] T. Lengauer and R. E. Tarjan. A Fast Algorithm for
Finding Dominators in a Flowgraph. ACM Trans. Prog.
Lang. Syst., 1(1):121{141, July 1979.

[16] X. Leroy. Unboxed Objects and Polymorphic Typing.
In 19th Symposium on the Principles of Programming
Languages, pages 177{188, Jan. 1992.

[17] E. Ruf. Partitioning Data
ow Analyses Using Types.
In ACM SIGPLAN/SIGACT '97 Symposium on Prin-
ciples of Programming Languages, Nov. 1997.

[18] D. J. Scales, K. H. Randall, S. Ghemawat, and J. Dean.
The Swift Java Compiler: Design and Implementation.
Technical Report 2000/2, Compaq Western Research
Laboratory, Apr. 2000.

[19] Z. Shao, J. H. Reppy, and A. W. Appel. Unrolling Lists.
In ACM Conference on Lisp and Functional Program-
ming, June 1994.

[20] V. C. Sreedhar and G. R. Gao. A Linear Time Al-
gorithm for Placing Phi-nodes. In 22nd Annual ACM
Symposium on Principles of Programming Languages,
Jan. 1995.

[21] J. Whaley and M. Rinard. Compositional Pointer
and Escape Analysis for Java Programs. In 1999
ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, Nov.
1999.

344

