
RELEASE DATE: 5/17/2001 

    XStend Board V1.3.2 ManualXStend Board V1.3.2 ManualXStend Board V1.3.2 ManualXStend Board V1.3.2 Manual    

How to install and use 
your new XStend Board 

 

2608 Sweetgum Drive 
Apex NC 27502 

Toll-free: 800-549-9377 
International: 919-387-0076 

FAX: 919-387-1302 



RELEASE DATE: 5/17/2001 

Copyright ©1998-2001 by X Engineering Software Systems Corporation. 

All XS-prefix product designations are trademarks of XESS Corp. 

All XC-prefix product designations are trademarks of Xilinx. 

ABEL is a trademark of DATA I/O Corporation. 

All rights reserved.  No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, mechanical, 
photocopying, recording, or otherwise, without the prior written permission of the publisher.  
Printed in the United States of America. 

 



  

 

Table of ContentsTable of ContentsTable of ContentsTable of Contents    
Getting Help!........................................................................................................3 

Packing List .........................................................................................................3 

XStend Board Features......................................................................................4 

XS40/XS95 Board Mounting Area ..............................................................5 

LEDs .............................................................................................................6 

Switches........................................................................................................8 

VGA Interface...............................................................................................9 

PS/2 Keyboard Interface............................................................................10 

RAMs ..........................................................................................................11 

Stereo Codec..............................................................................................12 

XILINX Xchecker Interface ........................................................................13 

Prototyping Area.........................................................................................14 

Daughterboard Connector .........................................................................15 

Introduction........................................................................................................21 

Displaying Switch Settings on the XStend Board LEDs.................................21 

Displaying Graphics from RAM Through the VGA Interface .........................26 

VGA Color Signals .....................................................................................26 

VGA Signal Timing.....................................................................................27 

VGA Signal Generator Algorithm ..............................................................28 

VGA Signal Generator in VHDL................................................................30 

Reading Keyboard Scan Codes Through the PS/2 Interface........................38 

Inputting and Outputting Stereo Signals Through the Codec........................43 



  

 

 
Getting Help! 

Here are some places to get help if you encounter problems: 

 If you can't get the XStend Board hardware to work, send an e-mail message 
describing your problem to help@xess.com or submit a problem report at 
http://www.xess.com/reqhelp.html.  Our web site also has 

 answers to frequently-asked-questions, 

 example designs for the XS Boards, 

 application notes, 

 a place to sign-up for our email forum where you can post questions to other XS 
Board users. 

 If you can't get your XILINX Foundation software tools installed properly, send an e-
mail message describing your problem to hotline@xilinx.com or check their web site 
at http://support.xilinx.com. 

Packing List 

Here is what you should have received in your package: 

 an XStend Board; 

 an XSTOOLs CDROM with software utilities and documentation for using the XStend 
Board. 

Preliminaries 

Chapter 

1

http://www.xess.com/reqhelp.html
http://www.xess.com/faq/user_faq.htm
http://www.xess.com/ho03000.html
http://www.xess.com/ho02000.html
http://www.xess.com/list_reg.html
http://www.xilinx.com/


 

 4 

 

The XS40 and XS95 Boards offer a flexible, low-cost method of prototyping FPGA and 
CPLD designs.  However, their small physical size limits the amount of support circuitry 
they can hold.  The XStend Board removes this limitation by providing additional support 
circuitry that the XS40 and XS95 Boards can access through their breadboard interfaces. 

The XStend Board contains resources that extend the range of applications of the XS 
Boards into three areas: 

 The pushbuttons, DIP switches, LEDs, and prototyping area are useful for basic lab 
experiments.  These features in combination with the XS Boards replicate the 
functionality of the older HW/UW FPGABOARD. 

 The VGA monitor interface, PS/2 keyboard/mouse interface, and static RAM let the 
XS Boards be used in video and computing experiments. 

 The stereo codec and dual-channel analog input/output circuitry are useful for 
processing of audio signals in combination with DSP circuits synthesized with 
XILINX's CORE generation software. 

XStend Board Features 

The XStend Board extends the capabilities of the XS40 and XS95 Boards by providing: 

 mounting sockets for both an XS40 and an XS95 Board; 

 additional bargraph LED and LED digits; 

 pushbutton and DIP switches; 

 an interface to VGA monitors; 

 an interface to a PS/2-style keyboard or mouse; 

 an additional 64 Kbytes of static RAM (optional); 

 a stereo codec with left/right input and output channels. 

 an interface to the XILINX Xchecker cable; 

 a 2.75"×3.5" prototyping area with selectable 3.3V or 5V supply; 

Chapter 

2
XStend Overview 



 

 5 

 a 42×2 header connector for add-on daughterboards. 

These resources are shown in the simplified view of the XStend Board (Figure 1).  Each of 
these resources will be described below.  

 
• Figure 1: XStend Board layout. 

XS40/XS95 Board Mounting Area 

An XS40 or XS95 Board is mounted on the XStend Board using the XS Board mounting 
sockets.  These sockets mate with the breadboard interface pins of the XS Boards to give 



 

 6 

them access to all the resources of the XStend Board.  To use an XS40 Board with the 
XStend Board, insert it into the right-most columns of the socket strips.  When using an 
XS95 Board, you should insert it into the left-most columns of the sockets.  There are 
markings on the XStend Board to indicate the appropriate column for each type of XS 
Board. 

If the XS Board is connected to a power supply through jack J9, then its power regulation 
circuitry will supply VCC and GND to the XStend Board through the mounting sockets.  
XS40 Boards with 3.3V FPGAs will supply both 3.3V and 5V to the XStend Board, while 
XS40 Boards with 5V FPGAs and XS95 Boards will supply only 5V. 

External voltage supplies can also be used with the XStend Board.  A 5V power supply 
can be connected to header J12 and a 3.3V supply can be attached to header J14 as 
shown in Figure 2.  These supplies will power the attached XS Board as well as the 
XStend electronics. 

 

• Figure 2: Connection of external power supplies to the XStend Board. 

Warning: Do not attach external voltage supplies while also supplying power to the 
XStend Board with an XS Board. 

Warning: Never place shunts on either J12 or J14 or you will short the power 
supplies to ground and damage the XStend Board and the attached XS Board.. 

LEDs 

The XStend Board provides a bargraph LED with eight LEDs (D1—D8) and two more 
LED displays (U1 and U2) for use by an XS Board.  All of these LEDs are active-low 
meaning that an LED segment will glow when a logic-low is applied to it. 

The LEDs are enabled and disabled by setting the shunts on the 2-pin jumpers as 
described in Table 1. 

!!!!!!!!!!!!    

!!!!!!!!!!!!    



 

 7 

• Table 1: Jumper settings for XStend LEDs. 

JumperJumperJumperJumper    SettingSettingSettingSetting    

J8 Removing the shunt on this jumper disconnects the power from bargraph LEDs D1—D8.  Placing the shunt on the 
jumper enables the bargraph LEDs. 

J4 Removing the shunt on this jumper disconnects the power from left LED digit U1.  Placing the shunt on the jumper 
enables the LED digit. 

J7 Removing the shunt on this jumper disconnects the power from right LED digit U2.  Placing the shunt on the jumper 
enables the LED digit. 

J13 A shunt placed on this jumper will enable the LEDs when you are using the XStend Board with an XS95 Board.  This 
shunt must be removed if you are using an XS40 Board with the XStend Board!! 

 

Listing 1 and Listing 2 show the connections from the XS40 and XS95 Boards to the 
LEDs on the XStend Board expressed as UCF constraints (for the UCF syntax and usage 
tips, check out http://www.xilinx.com/techdocs/2449.htm). 

• Listing 1: Connections between the XStend LEDs and the XS40. 

# LEFT LED DIGIT SEGMENT CONNECTIONS (ACTIVE-LOW) 
NET LSB<0>  LOC=P3; 
NET LSB<1>  LOC=P4; 
NET LSB<2>  LOC=P5; 
NET LSB<3>  LOC=P78; 
NET LSB<4>  LOC=P79; 
NET LSB<5>  LOC=P82; 
NET LSB<6>  LOC=P83; 
NET LDPB  LOC=P84; 
# 
# RIGHT LED DIGIT SEGMENT CONNECTIONS (ACTIVE-LOW) 
NET RSB<0>  LOC=P59; 
NET RSB<1>  LOC=P57; 
NET RSB<2>  LOC=P51; 
NET RSB<3>  LOC=P56; 
NET RSB<4>  LOC=P50; 
NET RSB<5>  LOC=P58; 
NET RSB<6>  LOC=P60; 
NET RDPB  LOC=P28; 
# 
# INDIVIDUAL LED CONNECTIONS (ACTIVE-LOW) 
NET DB<1>  LOC=P41; 
NET DB<2>  LOC=P40; 
NET DB<3>  LOC=P39; 
NET DB<4>  LOC=P38; 
NET DB<5>  LOC=P35; 
NET DB<6>  LOC=P81; 
NET DB<7>  LOC=P80; 
NET DB<8>  LOC=P10; 

http://www.xilinx.com/techdocs/2449.htm)


 

 8 

• Listing 2: Connections between the XStend LEDs and the XS95. 

# LEFT LED DIGIT SEGMENT CONNECTIONS (ACTIVE-LOW) 
NET LSB<0>  LOC=P1; 
NET LSB<1>  LOC=P2; 
NET LSB<2>  LOC=P3; 
NET LSB<3>  LOC=P75; 
NET LSB<4>  LOC=P79; 
NET LSB<5>  LOC=P82; 
NET LSB<6>  LOC=P83; 
NET LDPB  LOC=P84; 
# 
# RIGHT LED DIGIT SEGMENT CONNECTIONS (ACTIVE-LOW) 
NET RSB<0>  LOC=P58; 
NET RSB<1>  LOC=P56; 
NET RSB<2>  LOC=P54; 
NET RSB<3>  LOC=P55; 
NET RSB<4>  LOC=P53; 
NET RSB<5>  LOC=P57; 
NET RSB<6>  LOC=P61; 
NET RDPB  LOC=P34; 
# 
# INDIVIDUAL LED CONNECTIONS (ACTIVE-LOW) 
NET DB<1>  LOC=P44; 
NET DB<2>  LOC=P43; 
NET DB<3>  LOC=P41; 
NET DB<4>  LOC=P40; 
NET DB<5>  LOC=P39; 
NET DB<6>  LOC=P37; 
NET DB<7>  LOC=P36; 
NET DB<8>  LOC=P35; 

Switches 

The XStend has a bank of eight DIP switches and two pushbuttons (labeled SPARE and 
RESET) that are accessible from an XS Board.  (There is a third pushbutton labeled 
PROGRAM, which is used to initiate the programming of the XS40 Board.  It is not 
intended to be a general-purpose input.) 

When closed or ON, each DIP switch pulls the connected pin of the XS Board to ground.  
When the DIP switch is open or OFF, the pin is pulled high through a 10KΩ resistor. 

When not being used, the DIP switches should be left in the open or OFF 
configuration so the pins of the XS Board are not tied to ground and can freely 
move between logic low and high levels. 

When pressed, each pushbutton pulls the connected pin of the XS Board to ground.  
Otherwise, the pin is pulled high through a 10 KΩ resistor. 

Listing 3 and Listing 4 show the connections from the XS40 and XS95 Boards to the 
switches on the XStend Board expressed as UCF constraints. 

!!!!!!!!!!!!    



 

 9 

• Listing 3: Connections between the XStend DIP and pushbutton switches and the XS40. 

# DIP SWITCH CONNECTIONS 
NET DIPSW<1> LOC=P7; 
NET DIPSW<2> LOC=P8; 
NET DIPSW<3> LOC=P9; 
NET DIPSW<4> LOC=P6; 
NET DIPSW<5> LOC=P77; 
NET DIPSW<6> LOC=P70; 
NET DIPSW<7> LOC=P66; 
NET DIPSW<8> LOC=P69; 
# 
# PUSHBUTTON SWITCH CONNECTIONS (ACTIVE-LOW) 
NET SPAREB  LOC=P67; 
NET RESETB  LOC=P37; 

• Listing 4: Connections between the XStend DIP and pushbutton switches and the XS95. 

# DIP SWITCH CONNECTIONS 
NET DIPSW<1> LOC=P6; 
NET DIPSW<2> LOC=P7; 
NET DIPSW<3> LOC=P11; 
NET DIPSW<4> LOC=P5; 
NET DIPSW<5> LOC=P72; 
NET DIPSW<6> LOC=P71; 
NET DIPSW<7> LOC=P66; 
NET DIPSW<8> LOC=P70; 
# 
# PUSHBUTTON SWITCH CONNECTIONS (ACTIVE-LOW) 
NET SPAREB  LOC=P67; 
NET RESETB  LOC=P10; 

VGA Interface 

The XStend Board provides an XS Board with an interface to a VGA monitor through 
connector J5.  (Version 1.2 and higher of the XS Boards already have their own VGA 
interfaces, so the XStend circuitry is redundant for them.)  The XS Board can drive the 
active-low horizontal and vertical sync signals that control the width and height of the video 
frame.  The XS Board also has access to two bits each of red, green, and blue color 
signals so it can generate pixels in any of 22×22×22=64 different colors. 

Listing 5 and Listing 6 show the connections from the XS40 and XS95 Boards to the 
VGA interface of the XStend Board.  (These pin assignments are identical to the pin 
assignments for the XS Boards, which have their own VGA interfaces.) 



 

 10 

 

• Listing 5: Connections between the XStend VGA interface and the XS40. 

# VGA CONNECTIONS 
NET VSYNCB  LOC=P67; 
NET HSYNCB  LOC=P19; 
NET RED<1>  LOC=P18; 
NET RED<0>  LOC=P23; 
NET GREEN<1>  LOC=P20; 
NET GREEN<0>  LOC=P24; 
NET BLUE<1>  LOC=P26; 
NET BLUE<0>  LOC=P25; 

• Listing 6: Connections between the XStend VGA interface and the XS95. 

# VGA CONNECTIONS 
NET VSYNCB  LOC=P24; 
NET HSYNCB  LOC=P15; 
NET RED<1>  LOC=P14; 
NET RED<0>  LOC=P18; 
NET GREEN<1>  LOC=P17; 
NET GREEN<0>  LOC=P19; 
NET BLUE<1>  LOC=P23; 
NET BLUE<0>  LOC=P21; 

PS/2 Keyboard Interface 

The XStend Board provides an XS Board with a PS/2-style interface (mini-DIN connector 
J6) to either a keyboard or a mouse.  The XS Board receives two signals from the PS/2 
interface: a clock signal and a serial data stream that is synchronized with the falling edges 
on the clock signal. 

Listing 7 and Listing 8 show the connections from the XS40 and XS95 Boards to the 
PS/2 interface of the XStend Board (expressed as UCF constraints):   

• Listing 7: Connections between the XStend PS/2 interface and the XS40. 

# PS/2 KEYBOARD CONNECTIONS 
NET KB_CLK  LOC=P68; 
NET KB_DATA  LOC=P69; 

• Listing 8: Connections between the XStend PS/2 interface and the XS95. 

# PS/2 KEYBOARD CONNECTIONS 
NET KB_CLK  LOC=P26; 
NET KB_DATA  LOC=P70; 



 

 11 

RAMs 

The XStend Board adds an additional 64 KBytes of RAM to the 32 KBytes already on the 
XS Board.  The XStend RAM connects to the same pins as the XS Board RAM for the 
address bus, data bus, write-enable, and output-enable.  The chip-selects of the XStend 
Board RAMs are connected to different pins so all the RAMs can be individually selected. 

Listing 9 and Listing 10 show the connections from the XS40 and XS95 Boards to their 
own RAMs and the RAMs of the XStend Board (expressed as UCF constraints):   

• Listing 9: Connections between the XStend RAMs and the XS40. 

NET D<0> LOC=P41;  # DATA BUS 
NET D<1> LOC=P40; 
NET D<2> LOC=P39; 
NET D<3> LOC=P38; 
NET D<4> LOC=P35; 
NET D<5> LOC=P81; 
NET D<6> LOC=P80; 
NET D<7> LOC=P10; 
NET A<0> LOC=P3;   # LOWER BYTE OF ADDRESS 
NET A<1> LOC=P4; 
NET A<2> LOC=P5; 
NET A<3> LOC=P78; 
NET A<4> LOC=P79; 
NET A<5> LOC=P82; 
NET A<6> LOC=P83; 
NET A<7> LOC=P84; 
NET A<8> LOC=P59;  # UPPER BYTE OF ADDRESS 
NET A<9> LOC=P57; 
NET A<10> LOC=P51; 
NET A<11> LOC=P56; 
NET A<12> LOC=P50; 
NET A<13> LOC=P58; 
NET A<14> LOC=P60; 
NET WEB LOC=P62;  # ACTIVE-LOW WRITE-ENABLE FOR ALL RAMS 
NET OEB LOC=P61;  # ACTIVE-LOW OUTPUT-ENABLE FOR ALL RAMS 
NET CEB LOC=P65;  # ACTIVE-LOW CHIP-ENABLE FOR XS40 RAM 
NET LCEB LOC=P7; # ACTIVE-LOW CHIP-ENABLE FOR LEFT XSTEND RAM 
NET RCEB LOC=P8; # ACTIVE-LOW CHIP-ENABLE FOR RIGHT XSTEND RAM 



 

 12 

 

• Listing 10: Connections between the XStend RAMs and the XS95. 

NET D<0> LOC=P44;  # DATA BUS 
NET D<1> LOC=P43; 
NET D<2> LOC=P41; 
NET D<3> LOC=P40; 
NET D<4> LOC=P39; 
NET D<5> LOC=P37; 
NET D<6> LOC=P36; 
NET D<7> LOC=P35; 
NET A<0> LOC=P75; # LOWER BYTE OF ADDRESS 
NET A<1> LOC=P79; 
NET A<2> LOC=P82; 
NET A<3> LOC=P84; 
NET A<4> LOC=P1; 
NET A<5> LOC=P3; 
NET A<6> LOC=P83; 
NET A<7> LOC=P2; 
NET A<8> LOC=P58;  # UPPER BYTE OF ADDRESS 
NET A<9> LOC=P56; 
NET A<10> LOC=P54; 
NET A<11> LOC=P55; 
NET A<12> LOC=P53; 
NET A<13> LOC=P57; 
NET A<14> LOC=P61; 
NET WEB LOC=P63;  # ACTIVE-LOW WRITE-ENABLE FOR ALL RAMS 
NET OEB LOC=P62;  # ACTIVE-LOW OUTPUT-ENABLE FOR ALL RAMS 
NET CEB LOC=P65;  # ACTIVE-LOW CHIP-ENABLE FOR XS95 RAM 
NET LCEB LOC=P6;  # ACTIVE-LOW CHIP-ENABLE FOR LEFT XSTEND RAM 
NET RCEB LOC=P7;  # ACTIVE-LOW CHIP-ENABLE FOR RIGHT XSTEND RAM 

Stereo Codec 

The XStend Board has a stereo codec that accepts two analog input channels from jack 
J9, digitizes the analog values, and sends the digital values to the XS Board as a serial bit 
stream.  The codec also accepts a serial bit stream from the XS Board and converts it into 
two analog output signals, which exit the XStend Board through jack J10. 

The codec is configured by placing shunts on the jumpers as indicated in Table 2. 

• Table 2: Jumper settings for XStend codec. 

Jumper Setting 

J11 Placing a shunt on this jumper disables the codec by holding it in the reset state.  No shunt should be placed 
on this jumper when the codec is being used. 

J17 Removing this shunt prevents the codec’s serial data output from reaching the XS Board.  A shunt should be 
placed on this jumper when the codec is being used. 

 

Listing 11 and Listing 12 show the connections from the XS40 Board to the codec 
interface on the XStend Board (expressed as UCF constraints):   



 

 13 

• Listing 11: Connections between the XStend stereo codec and the XS40 Board. 

# STEREO CODEC CONNECTIONS 
NET MCLK  LOC=P9; # MASTER CLOCK TO CODEC 
NET LRCK  LOC=P66; # LEFT/RIGHT CODEC CHANNEL SELECT 
NET SCLK  LOC=P77; # SERIAL DATA CLOCK 
NET SDOUT  LOC=P6; # SERIAL DATA OUTPUT FROM CODEC 
NET SDIN  LOC=P70; # SERIAL DATA INPUT TO CODEC 
NET CCLK  LOC=P44; # CONTROL SIGNAL CLOCK 
NET CDIN  LOC=P45; # SERIAL CONTROL INPUT TO CODEC 
NET CSB  LOC=P46; # SERIAL CONTROL CHIP SELECT 

• Listing 12: Connections between the XStend stereo codec and the XS95 Board. 

# STEREO CODEC CONNECTIONS 
NET MCLK  LOC=P11;  # MASTER CLOCK TO CODEC 
NET LRCK  LOC=P5;  # LEFT/RIGHT CODEC CHANNEL SELECT 
NET SCLK  LOC=P72;  # SERIAL DATA CLOCK 
NET SDOUT  LOC=P66;  # SERIAL DATA OUTPUT FROM CODEC 
NET SDIN  LOC=P71;  # SERIAL DATA INPUT TO CODEC 
NET CCLK  LOC=P46;  # CONTROL SIGNAL CLOCK 
NET CDIN  LOC=P47;  # SERIAL CONTROL INPUT TO CODEC 
NET CSB  LOC=P48;  # SERIAL CONTROL CHIP SELECT 

The analog stereo input and output signals enter and exit the XStend Board through the 
1/8” jacks J9 and J10, respectively.  The output of an audio CD player can be input 
through J9 and a set of small stereo headphones can be connected to J10 for listening to 
the processed output. 

The digitized data output from the codec passes through jumper J17 on its way to the XS 
Board inserted in the XStend Board.  A shunt should be placed on J17 when the codec is 
being used.  Because the serial data output of the codec is not tristatable and because it 
shares the input to the XS Board with other resources on the XStend Board, the shunt on 
J17 should be removed when the codec is not being used. 

XILINX Xchecker Interface 

An XS40 Board inserted in the XStend Board can be configured and tested using a 
XILINX Xchecker cable attached to header J19.  When using the Xchecker cable, you 
must not connect the cable between the XS Board and the parallel port of the PC.  In 
addition, when using the Xchecker cable with an XStend/XS40 combination, you must 
make the following adjustments to the XS40 Board: 

 Remove the shunts from jumpers J4, J6, J10 and J11 of the XS40 Board; 

 Remove the serial EPROM from socket U7. 

The connections between the Xchecker cable and the XS40 Board is listed in Table 3.  



 

 14 

 

• Table 3: Connections between the XStend Board Xchecker interface and the XS40 Board. 

Xchecker Pin XS40 Pin 

1 – VCC (+5V) 2

2 – RT 32

3 – GND 52

4 – RD 30

6 – TRIG 7

7 – CCLK 73

9 – DONE 53

10 – TDI 15

11 – DIN 71

12 – TCK 16

13 – PROGRAM 55

14 – TMS 17

15 – INIT 41

16 – CLKI 13

17 – RST 8

18 – CLKO 9
 

Prototyping Area 

The XStend Board has a prototyping area consisting of component through-holes on an 
0.1"×0.1" grid interspersed with a network of alternating VCC and GND buses as shown in 
Figure 5.  The buses carrying VCC run on the top side of the XStend Board while the GND 
buses run on the bottom side.  The VCC and GND buses have connection holes in which 
a small wire can be soldered to make a connection to a nearby component through-hole. 

 

• Figure 3: Top-side view of the network of VCC and GND buses around the component through-holes 
in the XStend Board prototyping area. 

The placement of the shunt on jumper J16 will determine whether the VCC buses in the 
prototyping area carry either 5V or 3.3V (see Figure 6).  Of course, the jumper selection 
will have no effect unless you have both these voltages supplied to the XStend Board 
either by the XS Board or by connecting external power supplies. 



 

 15 

 

• Figure 4: Shunt placement for setting the VCC bus voltage.. 

Connections from the XS Board to the prototyping area are made through connector J3.  
The arrangement of pins on this connector exactly matches the arrangement of pins on 
the XS40 Board.  For example, the pin at the bottom-left of J3 on the XStend Board 
corresponds to pin 21 at the bottom-left of the XS40 Board. 

The XS95 Board has a completely different pin arrangement than the XS40.  Therefore, 
each pin on J3 is explicitly labeled with the corresponding pin number on the XS95 Board.  
For example, the pin at the bottom-left of J3 on the XStend Board is connected to pin 68 
near the top-left of the XS95 Board.  

Daughterboard Connector 

Daughterboards with specialized circuitry can be connected to the XStend board through 
connector J18.  This 42×2 connector brings all the I/O and VCC/GND from the XS40 or 
XS95 Board to the daughterboard.



  

 

The interconnections of the XStend Board resources and an XS40 or XS95 Board are 
shown in Figure 5 and Figure 6, respectively.  These figures remove much of the 
extraneous detail of the actual schematics, so we refer to them as programmer’s models. 

Items within the shaded area in each figure correspond to circuitry housed on the XS 
Board.  The remaining items are XStend Board resources. 

A cursory glance at the figures reveals that many of the resources share connections.  For 
example, the codec, DIP switch, and microcontroller port P1 are all connected to the same 
set of pins on the FPGA or CPLD.  So any design has to ensure that only one of these 
resources is outputting data at any particular time.  (Hence the need in some designs to 
place the DIP switches in the OPEN position, or remove the shunt through which the 
codec SDOUT drives serial data, or keep the microcontroller in the reset state.) 

Table 4 and Table 5 list the same interconnection data for the XS40 and XS95 Boards, 
respectively, in a tabular format, which makes it easier to see which resources share 
common connections. 

Chapter 

3
Programmer's 
Models 



 

 17 

 
• Figure 5: Programmer's model of the XS40/XStend Board combination. 



 

 18 

 
• Figure 6: Programmer's model of the XS95/XStend Board combination. 



 

 19 

• Table 4: Connections between the XS40 Board and the XStend Board resources. 

• 

XS
40

 P
in

 
(J

1,
J3

,J
18

)

Po
w

er
/ G

N
D

D
IP

 S
w

itc
h

Pu
sh

-b
ut

to
ns

LE
D

s

VG
A

 
In

te
rf

ac
e

PS
/2

 
In

te
rf

ac
e

R
A

M
s

St
er

eo
 C

od
ec

80
51

 u
C

PC
 P

ar
al

le
l 

Po
rt

O
sc

ill
at

or

Function U
W

-F
PG

A
 

B
O

A
R

D
 P

in

2 +5V +5V power source
3 LSB0 A0 Left LED segment; RAM address line P35
4 LSB1 A1 Left LED segment; RAM address line P36
5 LSB2 A2 Left LED segment; RAM address line P29
6 DIPSW4 SDOUT P1.3 DIP switch; codec serial data output; uC I/O P24
7 DIPSW1 LCEB P1.0 DIP switch; left RAM chip-enable, uC I/O port P19
8 DIPSW2 RCEB P1.1 DIP switch; right RAM chip-enable, uC I/O port P20
9 DIPSW3 MCLK P1.2 DIP switch; codec master clock; uC I/O port P23

10 DB8 D7 P0.7 LED; RAM data line; uC muxed address/data line P61
13 CLK XS Board oscillator
14 PSENB uC program store-enable
15 JTAG TDI; DIN
16 JTAG TCK; CCLK
17 JTAG TMS
18 S5 RED1 XS Board LED segment; VGA color signal
19 S6 HSYNCB XS Board LED segment; VGA horiz. sync.
20 S3 GREEN1 XS Board LED segment; VGA color signal
23 S4 RED0 XS Board LED segment; VGA color signal
24 S2 GREEN0 XS Board LED segment; VGA color signal
25 S0 BLUE0 XS Board LED segment; VGA color signal
26 S1 BLUE1 XS Board LED segment; VGA color signal
27 P3.7 (RD_) uC read line
28 RDPB P2.7 Right LED decimal-point; uC I/O port P41
29 ALEB uC address-latch-enable
30 Serial EEPROM chip-enable
32 PC_D6 PC parallel port data output
34 PC_D7 PC parallel port data output
35 DB5 D4 P0.4 LED; RAM data line; uC muxed address/data line P66
36 RST uC reset
37 RESETB XTAL1 Pushbutton; uC clock P56
38 DB4 D3 P0.3 LED; RAM data line; uC muxed address/data line P57
39 DB3 D2 P0.2 LED; RAM data line; uC muxed address/data line P58
40 DB2 D1 P0.1 LED; RAM data line; uC muxed address/data line P59
41 DB1 D0 P0.0 LED; RAM data line; uC muxed address/data line P60
44 CCLK PC_D0 Codec control line; PC parallel port data output
45 CDIN PC_D1 Codec control line; PC parallel port data output
46 CSB PC_D2 Codec control line; PC parallel port data output
47 PC_D3 PC parallel port data output
48 PC_D4 PC parallel port data output
49 PC_D5 PC parallel port data output
50 RSB4 A12 P2.4 Right LED segment; RAM address line; uC I/O port P48
51 RSB2 A10 P2.2 Right LED segment; RAM address line; uC I/O port P45
52 GND Power supply ground
54 5.0V/3.3V 5V/3.3V power supply (4000E/4000XL)
55 PROGRAM XS40 configuration control P55
56 RSB3 A11 P2.3 Right LED segment; RAM address line; uC I/O port P51
57 RSB1 A9 P2.1 Right LED segment; RAM address line; uC I/O port P47
58 RSB5 A13 P2.5 Right LED segment; RAM address line; uC I/O port P50
59 RSB0 A8 P2.0 Right LED segment; RAM address line; uC I/O port P46
60 RSB6 A14 P2.6 Right LED segment; RAM address line; uC I/O port P49
61 OEB RAM output-enable
62 WEB P3.6 (WR_) RAM write-enable; uC I/O port
65 CEB XS Board RAM chip-enable
66 DIPSW7 LRCK P1.6 PC_S5 DIP switch; codec left-right channel switch; uC I/O port; PC P27
67 SPAREB VSYNCB P1.7 Pushbutton; VGA vert. sync.; uC I/O port P18
68 KB_CLK P3.4 (T0) PS/2 keyboard clock; uC I/O port
69 DIPSW8 KB_DATA P3.1 (TX PC_S6 DIP switch; PS/2 keyboard serial data; uC I/O port; PC par P28
70 DIPSW6 SDIN P1.5 PC_S3 DIP switch; codec serial input data; uC I/O port; PC paralle P26
71 JTAG TDI; DIN
72 JTAG TDO; DOUT
73 JTAG TCK; CCLK
75 PC_S7 JTAG TDO; DOUT; PC parallel port status input
77 DIPSW5 SCLK P1.4 PC_S4 DIP switch; codec serial I/O clock; uC I/O port; PC parallel P25
78 LSB3 A3 Left LED segment; RAM address line P44
79 LSB4 A4 Left LED segment; RAM address line P38
80 DB7 D6 P0.6 LED; RAM data line; uC muxed address/data line P62
81 DB6 D5 P0.5 LED; RAM data line; uC muxed address/data line P65
82 LSB5 A5 Left LED segment; RAM address line P40
83 LSB6 A6 Left LED segment; RAM address line P39
84 LDPB A7 Left LED decimal-point; RAM address line P37

 



 

 20 

• Table 5: Connections between the XS95 Board and the XStend Board resources. 
XS

95
 P

in
s 

(J
2)

Po
w

er
/ G

N
D

D
IP

 S
w

itc
h

Pu
sh

-b
ut

to
ns

LE
D

s

VG
A

 
In

te
rf

ac
e

PS
/2

 
In

te
rf

ac
e

R
A

M
s

St
er

eo
 C

od
ec

80
51

 U
c

PC
 P

ar
al

le
l 

Po
rt

O
sc

ill
at

or

Function U
W

-F
PG

A
 

B
O

A
R

D
 P

in

1 LSB0 A4 Left LED segment; RAM address line P35
2 LSB1 A7 Left LED segment; RAM address line P36
3 LSB2 A5 Left LED segment; RAM address line P29
4 Uncommitted XS95 I/O pin
5 DIPSW4 SDOUT P1.3 DIP switch; codec serial data output; uC I/O P24
6 DIPSW1 LCEB P1.0 DIP switch; left RAM chip-enable, uC I/O port P19
7 DIPSW2 RCEB P1.1 DIP switch; right RAM chip-enable, uC I/O port P20
9 CLK XS Board oscillator

10 RESETB XTAL1 Pushbutton; uC clock P56
11 DIPSW3 MCLK P1.2 DIP switch; codec master clock; uC I/O port P23
12 Uncommitted XS95 I/O pin
13 PSENB uC program store-enable
14 S5 RED1 XS Board LED segment; VGA color signal
15 S6 HSYNCB XS Board LED segment; VGA horiz. sync.
17 S3 GREEN1 XS Board LED segment; VGA color signal
18 S4 RED0 XS Board LED segment; VGA color signal
19 S2 GREEN0 XS Board LED segment; VGA color signal
20 ALEB uC address-latch-enable
21 S0 BLUE0 XS Board LED segment; VGA color signal
23 S1 BLUE1 XS Board LED segment; VGA color signal
25 Uncommitted XS95 I/O pin
26 KB_CLK P3.4 (T0) PS/2 keyboard clock; uC I/O port
28 JTAG TDI; DIN
29 JTAG TMS
30 JTAG TCK; CCLK
31 P3.0 (RXD) uC I/O port
32 P3.7 (RD_) uC I/O port
33 P3.5 (T1) uC I/O port
34 RDPB P2.7 Right LED decimal-point; RAM address line; uC I/O port P41
35 DB8 D7 P0.7 LED; RAM data line; uC muxed address/data line P61
36 DB7 D6 P0.6 LED; RAM data line; uC muxed address/data line P62
37 DB6 D5 P0.5 LED; RAM data line; uC muxed address/data line P65
39 DB5 D4 P0.4 LED; RAM data line; uC muxed address/data line P66
40 DB4 D3 P0.3 LED; RAM data line; uC muxed address/data line P57
41 DB3 D2 P0.2 LED; RAM data line; uC muxed address/data line P58
43 DB2 D1 P0.1 LED; RAM data line; uC muxed address/data line P59
44 DB1 D0 P0.0 LED; RAM data line; uC muxed address/data line P60
45 RST uC reset
46 CCLK PC_D0 Codec control line; PC parallel port data output
47 CDIN PC_D1 Codec control line; PC parallel port data output
48 CSB PC_D2 Codec control line; PC parallel port data output
49 GND Power supply ground
50 PC_D3 PC parallel port data output
51 PC_D4 PC parallel port data output
52 PC_D5 PC parallel port data output
53 RSB4 A12 P2.4 Right LED segment; RAM address line; uC I/O port P48
54 RSB2 A10 P2.2 Right LED segment; RAM address line; uC I/O port P45
55 RSB3 A11 P2.3 Right LED segment; RAM address line; uC I/O port P51
56 RSB1 A9 P2.1 Right LED segment; RAM address line; uC I/O port P47
57 RSB5 A13 P2.5 Right LED segment; RAM address line; uC I/O port P50
58 RSB0 A8 P2.0 Right LED segment; RAM address line; uC I/O port P46
59 JTAG TDO; DOUT
61 RSB6 A14 P2.6 Right LED segment; RAM address line; uC I/O port P49
62 OEB RAM output-enable
63 WEB P3.6 (WR_) RAM write-enable; uC I/O port
65 CEB XS Board RAM chip-enable
66 DIPSW7 LRCK P1.6 PC_S5 DIP switch; codec left-right channel select; uC I/O port; PC P27
68 P3.3 (INT1_) uC I/O port
69 P3.2 (INT0_) uC I/O port
70 DIPSW8 KB_DATA P3.1 (TX PC_S6 DIP switch; PS/2 keyboard serial data; uC I/O port; PC par P28
71 DIPSW6 SDIN P1.5 PC_S3 DIP switch; codec serial input data; uC I/O port; PC paralle P26
72 DIPSW5 SCLK P1.4 PC_S4 DIP switch; codec serial clock; uC I/O port; PC parallel por P25
74 Uncommitted XS95 I/O pin
75 LSB3 A0 Left LED segment; RAM address line P44
76 Uncommitted XS95 I/O pin
77 Uncommitted XS95 I/O pin
78 +5V +5V power source
79 LSB4 A1 Left LED segment; RAM address line P38
80 PC_D7 PC parallel port data output
81 PC_D6 PC parallel port data output
82 LSB5 A2 Left LED segment; RAM address line P40
83 LSB6 A6 Left LED segment; RAM address line P39
84 LDPB A3 Left LED decimal-point; RAM address line P37

24,67 SPAREBDP VSYNCB P1.7 Pushbutton; XS Board LED decimal-point; VGA horiz. sync P18

 



  

 

Introduction 

This chapter discusses some design examples that you can build using the Xstend Board 
coupled with an XS40 or XS95 Board.  You can find links to the source code for these 
designs at http://www.xess.com/ho03000.html. 

Displaying Switch Settings on the XStend Board LEDs 

This example creates a circuit that displays the settings of the DIP switches on the LEDs 
and LED digits of the XStend and XS Boards.  The particular set of LEDs, which is 
activated, is selected by the SPARE and RESET pushbuttons.  The VHDL code for this 
example is shown in Listing 13. 

The steps for compiling and testing the design using an XS40 combined with an XStend 
Board are as follows: 

 Synthesize the VHDL code in the SWTCH40\SWITCHES.VHD file for an XC4005XL 
FPGA. 

 Compile the synthesized netlist using the SWTCH40.UCF constraint file (Listing 14). 

 Mount an XS40 Board in the XStend Board and attach the downloading cable from 
the XS40 to the PC parallel port.  Apply 9VDC though jack J9 of the XS40.  Place 
shunts on jumpers J4, J7, and J8 of the XStend Board to enable the LED displays.  
Remove the shunt on jumper J17 to keep the XStend codec serial output from 
interfering with the DIP switch logic levels. 

 Download the SWTCH40.BIT file into the XS40/XStend combination with the 
command: XSLOAD SWTCH40.BIT. 

 Set the DIP switches and press the SPARE and RESET pushbuttons.  Observe the 
results on the LEDs. 

 The steps for compiling and testing the design using an XS95 combined with an 
XStend Board are as follows: 

 Synthesize the VHDL code in the SWTCH95\SWITCHES.VHD file for an XC95108 
CPLD. 

 Compile the synthesized netlist using the SWTCH95.UCF constraint file (Listing 15). 

Chapter 

4
Example Designs 

http://www.xess.com/ho03000.html


 

 22 

 Generate an SVF file for the design. 

 Mount an XS95 Board in the XStend Board and attach the downloading cable from 
the XS95 to the PC parallel port.  Apply 9VDC though jack J9 of the XS95.  Place 
shunts on jumpers J4, J7, and J8 of the XStend Board to enable the LED displays.  
Remove the shunt on jumper J17 to keep the XStend codec serial output from 
interfering with the DIP switch logic levels. 

 Download the SWTCH95.SVF file into the XS95/XStend combination with the 
command: XSLOAD SWTCH95.SVF. 

 Set the DIP switches and press the SPARE and RESET pushbuttons.  Observe the 
results on the LEDs. 

• Listing 13: VHDL code for using the XStend LEDs and switches.  

001- LIBRARY IEEE; 
002- USE IEEE.STD_LOGIC_1164.ALL; 
003-  
004- ENTITY switches IS 
005-  PORT 
006-  ( 
007-    dipsw: IN STD_LOGIC_VECTOR(8 DOWNTO 1); -- DIP switches 
008-    spareb: IN STD_LOGIC; -- SPARE pushbutton 
009-    resetb: IN STD_LOGIC; -- RESET pushbutton 
010-    
011-    s: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- XS Board LED digit 
012-    lsb: OUT STD_LOGIC_VECTOR(7 DOWNTO 0); -- XStend left LED digit 
013-    rsb: OUT STD_LOGIC_VECTOR(7 DOWNTO 0); -- XStend right LED digit 
014-    db: OUT STD_LOGIC_VECTOR(8 DOWNTO 1); -- XStend bargraph LED 
015-    
016-    oeb: OUT STD_LOGIC; -- output enable for all RAMs 
017-    rst: OUT STD_LOGIC -- microcontroller reset 
018-  ); 
019- END switches; 
020-  
021- ARCHITECTURE switches_arch OF switches IS 
022- BEGIN 
023-  -- this prevents accidental activation of the RAMs or uC 
024-  oeb <= '1'; -- disable all the RAM output drivers 
025-  rst <= '1'; -- disable the microcontroller 
026-  
027-  -- light the XS Board LED digit with the pattern from the 
028-  -- DIP switches if both pushbuttons are pressed. 
029-  -- these LED segments are active-high. 
030-  s <= dipsw(7 DOWNTO 1) WHEN (spareb='0' AND resetb='0') ELSE 
031-   "0000000"; -- otherwise keep LED digit dark 
032-    
033-  -- light the XStend left LED digit with the pattern from the 
034-  -- DIP switches if the RESET pushbutton is pressed.   
035-  -- these LED segments are active low. 
036-  lsb <= NOT(dipsw) WHEN (spareb='1' AND resetb='0') ELSE 
037-   "11111111"; -- otherwise keep the LED digit dark 
038-    
039-  -- light the XStend right LED digit with the pattern from the 
040-  -- DIP switches if the SPARE pushbutton is pressed. 



 

 23 

041-  -- these LED segments are active low. 
042-  rsb <= NOT(dipsw) WHEN (spareb='0' AND resetb='1') ELSE 
043-   "11111111"; -- otherwise keep the LED digit dark 
044-   
045-  -- light the XStend bargraph LED with the pattern from the 
046-  -- DIP switches if neither pushbutton is pressed  
047-  -- these LED segments are active low. 
048-  db <= NOT(dipsw) WHEN (spareb='1' AND resetb='1') ELSE 
049-   "11111111"; -- otherwise keep the bargraph LED dark 
050- END switches_arch; 

• Listing 14: XS40 UCF file for the LED/switch example. 

001- net s<0> loc=p25; // XS40 board led digit segments 
002- net s<1> loc=p26; 
003- net s<2> loc=p24; 
004- net s<3> loc=p20; 
005- net s<4> loc=p23; 
006- net s<5> loc=p18; 
007- net s<6> loc=p19; 
008- net rst loc=p36; // microcontroller reset  
009- net oeb loc=p61; // RAM output enable 
010- net dipsw<1> loc=p7; // DIP switch inputs 
011- net dipsw<2> loc=p8; 
012- net dipsw<3> loc=p9; 
013- net dipsw<4> loc=p6; 
014- net dipsw<5> loc=p77; 
015- net dipsw<6> loc=p70; 
016- net dipsw<7> loc=p66; 
017- net dipsw<8> loc=p69; 
018- net spareb loc=p67; // SPARE pushbutton input 
019- net resetb loc=p37; // RESET pushbutton input 
020- net lsb<0> loc=p3; // XStend left led digit segments 
021- net lsb<1> loc=p4; 
022- net lsb<2> loc=p5; 
023- net lsb<3> loc=p78; 
024- net lsb<4> loc=p79; 
025- net lsb<5> loc=p82; 
026- net lsb<6> loc=p83; 
027- net lsb<7> loc=p84; 
028- net rsb<0> loc=p59; // XStend right led digit segments 
029- net rsb<1> loc=p57; 
030- net rsb<2> loc=p51; 
031- net rsb<3> loc=p56; 
032- net rsb<4> loc=p50; 
033- net rsb<5> loc=p58; 
034- net rsb<6> loc=p60; 
035- net rsb<7> loc=p28; 
036- net db<1> loc=p41; // XStend bargraph led segments 
037- net db<2> loc=p40; 
038- net db<3> loc=p39; 
039- net db<4> loc=p38; 
040- net db<5> loc=p35; 
041- net db<6> loc=p81; 
042- net db<7> loc=p80; 
043- net db<8> loc=p10; 



 

 24 



 

 25 

 

• Listing 15: XS95 UCF file for the LED/switch example. 

001- net s<0> loc=p21; // XS Board LED digit segments 
002- net s<1> loc=p23; 
003- net s<2> loc=p19; 
004- net s<3> loc=p17; 
005- net s<4> loc=p18; 
006- net s<5> loc=p14; 
007- net s<6> loc=p15; 
008- net rst loc=p45; // microcontroller reset  
009- net oeb loc=p62; // RAM output enable 
010- net dipsw<1> loc=p6; // DIP switch inputs 
011- net dipsw<2> loc=p7; 
012- net dipsw<3> loc=p11; 
013- net dipsw<4> loc=p5; 
014- net dipsw<5> loc=p72; 
015- net dipsw<6> loc=p71; 
016- net dipsw<7> loc=p66; 
017- net dipsw<8> loc=p70; 
018- net spareb loc=p67; // SPARE pushbutton input 
019- net resetb loc=p10; // RESET pushbutton input 
020- net lsb<0> loc=p1; // XStend left LED digit segments 
021- net lsb<1> loc=p2; 
022- net lsb<2> loc=p3; 
023- net lsb<3> loc=p75; 
024- net lsb<4> loc=p79; 
025- net lsb<5> loc=p82; 
026- net lsb<6> loc=p83; 
027- net lsb<7> loc=p84; 
028- net rsb<0> loc=p58; // XStend right LED digit segments 
029- net rsb<1> loc=p56; 
030- net rsb<2> loc=p54; 
031- net rsb<3> loc=p55; 
032- net rsb<4> loc=p53; 
033- net rsb<5> loc=p57; 
034- net rsb<6> loc=p61; 
035- net rsb<7> loc=p34; 
036- net db<1> loc=p44; // XStend bargraph LED segments 
037- net db<2> loc=p43; 
038- net db<3> loc=p41; 
039- net db<4> loc=p40; 
040- net db<5> loc=p39; 
041- net db<6> loc=p37; 
042- net db<7> loc=p36; 
043- net db<8> loc=p35;  



 

 26 

 

Displaying Graphics from RAM Through the VGA Interface 

This section discusses the timing for the signals that drive a VGA monitor and describes a 
VHDL module that will let you drive a monitor with a picture stored in RAM. 

VGA Color Signals 

There are three signals -- red, green, and blue -- that send color information to a VGA 
monitor.  These three signals each drive an electron gun that emits electrons which paint 
one primary color at a point on the monitor screen.  Analog levels between 0 (completely 
dark) and 0.7 V (maximum brightness) on these control lines tell the monitor what 
intensities of these three primary colors to combine to make the color of a dot (or pixel) on 
the monitor’s screen. 

Each analog color input can be set to one of four levels by two digital outputs using a 
simple two-bit digital-to-analog converter (see Figure 7).  The four possible levels on each 
analog input are combined by the monitor to create a pixel with one of 4 × 4 × 4 = 64 
different colors.  So the six digital control lines let us select from a palette of 64 colors.  



 

 27 

 
• Figure 7: Digital-to-analog interface to a VGA monitor. 

VGA Signal Timing 

A single dot of color on a video monitor doesn’t impart much information.  A horizontal line 
of pixels carries a bit more information.  But a frame composed of multiple lines can 
present an image on the monitor screen. A frame of VGA video typically has 480 lines and 
each line usually contains 640 pixels.  In order to paint a frame, there are deflection circuits 
in the monitor that move the electrons emitted from the guns both left-to-right and top-to-
bottom across the screen.  These deflection circuits require two synchronization signals in 
order to start and stop the deflection circuits at the right times so that a line of pixels is 
painted across the monitor and the lines stack up from the top to the bottom to form an 
image.  The timing for the VGA synchronization signals is shown in Figure 8. 

Negative pulses on the horizontal sync signal mark the start and end of a line and ensure 
that the monitor displays the pixels between the left and right edges of the visible screen 
area.  The actual pixels are sent to the monitor within a 25.17 µs window.  The horizontal 
sync signal drops low a minimum of 0.94 µs after the last pixel and stays low for 3.77 µs.  
A new line of pixels can begin a minimum of 1.89 µs after the horizontal sync pulse ends.  
So a single line occupies 25.17 µs of a 31.77 µs interval.  The other 6.6 µs of each line is 
the horizontal blanking interval during which the screen is dark. 

In an analogous fashion, negative pulses on a vertical sync signal mark the start and end 
of a frame made up of video lines and ensure that the monitor displays the lines between 
the top and bottom edges of the visible monitor screen.  The lines are sent to the monitor 



 

 28 

within a 15.25 ms window.  The vertical sync signal drops low a minimum of 0.45 ms after 
the last line and stays low for 64 µs.  The first line of the next frame can begin a minimum 
of 1.02 ms after the vertical sync pulse ends.  So a single frame occupies 15.25 ms of a 
16.784 ms interval.  The other 1.534 ms of the frame interval is the vertical blanking 
interval during which the screen is dark.  

 
• Figure 8: VGA signal timing. 

VGA Signal Generator Algorithm 

Now we have to figure out a process that will send pixels to the monitor with the correct 
timing and framing.  We can store a picture in the RAM of the XS Board.  Then we can 
retrieve the data from the RAM, format it into lines of pixels, and send the lines to the 
monitor with the appropriate pulses on the horizontal and vertical sync pulses. 

The pseudocode for a single frame of this process is shown in Listing 16.  The 
pseudocode has two outer loops: one, which displays the L lines of visible pixels, and 
another, which inserts the V, blank lines and the vertical sync pulse.  Within the first loop, 
there are two more loops: one, which sends the P pixels of each video line to the monitor, 
and another, which inserts the H, blank pixels and the horizontal sync pulse. 



 

 29 

Within the pixel display loop, there are statements to get the next byte from the RAM.  
Each byte contains four two-bit pixels.  A small loop iteratively extracts each pixel to be 
displayed from the lower two bits of the byte.  Then the byte is shifted by two bits so the 
next pixel will be in the right position during the next iteration of the loop. Since it has only 
two bits, each pixel can store one of four colors.  The mapping from the two-bit pixel value 
to the actual values required by the monitor electronics is done by the COLOR_MAP() 
routine. 

• Listing 16: VGA signal generation pseudocode. 

/* send L lines of video to the monitor */ 
for line_cnt=1 to L 
  /* send P pixels for each line */ 
 for pixel_cnt=1 to P 
   /* get pixel data from the RAM */ 
  data = RAM(address) 
  address = address + 1 
   /* RAM data byte contains 4 pixels */ 
  for d=1 to 4 
    /* mask off pixel in the lower two bits */ 
   pixel = data & 00000011 
    /* shift next pixel into lower two bits */ 
    data = data>>2 
    /* get the color for the two-bit pixel */ 
   color = COLOR_MAP(pixel) 
   send color to monitor 
    d = d + 1 
   /* increment by four pixels */ 
   pixel_cnt = pixel_cnt + 4 
  /* blank the monitor for H pixels */ 
 for horiz_blank_cnt=1 to H 
  color = BLANK 
  send color to monitor 
   /* pulse the horizontal sync at the right time */ 
   if horiz_blank_cnt>HB0 and horiz_blank_cnt<HB1 
    hsync = 0 
   else 
    hsync = 1 
  horiz_blank_cnt = horiz_blank_cnt + 1 
 line_cnt = line_cnt + 1 
/* blank the monitor for V lines and insert vertical sync */ 
for vert_blank_cnt=1 to V 
 color = BLANK 
 send color to monitor 
  /* pulse the vertical sync at the right time */ 
 if vert_blank_cnt>VB0 and vert_blank_cnt<VB1 
  vsync = 0 
 else 
  vsync = 1 
 vert_blank_cnt = vert_blank_cnt + 1 
/* go back to start of picture in RAM */ 
address = 0 



 

 30 

Figure 9 shows how to pipeline certain operations to account for delays in accessing data 
from the RAM.  The pipeline has three stages:  

Stage 1: The circuit uses the horizontal and vertical counters to compute the address 
where the next pixel is found in RAM.  The counters are also used to determine the 
firing of the sync pulses and whether the video should be blanked.  The pixel data 
from the RAM, blanking signal, and sync pulses are latched at the end of this stage so 
they can be used in the next stage. 

Stage 2: The circuit uses the pixel data and the blanking signal to determine the binary 
color outputs.  These outputs are latched at the end of this stage. 

Stage 3: The binary color outputs are applied to the DAC, which sets the intensity levels 
for the monitor’s color guns.  The actual pixel is painted on the screen during this 
stage.   

 
• Figure 9: Pipelining of VGA signal generation tasks. 

VGA Signal Generator in VHDL 

The pseudocode and pipeline timing in the last section will help us to understand the 
VHDL code for a VGA signal generator shown in Listing 17.  The inputs and outputs of 
the circuit as defined in the entity declaration are as follows: 

clk: The input for the 12 MHz clock of the XS Board is declared here.  This clock sets the 
maximum rate at which pixels can be sent to the monitor.  The time interval within 
each line for transmitting viewable pixels is 25.17 µs, so this VGA generator circuit can 
only put a maximum of 25.17 ms × 12 MHz = 302 pixels on each line.  For purposes 
of storing images in the RAM, it is convenient to reduce this to 256 pixels per line and 
blank the remaining 46 pixels.  Half of these blank pixels are placed before the 256 
viewable pixels and half are placed after them on a line.  This centers the viewable 
pixels between the left and right edges of the monitor screen. 



 

 31 

reset: This line declares an input, which will reset all the other circuitry to a known state.  

hsyncb, vsyncb: The outputs for the horizontal and vertical sync pulses are declared.  
The hsyncb output is declared as a buffer because it will also be referenced within the 
architecture section as a clock for the vertical line counter. 

rgb: The outputs that control the red, green, and blue color guns of the monitor are 
declared here.  Each gun is controlled by two bits, so there are four possible 
intensities for each color.  Thus, this circuit can produce 4 × 4 × 4 = 64 different colors. 

address, data: These lines declare the outputs for driving the address lines of the RAM 
and the inputs for receiving the data from the RAM. 

ceb, oeb, web: These are the declarations for the outputs which drive the chip-select, 
output-enable, and write-enable control lines of the RAM. 

The preamble of the architecture section declares the following resources: 

hcnt, vcnt: The counters that store the current horizontal position within a line of pixels 
and the vertical position of the line on the screen are declared on these lines.  We will 
call these the horizontal or pixel counter, and the vertical or line counter, respectively.  
The line period is 31.77 µs that is 381 clock cycles, so the pixel counter needs at least 
nine bits of resolution.  Each frame is composed of 528 video lines (only 480 are 
visible, the other 48 are blanked), so a ten bit counter is needed for the line counter. 

pixrg: This is the declaration for the eight-bit register that stores the four pixels received 
from the RAM. 

blank, pblank: This line declares the video blanking signal and its registered counterpart 
that is used in the next pipeline stage. 

Within the main body of the architecture section, these following processes are executed: 

inc_horiz_pixel_counter: This process describes the operation of the horizontal pixel 
counter.  The counter is asynchronously set to zero when the reset input is high.  The 
counter increments on the rising edge of each pixel clock. The range for the horizontal 
pixel counter is [0,380].  When the counter reaches 380, it rolls over to zero on the 
next cycle.  Thus, the counter has a period of 381 pixel clocks.  With a pixel clock of 
12 MHz, this translates to a period of 31.75 µs. 

inc_vert_line_counter: This process describes the operation of the vertical line counter.  
The counter is asynchronously set to zero when the reset input is high.  The counter 
increments on the rising edge of the horizontal sync pulse after a line of pixels is 
completed. The range for the horizontal pixel counter is [0,527].  When the counter 
reaches 527, it rolls over to zero on the next cycle.  Thus, the counter has a period of 
528 lines.  Since the duration of a line of pixels is 31.75 µs, this makes the frame 
interval equal to 16.76 ms. 

generate_horiz_sync: This process describes the operation of the horizontal sync pulse 
generator.  The horizontal sync is set to its inactive high level when the reset is 
activated.  During normal operations, the horizontal sync output is updated on every 
pixel clock.  The sync signal goes low on the cycle after the pixel counter reaches 291 
and continues until the cycle after the counter reaches 337.  This gives a low 



 

 32 

horizontal sync pulse of  (337-291)=46 pixel clocks.  With a pixel clock of 12 MHz, this 
translates to a low-going horizontal sync pulse of 3.83 µs.  The sync pulse starts 292 
clocks after the line of pixels begin, which translates to 24.33 µs.  This is less than the 
26.11 µs we stated before.  The difference of 1.78 ms translates to 21 pixel clocks.  
This time interval corresponds to the 23 blank pixels that are placed before the 256 
viewable pixels (minus two clock cycles for pipelining delays). 

generate_vert_sync: This process describes the operation of the vertical sync pulse 
generator.  The vertical sync is set to its inactive high level when the reset is activated.  
During normal operations, the vertical sync output is updated after every line of pixels 
is completed.  The sync signal goes low on the cycle after the line counter reaches 
493 and continues until the cycle after the counter reaches 495.  This gives a low 
vertical sync pulse of  (495-493)= 2 lines.  With a line interval of 31.75 µs, this 
translates to a low-going vertical sync pulse of 63.5 µs.  The vertical sync pulse starts 
494 × 31.75 µs = 15.68 ms after the beginning of the first video line. 

Line 91: This line describes the computation of the combinatorial blanking signal.  The 
video is blanked after 256 pixels on a line are displayed, or after 480 lines are 
displayed. 

pipeline_blank: This process describes the operation of the pipelined video blanking 
signal.  Within the process, the blanking signal is stored in a register so it can be used 
during the next stage of the pipeline when the color is computed. 

Lines 104 -- 106: On these lines, the RAM is permanently selected and writing to the 
RAM is disabled.  This makes the RAM look like a ROM, which stores video data.  In 
addition, the outputs from the RAM are disabled when the video is blanked since 
there is no need for pixels during the blanking intervals.  This isn’t really necessary 
since no other circuit is trying to access the RAM. 

Line 113: The address in RAM where the next four pixels are stored is calculated by 
concatenating the lower nine bits of the line counter with bits 7,6,5,4,3 and 2 of the 
pixel counter.  With this arrangement, the line counter stores the address of one of 29 
= 512 pages.  Each page contains 26 = 64 bytes.  Each byte contains four pixels, so 
each page stores one line of 256 pixels.  The pixel counter increments through the 
bytes of a page to get the pixels for the current line.  (Note that we don’t need to use 
bits 1 and 0 of the pixel counter when computing the RAM address since each byte 
contains four pixels.)  After the line is displayed, the line counter is incremented to 
point to the next page. 

update_pixel_register: This process describes the operation of the register that holds the 
byte of pixel data read from RAM.  The register is asynchronously cleared when the 
VGA circuit is reset.  The register is updated on the rising edge of each pixel clock.  
The pixel register is loaded with data from the RAM whenever the lowest two bits of 
the pixel counter are both zero.  The active pixel is always in the lower two bits of the 
register.  Each pixel in the RAM data byte is shifted into the active position by right 
shifting the register two bits on each rising clock edge. 

map_pixel_to_rgb: this process describes the process by which the current active pixel is 
mapped into the six bits that drive the red, green and blue color guns.  The register is 
set to zero (which displays as the color black) when the reset input is high.  The color 
register is clocked on the rising edge of the pixel clock since this is the rate at which 
new pixel values arrive.  The value clocked into the register is a function of the pixel 



 

 33 

value and the blanking input.  When the pipelined blanking input is low (inactive), the 
color displayed on the monitor is red, green, blue, or white depending upon whether 
the pixel value is 00, 01, 10, or 11, respectively.  When the pipelined blanking input is 
high, the color register is loaded with zero (black).    

• Listing 17: VHDL code for a VGA generator. 

001- LIBRARY IEEE; 
002- USE IEEE.STD_LOGIC_1164.ALL; 
003- USE IEEE.std_logic_unsigned.ALL; 
004-  
005- ENTITY vga_generator IS 
006-  PORT 
007-  ( 
008-    clk: IN STD_LOGIC; -- VGA dot clock 
009-    reset: IN STD_LOGIC; -- asynchronous reset 
010-    hsyncb: OUT STD_LOGIC; -- horizontal (line) sync 
011-    vsyncb: OUT STD_LOGIC; -- vertical (frame) sync 
012-    rgb: OUT STD_LOGIC_VECTOR(5 DOWNTO 0); -- red,green,blue colors 
013-    address: OUT STD_LOGIC_VECTOR(14 DOWNTO 0);-- address into video RAM 
014-    data: IN STD_LOGIC_VECTOR(7 DOWNTO 0);  -- data from video RAM 
015-    ceb: OUT STD_LOGIC; -- video RAM chip enable 
016-    oeb: OUT STD_LOGIC; -- video RAM output enable 
017-    web: OUT STD_LOGIC -- video RAM write enable 
018-  ); 
019- END vga_generator; 
020-  
021- ARCHITECTURE vga_generator_arch OF vga_generator IS 
022-   SIGNAL hcnt: STD_LOGIC_VECTOR(8 DOWNTO 0); -- horiz. pixel counter 
023-   SIGNAL vcnt: STD_LOGIC_VECTOR(9 DOWNTO 0); -- vertical line counter 
024-   SIGNAL pixrg: STD_LOGIC_VECTOR(7 DOWNTO 0); -- byte register for 4 
pix 
025-   SIGNAL blank: STD_LOGIC; -- video blanking signal 
026-   SIGNAL pblank: STD_LOGIC; -- pipelined video blanking signal 
027-   SIGNAL int_hsyncb: STD_LOGIC; -- internal horizontal sync. 
028- BEGIN 
029-  
030-   inc_horiz_pixel_counter: 
031-   PROCESS(clk,reset) 
032-   BEGIN 
033-     IF reset='1' THEN -- reset asynchronously clears pixel counter 
034-       hcnt <= "000000000"; 
035-     ELSIF (clk'EVENT AND clk='1') THEN 
036-       IF hcnt<380 THEN -- pixel counter resets after 381 pixels 
037-         hcnt <= hcnt + 1; 
038-       ELSE 
039-    hcnt <= "000000000"; 
040-       END IF; 
041-     END IF; 
042-   END PROCESS; 
043-  
044-   inc_vert_line_counter: 
045-   PROCESS(int_hsyncb,reset) 



 

 34 

046-   BEGIN 
047-     IF reset='1' THEN -- reset asynchronously clears line counter 
048-       vcnt <= "0000000000"; 
049-     ELSIF (int_hsyncb'EVENT AND int_hsyncb='1') THEN 
050-       IF vcnt<527 THEN -- vert. line counter rolls-over after 528 lines 
051-    vcnt <= vcnt + 1; 
052-       ELSE 
053-    vcnt <= "0000000000"; 
054-       END IF; 
055-     END IF; 
056-   END PROCESS; 
057-  
058-   generate_horiz_sync: 
059-   PROCESS(clk,reset) 
060-   BEGIN 
061-     IF reset='1' THEN -- reset asynchronously inactivates horiz sync 
062-       int_hsyncb <= '1'; 
063-     ELSIF (clk'EVENT AND clk='1') THEN 
064-       IF (hcnt>=291 AND hcnt<337) THEN 
065-       -- horiz. sync is low in this interval to signal start of new line 
066-         int_hsyncb <= '0'; 
067-       ELSE 
068-    int_hsyncb <= '1'; 
069-       END IF; 
070-     END IF; 
071-     hsyncb <= int_hsyncb; -- output the horizontal sync signal 
072-   END PROCESS; 
073-  
074-   generate_vert_sync: 
075-   PROCESS(int_hsyncb,reset) 
076-   BEGIN 
077-     IF reset='1' THEN -- reset inactivates vertical sync 
078-       vsyncb <= '1'; 
079-     -- vertical sync is recomputed at the end of every line of pixels 
080-     ELSIF (int_hsyncb'EVENT AND int_hsyncb='1') THEN 
081-       IF (vcnt>=490 AND vcnt<492) THEN 
082-       -- vert. sync is low in this interval to signal start of new frame 
083-         vsyncb <= '0'; 
084-       ELSE 
085-    vsyncb <= '1'; 
086-       END IF; 
087-     END IF; 
088-   END PROCESS; 
089-  
090-   -- blank video outside of visible region: (0,0) -> (255,479) 
091-   blank <= '1' WHEN (hcnt>=256 OR vcnt>=480) ELSE '0'; 
092-   -- store the blanking signal for use in the next pipeline stage 
093-   pipeline_blank: 
094-   PROCESS(clk,reset) 
095-   BEGIN 
096-     IF reset='1' THEN 
097-       pblank <= '0'; 
098-     ELSIF (clk'EVENT AND clk='1') THEN 
099-       pblank <= blank; 



 

 35 

100-     END IF; 
101-   END PROCESS; 
102-  
103-   -- video RAM control signals 
104-   ceb <= '0'; -- enable the RAM 
105-   web <= '1'; -- disable writing to the RAM 
106-   oeb <= blank; -- enable the RAM outputs when video is not blanked 
107-  
108-   -- The video RAM address is built from the lower 9 bits of the vert 
109-   -- line counter and bits 7-2 of the horizontal pixel counter. 
110-   -- Each byte of the RAM contains four 2-bit pixels.  As an example, 
111-   -- the byte at address ^h1234=^b0001,0010,0011,0100 contains the pixels 
112-   -- at (row,col)=(^h048,^hD0),(^h048,^hD1),(^h048,^hD2),(^h048,^hD3). 
113-   address <= vcnt(8 DOWNTO 0) & hcnt(7 DOWNTO 2); 
114-  
115-   update_pixel_register: 
116-   PROCESS(clk,reset) 
117-   BEGIN 
118-     IF reset='1' THEN -- clear the pixel register on reset 
119-       pixrg <= "00000000"; 
120-     -- pixel clock controls changes in pixel register 
121-     ELSIF (clk'EVENT AND clk='1') THEN 
122-       -- the pixel register is loaded with the contents of the video 
123-       -- RAM location when the lower two bits of the horiz. counter 
124-       -- are both zero.  The active pixel is in the lower two bits 
125-       -- of the pixel register.  For the next 3 clocks, the pixel 
126-       -- register is right-shifted by two bits to bring the other 
127-       -- pixels in the register into the active position. 
128-       IF hcnt(1 DOWNTO 0)="00" THEN 
129-         pixrg <= data; -- load 4 pixels from RAM 
130-       ELSE 
131-         pixrg <= "00" & pixrg(7 DOWNTO 2); -- R-shift pixel register 
132-       END IF; 
133-     END IF; 
134-   END PROCESS; 
135-  
136-   -- the color mapper translates each 2-bit pixel into a 6-bit 
137-   -- color value.  When the video signal is blanked, the color 
138-   -- is forced to zero (black). 
139-   map_pixel_to_rgb: 
140-   PROCESS(clk,reset) 
141-   BEGIN 
142-     IF reset='1' THEN -- blank the video on reset 
143-       rgb <= "000000"; 
144-     ELSIF (clk'EVENT AND clk='1') THEN -- update color every clock 
145-       -- map the pixel to a color if the video is not blanked 
146-       IF pblank='0' THEN 
147-    CASE pixrg(1 DOWNTO 0) IS 
148-      WHEN "00"   => rgb <= "110000"; -- red 
149-      WHEN "01"   => rgb <= "001100"; -- green 
150-      WHEN "10"   => rgb <= "000011"; -- blue 
151-      WHEN OTHERS => rgb <= "111111"; -- white 
152-    END CASE; 
153-       ELSE -- otherwise, output black if the video is blanked 



 

 36 

154-    rgb <= "000000"; -- black 
155-       END IF; 
156-     END IF; 
157-   END PROCESS; 
158-  
159- END vga_generator_arch; 

• Listing 18: XS40 UCF file for the VGA signal generator. 

001- net clk  loc=p13; 
002- net reset  loc=p44; 
003- net data<0> loc=p41; 
004- net data<1> loc=p40; 
005- net data<2> loc=p39; 
006- net data<3> loc=p38; 
007- net data<4> loc=p35; 
008- net data<5> loc=p81; 
009- net data<6> loc=p80; 
010- net data<7> loc=p10; 
011- net address<0> loc=p3; 
012- net address<1> loc=p4; 
013- net address<2> loc=p5; 
014- net address<3> loc=p78; 
015- net address<4> loc=p79; 
016- net address<5> loc=p82; 
017- net address<6> loc=p83; 
018- net address<7> loc=p84; 
019- net address<8> loc=p59; 
020- net address<9> loc=p57; 
021- net address<10> loc=p51; 
022- net address<11> loc=p56; 
023- net address<12> loc=p50; 
024- net address<13> loc=p58; 
025- net address<14> loc=p60; 
026- net ceb  loc=p65; 
027- net web  loc=p62; 
028- net oeb  loc=p61; 
029- net rgb<0>  loc=p25; 
030- net rgb<1>  loc=p26; 
031- net rgb<2>  loc=p24; 
032- net rgb<3>  loc=p20; 
033- net rgb<4>  loc=p23; 
034- net rgb<5>  loc=p18; 
035- net hsyncb  loc=p19; 
036- net vsyncb  loc=p67; 



 

 37 

 

• Listing 19: XS95 UCF file for the VGA signal generator. 

001- net clk  loc=p9; 
002- net reset  loc=p46; 
003- net data<0> loc=p44; 
004- net data<1> loc=p43; 
005- net data<2> loc=p41; 
006- net data<3> loc=p40; 
007- net data<4> loc=p39; 
008- net data<5> loc=p37; 
009- net data<6> loc=p36; 
010- net data<7> loc=p35; 
011- net address<0> loc=p75; 
012- net address<1> loc=p79; 
013- net address<2> loc=p82; 
014- net address<3> loc=p84; 
015- net address<4> loc=p1; 
016- net address<5> loc=p3; 
017- net address<6> loc=p83; 
018- net address<7> loc=p2; 
019- net address<8> loc=p58; 
020- net address<9> loc=p56; 
021- net address<10> loc=p54; 
022- net address<11> loc=p55; 
023- net address<12> loc=p53; 
024- net address<13> loc=p57; 
025- net address<14> loc=p61; 
026- net ceb  loc=p65; 
027- net web  loc=p63; 
028- net oeb  loc=p62; 
029- net rgb<0>  loc=p21; 
030- net rgb<1>  loc=p23; 
031- net rgb<2>  loc=p19; 
032- net rgb<3>  loc=p17; 
033- net rgb<4>  loc=p18; 
034- net rgb<5>  loc=p14; 
035- net hsyncb  loc=p15; 
036- net vsyncb  loc=p24;  

The steps for compiling and testing the VGA design using an XS40 combined with an 
XStend Board are as follows: 

1. Synthesize the VHDL code in the VGA40\VGA.VHD file for an XC4005XL FPGA. 

2. Compile the synthesized netlist using the VGA40.UCF constraint file (Listing 18). 

3. Mount an XS40 Board in the XStend Board and attach the downloading cable 
from the XS40 to the PC parallel port.  Apply 9VDC though jack J9 of the XS40.  
Place shunts on jumpers J4, J7, and J8 of the XStend Board to enable the LED 
displays.  Remove the shunt on jumper J17 to keep the XStend codec serial 



 

 38 

output from interfering with the DIP switch logic levels.  Set all the DIP switches to 
the OPEN position. 

4. Attach a VGA monitor to the DB-HD15 connector (J5). 

5. Download the VGA40.BIT file and a video test pattern into the XS40/XStend 
combination with the command: XSLOAD TESTPATT.HEX VGA40.BIT. 

6. Release the reset to the VGA circuitry with the command: XSPORT 0. 

7. Observe the color bars on the monitor screen. 

The steps for compiling and testing the design using an XS95 combined with an XStend 
Board are as follows: 

1. Synthesize the VHDL code in the VGA95\VGA.VHD file for an XC95108 CPLD. 

2. Compile the synthesized netlist using the VGA95.UCF constraint file (Listing 19). 

3. Generate an SVF file for the design. 

4. Mount an XS95 Board in the XStend Board and attach the downloading cable 
from the XS95 to the PC parallel port.  Apply 9VDC though jack J9 of the XS40.  
Place shunts on jumpers J4, J7, and J8 of the XStend Board to enable the LED 
displays.  Remove the shunt on jumper J17 to keep the XStend codec serial 
output from interfering. Set all the DIP switches to the OPEN position. 

5. Attach a VGA monitor to the DB-HD15 connector (J5). 

6. Download the VGA95.SVF file and a video test pattern into the XS95/XStend 
combination with the command: XSLOAD TESTPATT.HEX VGA95.SVF. 

7. Release the reset to the VGA circuitry with the command: XSPORT 0. 

8. Observe the color bars on the monitor screen. 

Reading Keyboard Scan Codes Through the PS/2 Interface 

This example creates a circuit that accepts scan codes from a keyboard attached to the 
PS/2 interface of the XStend Board.  The binary pattern of the scan code is displayed on 
the bargraph LEDs.  In addition, if a scan code for one of the keys '0'—'9' arrives, then the 
numeral will be displayed on the right LED display of the XStend Board. 

The format of the scan code transmissions from the keyboard are shown in Figure 10.  
The keyboard electronics drive the clock and data lines.  The start of a scan code 
transmission is indicated by a low level on the data line on the falling edge of the clock.  
The eight bits of the scan code follow (starting with the least-significant bit) on successive 
falling clock edges.  These are followed by an odd-parity bit and then a high-level stop bit. 

When the clock line goes high after the stop bit, the receiver (in this case, the FPGA or 
CPLD on the XS Board inserted in the XStend Board) can pull the clock line low to inhibit 
any further transmissions.  After the clock line is released and it returns to a high level, the 



 

 39 

keyboard can send another scan code.  If the receiver never pulls the clock line low, then 
the keyboard will send scan codes whenever a key is pressed. 

 

• Figure 10: Keyboard data transmission waveforms. 

The VHDL code for this example is shown in . The inputs and outputs of the circuit as 
defined in the entity declaration are as follows: 

rst: This output drives the reset pin of the microcontroller on the XS Board. 

oeb: This output drives the output-enable pin of the RAM on the XS Board. 

kb_data: The scan code bits enter through this input. 

kb_clk: The keyboard clock signal enters through this input. 

db: These outputs drive the segments of the bargraph LED on the XStend Board. 

rsb: These outputs drive the segments of the right LED digit on the XStend Board. 

Within the main body of the architecture section, these operations occur: 

Lines 22 & 23: The microcontroller reset pin and the RAM output-enable pin are driven 
high so these chips cannot interfere while receiving data from the keyboard. 

Lines 25 & 26: The keyboard clock passes through an input buffer and then a global clock 
buffer before it reaches the rest of the circuitry.  (These buffers are declared on lines 
18 and 19, respectively.)  The global clock buffer distributes the clock signal with 
minimal skew in the XS40 Board FPGA.  These statements are not used with the 
CPLD in the XS95 Board. 

gather_scancode: On every falling edge of kb_clk, this process shifts the data bit on the 
kb_data input into the most-significant bit of a 10-bit shift register.  After 11 clock 
cycles, the lower 8 bits of the register will contain the scan code, the upper 2 bits will 
store the stop and parity bits, and the start bit will have been shifted through the entire 
register and discarded. 

Line 38: The value in the shift register is inverted and applied to the segments of the LED 
bargraph.  Since the bargraph segments are active-low, a segment will light for every 
‘1’ bit in the shift register.  The LED segment drivers are not registered so there will be 
some flickering as the shift register contents change. 



 

 40 

Lines 40-51: If the scan code in the shift register matches the codes for the digits 0-9, 
then the right LED digit segments will be activated to display the corresponding digit.  
If the scan code does not match one of these codes, the letter ‘E’ is displayed. 

The steps for compiling and testing the design using an XS40 combined with an XStend 
Board are as follows: 

1. Synthesize the VHDL code in the KEYBRD40\KEYBRD.VHD for an XC4005XL 
FPGA. 

2. Compile the synthesized netlist using the KEYBRD40.UCF constraint file (Listing 
21). 

3. Mount an XS40 Board in the XStend Board and attach the downloading cable 
from the XS40 to the PC parallel port.  Apply 9VDC though jack J9 of the XS40. 
Place shunts on jumpers J4, J7, and J8 to enable the LEDs. Remove the shunt 
on jumper J17 to keep the XStend codec from interfering.  Set all the DIP 
switches to the OPEN position. 

4. Attach a keyboard to the PS/2 connector of the XStend Board. 

5. Download the KEYBRD40.BIT file into the XS40/XStend combination with the 
command: XSLOAD KEYBRD40.BIT. 

6. Press keys on the keyboard and observe the results on the LED displays. 

The steps for compiling and testing the design using an XS95 combined with an XStend 
Board are as follows: 

1. Synthesize the VHDL code in the KEYBRD95\KEYBRD.VHD for an XC95108 
CPLD. 

2. Compile the synthesized netlist using the KEYBRD95.UCF constraint file (Listing 
22). 

3. Generate an SVF file for the design. 

4. Mount an XS95 Board in the XStend Board and attach the downloading cable 
from the XS95 to the PC parallel port.  Apply 9VDC though jack J9 of the XS95. 
Place shunts on jumpers J4, J7, and J8 to enable the LEDs. Remove the shunt 
on jumper J17 to keep the XStend codec from interfering.  Set all the DIP 
switches to the OPEN position. 

5. Download the KEYBRD95.SVF file into the XS95/XStend combination with the 
command: XSLOAD KEYBRD95.SVF. 

6. Press keys on the keyboard and observe the results on the LED displays. 



 

 41 

• Listing 20: VHDL code for receiving keyboard scan codes from the PS/2 interface.  

001- LIBRARY IEEE; 
002- USE IEEE.STD_LOGIC_1164.ALL; 
003-  
004- ENTITY kbd_read IS 
005-   PORT 
006-   ( 
007-     rst: OUT STD_LOGIC;  -- uC reset 
008-     oeb: OUT STD_LOGIC;  -- RAM output enable 
009-     kb_data: IN STD_LOGIC; -- serial data from the keyboard 
010-     kb_clk: IN STD_LOGIC; -- clock from the keyboard 
011-     db: OUT STD_LOGIC_VECTOR(8 DOWNTO 1); -- bargraph LED 
012-     rsb: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) -- right LED digit 
013-   ); 
014- END kbd_read; 
015-  
016- ARCHITECTURE kbd_read_arch OF kbd_read IS 
017- SIGNAL scancode: STD_LOGIC_VECTOR(9 DOWNTO 0); 
018- COMPONENT ibuf PORT(i: IN STD_LOGIC; o: OUT STD_LOGIC); END COMPONENT; 
019- COMPONENT bufg PORT(i: IN STD_LOGIC; o: OUT STD_LOGIC); END COMPONENT; 
020- SIGNAL buf_clk0, buf_clk1: STD_LOGIC; 
021- BEGIN 
022-   rst <= '1'; -- keep the uC in the reset state 
023-   oeb <= '1'; -- disable the RAM output drivers 
024-  
025-   b0: ibuf PORT MAP(i=>kb_clk,o=>buf_clk0);   -- buffer the clock from 
026-   b1: bufg PORT MAP(i=>buf_clk0,o=>buf_clk1); -- the keyboard 
027-  
028-   -- shift keyboard data into the MSb of the scancode register 
029-   -- on the falling edge of the keyboard clock 
030-   gather_scancode: 
031-   PROCESS(buf_clk1,scancode) 
032-   BEGIN 
033-     IF(buf_clk1'EVENT AND buf_clk1='0') THEN 
034-       scancode <= kb_data & scancode(9 DOWNTO 1); 
035-     END IF; 
036-   END PROCESS; 
037-  
038-   db <= NOT(scancode(7 DOWNTO 0)); -- show scancode on the bargraph 
039-   
040-   -- display the key that was pressed on the right LED digit 
041-  rsb <=  "1101101" WHEN scancode(7 DOWNTO 0)="00010110" ELSE -- 1 
042-          "0100010" WHEN scancode(7 DOWNTO 0)="00011110" ELSE -- 2 
043-          "0100100" WHEN scancode(7 DOWNTO 0)="00100110" ELSE -- 3 
044-          “1000101" WHEN scancode(7 DOWNTO 0)="00100101" ELSE -- 4 
045-          "0010100" WHEN scancode(7 DOWNTO 0)="00101110" ELSE -- 5 
046-          "0010000" WHEN scancode(7 DOWNTO 0)="00110110" ELSE -- 6 
047-          "0101101" WHEN scancode(7 DOWNTO 0)="00111101" ELSE -- 7 
048-          "0000000" WHEN scancode(7 DOWNTO 0)="00111110" ELSE -- 8 
049-          "0000100" WHEN scancode(7 DOWNTO 0)="01000110" ELSE -- 9 
050-          "0001000" WHEN scancode(7 DOWNTO 0)="01000101" ELSE -- 0 



 

 42 

051-          "0010010";       -- E 
052- END kbd_read_arch; 

• Listing 21: XS40 UCF file for the PS/2 keyboard interface.  

001- net rst  loc=p36; 
002- net oeb  loc=p61; 
003- net kb_data loc=p69; 
004- net kb_clk  loc=p68; 
005- net rsb<0>  loc=p59; 
006- net rsb<1>  loc=p57; 
007- net rsb<2>  loc=p51; 
008- net rsb<3>  loc=p56; 
009- net rsb<4>  loc=p50; 
010- net rsb<5>  loc=p58; 
011- net rsb<6>  loc=p60; 
012- net db<1>  loc=p41; 
013- net db<2>  loc=p40; 
014- net db<3>  loc=p39; 
015- net db<4>  loc=p38; 
016- net db<5>  loc=p35; 
017- net db<6>  loc=p81; 
018- net db<7>  loc=p80; 
019- net db<8>  loc=p10; 

• Listing 22: XS95 UCF file for the PS/2 keyboard interface. 

001- net rst  loc=p45; 
002- net oeb  loc=p62; 
003- net kb_data loc=p70; 
004- net kb_clk  loc=p26; 
005- net rsb<0>  loc=p58; 
006- net rsb<1>  loc=p56; 
007- net rsb<2>  loc=p54; 
008- net rsb<3>  loc=p55; 
009- net rsb<4>  loc=p53; 
010- net rsb<5>  loc=p57; 
011- net rsb<6>  loc=p61; 
012- net db<1>  loc=p44; 
013- net db<2>  loc=p43; 
014- net db<3>  loc=p41; 
015- net db<4>  loc=p40; 
016- net db<5>  loc=p39; 
017- net db<6>  loc=p37; 
018- net db<7>  loc=p36; 
019- net db<8>  loc=p35;  



 

 43 

 

Inputting and Outputting Stereo Signals Through the Codec 

The stereo codec on the XStend Board is capable of digitizing two analog signals to 20 
bits of resolution while simultaneously generating two analog signals from 20-bit values.  A 
high-level view of the codec chip is shown on the right-half of Figure 11.  Two analog 
inputs (which are typically the left and right channels of a stereo audio signal) enter the 
codec and are digitized into two 20-bit values by analog-to-digital converters (ADCs).  
These values are loaded into shift registers, which are shifted out of a single pin of the 
codec under control of a shift clock and a left/right channel selector control input.  At the 
same time, 20-bit values are alternately shifted into two shift registers in the codec, which 
feed digital-to-analog converters (DACs) that drive two analog outputs.  Signals on these 
outputs are typically the left and right channels of a stereo audio signal. 

If the FPLD is handling these values in a bit-parallel manner, then the FPLD must contain 
a set of shift registers which convert the serial input stream into 20-bit values and another 
set which converts 20-bit values into a serial output stream.  This is shown in the left-half 
of Figure 11.  The gating of these shift registers onto the serial input and output pins is 
synchronized with the same left/right channel select signal used by the codec chip. 

In addition to the shift registers, the FPLD needs circuitry to read and write them and to 
indicate when they are full and empty.  Since the codec ADCs and DACs generate and 
consume data at a set sample rate, it is also necessary to build circuitry which detects 
overflow and underflow of the FPLD shift registers if they are not read or written in time. 

 
• Figure 11: Connections between the XStend codec chip and the XS Board FPGA or CPLD. 

The FPLD circuitry can be decomposed into three modules: 

 a clock generator module which outputs the serial data shift clock and the left/right 
channel select signals; 



 

 44 

 a channel module which contains the shift registers, buffers, read/write control, and 
overflow/underflow detection circuitry for a single input/output stream of data; 

 a top-level module, which combines the clock generator module with two channel 
modules to form a complete codec, interface circuit. 

The VHDL code for the clock generator module is detailed in Listing 23. The inputs and 
outputs of the clock generator as defined in the entity declaration are as follows: 

clk: This is the main clock input, which is typically the 12 MHz clock from the XS Board. 

reset: This input synchronously resets the counter the clock generator. 

mclk: This output is the master clock for the codec chip. 

sclk: This output is the clock for synchronizing serial data transfers between the FPLD 
and the codec. 

lrck: This output controls the activation of the left and right channel circuitry in the codec 
and the FPLD. 

bit_cntr: These outputs indicate the current bit being transmitted and received in the serial 
data streams. 

subcycle_cntr: The duration of each serial data bit is divided into four phases and these 
outputs indicate the current phase. 

Within the main body of the clock generator architecture section, these operations occur: 

gen_clock: This process increments the sequencing counter and toggles the left/right 
channel selector when the count reaches the duration for which a channel is active.  
The codec chip requires that the channel duration be either 128, 192, or 256 master 
clock periods in length.  Thus, the total time to handle both channels is 256, 384, or 
512 clock periods.  This sets the sampling rate.  So using a channel duration of 128 
with a 12 MHz clock gives a sampling rate of 46.875 KHz that is sufficient for audio. 

Lines 45-47: The various clocks are output on these lines.  The master clock and left/right 
selector have already been discussed.  The serial data shift clock is one-quarter of the 
master clock.  So transmitting or receiving a 20-bit value will require 4 × 20 = 80 clock 
periods, and this will fit within the shortest possible channel duration. 

Line 48: The position of the current data bit in the serial stream for a channel is output 
here.  Since each bit has a duration of four clock periods, the position of the bit in the 
stream is just the sequence counter with the two least-significant bits removed. 

Line 49: The position within a bit is output on this line.  This is given by the two least-
significant bits of the sequence counter. 



 

 45 

 

• Listing 23: VHDL code for the codec clock generator module. 

001- LIBRARY IEEE,codec; 
002- USE IEEE.std_logic_1164.ALL; 
003- USE IEEE.std_logic_unsigned.ALL; 
004- USE codec.codec.ALL; 
005-  
006- ENTITY clkgen IS 
007-   GENERIC 
008-   ( 
009-     CHANNEL_DURATION: positive := 128 -- must be 128 
010-   ); 
011-   PORT 
012-   ( 
013-     -- interface I/O signals 
014-     clk: IN std_logic;    -- clock input 
015-     reset: IN std_logic;  -- synchronous active-high reset 
016-     -- codec chip clock signals 
017-     mclk: OUT std_logic;  -- master clock output to codec 
018-     sclk: OUT std_logic;  -- serial data clock to codec 
019-     lrck: OUT std_logic;  -- left/right codec channel select 
020-     bit_cntr: OUT std_logic_vector(5 DOWNTO 0); 
021-     subcycle_cntr: OUT std_logic_vector(1 DOWNTO 0) 
022-   ); 
023- END clkgen; 
024-  
025- ARCHITECTURE clkgen_arch OF clkgen IS 
026- SIGNAL lrck_int: std_logic; 
027- SIGNAL seq: std_logic_vector(7 DOWNTO 0); 
028- BEGIN 
029-   gen_clock: 
030-   PROCESS(clk,seq,lrck_int) 
031-   BEGIN 
032-     IF (clk'event AND clk='1') THEN 
033-       IF(reset=YES) THEN  -- synchronous reset 
034-         seq <= (OTHERS=>'0'); 
035-         lrck_int <= LEFT; -- start with left channel of codec 
036-       ELSIF(seq=CHANNEL_DURATION-1) THEN 
037-         seq <= (OTHERS=>'0'); -- reset sequencer every channel period 
038-         lrck_int <= NOT(lrck_int);  -- toggle channel sel every period 
039-       ELSE 
040-         seq <= seq+1; 
041-         lrck_int <= lrck_int; 
042-       END IF; 
043-     END IF; 
044-   END PROCESS; 
045-   lrck <= lrck_int; -- output the channel selector to the codec 
046-   mclk <= clk;    -- codec master clock equals input clock 
047-   sclk <= seq(1); -- serial data shift clock = 1/4 master clock 
048-   bit_cntr <= seq(7 DOWNTO 2); 



 

 46 

049-   subcycle_cntr <= seq(1 DOWNTO 0); 
050- END clkgen_arch; 

The VHDL code for the channel module is shown in Listing 24.  The inputs and outputs of 
the clock generator as defined in the entity declaration are as follows: 

clk: This is the main clock input, which is typically the 12 MHz clock from the XS Board. 

reset: This input synchronously resets the channel. 

chan_on: A high level on this input activates the channel.  This input is usually controlled 
by the left/right channel selector. 

bit_cntr: These inputs inform the channel of the index of the serial data bit currently being 
transmitted and received. 

chan_sel: A high level on this input enables the interface that lets the shift registers be 
read and written.  (Note that despite its name, this input is not controlled by the 
left/right channel selector.) 

rd: A high level on this input outputs the value stored in the shift register connected to the 
ADC. 

wr: A high level on this input writes a new value into the shift register connected to the 
DAC. 

adc_out: The bits stored in the ADC shift register are read out in parallel through these 
outputs.. 

dac_in: The DAC shift register is loaded in parallel with bits passed through these inputs. 

adc_out_rdy: This output goes high after all the bits have been shifted from the codec 
into the ADC shift register. 

adc_overrun: This output goes high if new serial data is shifted into the ADC shift register 
before the old contents have been read out through the parallel outputs. 

dac_in_rdy: This output goes high after all the bits in the DAC shift register have been 
shifted over to the codec. 

dac_underrun: This output goes high if the DAC shift register starts shifting data over to 
the codec before it has been written through the parallel inputs.   

sdin: The serial data stream for the codec DAC is shifted out through this output.  (Note 
that this output takes its name from the pin it is connected to on the codec chip; it is 
not an input.) 

sdout: The serial data stream from the codec ADC is shifted in through this input.  (Note 
that this input takes its name from the pin it is connected to on the codec chip; it is not 
an output.) 

Within the main body of the channel module architecture section, these operations occur: 



 

 47 

rcv_adc: This process receives serial data from the ADC in the codec.  The ADC shift 
register is cleared upon reset and a flag is set which indicates the shift register does 
not contain all the bits from the ADC.  Once the reset is removed and the channel is 
active, bits are shifted into the register during the third subcycle of each bit period (the 
subcycles are numbered 0, 1, 2 and 3).  Accepting data on the third subcycle gives 
the serial data bit plenty of time to stabilize.  Bits 1,2,..., up to the width of the ADC 
data value are pushed into the shift register.  Then the shifting stops.  The shift 
register is marked as ‘not full’ as soon as a single bit is shifted in so that the value will 
not be inadvertently read.  The shift register status changes to full as soon as the last 
bit enters the shift register. 

Line 66: The contents of the shift register are output in a parallel format on this line.  
These outputs are not latched and will change as bits are shifted into the register. 

Line 69: A flag is maintained that indicates whether the contents of the ADC shift register 
have been read.  The flag is set when the ADC register for the channel is full and it is 
selected for a read operation.  The flag will stay set after the read operation is 
complete.  Reading the register does not empty it.  The shift register is no longer full 
only when the first bit of the next sample is shifted into it.  This will reset the read flag. 

read_adc: This process updates the flag that indicates whether the ADC shift register has 
been read.  

Lines 84—85: A status output is asserted when the data in the ADC shift register is ready 
for reading.  Reads are permitted when the register is full and has not yet been read.  
This output is cleared as soon as a read occurs or new data is shifted into the register. 

detect_adc_overrun: This process monitors the ADC shift register and flags an error 
condition if the register begins accepting bits from the current sample period but the 
data from the previous period has not yet been read.  

tx_dac: This process transmits serial data to the DAC in the codec.  The DAC shift 
register is cleared upon reset and a flag is set which indicates the shift register 
contains no bits for the DAC.  After the reset is removed, the register can be loaded in 
parallel if the channel is selected for a write operation.  If no write operation is in 
process but the channel is active, then data is shifted out to the codec on the third 
subcycle.  (This gives the data some hold time so the codec chip can clock it in 
reliably.)  During the first bit period, a flag is set which indicates the register is no 
longer empty and a serial transmission is in process.  Then bits 1,2,..., up to the width 
of the DAC data value are shifted out.  As the last bit is output, the flag is set to show 
the shift register is now empty. 

Line 123: The DAC serial data input of the codec chip is driven by the most-significant bit 
of the DAC shift register. 

Line 126: A flag is maintained that indicates whether the DAC shift register has been 
written.  The flag is set when the DAC register for the channel is empty and it is 
selected for a write operation.  The flag will stay set after the write operation is 
complete.  Writing the register does not fill it.  The shift register is full only when the 
first bit of the next sample period is shifted out of it.  This will reset the write flag. 

write_dac: This process updates the flag that indicates whether the DAC shift register has 
been written.  



 

 48 

Lines 141—142: A status output is asserted when the DAC shift register is ready to be 
written with new input data.  Writes are permitted when the register is empty and has 
not yet been written.  This output is cleared as soon as a write occurs or when data 
bits start shifting out of the register. 

detect_dac_underrun: This process monitors the DAC shift register and flags an error 
condition if the register starts shifting out data but has not yet been written with a new 
data value for the current sample period.  

• Listing 24: VHDL code for the codec channel module. 

001- LIBRARY IEEE,codec; 
002- USE IEEE.std_logic_1164.ALL; 
003- USE IEEE.std_logic_unsigned.ALL; 
004- USE codec.codec.ALL; 
005-  
006- ENTITY channel IS 
007-   GENERIC 
008-   ( 
009-     DAC_WIDTH: positive := 20; 
010-     ADC_WIDTH: positive := 20 
011-   ); 
012-   PORT 
013-   ( 
014-     -- interface I/O signals 
015-     clk: IN std_logic;    -- clock input 
016-     reset: IN std_logic;  -- synchronous active-high reset 
017-     chan_on: IN std_logic; 
018-     bit_cntr: IN std_logic_vector(5 DOWNTO 0); 
019-     subcycle_cntr: IN std_logic_vector(1 DOWNTO 0); 
020-     chan_sel: IN std_logic; -- select L/R channel for read/write 
021-     rd: IN std_logic;     -- read from the codec ADC 
022-     wr: IN std_logic;     -- write to the codec DAC 
023-     adc_out: OUT std_logic_vector(ADC_WIDTH-1 DOWNTO 0); -- ADC output 
024-     dac_in: IN std_logic_vector(DAC_WIDTH-1 DOWNTO 0);   -- DAC input 
025-     adc_out_rdy: OUT std_logic;   -- ADC output is ready to be read 
026-     adc_overrun: OUT std_logic;   -- ADC overwritten before being read 
027-     dac_in_rdy: OUT std_logic;    -- DAC input is ready to be written 
028-     dac_underrun: OUT std_logic;  -- input to DAC arrived late  
029-     -- codec chip I/O signals 
030-     sdin: OUT std_logic;  -- serial output to codec DAC 
031-     sdout: IN std_logic   -- serial input from codec ADC 
032-   ); 
033- END channel; 
034-  
035- ARCHITECTURE channel_arch OF channel IS 
036- SIGNAL dac_shfreg: std_logic_vector(DAC_WIDTH-1 DOWNTO 0); 
037- SIGNAL dac_empty: std_logic;  -- DAC shift register is empty 
038- SIGNAL dac_wr: std_logic; -- the DAC channel has been written 
039- SIGNAL dac_wr_nxt: std_logic; -- the DAC channel has been written 
040- SIGNAL dac_in_rdy_int: std_logic; -- internal version of dac_in_rdy 
041- SIGNAL adc_shfreg: std_logic_vector(ADC_WIDTH-1 DOWNTO 0); 
042- SIGNAL adc_full: std_logic; -- ADC shift register is full 



 

 49 

043- SIGNAL adc_rd: std_logic; -- the ADC channel has been read 
044- SIGNAL adc_rd_nxt: std_logic; -- the ADC channel has been read 
045- SIGNAL adc_out_rdy_int: std_logic; -- internal version adc_out_rdy 
046- BEGIN 
047-   -- receives data from codec ADC 
048-   rcv_adc: 
049-   PROCESS(clk,chan_on,subcycle_cntr,bit_cntr,adc_shfreg,sdout) 
050-   BEGIN 
051-     IF(clk'event AND (clk=YES)) THEN 
052-       IF(reset='1') THEN 
053-         adc_shfreg <= (OTHERS=>'0'); 
054-         adc_full <= NO; 
055-       ELSIF((chan_on=YES) AND (subcycle_cntr=2)) THEN 
056-         IF(bit_cntr<ADC_WIDTH-1) THEN 
057-           adc_full <= NO; 
058-           adc_shfreg <= adc_shfreg(ADC_WIDTH-2 DOWNTO 0) & sdout; 
059-         ELSIF(bit_cntr=ADC_WIDTH-1) THEN 
060-           adc_full <= YES; 
061-           adc_shfreg <= adc_shfreg(ADC_WIDTH-2 DOWNTO 0) & sdout; 
062-         END IF; 
063-       END IF; 
064-     END IF;  
065-   END PROCESS; 
066-   adc_out <= adc_shfreg; 
067-  
068-   -- handle reading of ADC data from codec interface 
069-   adc_rd_nxt <= YES WHEN (adc_full=YES AND chan_sel=YES AND rd=YES) OR  
070-                       (adc_full=YES AND adc_rd=YES) 
071-             ELSE NO; 
072-   read_adc: 
073-   PROCESS(clk,adc_rd_nxt) 
074-   BEGIN 
075-     IF(clk'event AND clk='1') THEN 
076-       IF(reset=YES) THEN 
077-         adc_rd <= NO; 
078-       ELSE 
079-         adc_rd <= adc_rd_nxt; 
080-       END IF; 
081-     END IF;  
082-   END PROCESS; 
083-   -- ADC data is ready if register is full and hasn't been read yet 
084-   adc_out_rdy_int <= YES WHEN adc_full=YES AND adc_rd=NO ELSE NO; 
085-   adc_out_rdy <= adc_out_rdy_int; 
086-  
087-   -- detect and signal overwriting of data from the codec ADC channels 
088-   detect_adc_overrun: 
089-   PROCESS(clk,reset,bit_cntr,chan_on,adc_out_rdy_int) 
090-   BEGIN 
091-     IF(clk'event AND clk='1') THEN 
092-       IF(reset=YES) THEN 
093-         adc_overrun <= NO; 
094-       ELSIF(bit_cntr=1 AND chan_on=YES AND adc_out_rdy_int=YES) THEN 
095-         adc_overrun <= YES; 
096-       END IF; 



 

 50 

097-     END IF; 
098-   END PROCESS; 
099-  
100-   -- transmits data to codec DAC 
101-   tx_dac: 
102-   PROCESS(clk,reset,chan_on,subcycle_cntr,bit_cntr,dac_shfreg) 
103-   BEGIN 
104-     IF(clk'event AND clk='1') THEN 
105-       IF(reset=YES) THEN 
106-         dac_shfreg <= (OTHERS=>'0'); 
107-         dac_empty <= YES; 
108-       ELSIF(chan_sel=YES AND wr=YES) THEN 
109-         dac_shfreg <= dac_in; 
110-       ELSIF(chan_on=YES AND subcycle_cntr=2) THEN 
111-         IF(bit_cntr<DAC_WIDTH-1) THEN 
112-           dac_empty <= NO; 
113-           dac_shfreg <= dac_shfreg(DAC_WIDTH-2 DOWNTO 0) & '0'; 
114-         ELSIF(bit_cntr=DAC_WIDTH-1) THEN 
115-           dac_empty <= YES; 
116-           dac_shfreg <= dac_shfreg(DAC_WIDTH-2 DOWNTO 0) & '0'; 
117-         END IF; 
118-       END IF; 
119-     END IF;  
120-   END PROCESS; 
121-  
122-   -- output the serial data to the SDIN pin of the codec DAC 
123-   sdin <= dac_shfreg(DAC_WIDTH-1) WHEN chan_on=YES ELSE '0'; 
124-  
125-   -- handle writing of DAC data from codec interface 
126-   dac_wr_nxt <= YES WHEN (dac_empty=YES AND chan_sel=YES AND wr=YES) OR 
127-                           (dac_empty=YES AND dac_wr=YES) 
128-             ELSE NO; 
129-   write_dac: 
130-   PROCESS(clk,reset,dac_wr_nxt) 
131-   BEGIN 
132-     IF(clk'event AND clk='1') THEN 
133-       IF(reset=YES) THEN 
134-         dac_wr <= NO; 
135-       ELSE 
136-         dac_wr <= dac_wr_nxt; 
137-       END IF; 
138-     END IF;  
139-   END PROCESS; 
140-   -- DAC is ready if register is empty and hasn't been written yet 
141-   dac_in_rdy_int <= YES WHEN dac_empty=YES AND dac_wr=NO ELSE NO; 
142-   dac_in_rdy <= dac_in_rdy_int; 
143-  
144-   -- detect and signal underflow of data to the codec DAC channels 
145-   detect_dac_underrun: 
146-   PROCESS(clk,reset,bit_cntr,chan_on,dac_in_rdy_int) 
147-   BEGIN 
148-     IF(clk'event AND clk='1') THEN 
149-       IF(reset=YES) THEN 
150-         dac_underrun <= NO; 



 

 51 

151-       ELSIF(bit_cntr=1 AND chan_on=YES AND dac_in_rdy_int=YES) THEN 
152-         dac_underrun <= YES; 
153-       END IF; 
154-     END IF; 
155-   END PROCESS; 
156- END channel_arch; 

The VHDL code for the top-level module that combines the clock generator module with 
two channel modules is detailed in Listing 25.  The inputs and outputs of the top-level 
module as defined in the entity declaration are as follows: 

clk: This is the main clock input, which is typically the 12 MHz clock from the XS Board. 

reset: This input synchronously resets the two channel modules and the clock generator. 

lrsel: This input selects either the right or left channel for parallel read or write operations. 

rd: A high level on this input outputs the value stored in the selected shift register 
connected to the ADC. 

wr: A high level on this input writes a new value into the selected shift register connected 
to the DAC. 

ladc_out, radc_out: The bits stored in the left and right ADC shift registers are read out in 
parallel through these outputs.. 

ldac_in, rdac_in: The DAC shift registers are loaded in parallel with bits passed through 
these inputs. 

ladc_out_rdy, rdac_out_rdy: These outputs go high after all the bits have been shifted 
from the codec into the left or right ADC shift register, respectively. 

adc_overrun: This output goes high if new serial data is shifted into either the left or right 
ADC shift register before the old contents have been read out through the parallel 
outputs. 

ldac_in_rdy, rdac_in_rdy: These outputs go high after all the bits in the left or right DAC 
shift register have been shifted over to the codec, respectively. 

dac_underrun: This output goes high if either the left or right DAC shift register starts 
shifting data over to the codec before it has been written through the parallel inputs.   

mclk: This output is the master clock for the codec chip. 

sclk: This output is the clock for synchronizing serial data transfers between the FPLD 
and the codec. 

lrck: This output controls the activation of the left and right channel circuitry in the codec. 

sdin: The serial data stream for the codec DAC is shifted out through this output. 

sdout: The serial data stream from the codec ADC is shifted in through this input. 



 

 52 

Within the main body of the top-level module architecture section, the following modules 
are instantiated: 

u0: One clock generator module is instantiated.  It receives the 12 MHz clock as an input 
and generates the master clock, left/right clock, and serial shift clock for the codec.  It 
also outputs the position of the current bit in the serial stream and the current cycle 
within each bit period. 

Lines 73—75: The input signals to the codec on the XStend V1.3 Board pass through 
inverters.  Therefore, the clock signals are inverted on these lines to remove the effect 
of the inverters. 

u_left: The module, which handles the left channel of the codec, is instantiated.  This 
module is activated during one half of the left/right clock period.  It is selected for 
reading or writing by the left/right selection input. 

u_right: The module, which handles the right channel of the codec, is instantiated.  This 
module is activated during the other half of the left/right clock period.  It is selected for 
reading and writing by the opposite polarity of the left/right selection input. 

Lines 133—134: The overrun and underrun error indicators for the total codec interface 
are formed by the logical-OR of the associated error outputs of the left and right 
channel modules.  Thus an error is reported if either channel reports an error. 

Line 138: The serial data stream that is transmitted to the codec chip is selected from the 
output data stream of the currently-active channel module.  The data stream input to 
the codec on the XStend V1.3 Board passes through an inverter.  Therefore, the data 
stream is inverted on this line to remove the effect of the inverter. 

• Listing 25: VHDL code for the top-level codec interface module. 

001- LIBRARY IEEE,codec; 
002- USE IEEE.std_logic_1164.ALL; 
003- USE IEEE.std_logic_unsigned.ALL; 
004- USE codec.codec.ALL; 
005-  
006- ENTITY codec_intfc IS 
007-   GENERIC 
008-   ( 
009-     DAC_WIDTH: positive := 20; 
010-     ADC_WIDTH: positive := 20; 
011-     CHANNEL_DURATION: positive := 128 -- must be 128 
012-   ); 
013-   PORT 
014-   ( 
015-     -- interface I/O signals 
016-     clk: IN std_logic;    -- clock input 
017-     reset: IN std_logic;  -- synchronous active-high reset 
018-     lrsel: IN std_logic;  -- select L/R channel for read/write 
019-     rd: IN std_logic;     -- read from the codec ADC 
020-     wr: IN std_logic;     -- write to the codec DAC 
021-     ladc_out: OUT std_logic_vector(ADC_WIDTH-1 DOWNTO 0); -- L ADC 
022-     radc_out: OUT std_logic_vector(ADC_WIDTH-1 DOWNTO 0); -- R ADC 



 

 53 

023-     ldac_in: IN std_logic_vector(DAC_WIDTH-1 DOWNTO 0); -- left DAC 
024-     rdac_in: IN std_logic_vector(DAC_WIDTH-1 DOWNTO 0); -- right DAC 
025-     ladc_out_rdy: OUT std_logic; -- left ADC output ready to read 
026-     radc_out_rdy: OUT std_logic; -- right ADC output ready to read 
027-     adc_overrun: OUT std_logic;  -- ADC overwritten before read 
028-     ldac_in_rdy: OUT std_logic; -- left DAC in ready to be written 
029-     rdac_in_rdy: OUT std_logic; --right DAC in ready to be written 
030-     dac_underrun: OUT std_logic; -- DAC did not receive data in time  
031-     -- codec chip I/O signals 
032-     mclk: OUT std_logic;  -- master clock output to codec 
033-     sclk: OUT std_logic;  -- serial data clock to codec 
034-     lrck: OUT std_logic;  -- left/right codec channel select 
035-     sdin: OUT std_logic;  -- serial output to codec DAC 
036-     sdout: IN std_logic   -- serial input from codec ADC 
037-   ); 
038- END codec_intfc; 
039-  
040- ARCHITECTURE codec_intfc_arch OF codec_intfc IS 
041- SIGNAL mclk_int: std_logic; -- internal codec master clock 
042- SIGNAL lrck_int: std_logic; -- internal L/R codec channel select 
043- SIGNAL sclk_int: std_logic; -- internal codec data shift clock 
044- SIGNAL bit_cntr: std_logic_vector(5 DOWNTO 0); 
045- SIGNAL subcycle_cntr: std_logic_vector(1 DOWNTO 0); 
046- SIGNAL lsdin: std_logic; 
047- SIGNAL rsdin: std_logic; 
048- SIGNAL ladc_overrun: std_logic; 
049- SIGNAL radc_overrun: std_logic; 
050- SIGNAL ldac_underrun: std_logic; 
051- SIGNAL rdac_underrun: std_logic; 
052- SIGNAL lchan_sel: std_logic; 
053- SIGNAL rchan_sel: std_logic; 
054- SIGNAL lchan_on: std_logic; 
055- SIGNAL rchan_on: std_logic; 
056- BEGIN 
057-  
058-   u0: clkgen 
059-       GENERIC MAP 
060-       ( 
061-         CHANNEL_DURATION=>CHANNEL_DURATION 
062-       ) 
063-       PORT MAP 
064-       ( 
065-         clk=>clk, 
066-         reset=>reset, 
067-         mclk=>mclk_int, 
068-         sclk=>sclk_int, 
069-         lrck=>lrck_int, 
070-         bit_cntr=>bit_cntr, 
071-         subcycle_cntr=>subcycle_cntr 
072-       ); 
073-   lrck <= NOT(lrck_int);  -- invert for inverter in XStend V1.3 
074-   mclk <= NOT(mclk_int); 
075-   sclk <= NOT(sclk_int); 
076-  



 

 54 

077-   lchan_sel <= YES WHEN lrsel=LEFT ELSE NO; 
078-   lchan_on <= YES WHEN lrck_int=LEFT ELSE NO;  
079-   u_left: channel 
080-       GENERIC MAP 
081-       ( 
082-         DAC_WIDTH=>DAC_WIDTH, 
083-         ADC_WIDTH=>ADC_WIDTH 
084-       ) 
085-       PORT MAP 
086-       ( 
087-         clk=>clk, 
088-         reset=>reset, 
089-         chan_on=>lchan_on, 
090-         bit_cntr=>bit_cntr, 
091-         subcycle_cntr=>subcycle_cntr, 
092-         chan_sel=>lchan_sel, 
093-         rd=>rd, 
094-         wr=>wr, 
095-         adc_out=>ladc_out, 
096-         dac_in=>ldac_in, 
097-         adc_out_rdy=>ladc_out_rdy, 
098-         adc_overrun=>ladc_overrun, 
099-         dac_in_rdy=>ldac_in_rdy, 
100-         dac_underrun=>ldac_underrun,  
101-         sdin=>lsdin, 
102-         sdout=>sdout 
103-       ); 
104-    
105-   rchan_sel <= YES WHEN lrsel=RIGHT ELSE NO;   
106-   rchan_on <= YES WHEN lrck_int=RIGHT ELSE NO;   
107-   u_right: channel 
108-       GENERIC MAP 
109-       ( 
110-         DAC_WIDTH=>DAC_WIDTH, 
111-         ADC_WIDTH=>ADC_WIDTH 
112-       ) 
113-       PORT MAP 
114-       ( 
115-         clk=>clk, 
116-         reset=>reset, 
117-         chan_on=>rchan_on, 
118-         bit_cntr=>bit_cntr, 
119-         subcycle_cntr=>subcycle_cntr, 
120-         chan_sel=>rchan_sel, 
121-         rd=>rd, 
122-         wr=>wr, 
123-         adc_out=>radc_out, 
124-         dac_in=>rdac_in, 
125-         adc_out_rdy=>radc_out_rdy, 
126-         adc_overrun=>radc_overrun, 
127-         dac_in_rdy=>rdac_in_rdy, 
128-         dac_underrun=>rdac_underrun,  
129-         sdin=>rsdin, 
130-         sdout=>sdout 



 

 55 

131-       ); 
132-  
133- dac_underrun <= YES WHEN ldac_underrun=YES OR rdac_underrun=YES 
134-                     ELSE NO; 
135- adc_overrun <= YES WHEN ladc_overrun=YES OR radc_overrun=YES 
136-                     ELSE NO; 
137-    
138-   -- generates the serial data output to the SDIN pin of the 
139-   -- codec DAC depending on which channel is being loaded 
140-   sdin <= NOT(lsdin) WHEN lrck_int=LEFT ELSE NOT(rsdin); 
141-  
142- END codec_intfc_arch; 

The interfaces to these three modules are placed into the package shown in Listing 26.  
(The I/O declarations in the COMPONENT constructs have been removed for the sake of 
brevity.)  The declarations for the constants used in these modules are also included in the 
package. 

• Listing 26 : VHDL code for the codec package. 

001- LIBRARY IEEE; 
002- USE IEEE.STD_LOGIC_1164.ALL; 
003- USE IEEE.std_logic_unsigned.ALL; 
004-  
005- PACKAGE codec IS 
006-   CONSTANT yes: STD_LOGIC := '1'; 
007-   CONSTANT no: STD_LOGIC := '0'; 
008-   CONSTANT ready: STD_LOGIC := '1'; 
009-   CONSTANT overrun: STD_LOGIC := '1'; 
010-   CONSTANT underrun: STD_LOGIC := '1'; 
011-   CONSTANT left: STD_LOGIC := '0'; 
012-   CONSTANT right: STD_LOGIC := '1'; 
013-    
014-   COMPONENT clkgen 
015-     GENERIC 
016-     ( 
017-       ... 
018-     ); 
019-     PORT 
020-     ( 
021-       ... 
022-     ); 
023-   END COMPONENT; 
024-    
025-   COMPONENT channel 
026-     GENERIC 
027-     ( 
028-       ... 
029-     ); 
030-     PORT 
031-     ( 
032-       ... 
033-     ); 



 

 56 

034-   END COMPONENT; 
035-  
036-   COMPONENT codec_intfc 
037-     GENERIC 
038-     ( 
039-       ... 
040-     ); 
041-     PORT 
042-     ( 
043-       ... 
044-     ); 
045-   END COMPONENT; 
046- END PACKAGE; 

Once the codec interface module is completed and packaged, we can use it in an 
application.  The simplest use is to have the FPLD accept the left and right stereo inputs 
from the codec ADCs and loop these back to the codec DACs so they can output the 
stereo signals. 

The VHDL code for the loopback application is detailed in Listing 27.  The inputs and 
outputs of the loopback design are as follows: 

clk: This is the 12 MHz clock from the XS Board. 

reset: A high level on this input synchronously resets the codec interface module.  The 
reset input is driven from the parallel port of the PC. 

mclk: This output is the master clock for the codec chip. 

lrck: This output controls the activation of the left and right channel circuitry in the codec 
and the codec interface. 

sclk: This output is the clock for synchronizing serial data transfers between the FPLD 
and the codec. 

sdout: The serial data stream from the codec ADCs are shifted in through this input. 

sdin: The serial data stream for the codec DACs are shifted out through this output. 

The following modules and processes are placed within the main body of the loopback 
application: 

u0: This is the instantiation of the codec interface module.  Note that the ADC output 
buses of this module are connected back to the DAC input buses on lines 43—46. 

loop: This process controls the reading of each ADC and the writing of the value back to 
the associated DAC.  For example, if the output of the left channel ADC is ready to be 
read and the left channel DAC is ready to be written, then the left channel is selected 
and the read and write control lines are asserted.  This reads the data from the ADC 
shift register and writes it into the DAC shift register during a single clock cycle.  Then 
the ADC and DAC registers will no longer be ready for reading or writing so the read 
and write signals will be deasserted.  



 

 57 

• Listing 27: VHDL code for a design that uses the codec interface module to do loopback. 

001- LIBRARY IEEE,codec; 

002- USE IEEE.STD_LOGIC_1164.ALL; 

003- USE codec.codec.ALL; 

004-  

005- ENTITY loopback IS 

006-   PORT 

007-   ( 

008-     clk: IN STD_LOGIC;   -- 12 MHz clock 

009-     rst: IN STD_LOGIC;   -- active-high reset 

010-     mclk: OUT STD_LOGIC; -- master clock to codec 

011-     lrck: OUT STD_LOGIC; -- left/right clock to codec 

012-     sclk: OUT STD_LOGIC; -- serial data shift clock to codec 

013-     sdout: IN STD_LOGIC; -- serial data from codec ADCs 

014-     sdin: OUT STD_LOGIC; -- serial data to codec DACs 

015-     s: OUT STD_LOGIC_VECTOR(1 DOWNTO 0) –- LED segments 

016-   ); 

017- END loopback; 

018-  

019- ARCHITECTURE loopback_arch OF loopback IS 

020- SIGNAL lrsel,rd,wr: STD_LOGIC; 

021- SIGNAL left_channel,right_channel: STD_LOGIC_VECTOR(7 DOWNTO 0); 

022- SIGNAL ldac_in_rdy,rdac_in_rdy: STD_LOGIC; 

023- SIGNAL ladc_out_rdy,radc_out_rdy: STD_LOGIC; 

024- BEGIN 

025-   u0: codec_intfc  

026-         GENERIC MAP 

027-         ( 

028-           adc_width=>20, 

029-           dac_width=>20 

030-         ) 

031-         PORT MAP 

032-         ( 

033-           clk=>clk, 

034-           reset=>rst, 

035-           mclk=>mclk, 

036-           sclk=>sclk, 

037-           lrck=>lrck, 

038-           sdout=>sdout, 

039-           sdin=>sdin, 

040-           lrsel=>lrsel, 

041-           rd=>rd, 

042-           wr=>wr, 

043-           ladc_out=>left_channel,   -- loop the left channel ADC 

044-           ldac_in=>left_channel,    -- to the left channel DAC 

045-           radc_out=>right_channel,  -- loop the right channel ADC 

046-           rdac_in=>right_channel,   -- to the right channel DAC 

047-           ladc_out_rdy=>ladc_out_rdy, 

048-           radc_out_rdy=>radc_out_rdy, 

049-           ldac_in_rdy=>ldac_in_rdy, 

050-           rdac_in_rdy=>rdac_in_rdy, 

051-           dac_underrun=>s(0),  -- connect underrun and overrun 

052-           adc_overrun=>s(1)    -- error indicators to LEDs 



 

 58 

053-         ); 

054-  

055-   loop: PROCESS(ldac_in_rdy,ladc_out_rdy,rdac_in_rdy,radc_out_rdy) 

056-   BEGIN 

057-     IF(ladc_out_rdy=yes AND ldac_in_rdy=yes) THEN 

058-       lrsel<=left;  -- loopback the left channel 

059-       rd<=yes;      -- assert the read and 

060-       wr<=yes;      -- write control signals 

061-     ELSIF(radc_out_rdy=yes AND rdac_in_rdy=yes) THEN 

062-       lrsel<=right; -- loopback the right channel 

063-       rd<=yes;      -- assert the read and 

064-       wr<=yes;      -- write control signals 

065-     ELSE 

066-       lrsel<=left;  -- default channel selection 

067-       rd<=no;       -- but don’t read or 

068-       wr<=no;       -- write the registers 

069-     END IF; 

070-   END PROCESS; 

071- END loopback_arch;  

• Listing 28: XS40 UCF file for the stereo signal loopback application. 

001- net clk     loc=p13; 
002- net rst     loc=p44; 
003- net sdout   loc=p6; 
004- net mclk    loc=p9; 
005- net lrck    loc=p66; 
006- net sdin    loc=p70; 
007- net sclk    loc=p77; 
008- net s<0>    loc=p25; 
009- net s<1>    loc=p26;  

• Listing 29: XS95 UCF file for the stereo signal loopback application. 

001- net clk     loc = p9 
002- net rst     loc = p46 
003- net sdout   loc = p5 
004- net mclk    loc = p11 
005- net lrck    loc = p66 
006- net sdin    loc = p71 
007- net sclk    loc = p72 
008- net s<0>    loc = p21 
009- net s<1>    loc = p23  

The steps for compiling and testing the design using an XS40 combined with an XStend 
Board are as follows: 

1. Synthesize the VHDL code in the LOOP40\LOOPBACK.VHD for an XC4005XL 
FPGA. 

2. Compile the synthesized netlist using the LOOP40.UCF constraint file (Listing 
28). 



 

 59 

3. Mount an XS40 Board in the XStend Board and attach the downloading cable 
from the XS40 to the PC parallel port.  Apply 9VDC though jack J9 of the XS40. 
Remove the shunts from jumpers J4, J7, and J8 to disable the LEDs. Place a 
shunt on jumper J17 so the codec serial output data stream can reach the FPLD.  
Set all the DIP switches to the OPEN position. 

4. Connect a stereo audio source (such as a CD player) to jack J9.  Then plug a set 
of stereo mini-headphones into jack J10. 

5. Download the LOOP40.BIT file into the XS40/XStend combination with the 
command: XSLOAD LOOP40.BIT. 

6. Release the reset on the loopback circuit with the command XSPORT 0. 

7. Start the CD player and listen to the result with the headphones. 

The steps for compiling and testing the design using an XS95 combined with an XStend 
Board are as follows: 

1. Synthesize the VHDL code in the LOOP95\LOOP.VHD for an XC95108 CPLD. 

2. Compile the synthesized netlist using the LOOP95.UCF constraint file (Listing 
29). 

3. Generate an SVF file for the design. 

4. Mount an XS95 Board in the XStend Board and attach the downloading cable 
from the XS95 to the PC parallel port.  Apply 9VDC though jack J9 of the XS95. 
Remove the shunts from jumpers J4, J7, and J8 to disable the LEDs. Place a 
shunt on jumper J17 so the codec serial output data stream can reach the FPLD.  
Set all the DIP switches to the OPEN position. 

5. Connect a stereo audio source (such as a CD player) to jack J9.  Then plug a set 
of stereo mini-headphones into jack J10. 

6. Download the LOOP95.BIT file into the XS95/XStend combination with the 
command: XSLOAD LOOP95.BIT. 

7. Release the reset on the loopback circuit with the command XSPORT 0. 

8. Start the CD player and listen to the result with the headphones.



  

 

 

Appendix 

A
XStend Schematics 



xst1_3_2.sch-1 - Mon Nov  6 17:09:31 2000



xst1_3_2.sch-2 - Mon Nov  6 17:09:32 2000



xst1_3_2.sch-3 - Mon Nov  6 17:09:33 2000



xst1_3_2.sch-4 - Mon Nov  6 17:09:34 2000



xst1_3_2.sch-5 - Mon Nov  6 17:09:35 2000


	XStend Board V1.3.2 Manual
	Preliminaries
	Getting Help!
	Packing List

	XStend Overview
	XStend Board Features
	Figure 1: XStend Board layout.
	XS40/XS95 Board Mounting Area
	Figure 2: Connection of external power supplies to the XStend Board.
	LEDs
	Table 1: Jumper settings for XStend LEDs.
	Listing 1: Connections between the XStend LEDs and the XS40.
	Listing 2: Connections between the XStend LEDs and the XS95.

	Switches
	Listing 3: Connections between the XStend DIP and pushbutton switches and the XS40.
	Listing 4: Connections between the XStend DIP and pushbutton switches and the XS95.

	VGA Interface
	Listing 5: Connections between the XStend VGA interface and the XS40.
	Listing 6: Connections between the XStend VGA interface and the XS95.

	PS/2 Keyboard Interface
	Listing 7: Connections between the XStend PS/2 interface and the XS40.
	Listing 8: Connections between the XStend PS/2 interface and the XS95.

	RAMs
	Listing 9: Connections between the XStend RAMs and the XS40.
	Listing 10: Connections between the XStend RAMs and the XS95.

	Stereo Codec
	Table 2: Jumper settings for XStend codec.
	Listing 11: Connections between the XStend stereo codec and the XS40 Board.
	Listing 12: Connections between the XStend stereo codec and the XS95 Board.

	XILINX Xchecker Interface
	Table 3: Connections between the XStend Board Xchecker interface and the XS40 Board.

	Prototyping Area
	Figure 3: Top-side view of the network of VCC and GND buses around the component through-holes in the XStend Board prototyping area.
	Figure 4: Shunt placement for setting the VCC bus voltage..

	Daughterboard Connector


	Programmer's�Models
	Figure 5: Programmer's model of the XS40/XStend Board combination.
	Figure 6: Programmer's model of the XS95/XStend Board combination.
	Table 4: Connections between the XS40 Board and the XStend Board resources.
	Table 5: Connections between the XS95 Board and the XStend Board resources.

	Example Designs
	Introduction
	Displaying Switch Settings on the XStend Board LEDs
	Listing 13: VHDL code for using the XStend LEDs and switches.
	Listing 14: XS40 UCF file for the LED/switch example.
	Listing 15: XS95 UCF file for the LED/switch example.

	Displaying Graphics from RAM Through the VGA Interface
	VGA Color Signals
	Figure 7: Digital-to-analog interface to a VGA monitor.

	VGA Signal Timing
	Figure 8: VGA signal timing.

	VGA Signal Generator Algorithm
	Listing 16: VGA signal generation pseudocode.
	Figure 9: Pipelining of VGA signal generation tasks.

	VGA Signal Generator in VHDL
	Listing 17: VHDL code for a VGA generator.
	Listing 18: XS40 UCF file for the VGA signal generator.
	Listing 19: XS95 UCF file for the VGA signal generator.


	Reading Keyboard Scan Codes Through the PS/2 Interface
	Figure 10: Keyboard data transmission waveforms.
	Listing 20: VHDL code for receiving keyboard scan codes from the PS/2 interface.
	Listing 21: XS40 UCF file for the PS/2 keyboard interface.
	Listing 22: XS95 UCF file for the PS/2 keyboard interface.

	Inputting and Outputting Stereo Signals Through the Codec
	Figure 11: Connections between the XStend codec chip and the XS Board FPGA or CPLD.
	Listing 23: VHDL code for the codec clock generator module.
	Listing 24: VHDL code for the codec channel module.
	Listing 25: VHDL code for the top-level codec interface module.
	Listing 26 : VHDL code for the codec package.
	Listing 27: VHDL code for a design that uses the codec interface module to do loopback.
	Listing 28: XS40 UCF file for the stereo signal loopback application.
	Listing 29: XS95 UCF file for the stereo signal loopback application.


	XStend Schematics
	XS40/XS95 Connectors
	RAM
	Analog I/O
	Stereo Codec
	Switches, Buttons, LEDs, VGA, PS/@, Xchecker


