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Abstract. Sensitivity Analysis (SA) is a novel compiler technique that
complements, and integrates with, static automatic parallelization anal-
ysis for the cases when program behavior is input sensitive. SA can ex-
tract all the input dependent, statically unavailable, conditions for which
loops can be dynamically parallelized. SA generates a sequence of suf-
ficient conditions which, when evaluated dynamically in order of their
complexity, can each validate the dynamic parallel execution of the cor-
responding loop. While SA’s principles are fairly simple, implementing
it in a real compiler and obtaining good experimental results on bench-
mark codes is a difficult task. In this paper we present some of the most
important implementation issues that we had to overcome in order to
achieve a fairly successful automatic parallelizer. We present techniques
related to validating dependence removing transformations, e.g., privati-
zation or pushback parallelization, and static and dynamic evaluation of
complex conditions for loop parallelization. We concern ourselves with
multi-version and parallel code generation as well as the use of specu-
lative parallelization when other, less costly options fail. We present a
summary table of the contributions of our techniques to the successful
parallelization of 22 industry benchmark codes. We also report speedups
and parallel coverage of these codes on two multicore based systems and
compare them to results obtained by the Ifort compiler.

1 Introduction

1.1 Automatic Parallelization - Current State of the Art

The recent introduction of multi-core based architectures to the mass market
has brought program parallelization of the existing code base to the forefront. In
fact, there seems to be a degree of urgency from the part of the major vendors to
enable their users to exploit the coarser level parallelism offered by these new mi-
cros with their existing software base. Parallelizing compilers are a key enabling
technology in this domain because they offer the advantage of automation and
thus high productivity.

Parallelizing compilers must focus, at least as a necessary first step, on dis-
covering which loops can be executed in parallel (ideally as a doall). Data de-
pendence analysis techniques as simple as the GCD test [17] and as sophisticated
as the Omega test [9] have been employed to statically prove the independence
of memory references within a loop. After some limited success it had become
clear that sparse, dynamic programs could not be automatically parallelized
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using these static techniques alone because their memory reference pattern is
input dependent. The proposed solution was dynamic (run-time) analysis with
the advantage of high accuracy (most symbolic data is instantiated) but with
the drawback of run-time overhead. The dynamic approach has taken two direc-
tions: (a) a continuation of the static compilation analysis at run-time, and (b) a
memory reference trace based analysis approach. In the first approach, symbolic
expressions that could not be evaluated statically are postponed for run-time
evaluation which then decides the (in)dependence of a loop. For example, if the
static analysis cannot conclusively perform a standard data dependence test, e.g.,
a GCD test, because some of its parameters can be evaluated, we can always
perform it at run-time when all information becomes available. In the second ap-
proach, more general and better suited for codes using indirection, the memory
references are recorded and analyzed at run-time either before a loop is executed
(inspector–executor mode [16]) or after an optimistic (speculative) parallel ex-
ecution [12]. The complexity of this method is proportional to the number of
dynamic references and thus is potentially expensive.

Overall, the static and run-time approaches to automatic parallelization have
progressed independently without significant integration. Partial, but insuffi-
cient, static analysis was not used effectively to simplify run-time analysis. An
improvement over this state of the technology was presented in [13]. Instead of
performing a reference-based test, the technique, named Hybrid Analysis, uses
an aggregated reference representation and performs dynamic analysis using set
and interval operations very similar to those performed statically by a compiler.
This often results in a significant reduction of run-time overhead.

A step further in automatic parallelization has been the re-formulation of
the loop independence analysis into sufficient conditions (predicates) for which
a loop can be parallelized. These conditions represent the sensitivity of paral-
lelization to some input (dynamic) conditions. For example, in [10] the authors
showed some limited examples of how sufficient predicates could be extracted
by simplifying Presburger formulas with uninterpreted function symbols. These
predicates are returned to the programmer for evaluation (for interactive com-
pilation). Further research [6, 7, 5, 2, 13] showed how to extract simple scalar
conditions from relatively simple array data dependence predicates for a limited
number of cases.

We have used a similar approach and recently presented Sensitivity Analy-
sis (SA) [14] as a general framework to analyze memory references and used it
to extract parallel loops from sequential programs. SA seamlessly bridges static
and dynamic analysis of memory references. When the compiler cannot draw
definitive conclusions about interesting properties of a memory reference pat-
tern, SA can generate a set of sufficient conditions which, when evaluated, can
(in)validate these interesting properties. Examples of such interesting properties
are (in)dependent memory references, privatizable references, reductions, etc.

1.2 Automatic Parallelization with Sensitivity Analysis

In [13, 14] we have shown how our compiler using SA is able to extract most
available loop level parallelism from various benchmark codes using a mix of
advanced static analysis and aggressive optimizations that are validated dynam-
ically with minimal overhead. This has resulted in fairly good speedups. In [13,
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14] we have explained with some detail how the overall SA framework functions.
However, obtaining good results requires us to apply and refine many general
techniques that together contribute to good speedups.

For example, we mentioned that SA generates a set of sufficient conditions
that can be evaluated dynamically and validate parallelization. However, the
work (run-time overhead) involved in the dynamic evaluation of these predicates
can vary greatly. Thus an ordering of their evaluations from simple to complex
is crucial (somewhat similar to evaluating complex predicates) for obtaining
good performance. In fact, based on performance models we can stop evaluating
predicates if the effort outweighs the benefit of parallelization.

Further examples are simple algorithm substitution transformations. Ex-
changing a serial reduction with a parallel one can enable the parallelization
of large loops. These transformations have to be proven correct though, and,
in the case of complex or input sensitive memory reference patterns, this may
not be possible statically. We use the same SA approach to generate dynamic
conditions to validate parallelizing code transformations.
Contribution. In this paper we present some important aspects describing how
the general framework of Hybrid Analysis (presented elsewhere [13, 14]) has been
used and implemented in our parallelizing compiler (which is a derivative of the
UIUC-Polaris compiler).

2 A Brief Introduction to Sensitivity Analysis

The Memory Reference Representation

There are three main concepts in our analysis. First, we introduce a powerful
memory reference representation, the USR (uniform set representation). It was
described in detail in [13] under the name RT LMAD. In essence it can represent
memory references of a program as an expression whose leafs are sets of LMADs
(linear memory access descriptors) or enumerated sets of references which are
composed (internal nodes of the expressions) through program operations (con-
ditionals, loops, subroutine calls, etc.) A crucial advantage of this representation
is that it is closed under composition - it can represent any memory reference
pattern symbolically, at program level. When USRs cannot be evaluated to the
exact sets of addresses they represent at compile time, they can be embedded in
the generated code and be computed at run time, in the presence of actual input
values. However, in most cases we do not need to compute the actual memory
reference pattern, but rather prove a relation, which is generally easier.

Memory Reference Aggregation and Classification

The second concept in SA is memory reference aggregation, which ensures scal-
ability of interprocedural analysis at the cost of losing dependence direction
information. Memory references are aggregated bottom up on the Control Depen-
dence Graph (CDG) within a subroutine, and on the call graph inter-procedurally.
The program must have been restructured so the only loops in these graphs are
the trivial self-loops in the CDG.
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1 . . . = A(6 : 1 5 )
2 A(1 : 1 0 ) = . . .
3 . . .

RO = [6 : 15], WF = ∅, RW = ∅
RO = ∅, WF = [1 : 10], RW = ∅
RO = [11 : 15], WF = [1 : 5], RW = [6 : 10]

Fig. 1. Memory reference classification example.

The process starts at leaf CDG nodes, which are simple statements. The set
of memory locations read and written by the statement is computed from the
statement type and symbolic expressions. This set is parameterized by symbolic
variables referenced by the statement.

The sets corresponding to successive statements are then computed using set
union, intersection and difference. All these operations are performed on USRs
[13]. Special nodes in the CDG require more elaborate set operations, all of
which are well defined and closed on USRs. Summarizing reference sets for If-
Then-Else can result in predicated sets. Summarizing across Do loops requires
symbolic expansion of sets across iteration spaces. Summarizing across the call
graph requires symbolic translation of reference sets from a callee into the calling
context.

These simple, node-local transformations on the CDG are applied repeatedly
until the memory reference pattern has been completely summarized across the
whole program.

Dependence Relations Based on Reference Summary Sets

While summarizing references, we also classify them into three disjoint sets [2]:
Read Only (RO), Write First (WF) and Read Write (RW). They represent the
specific data flow information needed for dependence analysis. The RO summary
set records all memory locations only read (not written) within a section of code,
the WF summary set records all memory locations that are written first and then
possibly read and written, and the RW summary set records all other memory
locations referenced from within a context. Computing the RO, WF and RW sets
requires only the set operations discussed in the previous section. An example
is given in Fig. 1.

Every time we reach a loop header in the aggregation process, we compute
the cross iteration data dependence relations. If there are no dependences, then
all the loop iterations can be executed in parallel. This is the most effective
automatic parallelization method, as it scales with the number of iterations,
thus it is likely to remain efficient as the underlying hardware evolves towards a
larger number of processing units.

To express cross iteration dependence relations, we compute the set of mem-
ory locations that are referenced in two different iterations, and are written in
at least one. At this point in the analysis, we have already computed ROi, WFi

and RWi, the per iteration reference sets.
One such dependence set is

DS = ∪n
i=1ROi

⋂

∪n
i=1WFi



Automatic Parallelizer 5

Similar dependence sets are expressed for combinations of RO, RW and WF
sets [13]. If we can prove that DS = ∅, then no cross-iteration dependences may
exist.

Sensitivity of Dependence Relations to Parameters

Finally, the third concept used in SA is the transformation of the USRs rep-
resenting the aggregated memory references into a Sensitivity Graph (SG),
i.e., a boolean expression representing the parallelization conditions.

In many cases, proving the dependence set empty is trivial. It often results
from a set intersection such as [1 : 10] ∩ [11 : 20], which evaluates to ∅ through
symbolic calculus, at compile time. In other cases, proving the dependence set
empty is not possible at compile time either because it depends on input data,
e.g., DS = [1 : n] ∩ [m : 100] or because the relation is just too complicated for
the compiler to evaluate.

We build SGs from dependence equations based on USRs by using a divide
and conquer approach, which, at each step, breaks the dependence equation
DS = ∅ into several simpler equations based on set identities [14]. For instance,
equation A ∪ B = ∅ is broken into A = ∅ and B = ∅. This algorithm is applied
recursively until we reach equations involving only intervals, such as [m : n] ∩
[p : q]. Such equations are translated into simple predicates based on bound
comparison, e.g., n < p or q < m.

We then extract a minimal (modulo the symbolic calculus capabilities of
the compiler) run time check that guarantees that the loop is parallel. We then
generate parallel code predicated by this condition. We use the SG [14] repre-
sentation for these conditions. When they cannot be evaluated at compile time
to a boolean value, they are embedded in the generated code and evaluated at
run time, in the presence of actual values.

The aggregation and equation solving processes can deal with multidimen-
sional strided reference patterns. In some cases, the divide and conquer process
cannot extract a precise predicate from a dependence equation. In such cases, we
approximate sets with optimistically predicated multidimensional strided inter-
vals, and continue the analysis with affine sets, which are easier to compare. The
optimistic assumptions are added to the dependence predicate, and are verified
at run time through SG evaluation.

3 Engineering an Automatic Parallelizer

In the previous section we have provided an overview of the general approach to
parallelization: We aggregate and, at the same time classify memory references
(WF, RO, RW) at the program level into a set representation (USR) and then
formulate the independence condition DS = ∅ (empty dependence set). Then,
the compiler verifies the conditions for which this equation holds true by recur-
sively descending on the equation DS = ∅ and, using boolean logic, generating
a conjunction (OR) of simpler equations. Some of these equations can be proven
true for all inputs, i.e., statically true, and others result in some constraints
for the equation to be true. From these constraints (conditions) the compiler
generates predicates (code) that are evaluated at run-time and can validate the
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parallelization of a loop. The constraints are expressed as set of expressions
which can be represented as a graph, the sensitivity graph (SG). This method
was presented as SA (sensitivity analysis) [14].

Parallelism enhancing transformations. Our overall goal is to uncover
as much parallelism (doall type only) as possible and exploit it when beneficial.
To this we apply our SG based technique not only to prove that the original
loops in a program are independent but also to validate code transformations
that increase the intrinsic amount of parallelism. We will show how we can use
our SA to perform powerful dependence removing transformations, e.g.,
reduction parallelization, pushback parallelization and array privatization. These
are not new techniques, but the use of SA in their implementation makes them
more powerful, i.e., more often successful.

Efficient Run-time Evaluation of Parallelization Conditions. After
applying the dependence removing transformations the compiler needs to gen-
erate efficient parallel code. The outcome of the static Sensitivity Analysis may
be the SG (sensitivity graph) which may be varying degree of complexity and
which needs to be efficiently evaluated dynamically. It is important to perform
the dynamic evaluation efficiently because this evaluation represents pure over-
head. The novelty of our implementation lies in the way we generate efficient
code for this dynamic validation.

We will present some of the more important aspects of this process, e.g., the
generation of predicates that pre-validate parallel loop execution and the use
of speculation and post execution validation. Sometimes we cannot extract a
condition that can be evaluated before a loop is executed because it depends on
the computed data. (There is a cycle between address and data computation).
In this case, we have to resort to speculative execution [12]. This invokes other
efficiency issues such as checkpointing (if used). Here too we use our program
representation and SA to improve performance.

It is worth mentioning that our entire analysis framework is interprocedural.
For the evaluation of USRs at run-time we have developed a library to which we
generate calls. Similarly, when we employ LRPD we use a specialized library.

Let us now take a closer look at some powerful techniques.

3.1 Transformations to Remove Dependences

Conditional and Selective Array Privatization. Array privatization can
be complex and expensive. In general, it means allocating a private array in
each thread of execution. This replication can become quite costly if the array
is big. In the most general case it is required to first copy-in from the shared
array and then, after processing, copy-out the last value written. These two
operations (copy-in and copy-out last value) can be very expensive because they
do not scale. Thus we optimize them by performing selective copy-in and last
value copy-out. In the case of relatively sparsely referenced arrays this can save
significant time.

We can use USRs to express these in/out sets precisely in a general way and
thus improve performance. Briefly, here is our approach:

By the time we reach a loop header, we have already classified all memory
locations referenced within each iteration i into disjoint sets (USRs) ROi, WFi
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and RWi. Using only set operations, we put together the following descriptors
(⊗∪

i=1,nAi simply means ∪n
i=1Ai, we just kept the notation used in [14]):

Memory to privatize : ⊗∪
i=1,n

[

WFi ∩
(

⊗∪
k=1,i−1WFk

)]

(1)

Subset to copy in =
(

⊗∪
i=1,nROi

)

−
[(

⊗∪
i=1,nWFi

)

∪
(

⊗∪
i=1,nRWi

)]

(2)

Subset to copy out(per iteration) = WFi −
(

⊗∪
k=i+1,nWFi

)

(3)

The first descriptor contains the set of memory references that must be priva-
tized because they are written to in at least two iterations. We chose to generate
an OpenMP PRIVATE directive whenever this USR is not provably empty at
compile time. This means we are possibly allocating too much private storage,
since sometimes not all the elements in the array must be privatized. However,
the alternative is to use an indirection table for just those locations that must
be privatized, which introduces both complexity and overhead.

Although we privatize entire arrays, we perform selective and conditional
copy in. Only those locations that are read before being written inside the loop
are used in a memory copy operation from the shared object to the private copies.
They are only copied if it turns out, at run time, that the values are needed inside
the loop, based on actual control flow predicates. We wrote a simple memcpy
like routine that uses a USR to control which locations get copied.

Conditional and Selective Array Reduction. Although implementa-
tions vary greatly, array reduction conceptually starts with an initialization of
all the elements participating in the reduction with the null element of the re-
duction operator. The loop is executed in parallel. Upon exit from the parallel
section, elements updated by more than one thread are merged using the re-
duction operation. We use USRs to describe the extent of the initialization and
merge phases, and wrote simple library routines that use USRs to control the
exact locations that are initialized and merged respectively.

To initialize = To reduce = ⊗∪
i=1,n

[

RWi ∩
(

⊗∪
k=1,i−1RWk

)]

(4)

Conditional Parallelization of Pushback Sequences. We have shown
[15] how to recognize sequences of pushback operations that can be parallelized
by using private storage, which simply need to be copied at the end of the loop
to a specific location of the shared array. We use USRs WFi to describe the
extent of the writes to private storage, and a library function to perform the
actual copies (the same used for copy in and copy out).

Not only do they get relocated efficiently, but this makes the transformation
more general, since USRs can describe arbitrarily complex patterns. Previously,
only pushback sequences made of contiguous locations could be parallelized.

3.2 Sensitivity Graph (SG) Evaluation

The outcome of the static Sensitivity Analysis may be either a definitive answer
at compile time or the Sensitivity Graph (SG) which is a boolean expression
which needs to be efficiently evaluated at run-time. It represents a conjunction
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Logical
Expressions

Sorted
Intervals

USR
Evaluation

LRPD

Independent Dependent

Pass Pass Pass Pass Fail

Fail Fail Fail

Fig. 2. Cascade of sufficient run time tests in increasing order of complexity.

1 Read ∗ , n
2 Do j = 1 , n
3 A( j ) = A( j +100)
4 EndDo 100:100+n

U

Empty?

1:n

n<101

Write Read

1 Read ∗ , n
2 I f (n<101) Then
3 Parallel Loop
4 Else
5 Sequent i a l Loop
6 EndIf

Fig. 3. Example of an input-sensitive memory reference pattern and corresponding
code after parallelization.

(logic OR) of sufficient conditions which all can validate a loop to be parallel
(including the associated dependence removing transformations). The SG can
be of various complexities. They can be a:

a Boolean expression that can be evaluated in constant time.
b Boolean expression that can be evaluated in time proportional to some fraction

of the size of the program data. For example, a triply nested loop with
iteration spaces N,M,K can be parallelized by performing N (or N*M or
K*N) work. This situation arises many times when aggregation works well
in only some of the dimensions of the analyzed data structures.

c Boolean expression that can be evaluated in time proportional to data size.

In this latter case (c), some of the transformations of the equations (DS = ∅)
involving the globally aggregated USRs into simpler ones has failed. This can
happen when the recursive simplification of the DS = ∅ equation is not very
successful or, in an extreme example, when the code uses indirection arrays. In
effect, we need to generate code to dynamically evaluate the USR’s (which can
be seen as a program slice). The compiler will generate code for the evaluations
of these conditions and sort them in order of their estimated complexity (similar

1 Read ∗ , (p ( j ) , j =1 ,100) ,
( q ( j ) , j =1 ,100)

2 Do j = 1 , 100
3 A(p( j ) ) = A(q ( j ) )
4 EndDo

U

p(j) q(j)

Empty

U

j=1,100 j=1,100

U

Fig. 4. A Hybrid Analysis extreme: in general, no test can solve this problem faster
than the reference-by-reference LRPD test.
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to the predicate of a branch condition). For illustration purposes, we have named
the resulting code a cascade of sufficient conditions (Fig. 2).

There are four types of run time operations involved in the evaluation of the
SG: (1) evaluation of elementary conditional expressions (constant time), (2)
interval trees (some fraction of data size, simple operations), (3) actual evaluation
of USRs (fraction of data size, complex operations) and comparison to the empty
set and (4) reference-by-reference LRPD [12]. The estimated complexity of these
tests ranges from O(1) tests as the one in Fig. 3 to O(n) dynamic reference
instrumentation as is the case in Fig. 4. The evaluation of USRs at run time
generally consists of fewer, but more complex operations than the reference-
by-reference LRPD. In some cases they may either degenerate into inefficient
enumerations or take conservative decisions that can lead to false negatives.
The LRPD test has overhead proportional to the dynamic reference count, but
is optimal for cases where aggregation and equation inversion are not possible
(Fig. 4). It is always applicable, precise, and has a more predictable complexity.
Perhaps the most important aspect of the “heavy” methods (USR evaluation
or LRPD test) is that they have to be performed in parallel so that the overall
obtained speedup scales with the number of processors.

There are two ways to validate parallel execution: Before the loop execution
(similar to an inspector) or after its execution. In the latter case we have to use
speculative execution [12].

In most cases, we can adopt either method and (hopefully) select the most
efficient one. The correct choice involves a more complex cost model which is
beyond the scope of this discussion. Presently, we choose speculation over pre-
verification only if (1) a parallel inspector cannot be extracted (see next section)
or (2) if we cannot extract a light inspector (a slice made of only scalar defi-
nitions). The actual test code generation consists of a syntax-based translation
from the SG grammar to Fortran.

In both cases, we reuse the test results by means of inspector hoisting, SG and
USR common subexpression recognition, and run time test result memoization.
We apply loop invariant hoisting to USRs and SGs by performing aggressive
invariance analysis on their sets of input variables. Invariance problems on USRs
resulting from subscripted subscripts are formulated as dependence problems on
the subscript arrays, which are solved by the same SA algorithm applied to the
subscript array. This is achieved by representing the exact referenced memory
regions of the subscript array as USRs themselves, and thus identifying the exact
subregion of the subscript array that affects the shape or size of the memory
pattern on the host array. An interesting problem arises when a more expensive
test such as LRPD can be hoisted out of a loop, but a simpler O(1) version is
loop variant. At this time we (simplistically) hoist tests as far away as possible
and build cascades from tests at the same loop nesting level.

3.3 Speculative Execution

Sometimes we cannot extract a condition that can be evaluated before a loop is
executed because it depends on the computed data. (There is a cycle between
address and data computation). In this case, we have to resort to speculative
execution [12]. This invokes other efficiency issues such as checkpointing (if used).
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Coverage Speedup
Suite Polaris/HA Intel Polaris/HA Intel
PERFECT 95% 14% 1.51 1.02
SPEC92/95 98% 29% 1.44 1.10
SPEC2000/2006 88% 62% 2.87 1.66

Table 1. Automatic parallelization coverage and speedups. PERFECT and
SPEC92/95 speedups were measured on a 2-way Intel Core Duo. SPEC2000/2006
speedups were measured on an 8-way Sun server with 4 AMD dual core processors.

We identified previously the conditional pushback sequence pattern, which is
perhaps the simplest such example. Other cases are more complex and do not
follow a preset pattern. It should be noted that even when the dependence
relation can be precomputed before the loop it may be worth executing the
loop in parallel speculatively in order to reduce the overhead. A more detailed
discussion about these choices can be found in [8].

If speculative parallelization is necessary, we take advantage of our novel
representation and SA techniques to reduce overheads. We can compute the
exact extent (as a USR) of memory that must be either saved at a checkpoint
before the speculative loop, or committed from private speculative storage after
the loop. The actual memory operations are implemented as calls to our memory
copy routine used for copy in, copy out and pushback parallelization.

3.4 The Value Evolution Graph and Pushback Sequences

The Value Evolution Graph (VEG) [15] can represent the data flow in recur-
rences used as array indices which have no closed form solutions. The graphs
are pruned based on control dependence predicates and produce tighter value
ranges than abstract interpretation methods. These value ranges and their re-
lations (overlapping, mutual exclusive) are used throughout our analysis, when
building USRs and when extracting SGs.

Additionally, VEGs can be used to detect monotonic reference patterns in
the code text. Unlike previous pattern recognition methods, we can analyze par-
tially aggregated and classified memory descriptors (USRs). This single generic
approach both extends and unifies in a single framework most cases which were
previously solved using various, different, pattern matching techniques. It allows
for the parallelization of important classes of memory reference patterns, e.g.,
sequences of pushback operations with complex footprints.

4 Experimental Results

Our experiments show that our techniques extract almost all the available par-
allelism at the highest granularity possible, which results in significant speedups
on 22 codes from the PERFECT and various SPEC benchmark suites.

Table. 1 presents full application speedups, measured by dividing the se-
quential execution time of the whole application by its parallel execution time
including the runtime overhead, if any.
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Technique PERFECT SPEC
CT 58.00 87.25
RT: Speculative 11.90 1.42
RT: Non-Speculative 26.60 4.08

Total 95.50 92.75

Technique PERFECT SPEC
SG: Simple Expressions 20.10 2.08
SG: Interval Trees 9.20 0.00
SG: LRPD 3.00 1.42
SG: USR Evaluation 13.80 4.08
Hybrid Priv, Red 12.60 0.50
VEG 12.80 0.91
Pushback Recognition 9.60 0.92

(a) (b)

Table 2. Parallelization coverage breakdown (a) between compile time and run time
(b) as contribution of each compiler technique. The coverages in (b) overlap because
parallelizing some loops required several techniques. Coverage is measured as the per-
centage of the original sequential execution time that was parallelized.

Test Type Accuracy Success % S
Parallel/Sequential Simple Expression Sufficient Fail 0.005

USR Evaluation Necessary&Sufficient Pass 0.025
Indep. Update/Reduct. Simple Expression Sufficient Fail 0.005

USR Evaluation Necessary&Sufficient Fail 0.030
Indep. Write/Priv. Interval Trees Necessary&Sufficient Pass 0.005

Table 3. Run time tests actually executed to decide whether the dependence structure
on array MX prohibits or allows parallelization of loop DYFESM/MXMULT do10. %S
represents the time spent in the test as a percentage of the execution time of the loop.

Two main factors are behind these good speedups: high granularity and high
coverage. The VEG, the USR and SG are all interprocedural and flow sensi-
tive (though they use approximations), which makes our analysis apply to large
program slices, resulting in higher granularity. Our hybrid approach pushed cov-
erage over 90%. It also increased granularity significantly, since many outer loops
could be proved parallel only at run time. A detailed discussion of the speedup
numbers can be found in [14].

Table 2 presents the effect of each technique towards our goal of achieving
highest parallelization coverage possible. It is important to note that our hybrid
framework solves the parallelization problems uniformly at both compile-time
and run-time, using SGs. The techniques presented in this paper contribute
substantially to the coverage and granularity of parallelization. Comprehensive
reports for a large set of loops are available at:

http://parasol.tamu.edu/compilers/ha
An interesting case is loop MXMULT do10, which accounts for 73% of the

sequential execution time on DYFESM. This loop contains an array MX which
shows multiple patterns on different subsections. The first part of the array is
only written to, while the last part is a reduction. The write section is fully
independent, but this is not known until run time. The reduction section is only
proven a proper reduction (not an independent update) at run time. Table 3
presents our run time tests, their dynamic outcomes and their relative overhead
for this loop.

Tables 4 and 5 show the occurrence of each static and dynamic dependence
test, privatization, reduction, pushback, and speculative parallelization in various
benchmark programs.
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Code Loop % DD Test Priv Red PB IP EX Intel
ADM RUN do20,...,100 44 RT:SE,UE CT,A - -

√
IE -

D*DTZ do30 31 CT CT,A CT -
√

- -
DKZMH do20,50 11 CT CT,A - -

√
- -

WCONT do40 5 CT CT,A CT -
√

- -
ARC2D STEPF* do* 29 CT CT - - - -

√
*PENT* do* 14 CT CT - - - -

√
FILERX do15 14 RT:SE,UE CT,A - - - IE -
RHS* do* 10 CT CT - - - -

√
TK* do1 8 CT CT - - - - -

BDNA ACTFOR do240,500 89 CT CT,A CT - - - -
DYFESM MXMULT do10 73 RT:IT,UE RT:IT,A RT:IT,UE -

√
IE -

SOLVH do20 9 RT:SE RT:IT,A - -
√

IE -
FORMR0 do20 7 RT:IT,UE RT:IT,A RT:IT,UE -

√
IE -

SOLXDD do4,10,30,50 9 RT:IT RT:IT,A RT:IT -
√

IE -
FLO52 *FLUX* do* 55 CT CT - - - -

√
PSMOO do40,80 21 CT CT - - - - -
EULER do* 15 CT CT CT - - -

√
MDG INTERF do1000 93 RT:SE CT,A CT -

√
SP -

POTENG do2000 6 CT CT,A CT -
√

- -
OCEAN FTRVMT do109 41 RT:SE CT - - - IE -

IN do10 15 CT - - - - - -
OUT do10 15 CT - - - - - -
CSR,RCS do20 7 CT CT - - - - -
ACAC,SCSC do30,40 6 CT CT,A - - - - -

SPEC77 GLOOP do1000 48 CT CT,A CT -
√

- -
GWATER do1000 24 RT:LRPD CT,A CT -

√
SP -

SICDKD do1000 4 CT CT,A - -
√

- -
TRACK EXTEND do400 50 CT CT,A -

√ √
- -

FPTRAK do300 46 CT CT,A -
√ √

- -
NLFILT do300 2 RT:LRPD CT,A - -

√
SP -

TRFD OLDA do100 67 CT CT,A - - - - -
OLDA do300 28 CT CT,A - - - - -
INTGRL do140 3 RT:IT RT:IT,A - - - IE -

Table 4. Loop parallelization in PERFECT codes. % = percentage of total application
execution time. DD Test = type of data dependence test required (CT = compile time,
RT = run time, SE = simple logical expressions, IT = interval trees, UE = USR
evaluation, LRPD = LRPD run time test) Priv = type of privatization required (A
= array privatization). Red = type of reduction required. PB = pushback required.
IP = loop contains subprogram calls. EX = execution type (IE = nonspeculative,
SP = speculative execution). Intel = parallelized automatically by the Intel Compiler
(version 9.1, -parallel -par threshold100).

5 Conclusions

In this paper we have presented some of the more important issues involved
in the implementation of the novel Sensitivity Analysis framework in our Po-
laris derived automatic paralleling compiler. We have shown that our powerful
USR representation and our sensitivity analysis technique is useful not only in
detecting independent loops but also in applying parallelism enhancing trans-
formations (e.g, reduction and pushback parallelization, privatization). We have
further shown that SA generates a flexible cascade of sufficient conditions applied
in order of their estimated execution time complexity. Thus we allow a flexible
cost-benefit analysis between the benefits of parallelization and the effort to ob-
tain it. We further present the impact of our methods on 22 benchmark codes
and report speedups that compare quite well with existing commercial compil-
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Code Loop % DD Test Priv Red PB IP EX Intel
APPLU JACL* do#1 34 CT CT - - - - -

RHS do#1,2,3,4 20 CT CT - - - -
√

APSI RUN do* 25 RT:SE,UE CT,A - -
√

IE -
D*DTZ do40 40 CT CT,A CT -

√
- -

DKZMH do30,60 12 CT CT,A - -
√

- -
WCONT do40 6 CT CT,A CT -

√
- -

HYD do20 5 CT CT CT - - - -
MGRID RESID do600 52 CT CT - - - -

√
PSINV do600 27 CT CT - - - -

√
RPRJ3 do100 7 CT CT - - - -

√
INTERP do400,800 8 CT CT - - - -

√
COMM3 do100,200,300 5 CT CT - - - - -

SWIM SHALLOW do3500 48 CT CT CT - - - -
CALC1 do100 14 CT CT - - - -

√
CALC2 do200 17 CT CT - - - -

√
CALC3 do300 19 CT CT - - - -

√
WUPWISE MULDEO do100,200 47 CT CT,A - -

√
- -

MULDOE do100,200 46 CT CT,A - -
√

- -
HYDRO2D FILTER do* 42 CT CT - - - -

√
FCT do* 18 CT CT - - - -

√
ARTDIF do* 14 CT CT - - - -

√
TRANS* do* 12 CT CT - - - -

√
TISTEP do* 6 CT CT - - - -

√
S1,S2 do100 4 CT CT - - - - -

MATRIX300 LBMK14 do20 13 CT CT - - - - -
SGEMM do* 86 CT - - -

√
- -

MDLJDP2 FRCUSE do20 76 CT CT CT -
√

- -
FRCBLD do20 11 CT CT CT

√ √
- -

POSTFR do* 8 CT CT CT - - - -
PREFOR do* 5 CT CT - - - - -

NASA7 VPETST do110 26 CT CT - -
√

- -
GMTTST do120 24 RT:UE CT - -

√
IE -

CFFT2D* do130,150 17 RT:LRPD CT - - - SP -
BTRTST do120 10 CT CT - -

√
- -

CHOTST do120 9 CT CT - -
√

- -
EMIT do5 6 CT RT:IT,A - - - IE -

ORA MAIN do9999 99 CT CT CT -
√

- -
SWM256 CALC1 do100 31 CT CT - - - -

√
CALC2 do200 38 CT CT - - - -

√
CALC3 do300 30 CT CT - - - -

√
TOMCATV MAIN do100/2,120/2,60,... 96 CT CT CT - - -

√

Table 5. Loop parallelization in SPEC codes. (Legend in Table 4.)

ers. These good results are due to our ability to uncover and efficiently exploit
large granularity parallelism.
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