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Abstract. As hardware systems move toward multicore and multi-
threaded architectures, programmers increasingly rely on automated
tools to help with both the parallelization of legacy codes and effective
exploitation of all available hardware resources. Thread-level speculation
(TLS) has been proposed as a technique to parallelize the execution of
serial codes or serial sections of parallel codes. One of the key aspects of
TLS is task selection for speculative execution.

In this paper we propose a cost model for compiler-driven task selection
for TLS. The model employs profile-based analysis of may-dependences
to estimate the probability of successful speculation. We discuss two
techniques to eliminate potential inter-task dependences, thereby im-
proving the rate of successful speculation. We also present a profiling
tool, DProf, that is used to provide run-time information about may-
dependences to the compiler and map dynamic dependences to the source
code. This information is also made available to the programmer to assist
in code rewriting and/or algorithm redesign.

We used DProf to quantify the potential of this approach and we
present results on selected applications from the SPEC CPU2006 and
SEQUOIA benchmarks.

1 Introduction
Thread-level speculation (TLS) [28,16,26,12] is one technique that has been pro-
posed for parallelizing sequential codes to exploit parallel and multi-core archi-
tectures. Parallelization using TLS consists of selecting regions of code to execute
in parallel, relying on the system to detect dependence violations and re-execute
the conflicting sections such that sequential execution semantics is preserved.
Typically the code regions are loop iterations and function continuations. A
number of researchers made the case that automatically speculating on inner
loops at the granularity of single iteration is not very effective for the applica-
tions in the SPEC CPU2006 benchmark suite, and gives little advantge over a
state-of-the-art parallelizing compiler [15]. This highlights the importance of
task selection towards the efficacy of TLS. Task selection can be done either au-
tomatically using a compiler, or manually through programmer annotations. Liu
et al. [18] and Johnson et al. [14,13] propose mechanisms to automatically iden-
tify most profitable tasks for speculation through profiling information [14,18]
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or empirical search [13]. On the other side of the spectrum, von Praun et al. [30]
argue for user annotation of the speculative tasks and provide a tool that can
classify program sections and recommend task placement directives.

It is obvious that programmers need tools to help them make parallelization
decisions. This includes choosing a suitable parallelization strategy for a given
application, e.g., speculative vs. non-speculative; task selection for speculation;
or algorithm restructuring to expose parallelism. We propose a new model that
uses compiler analysis and profiling to guide parallelization and task selection,
in an attempt to reach a middle ground: the compiler and tools provide as much
information as possible and prune the space, so that the user could focus on
those parts of the application that may need rewriting and algorithm redesign.

In this paper, we present a compiler-driven approach for program dependence
profiling and a cost model to identify loops suitable for TLS parallelism. One
metric used in the cost model is the distance between consecutive dependent iter-
ations [21], referred to as the independence window. If the independence window
is larger than the speculation window (the number of tasks that are potentially
executing in parallel at any point in time), the dependence does not affect TLS
effectiveness. The Independence window is a dynamic property of a loop since it
depends on the iteration schedule.

We developed a dependence profiler, referred to as DProf, to measure depen-
dence probability and independence window. Profiling can be implemented using
a dynamic binary instrumenter [29] or using compiler instrumentation. When us-
ing a binary instrumenter, program properties known to the compiler are lost
or hard to obtain at binary level; “transferring” the dependence information
from a trace to the compiler is quite involved: the binary instrumenter collects
physical addresses which need to be mapped to the variables in the program. In
Section 3, we present a compiler-based approach for dependence profiling that
overcomes these limitations. We present the dependence and independence win-
dow profile obtained by DProf for selected programs from the SPEC CPU2006
and SEQUOIA benchmarks. Both the independence window and dependence
data measured by the profiler provide useful feedback to the compiler to per-
form dependence tolerating transformations or to the programmer to restructure
algorithms for parallelism.

The main contributions of this paper are:

❚ A static model for TLS profitability that is used by the compiler to select
tasks for speculation;

❚ A compiler-driven approach for program dependence profiling;
❚ Two techniques – independence windows and dependence clustering – for

increasing the profitability of TLS.

The rest of the paper is organized as follows: Section 2 describes our static
model for TLS. The design of DProf is described in detail in Section 3 and its
applications are discussed in Section 4. Previous work is discussed in Section 5.
Finally, in Section 6 we summarize with directions for future work.
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2 Static modeling of TLS profitability
In this section we present a cost model used by the compiler to determine prof-
itable TLS code sections. There are three main factors that determine the prof-
itability of speculative execution:

1. Conflict probability (C): defines what is the probability that two speculative
tasks access the same data, and at least one is a write, such that they conflict
and the speculative execution must be squashed. The conflict probability is a
function of the data dependences in the task and of the task size. We discuss
the conflict probability in detail in Section 2.1;

2. Speculative spawn and commit overheads (O) which are system dependent
costs of speculation, for both successful and aborted execution;

3. Task sizes (Si), which determine the the fraction of useful work, as well as
influence conflict probability – the larger the size the larger the set of data
accessed, and efficiency due to load balancing issues.

A TLS section of code is profitable if the time required for parallel execution
(Tp), including the overheads, is less than the time required for serial execution
(Ts), i.e., Tp < Ts. Ts and Tp for a set of N tasks running on P processors can
be expressed as follows:

Ts =
N∑
i

Si (1)

Tp =
∑

k

N × (1− C)k

P
(max

i
(Si) + O) (2)

Tp =
N × (1− C)

P
(max

i
(Si) + O) +

N×C∑
i

(Si + O) (3)

The serial execution time Ts (Eqn. 1) is the sum of all tasks. The parallel
execution time Tp (Eqn. 2) takes into consideration the number of processors
and the conflict probability. Eqn. 3 is a simplified version of Eqn. 2 that uses the
following assumption: N × (1 − C) tasks can all execute in parallel (maxi(Si)
determining the parallel execution time), with no other overhead in addition to
the spawn and commit overhead O; the other N ×C tasks are all serialized. Of
course, this is a conservative assumption, because within the remaining tasks
there may be independent sets of tasks, but between the overhead of spawning
a task multiple times, and the diminishing returns of executing conflicting task
versus just serializing execution, we select the latter.

The compiler may obtain the needed parameters for the model either stati-
cally using analysis, or through profiling, as follows:

❐ New data dependence analysis that takes into consideration dependence
probabilities; or profiling information that estimates the conflict probabil-
ity for a set of tasks;

❐ A cost model for task sizes; or profiling information that quantifies the sizes
of tasks;
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❐ System latencies and overheads for TLS support.

For this paper, we explore the effectiveness of the cost model, and thus we
collect profiling information using DProf (see Section 3) that provides feedback
information on data dependences and task sizes.

2.1 Conflict Probability

We use the metric of conflict probability to determine the likelihood of the
speculation execution of a code region success. A conflict probability of 0 implies
that the region is independent of all other regions with which it has the potential
to run in parallel, while a conflict probability of 1 guarantees that a conflict will
happen and the speculation will fail. Intuitively, the larger a code region, the
higher the probability of conflict. However, there are many cases in which large
code regions are independent, e.g., iterations of DOALL loops.

The conflict probability is computed using the data dependence density met-
ric. In [29], von Praun et al. used the data dependence density metric to deter-
mine the available parallelism in an application. They argue that the amount
of exploitable parallelism in the application is dependent on the scheduling of
threads, and classified application phases into three categories: high-, medium-,
and low-dependence density. The low-dependence density regions are the most
profitable for speculation. Because we are focusing on loop iterations, and con-
sidering two dependent iterations t and s, we can simplify the data dependence
density computation from [29] and use the following formula for conflict proba-
bility:

C (t) :=

∑
∀s,has dep(t,s)

Ss

N∑
i

Si

(4)

In this paper, the conflict probability is used directly with the speculation
overheads and task sizes (Eqn. 3) to select the profitable tasks.

In addition, the compiler can also increase the probability of successful spec-
ulation by taking advantage of patterns of dependences. We present two such
techniques – the independence window and dependence clustering.

2.2 Independence Windows

An independence window is a set of consecutive iterations that are independent of
each other. Iterations in the set – the independence window – can be executed in
parallel. We call the cardinality of the set the width of an independence window.

The entire iteration space can be viewed as a partitioned set of independence
windows. Consider the loop shown in Figure 1 (a) and the corresponding itera-
tion space shown in Figure 1 (b). The loop has a loop-carried dependence with
dependence distance of 4. Therefore, every 4 iterations, marked with dashed
arrows in Figure 1 (b), can be executed in parallel. For loops with a constant
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dependence distance of n, the iteration space is equally partitioned into inde-
pendence windows of width n. For irregular loops, the independence window is
a dynamic property determined by the iteration schedule.

A(I) = A(I−4) + B(I) 

END DO

(a) (b)

5 9 13 17 21

DO I = 5, 100

Fig. 1. An example illustrating the independence window

Assuming that tasks are scheduled and retired at a uniform rate at the gran-
ularity of one iteration, a loop with an independence window of width n can
be parallelized with zero conflicts using no more than n speculative threads.
In other words, the width of independence window gives the theoretical upper
bound on the size of non-conflicting speculation.

We use the width of independence windows as a metric of dynamic paral-
lelism, especially for loops that do not have a uniform dependence distance. For
such loops, the width of the independence window varies across the iteration
space, e.g., due to multiple dependences occurring at different intervals. We use
the profiler to empirically determine the independence window width of such
loops. In our profiler, we compute the maximum, minimum, and average widths
of independence windows to capture dynamic widths of independence windows.

The compiler can exploit independence windows by throttling the specula-
tion, such that dependences are naturally satisfied. This can be accomplished by
either of the following methods:

❐ By the compiler inserting explicit synchronization, similar to the technique
described in [32]; or

❐ Providing hints to the hardware for dynamic task merging [24]; or
❐ Inserting conditional spawn instructions [9] if the hardware supports it.

2.3 Dependence Clustering
Recently it was shown that the profitability of TLS is highly sensitive to the
threading overhead [15]. The analysis assumed dynamically scheduling, wherein
iterations of a loop are allocated one at a time. Arguably, one can unroll a
loop or employ chunk scheduling, where multiple iterations are allocated either
statically or dynamically to a processor, to tolerate the high threading overhead.
On the other hand, this increases the probability that two speculative threads
conflict with each other. However, this implicitly assumes a uniform distribution
of dependences across the iteration space: if there exists 2 dependences between
iterations i and i+1, then iterations j and j+1, where i 6= j will be dependent. In
other words, the width of the independence window is “fixed”. This assumption
may not hold for loops containing conditionals, subscripted subscripts and/or
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function calls. For example, let us revisit the loop shown in Figure 1. The value
of the variable i may be the same for the first 10 iterations and different in the
remaining iterations; consequently, the first ten iterations have to be executed
serially, whereas the remaining iterations can be executed in parallel. In such a
case, we say that loop-carried dependences are clustered amongst the first ten
iterations.

In general, the objective of dependence clustering is to determine, regions of
the iteration space (of a given loop) with large independence windows. If such
regions exist, then the iteration space is partitioned to isolate such regions and
these regions are subsequently parallelized via TLS.

2.4 Summary
In Figure 2 we present a pictorial view of profitability analysis of TLS. We
consider a hierarchy for non-DOALL loops. The first level filtering is done based
on the threading overhead. Specifically, non-DOALL loops with small amount of
computation in the loop body are filtered as these loops are non-tolerant (box
A in the figure) to the threading overhead. The second level filtering is done
based on conflict probability, using MinIWW (Minimum independence window
width). Loops with MinIWW = 1 are classified as non-profitable, box B1 in the
figure [15]. The rest of the loops are classified as profitable, box B2 in the figure.

Speculative

Parallelization

B2B1

CS = Chunk scheduling DC = Dependence clustering

Non−DOALL Loops

A B

ProfitableNon−Profitable

Threading Overhead

Conflict Probability

Non−Tolerant Tolerant
CS

DC

Fig. 2. Role of dependence clustering in facilitating speculative parallelization

Amongst the loops belonging to box A, we detect loops with high iteration
counts. Such loops can be migrated to box B via chunk scheduling; it is important
to note that these loops cannot be directly migrated to box B2 as chunk schedul-
ing may result in an increase in conflict probability. Next, amongst the loops
belonging to box B1, we detect loops with large MaxIWW (Maximum indepen-
dence window width), exemplified by the loop in 429.mcf, at implicit.c:381
whose profile of independence windows is shown in Figure 8. Then, parts of the
iteration space (of such loops) with large value of MaxIWW are peeled and clas-
sified as profitable for TLS. The percentage of execution time spent in the peeled
portions of the iteration space correspond to the performance potential of TLS.
Recall that, for given a loop, the existence of independence windows with large
widths and their position in the iteration space may be dependent on the input
data set. Therefore, independence windows (with large widths) detected using a
training data set cannot be parallelized statically.
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3 Design of DProf
DProf consists of two components: a compiler-driven instrumenter that selects
loops and instruments memory references for dependence profiling, and a runtime
library that logs references and profiles dynamic dependences and independence
window.

3.1 DProf instrumenter
The instrumenter is based on the optimizing and parallelizing IBM XL (produc-
tion) compiler. The compiler first analyzes candidate loops to decide whether
they are parallel. Parallel loops are not profiled. The rest of candidate loops may
be selected for profiling based on the likelihood of the dependences detected by
the compiler and other characteristics of the loop. For instance, a loop with small
dependence distances may not be selected for profiling if static information is
sufficient to determine the loop as not a good candidate for parallelization.

For loops that are selected for profiling, the compiler transforms every mem-
ory reference that carries may-dependences into a call profile access, and
marks the start, the end, and the backedge of a (possibly nested) loop by calls
to profile boundary.

The compiler does not instrument references to induction, reduction, and
private variables as dependences carried by these references can be eliminated
via compiler transformations. To reduce profiling time, the compiler may not
instrument references whose loop-carried dependences can be represented by
dependence distances. In this case, the dependence information is recorded by
the instrumenter and is later combined with profiled dependences to produce a
complete dependence report.

3.2 DProf runtime library
The runtime library profiles a set of properties for loops such as whether a given
loop is parallel, statistics of independence window size, and dependence proper-
ties such as the source, sink, and the frequency of dependences or dependence
distances.

The profiler maintains a set of read- and write-logs for each loop: Rcurr/Wcurr

for the current iteration being profiled, Rindep/Windep for iterations in the cur-
rent independence window, and Rother/Wother for iterations prior to those in
the current independence window. Loop data structures are kept in a stack so
that nested loops can be profiled in one pass.

For each profile access call, the profiler logs the reference to Rcurr or
Wcurr accordingly, unless the access is a read and the memory address is already
in Wcurr (i.e., the read is private to current iteration).

For each profile boundary call that marks a loop backedge, the profiler
detects loop-carried dependences by comparing Rcurr against Windep. If the in-
tersection of the two sets is not a void set, then a true dependence is detected,
and the current independence window is reset to start from the current iteration
after the sets Rindep/Windep are merged to Rother/Wother respectively. Other-
wise, the current independence window is grown by one iteration. Note that,
in this algorithm, only true dependences and dependences to references in the
latest independence window are detected.
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3.3 Source Mapping
The profiler reports source-level information corresponding to the source and
sink of the dynamic dependences being profiled. Such information provides a
valuable guidance to the programmer to make parallelization decisions and even
eliminate these dependences by making source code changes.

The source-level mapping is maintained by the instrumenter which associates
each call site of profile access and profile boundary with a unique id.
The instrumenter also generates a file, which is later used by the profiler, to
map ids to its associated source-level information and other properties obtained
by the compiler. Since the instrumenter is a part of the compiler, the same
mechanism can be used to map profiled properties back to the compiler.

4 Benchmark Evaluation

We implemented DProf on top of the development code base of the IBM XL
compiler. Essentially, an instrumentation phase is added to an optimizing com-
ponent of the XL compiler called TPO that performs high-level optimization
including parallelization. The profiler is implemented as a runtime library that
is linked with the instrumented binary.

4.1 Dependence Profiling
We used DProf to study the parallelization potential of selected applications
from the SEQUOIA [1] and SPEC CPU2006 benchmarks. We profile only hot
loops that are not parallelized by the compiler. For example, three applications
from SPEC206, bwaves, libquantum, and cactusADM, are parallelized by the
compiler, and thus excluded from the study.

We focus on four applications and provide a detailed discussion of their de-
pendence profile characteristics and how they affect speculation profitability. A
summary of the dependence characteristics obtained using DProf is given in
Table 1. Other applications are not profiled due to a lack of hot for-loops (while-
loops are not profiled due to limitation of the current implementation), or due
to hot loops that are obviously non-parallel (e.g., containing I/O operations).

Benchmark Hot Function % exec Profiling Summary

lammps pair eam::compute() 90% parallel with array reduction

Neighbor::half bin newton() 8% serial due to scalar dependence

gromacs innerf.f:3932 57% inner loop parallel, outer loop serial

hmmer fast algorithm.c:119 90% both inner/outer loops are serial

mcf implicit.c:265 10% both inner/outer loops are serial

Table 1. Summary of dependence characteristics obtained using DProf

SEQUOIA/lammps The hottest function, pair eam::compute(), covers 90%
of the execution time. There are two hot loops in this function that exhibit
similar dependence patterns. Neither of them is parallelized by the compiler due
to inadequate pointer aliasing information.

Figure 3 shows the fragment of the first hot loop, where the outer i-loop
traverses a list of atoms and the inner k-loop traverses the neighbor list of each
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164 for (i = 0; i < nlocal; i++) {

...

168 itype = type[i];

169 neighs = neighbor->firstneigh[i];

170 numneigh = neighbor->numneigh[i];

171

172 for (k = 0; k < numneigh; k++) {

173 j = neighs[k];

...

180 if (rsq < cutforcesq) {

...

188 rho[i] += ((coeff[3]*p + coeff[4])*p + coeff[5])*p+coeff[6];

189 if (newton_pair || j < nlocal) {

190 coeff = rhor_spline[type2rhor[itype][jtype]][m];

191 rho[j] += ((coeff[3]*p + coeff[4])*p +coeff[5])*p+coeff[6];

192 }

193 }

194 }

195 }

Fig. 3. Source code of 1st hot loop in pair eam::compute()

item. Figure 4 gives the profiling report of the outer i-loop shown in Figure 3.
The loop has an average independence window of 1 iteration. The narrow inde-
pendence window is due to the tight dependence caused by read-modify-write
to rho[j] at line 191, and by the conflict between rho[i]+= at line 188 and
rho[j] += at line 191. According to these stats, if consecutive iterations of the
i-loop are scheduled as TLS tasks, then the conflict rate would be almost 100%.

Loop <1> at line 164 has 101 invocations, average 32000 iter/invoc (min=32000, max=32000)
  The loop has minIndep = 1 maxIndep = 5 avgIndep = 1
  − Detected a true dependence with frequency of 43.7679% between "this−>rho[i]" (line# 188) and "this−>rho[j]" (line# 191) in "pair_eam.cpp"
  − Detected a true dependence with frequency of 51.4117% between "this−>rho[j]" (line# 191) and "this−>rho[i]" (line# 188) in "pair_eam.cpp"
  − Detected a true dependence with frequency of 95.7514% between "this−>rho[j]" (line# 191) and "this−>rho[j]" (line# 191) in "pair_eam.cpp"

Fig. 4. Profiling report for hot loop in pair eam::compute()

Note that all the loop-carried dependences are between the statements of the
form rho[x] += . In other words, elements of array rho are reductions. This
loop can be parallelized by parallelizing the reduction [20], with the caveat that
the compiler analysis needs to be extended to handle different subscripts.

CPU2006/gromacs The hottest loop in gromacs is in innerf.f at line
3932. The loop is a doubly nested and covers 57% of the total execution time.
The loop nest contains many array references through subscript arrays (e.g.,
faction(jjnr(k)-1)), thus dependences on this loop nest cannot be detected
statically. With the training input set, the inner loop has an average trip count
of 28 iterations, ranging from 1 to 173. The loop is profiled to be parallel. Con-
sequently, the loop is marked as profitable, with respect to conflict probability,
for TLS.

The outer loop has an average trip count of 1250 iterations, ranging from
4 to 13891. DProf reports 30 pairs of true dependences for this loop and an
independence window of 1 iteration. Half of the dependences have very low
frequency (less than 1%). The rest have frequencies ranging from 18% to 100%.
Figure 5 shows fragments of the loop, where all high frequency dependences
occur between line 4140 and 4154 at the bottom of the outer loop.

All high frequency dependences occur among statements with array element
reduction pattern (i.e., of the form of a[x] += ). Of them, updates to elements
of arrays Vc, Vnb, and fshift are true reductions. Updates to faction exhibit
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3932 do n=1,nri

...

ii3 = 3*iinr(n)-1

is3 = 3*shift(n)+1

3961 do k=nj0,nj1

...

4139 end do

4140 faction(ii3) = faction(ii3) + fix1 /* dep freq 51% */

4141 faction(ii3+1) = faction(ii3+1) + fiy1 /* dep freq 51% */

...

4148 faction(ii3+8) = faction(ii3+8) + fiz3 /* dep freq 51% */

4149 fshift(is3) = fshift(is3) + fix1+fix2+fix3 /* dep freq 18% */

4150 fshift(is3+1) = fshift(is3+1) + fiy1+fiy2+fiy3 /* dep freq 18% */

4151 fshift(is3+2) = fshift(is3+2) + fiz1+fiz2+fiz3 /* dep freq 18% */

4152 ggid = gid(n)+1

4153 Vc(ggid) = Vc(ggid) + vctot /* dep freq 100% */

4154 Vnb(ggid) = Vnb(ggid) + vnbto /* dep freq 100% */

4155 end do

Fig. 5. Source code of the hot loop at line 3932 in innerf.c

a more complex pattern. Besides the reduction updates to elements of faction
between line 4140 and 4148, there are additional reads and writes to faction
in the inner k-loop that are not in the reduction form; however, these references
to faction lead to very low frequency conflict (1̃%) with those references to
faction between line 4140 and 4148. This means the outer loop can not be
easily parallelized by reduction handling and requires TLS support.

CPU2006/hmmer We now illustrate the dependence profiling of the hot loop
in hmmer taken from fast algorithms.c:119. The loop covers 90% of the exe-
cution time and is shown in Figure 6. In this loop, variables mmx, dmx, xmx and
imx are declared as int**. Due to the lack of aliasing information, the compiler
can not determine the precise dependence information for references in the loop.

120 for (i = 1; i <= L; i++) {

121 mc = mmx[i];

122 dc = dmx[i];

123 ic = imx[i];

124 mpp = mmx[i-1];

125 dpp = dmx[i-1];

126 ip = imx[i-1];

127 xmb = xmx[i-1][XMB];

...

134 for (k = 1; k <= M; k++) {

135 mc[k] = mpp[k-1] + tpmm[k-1]; /*flow to mc[k-1] line 143 */

136 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;

137 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;

138 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

139 mc[k] += ms[k];

140 if (mc[k] < -INFTY) mc[k] = -INFTY;

141

142 dc[k] = dc[k-1] + tpdd[k-1]; /* flow to dc[k-1] line 143 */

143 if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;

144 if (dc[k] < -INFTY) dc[k] = -INFTY;

145

...

152 }

158 xmx[i][XMN] = -INFTY; /* flows to xmx[i-1][XMN] at line 159 */

159 if ((sc = xmx[i-1][XMN] + hmm->xsc[XTN][LOOP]) > -INFTY)

160 xmx[i][XMN] = sc;

...

189 }

Fig. 6. Source code of the loop at 456.hmmer:fast algorithm:119

With the training input set, the inner loop is profiled to have a trip count
of 100 iterations, and has an independence window of 1 iteration. Two pairs of
dependences are detected for this loop on the mc and dc variables. The outer
loop has an average trip count of 491 iterations, ranging from 7 and 1328 iter-
ations. The loop also has an independence window of 1 iteration. Ten pairs of
dependences are detected with 100% conflict rate. This is an example of a loop
that is not a good candidate for speculative parallelization.
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CPU2006/mcf The hottest loop in 429.mcf (psimplex.c:59) is a while-
loop thus is not profiled. The loop at implicit.c:265 (see Figure 7) cov-
ers 10% of the execution time. The loop is profiled to have an independence
window of 1 iteration. The profiler reports 18 pairs of dependences for this
loop. Of them, two dependences have a conflict rate of 100%, one on the vari-
able first of sparse list at lines 269 and 270 and the other between the
pointer accesses arcout->head->firstout->head->arc tmp at line 270 and
tail->arc tmp at line 289.

265 for( ; i < trips; i++, arcout += 3 )

266 {

267 if( arcout[1].ident != FIXED )

268 {

269 arcout->head->firstout->head->arc_tmp = first_of_sparse_list;

270 first_of_sparse_list = arcout + 1;

271 }

272

273 if( arcout->ident == FIXED )

274 continue;

275

276 head = arcout->head;

277 latest = head->time - arcout->org_cost

278 + (long)bigM_minus_min_impl_duration;

279

280 head_potential = head->potential;

281

282 arcin = first_of_sparse_list->tail->arc_tmp;

283 while( arcin )

284 {

285 tail = arcin->tail;

286

287 if( tail->time + arcin->org_cost > latest )

288 {

289 arcin = tail->arc_tmp;

290 continue;

291 }

...

310 }

Fig. 7. Source code of the loop at 429.mcf:implicit.c:265

4.2 Determining Independent Clusters
In this subsection, we present a case study to illustrate the use of DProf to
determine independent clusters. Figure 8 shows the profile of independence win-
dows for four different instances of the loop in 429.mcf, at implicit.c:381,
using the training and reference input data sets. All the references in the loop
were instrumented, except for the variablesusp – a reduction recognized by the
compiler.

The x-axis in each subfigure of Figure 8 represents the number of indepen-
dence windows and the y-axis represents the width of an independent window.
From Figure 8 we see that parts of the iteration space have large independence
window widths. For instance, let us consider the profile shown in the second row
and right column. We note that the widths are very small towards the left of
the x-axis and is more than 7500, on an average, on the right side of the x-axis.
In such cases, we say that dependences occur in clusters. This behavior can be
exploited for speculatively parallelization, as discussed earlier in Section 2. In-
terestingly, we note that the profile of independence windows varies from one
instance to another and is significantly different for the training and reference
data sets.

For the hot loops we studied, however, we find that the dependence window
profile is quite regular: the loops are either fully parallel or have a constant
independence window width of 1.
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Instance 1 Instance 2

Train Data Set Train Data Set

Reference Data Set Reference Data Set

Instance 3 Instance 4

Train Data Set Train Data Set

Reference Data Set Reference Data Set

Fig. 8. Illustration of dependence clustering
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5 Previous Work

Task-level speculative computation has been long proposed as a means for ex-
tracting higher levels of parallelism [3]. With the emergence of multithreaded
processors [23], many researchers have proposed the use of threads for exploiting
speculative parallelism in both hardware and software [11,25,2].

To ensure profitable speculation, most prior work use profile-based cost mod-
els for task decomposition and selection, while others rely on hardware mecha-
nism [4,5,33,27], probabilistic static analysis (e.g., dependence probability [6]),
compiler heuristics [28] for task generation. The rest of the section will focus on
related work in software profile-based cost models, which our work belongs to.

In [8], the compiler uses dependence profile for task selection and for
partitionning speculative loops into serial and parallel portions. The profiler
tracks both intra- and carried- true dependences for speculative loops. Carried-
dependences are used to guide the parition of loop bodies into a serial and a par-
allel portion. Since dependences originated from the serial portion do not trigger
roll-back in the parallel portion, the key part of their framework is to move source
computation of frequent dependences (called violating candidate) to the serial
portion through instruction reording. A cost model is used to select the optimal
loop partition, which is based on the size of serial portion and the misspeculation
cost of the parallel portion. The latter is computed by combining re-execution
cost of individual nodes weighted by probabilities of carried-dependences (for
violating candidates) and intra-iteration dependences (for others).

In [19], the POSH compiler uses profiling for task selection. The profiler builds
a rudimental timing model for TLS execution from the sequential execution. It
assigns timestamps to each instruction as if the tasks were executed in paral-
lel, and detect task squashes by comparing timestamps of conflicting memory
accesses. The profiler does not collect individual dependence probabilities thus
runs much faster than typical dependence profiler. The compiler also partition
the loop into serial and parallel (called hoisting distance) portions. But unlike [8],
the partitioning uses static information only. Tasks are pruned based on three
independent thresholds for task size, hoisting distance, and squash benefit. The
latter also factors in prefetching benefit of squashed tasks.

In [22], the Mitosis compiler uses both dependence and edge-profiles for 1)
generating speculative precomputation slices (p-slice) and 2) selecting spawn-
ing pairs. P-slice predicts live-in values for speculative tasks and contributes
to the serial portion of the speculative execution. To minimize p-slice overhead
while maximizing the accuracy, the compiler uses dependence- and edge-profiles
to prune instructions in p-slices. To select spawning pairs, another profile an-
alyzes the sequential execution trace to model the speculative execution time
of each candidate spawning pair without considering inter-task memory con-
flicts. Instead, in this execution model, task squashes is mostly determined by
mispredication probability of p-slices.

In [14], Johnson et al. proposed an approach wherein speculative task decom-
position is modelled as a balanced min-cut problem. In this framework, edge-
and dependence profiles are used to assign weights to graph edges.
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In [30], Praun et al. proposed a tool for speculative task head recommenda-
tion based on binary instrumentation. The cost model for task recommendation
is based on self length that models task sizes, dependence length that models
conflicts, and a parallelization speedup estimate.

Alias profiling has been proposed as an assist for memory disambiguation
[31,10,17]. Chen et al. [7] proposed a dependence profiler for speculative opti-
mizations.

6 Conclusions
This paper presents a cost model for speculative task selection and a compiler-
based approach for program dependence profiling. The dependence profiler,
DProf, measures width of independence windows to quantify dynamic paral-
lelism in the program. We also propose dependence clustering as a technique to
exploit TLS parallelism on segments of the iteration space.

In addition to its use in task selection, DProf also reports individual de-
pendences being profiled including dependence probability and source mapping
information. This information can be fed to the compiler or the programmer to
assist code transformation or algorithmic optimizations.

We present the dependence and independence window profile obtained
through DProf for selected programs in SEQUOIA and SPEC CPU2006 bench-
mark suites. We observe that:
❐ In addition to all the loops parallelized by the compiler, only one hot loop

is profiled to be parallel in the programs being studied.
❐ There is little variability in independence window width in the hot loops

we studied. Loops are either parallel or serial with an independence window
width of 1.

❐ For loops with tight independence window, there are often a mixture of high-
and low-frequency dependences. Eliminating high-frequency dependences is
key to widening the independence window.

❐ Dependences due to complex reduction updates is one form of high-frequency
dependence that can be potentially eliminated.

As future work, we plan to provide support for dependence profiling of while
loops and enable the profiling of complex reduction patterns.
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