
Minimum Lock Assignment: A Method for

Exploiting Concurrency among Critical Sections

Yuan Zhang1, Vugranam C. Sreedhar2, Weirong Zhu3⋆⋆, Vivek Sarkar4, and
Guang R. Gao1

1 University of Delaware, Newark, DE, {zhangy,ggao}@capsl.udel.edu
2 IBM T.J.Watson Research Center, Hawthorne, NY, vugranam@us.ibm.com

3 Microsoft Corporation, Seattle, WA, weirong.zhu@microsoft.com
4 Rice University, Houston, TX, vsarkar@rice.edu

Abstract. In this paper we propose a lock assignment technique to sim-
plify the mutual exclusion enforcement in multithreaded programs. Pro-
grammers are allowed to annotate the regions of code that are expected
to be mutually exclusive as critical sections, without using explicit
locks. The compiler then automatically infers an assignment of the min-
imum number of locks to critical sections by solving the Minimum Lock
Assignment (MLA) problem so as to enforce mutual exclusion without
any loss of concurrency. We show that the MLA problem is NP-hard.
We have proposed a heuristic to solve the MLA problem, and tested the
optimality of the heuristic with the Integer Linear Programming (ILP)
solver. We have also tested the efficiency of the heuristic using scientific
applications, from which we obtain up to 30% performance gain with
respect to the programs in which all critical sections are controlled by a
single lock.

1 Introduction

Given that the processors in current and future computer systems are becom-
ing multi- or many-core by default, it is important to address the performance
and productivity issues in multithreaded programming. One of the major per-
formance and productivity issues in multithreaded programming arises from en-
forcing the mutual exclusion (mutex for short) using lock/unlock operations.
Programmers explicitly assign lock variables to control mutex regions, and the
lock variables are acquired by the executing thread before the mutex region is
executed, and are released after the execution of the mutex region completes.
Explicitly managing multiple locks is error prone since it is easy for program-
mers to introduce data races and create deadlocks. Alternatively, programmers
can use a single lock to control all mutex regions to avoid deadlocks and data
races. However, they lose concurrency among mutex regions by unnecessarily
serializing them.

⋆⋆ The author participated this work when he was a graduate student in the University
of Delaware

In this paper, we propose a lock assignment technique to simplify the enforce-
ment of mutual exclusion in multithreaded programs. We allow the programmers
to annotate regions of code that are expected to be executed mutually exclusively
as critical sections, without managing explicit locks. The compiler then au-
tomatically infers an assignment of multiple compiler-managed locks to critical
sections (possibly multiple locks for one critical section) to preserve the mutual
exclusion and also exploit the concurrency among critical sections.

A naive lock assignment approach associates one lock to each shared mem-
ory location, and the lock set of a critical section is the set of locks assigned
to memory locations it accesses. This approach, however, may use more locks
than necessary, and introduce excessive overhead on lock acquisition and re-
lease. To control the locking overhead, we would use the minimum number of
locks which is necessary to preserve the mutual exclusion and fully exploit the
concurrency between critical sections. We formulate this lock assignment task
as the Minimum Lock Assignment (MLA) problem:

Problem 1 (Minimum Lock Assignment). Given a multithreaded program with
a set of critical sections, find the minimum number of distinct locks that are
needed for controlling the critical sections such that

(a) Two critical sections are assigned disjoint sets of locks if (1) they are
concurrent and (2) they do not access any common location, or if they access a
common location then none of them writes to the common location.

(b) Two critical sections are assigned at least one common lock if (1) they
are concurrent and (2) they access some common location and at least one of
them writes to the common location.

Note that a critical section can be assigned a set of locks. The semantics of
a lock set follows the strict two-phase locking policy [1].

The solution of the MLA problem consists of two main phases: the analysis
phase and the lock assignment phase. In the analysis phase, the compiler reads
the multithreaded program and statically determines whether a pair of critical
sections are interfering. Two critical sections are interfering if they are concurrent
and they access some common shared memory location(s), with at least one
of them writes to the common location(s). In the lock assignment phase the
compiler calculates the minimum number of locks to control critical sections
according to the analysis result, and assigns one or more locks to each critical
section. Besides, the runtime system guarantees that an execution is deadlock
free by acquiring and releasing locks in a predetermined order. The analysis
phase is solved by concurrency analysis, data set analysis and pointer analysis.
However, due to the space limitation, in this paper we simply assume the analysis
result is already calculated, and we only focus on the lock assignment phase.
Readers can refer to [2, 1] for more details on the analysis phase and deadlock
avoidance options. In the following discussion we refer to the MLA problem as
the lock assignment phase exclusively, without any further clarification.

The rest of the paper is organized as follows. In Section 2 we introduce the
concurrency graph as the main data structure to solve the MLA problem. In

Section 3 we prove that MLA problem is related to the graph coloring problem
and it is NP-hard. We then present a heuristic to solve the MLA problem. We also
formulate the MLA problem as an Integer Linear Programming (ILP) problem.
In Section 4 we evaluate our heuristic by comparing it with optimal solutions
produced by the commercial ILP solver CPLEX. In 300 randomly generated
testing cases we observe that our MLA heuristic is optimal for 83.3% of them.
We also test the performance of our heuristic using a 10-way Sunfire machine on
a set of Splash2 [3] benchmarks, and obtain up to 30.17% performance speedup
with respect to programs in which all critical sections are controlled by a single
lock. Related work is presented in Section 5, and finally we conclude in Section 6.

2 Concurrency Graph and Critical Sections

In this section, we introduce the concurrency graph to model the potential con-
currency and interference among critical sections in a multithreaded program.

2.1 Concurrency Graph

(b)

CS1 CS2

CS4CS3
N

NI I

{ x }

{ x, y } { z }

I

{ y , z }cobegin
 critical { x ++; } // CS1
 critical { y ++; z ++; } // CS2
 ||
 critical { x ++; y ++; } // CS3
 ||
 critical {z ++; } // CS4
coend

(a)

Fig. 1. (a) Example program (b) Concurrency graph

Definition 1. A Concurrency Graph is an undirected graph G = (V, E), in
which: a vertex v ∈ V denotes a textual critical section, and there is an edge
(u, v) ∈ E if instances of critical sections u and v may be concurrent.

In the above definition, if two instances of the critical section u are concurrent,
we do not introduce a self-loop on u, since we will assign at least one lock to
each critical section, and the mutual exclusion of u with respect to itself is
self preserved. As an example, Figure 1(b) illustrates the concurrency graph for
the program shown in Figure 1(a). The set of shared memory locations that are
accessed within critical sections are also listed within curly braces in Figure 1(b).

Two concurrent critical sections are said to be non-interfering if either
they do not access a common location or if they access a common location then
none of them writes to the common location. Two concurrent critical sections

are interfering if they access some common location and at least one of them
writes to the common location. We extend the concurrency graph defined in
Definition 1 by labeling an edge (u, v) with label I when critical sections u and
v are interfering, and with label N when u and v are non-interfering.

Note that a general concurrency graph may be a forest of connected graphs,
and we analyze each connected component independently. In the following dis-
cussion, we simply assume that a concurrency graph G is a connected graph.

2.2 Non-interfering Concurrency Graphs

Consider a class of multithreaded programs Pn whose corresponding concurrency
graph contains only non-interfering edges. Since all incident edges of a critical
section are non-interfering, it cannot share any lock with its neighbors. This
implies that whenever two critical sections are connected (concurrent), they re-
quire different locks. We can now rephrase the MLA problem (Problem 1) for
non-interfering concurrency graphs as follows:

Problem 2. Given a program with a set Vn of non-interfering critical sections,
find the minimum number of locks that can be assigned to critical sections such
that if two different critical sections in Vn are concurrent then they get different
locks.

The above problem is equivalent to the classical graph coloring problem —
color the vertices (critical sections) of a graph using the minimum number of
colors (locks) such that no two adjacent (concurrent) vertices (critical sections)
are given the same color (lock). The MLA problem for this special class of
programs is NP-hard5.

2.3 Interfering Concurrency Graphs

Consider a class of programs Pi, for which the concurrency graph contains only
interfering edges. In this case, two critical sections are either concurrent and
interfering, or are not concurrent (not connected). If they are concurrent and
interfering, they should share at least one common lock to preserve the mutual
exclusion, which implies that they must be serialized. If they are not concurrent,
they are already serialized. Therefore, in this interfering special case, there is no
inherent concurrency, so we can use a single lock to control all critical sections
without introducing any performance penalty.

2.4 Concurrency Graph Partition

In general cases, a concurrency graph contains both non-interfering edges and
interfering edges. Given a concurrency graph G = (V, E), let En denote the set

5 For certain classes of graphs, such as the interval graphs, the graph coloring problem
can be solved in polynomial time. However, the general concurrency graphs are not
necessarily interval graphs.

(b)

CS1

CS4

CS3

CS2 CS6

CS5

N

N

N N

I

I I

I

I

CS1

CS4

CS3

CS2

[1] [1]

[1, 3][2]

N

N

N N

I

I

CS1

CS4

CS3

CS2

N

N

N N

I

I

[1]

[3][2]

[1, 3]

CS1

CS4

CS3

CS2 CS6

CS5

I

I

I

I

IN

N

N N

N

[1, 3]

[3] [1, 3]

[1] [1, (3)]

[2]

CS1

CS4

CS3

CS2 CS6

CS5

{ z }

{ x, y }

{ y }

{ w }{ x }

{ y, w }

N

N

N N

I

I

I

I I

CS1

CS4

CS3

CS2

N

N

N N

[1] [1]

[2] [3]

CS1

CS4

CS3

CS2

N

N

N N

I

I

CS5

CS6

I

(e)

(a)

(f) (g) (h)

(d)(c)

Fig. 2. (a) A general concurrency graph (b) The non-interfering subgraph Gn (c) The
interfering subgraph Gi (d) The SNIG Gs

n (e) The crossing edges (double lines), se-
rializing interfering edges (dotted lines), and the interfering subgraph (in dotted box)
(f) A un-safe borrowing from CS3 to CS4 (g) A safe borrowing from CS4 to CS3 (h)
Final lock assignment result

of non-interfering edges and Ei denote the set of interfering edges in G, such
that E = En ∪ Ei and En ∩ Ei = ∅. Let Gn = (Vn, En) be the non-interfering
subgraph induced by En, where Vn ⊆ V such that a vertex vn ∈ Vn has at least
one non-interfering edge incident on it. Figure 2(b) illustrates the non-interfering
subgraph of Figure 2(a). Let Gi = (Vi, E

′
i) be the interfering subgraph induced by

vertices Vi, where Vi = V − Vn and E′
i ⊆ Ei is a set of interfering edges (ui, vi)

such that ui, vi ∈ Vi. Figure 2(c) illustrates the interfering subgraph for Fig-
ure 2(a). Finally, let E′′

i = Ei−E′
i be a set of interfering edges that are not in Gi.

Some of interfering edges in E′′
i connect vertices of the non-interfering subgraph,

for example, edges (CS1, CS3) and (CS3, CS4), as illustrated as bold dashed lines
in Figure 2(d). We call such interfering edges that occur inside a non-interfering
subgraph as serializing interfering edges Es, because they could “serialize” the
inherent concurrency that exists within non-interfering subgraph. The remain-
ing interfering edges Eci = E′′

i − Es are crossing edges between vertices in Gn

and Gi. In the example shown in Figure 2(a), Eci = {(CS3, CS6), (CS4, CS6)},
illustrated as double solid lines in (e). Besides the non-interfering subgraph Gn

and the interfering subgraph Gi, we introduce the notion of the serializing non-
interference graph (SNIG) as the non-interfering subgraph with serializing edges,
Gs

n = (Vn, En ∪ Es). Figure 2(d) illustrates an example of SNIG. SNIGs have
some interesting properties that will influence the lock assignment.

2.5 Serializing Non-Interference Graph

Let us consider a class of concurrency graphs called Serializing Non-Interfering
Graphs (SNIGs). A SNIG consists of only non-interfering edges and serializing
interfering edges (as defined in the previous section). Serializing interfering edges
constrain the inherent concurrency in a non-interfering concurrency graph. They
also constrain the minimum number of locks required to color a SNIG.

The following observation states that sometimes it is impossible to color a
SNIG if a vertex can be assigned only one color.

Observation 1. It is impossible to color an arbitrary SNIG with the following
conflicting constraints:

1. Each vertex gets only one color,
2. If vertices u and v are connected by a non-interfering edge then they are

given two different colors,
3. If two vertices u and v are connected by a serializing interfering edge then

they are given the same color.
Consider the SNIG in Figure 3. Assume we satisfy all above constraints,

then all critical sections get the same lock, because they are connected by seri-
alizing interfering edges (CS1, CS3), (CS3, CS4) and (CS4, CS2). However, the
constraint (2) requires that CS1 and CS2 are given two different colors, a con-
tradiction. Therefore Figure 3 cannot satisfy all three constraints.

CS1

CS4

CS3

CS2

N
N N

I

I

I

Fig. 3. Example SNIG for Observation 1

There are two ways to handle the above impossibility: relax constraint (1) in
the above observation, or relax constraint (2). By relaxing constraint (1) we are
allowed to assign multiple colors to each vertex. By relaxing constraint (2) we
will reduce the concurrency. Constraint (3) must be satisfied since otherwise the
mutual exclusion will be violated. In the MLA solution we will take the approach
of assigning multiple locks so as to maximize the concurrency.

Let C(x) be the set of colors that are assigned to a vertex u, the coloring
problem on SNIG is stated as the following:

Problem 3. Given a SNIG Gs
n = (Vn, En ∪ Es) find the minimum number of

colors to color Gs
n such that:

(a) If two vertices u and v are connected by a non-interfering edge then
C(u) ∩ C(v) = ∅ and

(b) If two vertices u and v are connected by a serializing edge then C(u) ∩
C(v) 6= ∅.

Let G be an arbitrary concurrency graph, and let Gs
n be the SNIG of G. We

will show in Section 3.2 that the minimum number of locks required by G equals
the minimum number of locks required by Gs

n.

3 Minimum Lock Assignment Solution

The MLA problem for arbitrary concurrency graphs is NP-hard because one
special case - MLA problem for non-interfering concurrency graph - is NP-hard.
In this section we present a heuristic approach for solving MLA. We also for-
mulate the MLA problem as an Integer Linear Programming (ILP) problem,
and in Section 4 we will use this ILP formulation to quantitatively evaluate our
heuristic.

3.1 A Naive Solution

Assume all shared memory locations that a critical section accesses can be stati-
cally identified by compiler analysis, then a simple solution to the MLA problem
is to assign a distinct lock to each shared memory location, and the lock set of
a critical section is the set of locks assigned to memory locations it accesses.
However, this approach may use more locks than necessary, and introduce more
overhead of lock acquisition and release. We say the number of locks required
in this simple solution, i.e., the total number of memory locations accessed in a
program, denoted as |M |, is the upper bound (UB) of the optimal MLA solution.

3.2 MLA Heuristic

Our MLA heuristic consists of three main steps (see Figure 4):
Step 1: Assign locks to non-interfering subgraph Gn using graph coloring

heuristic (Line 6).
Step 2: Ensure that the serializing interfering edges in SNIG are correctly

handled (Line 7).
Step 3: Finally propagate the locks to the interfering subgraph Gi (Line 8).
The first step is straightforward. We use a heuristic graph coloring algo-

rithm [4] to color Gn, and one possible solution for our example is shown in
Figure 2(b).

Next, we must ensure that critical sections connected by serializing interfering
edges in SNIGs are correctly serialized. The details of this step are given by
the function HandleSerializingEdges in Figure 4. In Figure 2(d), CS1, CS3 and
CS4 are in Gn and each of them has obtained a lock from the graph coloring.
Interfering critical sections CS1 and CS3 are automatically serialized by sharing
lock 1, but CS3 and CS4 are not. A straightforward method to solve this is let one
of them “borrow” the lock from the other. For a serializing interfering edge (u, v),
we say vertex u borrows the lock from v, denoted as borrow(u ← v), if u adds v’s
lock to its lock set, Lock(u) = Lock(u)∪Lock(v). Denote the set of locks from u’s
non-interfering neighbors as NIN(u), NIN(u) =

⋃
(u,w)∈Gn

Lock(w). Before the

LockAssignment(G)
1. Initialize Lock(u) for all u ∈ V as empty
2. Partition the graph G
3. if Gn = φ
4. assign a global lock to each critical section
5. else

6. HLB = GraphColoring(Gn)
7. HandleSerializingEdges(Gs

n)
8. LockPropagation(Eci, Gi)
9. end if

10. if HLB > |M | then

11. for each v ∈ V
12. Lock(v) =

⋃
i∈LS(v)

Lock(i)

13. end for

14. end if

HandleSerializingEdges (Gs
n)

15. for each serializing interfering edges (u, v)
16. if Lock(u) ∩ Lock(v) = ∅
17. if borrow(u← v) is safe
18. Lock(u) = Lock(u) ∪ Lock(v)
19. else if borrow(v ← u) is safe
20. Lock(v) = Lock(v) ∪ Lock(u)
21. else

22. HLB = HLB + 1
23. add a new lock to u and v’s lock sets
24. end if

25. end if

26. end for

LockPropagation(Eci, Gi)
27. for each (vn, vi) ∈ Eci

28. sequence = BreadthFirstSearch(Gi, vi)
29. Arbitrarily pick one lock l from vn’s lock set
30. for each v in sequence
31. Lock(v) = Lock(v) ∪ {l}
32. end for

33. end for

Fig. 4. Lock Assignment Heuristic

borrowing, u has a disjoint set of locks with all its non-interfering neighbors, i.e.,
Lock(u)∩NIN(u) = ∅. This implies that the concurrency between u and its non-
interfering neighbors is maximized. After the borrowing, we also require u not
share any lock with its non-interfering neighbors. This is satisfied if Lock(v) ∩
NIN(u) = ∅, that is, none of u’s non-interfering neighbors has u’s borrowed
lock from v. In this case we say the borrowing is “safe”, which means it does not
reduce concurrency among non-interfering critical sections.

In our example in Figure 2, in order to enforce the mutual exclusion between
CS3 and CS4, we first let CS4 borrow the lock from CS3, then Lock(CS4) =
{1, 3}. This is shown in Figure 2(f). However, this borrowing is not safe, because
one of CS4’s non-interfering neighbor CS1 would share lock 1 with it. Then we
try the alternative way. We let CS3 borrow the lock from CS4. This is illustrated
in Figure 2(g). This borrowing is safe because Lock(CS4) ∩ NIN(CS3) = ∅,
where NIN(CS3) = {2}. Note that if neither borrowing is safe, we will introduce
a new lock and add it to both end vertices’ lock sets. The procedure of lock
borrowing is summarized in Figure 4.

The first two steps together color the SNIG Gs
n. Finally, in function Lock-

Propagation, we propagate the SNIG lock assignment result to the interfering
subgraphs Gi . The interfering subgraph Gi is connected to the non-interfering
subgraph Gn through a set of crossing edges (vn, vi), where vn ∈ Gn, and vi ∈ Gi.
Each (vn, vi) is an interfering edge, that means vi should share at least one of
vn’s lock obtained from the graph coloring. We say vn “propagate” a lock to vi.
If vi has more than one incident crossing edges, then it should inherit locks from
all its neighbors in Gn. Subsequently, vi propagates its lock set to its neighbors
in Gi. This propagation continues until every vertex in Gi inherits locks from
its neighbors. This procedure can be simply implemented as a set of breath-first
searches, with each vi at a crossing edge as the source vertex. The algorithm is
shown in Figure 4. One propagation result of our example is shown in Figure 2(h).
An important property of this lock propagation is that it does not introduce any
new lock, therefore the number of locks required to color Gi cannot exceed the
number of locks required to color the SNIG Gs

n.
The final lock assignment result is shown in Figure 2(h). We refer to the

number of locks required to color G as the Heuristic Lock Bound (HLB). We have
mentioned in the naive solution that the upper bound UB of the required locks is
the number of shared memory locations accessed in the concurrency graph G. In
some cases HLB might exceed UB, and we need to choose the smaller one from
HLB and UB for lock assignment. The MLA heuristic algorithm is summarized
in Figure 4.

The following theorems show that our MLA heuristic can preserve the mutual
exclusion between critical sections without any loss of concurrency. They also
show that lock assignment on an arbitrary concurrency graph G is optimal if the
lock assignment on SNIG of G is optimal. Detailed proofs can be found in [5].

Theorem 1. When the algorithm LockAssignment (G) terminates, any pair of
interfering critical sections in G share at least one common lock.

Theorem 2. When the algorithm LockAssignment (G) terminates, any pair of
non-interfering critical sections do not share any lock.

Theorem 3. Lock assignment on a concurrency graph G is optimal if and only
if the lock assignment on its SNIG Gs

n is optimal.

The concurrency graph partitioning runs in O(V + E) time, and the graph
coloring runs in O(V 2) time. At the worst case, the time complexity of Han-
dleSerializingEdgess and LockPropagation are O(E ∗ V) and O(E2 + V ∗ E),

respectively. Therefore, at the worst case the total time complexity of LockAs-
signment is O(E2 + V ∗ E).

3.3 ILP Formulation

In this section, we formulate the MLA problem as an ILP problem. Given a con-
currency graph G = (V, E), we introduce 0-1 variables fu,i to indicate whether
lock i is assigned to node u in G, 1 ≤ u ≤ |V |, and 1 ≤ i ≤ |M |, where M is the
set of shared memory locations that are accessed in all critical sections. Recall
that the number of locks given by an optimal solution cannot exceed |M |. Since
each critical section must be assigned at least one lock, we have the following
constraint:

fu,1 + fu,2 + · · ·+ fu,|M| ≥ 1 for all u ∈ G (1)

We use 0-1 variables li to indicate whether lock i is assigned to any critical
section, li = f1,i∨f2,i∨· · ·∨f|V |,i. This condition is represented by the following
constraints:

f1,i + · · ·+ f|V |,i ≥ li (2)

f1,i + · · ·+ f|V |,i ≤ |V | × li (3)

Next we derive conditions that ensure the lock assignment is correct and maxi-
mizes the parallelism. Recall that a lock assignment solution is correct if inter-
fering critical sections u and v share some lock, and parallelism is maximized if
non-interfering critical sections are assigned two disjoint sets of locks. Let 0-1
variable su,v,i indicate whether u and v share lock i, then su,v,i = fu,i ∧ fv,i.
This condition is imposed by the following constraints:

fu,i + fv,i ≥ 2× su,v,i (4)

fu,i + fv,i ≤ 2× su,v,i + 1 (5)

We use 0-1 variable su,v to indicate whether u and v share any lock. Then
su,v = su,v,1∨· · ·∨su,v,|M|. The following two constraints represent this condition:

su,v,1 + · · ·+ su,v,|M| ≥ su,v (6)

su,v,1 + · · ·+ su,v,|M| ≤ |M | × su,v (7)

Then

su,v = 1 for interfering edge (u, v) (8)

su,v = 0 for non-interfering edge (u, v) (9)

The total number of locks used is:

N = l1 + · · ·+ l|M| (10)

Therefore, the MLA problem is to minimize N subject to inequalities (1) to (9).

4 Experimental Results

In this section, we present two sets of experiments to evaluate our lock assign-
ment algorithm. In the first set of experiments, we compare the results produced
by our MLA heuristic with the optimal solutions based on the ILP formulation
on a set of 300 random concurrency graphs. In the second set of experiment we
evaluate the effectiveness of the MLA heuristic using Splash2 [3] benchmarks.

4.1 Precision Evaluation

Avg Min Max

Vertices (V) 8.63 2 16

Edges(E) 16.73 1 53

Edge Density E/V 2 0.19 0.09 0.28

Non-interfering edges (En) 3.37 0 20

En/E 0.22 0 1

Serializing interfering edges 2.85 0 27

Table 1. Features of random concurrency graphs

To study the precision of our MLA heuristic we implemented our ILP formu-
lation in the commercial ILP solver CPLEX, and tested the heuristic and the
ILP formulation on a set of 300 randomly generated concurrency graphs with
characteristics shown in Table 1. We limited our random concurrency graphs to
contain at most 16 nodes due to time constraints in the ILP solver. It shows that
our heuristic solution is optimal for 83.3% of tested graphs. For the remaining
16.7% of graphs our heuristic assigns more locks than the optimal solutions, and
in the worst case at most two more locks than optimal solutions are assigned.

We also evaluated the influence of non-interfering subgraph Gn and serializing
interfering edges Es for lock assignment. For this purpose, we listed the preci-
sion of the MLA heuristic with the increase of the relative size of non-interfering
subgraph, given by Vn/V , and with the increase of the relative number of seri-
alizing interfering edges, given by Es/E, in Figure 5(a) and (b), respectively. As
an example, Figure 5(a) shows that our MLA heuristic gives optimal solutions
to about 70% of test cases that have Vn/V = 0.6 and sub-optimal solutions (i.e.,
assign extra locks) for the remaining 30%. Figure 5(a) and (b) illustrate that
the precision of our heuristic depends on the non-interfering subgraph size and
the relative number of serializing interfering edges.

4.2 Performance Study on Sun-Fire

Next we study the performance of the MLA heuristic using a set of Splash2 [3]
benchmarks listed in Table 2. Splash2 benchmarks call the Pthreads li-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vn / V

M
L

A

Optimal
Un−optimal

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Es / E

M
L

A

Optimal
Un−optimal

(a) MLA Vn / V (b) MLA Es / E

Fig. 5. Precision of the MLA heuristic

Application Barnes Cholesky Ocean-cont Radiosity Water-nsq

Description N-body Matrix Hydro- 3-D Water
factoring dynamics rendering molecules

Problem size 262144 tk29.O 514 × 514 largeroom 512
bodies B8 C256 batch molecules

CSs 6 7 4 37 9

CS time (1 proc) 6.29% 32.37% 0.11% 9.93% 11.54%

Lines of code 17.17 / 68 10.86 / 37 1.75 / 3 12.79 / 85 2.89 / 6
in CS (avg/max)

Funcs in CS 1 1 0 10 1

Locks assigned 3 4 4 8 7

Locks for each 1 1 1 4 1
CS (max)

Table 2. Benchmarks and lock assignment results

brary 6, and mutual exclusion is enforced by pthread mutex lock(<lock var>) and
pthread mutex unlock(<lock var>) functions with explicit lock variables. For the
purpose of our performance study, we manually transformed each lock/unlock
region into a critical section. We constructed the concurrency graph for each
benchmark manually, and applied the MLA algorithm to calculate the lock as-
signment. The number of locks assigned to each benchmark is shown in Table 2.

We then ran the set of benchmarks on Sunfire 10-processor 750MHz machine,
and collected two sets of data for each benchmark to evaluate our heuristics:
(1) Ts: the execution time of the benchmark when all critical sections are con-
trolled by a single lock, and (2) TMLA: the execution time of the benchmark
with lock assignment using our MLA heuristic. Figure 6 shows the performance
improvement of our lock assignment with respect to the single global lock, i.e.,
(Ts−TMLA)/Ts, running on different number of threads. Cholesky and Radiosity

6 The original Splash2 benchmarks utilize the Argonne National Laboratories (ANL)
parmacs macros for parallel constructs. We have re-configured them to call the
Pthreads library.

Fig. 6. Performance improvement with respect to single lock

have shown a performance improvement of 30.17% and 14.76%, respectively, due
to the decrease of lock contention and serialization. On the other hand, Barnes,
Ocean-cont and Water-nsq show a much lower performance improvement for
two main reasons. First, the amount of time spent on critical sections is a small
portion of the total execution time. For instance, as shown in Table 2, for Ocean-
cont, the time spent on critical sections takes only 0.11% of the total execution
time. Second, in Barnes and Water-nsq data is often organized as arrays or
complicated user-defined data structures, and is accessed in a dynamic pattern
that cannot be predicted during the compilation time. When we constructed the
concurrency graphs we conservatively treated such arrays and user-defined data
structures as scalar units. This conservative approach may introduce “spurious”
interference among critical sections, which results in unnecessary serialization.
The unnecessary serialization will then increase lock contention among threads
during the execution time. Some more sophisticated analysis techniques such as
shape analysis [6], or dynamic conflict resolving techniques such as transactional
memory and synchronization state buffer (SSB) [7] are needed to exploit further
concurrency among critical sections in these benchmarks.

5 Related Work

Recently there has been some work on compiler based lock inference technique.
Emmi et.al. [8] propose a lock allocation problem that takes a multithreaded
program annotated with atomic sections and infers a lock assignment to atomic

sections to preserve its atomicity and deadlock freedom. They formulate the
lock allocation problem as an ILP problem which minimizes the conflict cost
between atomic sections and minimizes the number of locks. No heuristic solution

is presented in their work. Our lock assignment differs from lock allocation in
the following two aspects. First, our lock assignment problem maximizes the
parallelism among critical sections using the minimum number of locks, while
the lock allocation problem uses the minimum number of locks to minimize the
conflict cost, a metric that is not clearly related with the parallelism. Second, we
present both the heuristic solution and the ILP formulation for lock assignment
problem. We use the ILP formulation to evaluate the optimality of the lock
assignment heuristic. We also use scientific applications to evaluate the lock
assignment heuristic and present performance improvement.

Hicks et.al. [9] has proposed a lock inference techniques for atomic sections,
which first determines a set of shared memory locations in the program, then
uses a “mutex inference” algorithm to infer a set of locks for each atomic section
to preserve its atomicity. The basic idea of their mutex inference algorithm is
to find the dependence relation among shared memory locations, and partition
the shared memory locations into sets according to this dependence relation.
Locks are then assigned to each memory location set. Since the mutex infer-
ence algorithm is not optimization based, it may infer more locks than our lock
assignment algorithm.

Autolocker [10] takes the programs annotated with pessimistic atomic sec-
tions and a programmer controlled lock assignment, and infers a compiler con-
trolled lock assignment that is free of deadlocks and data races.

Vaziri et.al. [11] proposed a data-centric synchronization approach for writ-
ing concurrent programs using atomic sets, which are a set of shared memory
locations that have “similar” data consistency properties. Accesses to fields in
an atomic set are assumed to take place atomically in “units of work”. Taken
a program with annotated atomic sets, the compiler infers units of work auto-
matically and translates them into synchronized blocks. Our work complements
Vaziri et.al.’s work in that we can analyze and determine the atomic sets and
units of work using concurrency analysis and lock assignment algorithm.

Some other optimization techniques on locks have been reported. Diniz and
Rinard [12] present data lock coarsening and computation lock coarsening tech-
niques to reduce the overhead of fine-grain locks in Java programs. Choi et.al. [13]
and Aldrich et.al. [14] remove unnecessary synchronization from Java programs.

6 Conclusions

In this paper we proposed a lock assignment technique to simplify the mu-
tual exclusion in multithreaded programs. It takes the programs annotated with
critical sections and finds the minimum number of locks needed to enforce
mutual exclusion among interfering critical sections without any loss of concur-
rency. Experimental results are very encouraging and show that our method can
be used to improve the performance of multithreaded programs with mutual ex-
clusion by exploiting concurrency among multiple critical sections. An extension
of this work to support read/write locks is a subject for future work.

References

1. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

2. V. Sreedhar, Y. Zhang, and G. Gao. A new framework for analysis and optimization
of shared memory parallel programs. Technical Report CAPSL-TM-063, University
of Delaware, Newark, DE, 2005.

3. The Stanford FLASH Prjoect. Stanford parallel applications for shared memory
(SPLASH) benchmark. In http://www-flash.stanford.edu/apps/SPLASH/.

4. P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University,
1992.

5. Y. Zhang, V. Sreedhar, W. Zhu, V. Sarkar, and G. Gao. Optimized lock assign-
ment and allocation: A method for exploiting concurrency among critical sections.
Technical Report CAPSL-TM-065-revised, University of Delaware, Newark, DE,
2007.

6. Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape
analysis for heap-directed pointers in c. In POPL ’96: Proceedings of the 23rd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 1–
15, 1996.

7. Weirong Zhu, Vugranam C Sreedhar, Ziang Hu, and Guang R. Gao. Synchro-
nization state buffer: supporting efficient fine-grain synchronization on many-core
architectures. In ISCA ’07: Proceedings of the 34th annual international sympo-

sium on Computer architecture, pages 35–45, 2007.
8. Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar. Lock

allocation. In POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 291–296, 2007.
9. M. Hicks, J. Foster, and P. Pratikakis. Lock inference for atomic sections. In

TRANSACT’06: Proceedings of the 1st ACM SIGPLAN Workshop on Languages,

Compilers, and Hardware Support for Transactional Computing, 2006.
10. Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchro-

nization inference for atomic sections. In POPL ’06: Conference record of the 33rd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 346–358, 2006.

11. M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints with data
in an object-oriented language. In POPL’06, pages 334–345. ACM, 2006.

12. P. Diniz and M. Rinard. Lock coarsening: Eliminating lock overhead in automati-
cally parallelized object-based programs. In LCPC’96, pages 284–299, 1996.

13. Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and
Samuel P. Midkiff. Stack allocation and synchronization optimizations for java
using escape analysis. ACM Trans. Program. Lang. Syst., 25(6):876–910, 2003.

14. J. Aldrich, E. Sirer, C. Chambers, and S. Eggers. Comprehensive synchronization
elimination for java. Science of Computer Programming, 47(2-3):91–120, 2003.

