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Abstract. Problem-solving frameworks in large-scale and wide-area en-
vironments must handle connectivity issues (NATs and firewalls), main-
tain scalability with respect to connection management, accommodate
dynamic processes joining/leaving at runtime, and provide simple means
to tolerate communication/node failures. All of the above must be pre-
sented in a simple and flexible programming model. This paper designs
and implements such a framework by minimally extending distributed
object-oriented models for maximum generality and flexibility . To make
parallelism manageable, we introduce an implicit serialization semantics
on objects to relieve programmers from explicit synchronization, while
avoiding the recursion deadlock problems from which some models based
on active objects suffer. We show how this design nicely incorporate dy-
namically joining processes. In our implementation, participating nodes
automatically construct a TCP overlay so as to address connectivity and
scalability issues. We have implemented our framework, gluepy as a li-
brary for Python. For evaluation, we show on over 900 cores across 9
clusters with complex networks (involving NATs and firewalls) and pro-
cess managements (involving SSH, torque, and SGE) configurations, how
a simple branch-and-bound search application can be expressed simply
and executed easily.

1 Introduction

Grid environment is a complex environment in which to program. Resources are
large scale and distributed across multiple clusters. Connectivity among them is
restricted by NAT and firewalls. Sites run different resource management soft-
ware with different policies, and available resources change constantly during
computation. Problem-solving environments on the Grid must be designed so
the above complexities are made manageable in a simple and uniform frame-
work that alleviates the burden of the users. Thus, the following characteristics
(among others) must be addressed:

– Allow processes to simply and seamlessly communicate across sites despite
the complexity of underlying networks

– Incorporate dynamically joining processes into the computation while pro-
viding means handling of node and network failures



– A programming model to handle parallelism simply and concisely

A common approach has been to design a framework that hides these is-
sues. Good examples are systems and frameworks for embarrassingly parallel
applications [1–3] and their extensions to express dependencies among tasks [4,
5]. They normally require no programming effort for coordination. A slightly
more general approach has been to design programming frameworks specific to
certain application domains [6] and coordination models [7]. These frameworks
are perfect when the problem at hand naturally fit their model. On the other
hand however, they usually provide no or limited means for individual subtasks
to communicate with each other. Thus, implementing the coordination among
subtasks must frequently resort to using “out-of-band” means (e.g., file transfer,
ad-hoc CGI, etc.), making the code awkward and error-prone.

Another approach, which we pursue in this paper, is to leverage a gen-
eral programming language and conventional parallel/distributed programming
concepts, and minimally extend them for issues in large-scale wide-area en-
vironments. Object-oriented languages are particularly suitable for this pur-
pose, as they have a general and an accepted model of communication (i.e.,
remote method invocation or RMI in short). Yet existing parallel RMI-enabled
frameworks[8, 9] do not sufficiently address the aforementioned issues (connec-
tivity, scalability, and dynamic processes). Furthermore, managing parallelism
and asynchroneity with distributed objects is still not trivial, and race-conditions
and deadlocks are commonplace.

We have implemented gluepy, a Python framework with addressing these
issues as its primary objective and with the following contributions:

– Objects have implicit serialization semantics. Parallelism is expressed via
asynchronous procedure/method calls, using primitives commonly known as
futures [10]. Yet the semantics eliminate the need for explicit synchronization
code. The underlying execution model is still based on passive objects +
threads familiar to many programmers. Our design thus does not suffer from
the self-recursion deadlocks that some active object-based models do [11, 9].

– An object signalling mechanism that provides simple means by which asyn-
chronous events, such as new process joins, may be handled. It is designed
so as to retain the comfortable programming style of using asynchronous
method invocations to manage and schedule tasks without resorting to low
level event-handling loops.

– A TCP overlay network is built among participating nodes to realize scalable
and seamless communication among all participating nodes. To incorporate
resources reachable via SSH, it can use SSH port forwarding where specified.

Our experimental platform includes nine clusters with over 900 CPU cores.
Many of them perform IP filtering to various degrees, and some only have pri-
vate addresses. It also includes an almost completely confined cluster that can
be reached only by first logging in to its gateway via SSH, then logging in to
a cluster frontend via SSH, and finally submitting jobs via a batch scheduler.



The main result of this work is a simple scripting environment that can coordi-
nate processes spread across such complex environments. We implemented and
deployed, with little effort, a combination optimization problem solver on our
platform of over 900 CPU cores. The core of the solver is an optimized sequential
program written in C++ that won the 3rd Grid Plugtest Contest [12]. Python
code in our framework merely schedules the underlying C++ processes and ex-
changes solutions found among participating processes. The glue code is very
concise and has only 250 lines, the core of which is shown in Section 3.

This paper is organized as follows. We discuss existing problem solving frame-
works on the Grid in Section 2. In Section 3 and 4, we present the model and
the implementation of our framework. We evaluate our work in Section 5 and
conclude in Section 6.

2 Related Work

2.1 Flexible Inter-Process Interactions

In order to address a large range of applications on the Grid, programming
frameworks need to provide a simple yet flexible means by which processes may
interact. In the realm of Grid enabled bash schedulers [2, 3], users can express
inter-task dependencies in a simple script file [4]. However, inter-task interaction
and communication means are limited to passing intermediate files among tasks.

The master-worker model allows close interaction between the master and its
workers in the form of tasks, and is an accepted paradigm for its simplicity [13].
As such, many frameworks specialize in this type of application [14–17]. However,
if the master and worker require frequent interaction, the assigned tasks must
be artificially broken into smaller sub-tasks. Some frameworks [14, 16] enable
messages to be sent between the two parties, yet this often results in cluttered
code.

Satin [18] and distributed-Cilk [19] are frameworks for distributed divide-and-
conquer computation. However, the model’s applicable problem set is relatively
small, and inter-task interaction is limited to times when tasks divide and merge.

In our proposal, we argue in favor of distributed object oriented program-
ming. Communication is made transparent in the form of RMIs, and objects
may invoke upon each other. By utilizing asynchronous invocations with fu-
tures, processes may freely interact with each other while taking advantage of
the simplicity of method invocations.

2.2 Managing Parallelism for distributed objects

Extending an exisiting object oriented programming language for distributed
computing is a popular approach. With Java, Ibis RMI [8] and ProActive [9],
with Python, DisPyte [20] are notable examples. In these frameworks, parallel is
expressed via asynchronous RMIs. However, this often results in race-conditions,
making it necessary to use mutual exclusion. The active object [9] model takes



an approach such that each object has a dedicated thread for execution, yet this
can easily induce deadlocks (e.g.: recursive calls).

We propose a novel synchronization semantics for objects where at most 1
thread can operate on an object at any given time. When a thread performs
an invocation on the object, it must first acquire its ownership. This implicitly
achieves mutual exclusion. However, when the owner thread blocks in the object’s
context, the ownership is temporarily released, thus preventing deadlocks.

2.3 Handling process joins/failures with ease

On Grid scale computing, where resources fluctuate constantly, it is paramount
that handling of process joins and leaves is made simple for the user. Satin [18],
which utilizes the divide-and-conquer model, transparently re-executed lost sub-
tasks while handling load balancing via Random Work-Stealing [21]. However,
it is difficult to extend this approach beyond the divide-and-conquer model.

Master-worker frameworks like Jojo2 [14] handle worker joins/leaves via event
handlers. This necessitates low-level event-driven loops with explicit mutual ex-
clusions; thus cluttering the code and rendering it hard to understand.

We propose, in conjunction with our synchronization semantics, a signaling
mechanism for each object, which unblocks an arbitrary thread blocking in the
object’s context. Thus it is possible to handle asynchronous events such as node
joins while adhering to our implicit synchronization semantics. Additionally,
process failures are abstracted as exceptions to method invocations. This widely
accepted semantics nicely integrates failures into conventional programming.

2.4 Resolving Connectivity on the Grid

Realizing communication on the Grid, where connectivity is limited by NATs
and firewalls, in a scalable manner is a difficult task. PadicoTM [22] enables
distributed computing using CORBA on various network hardware, yet does
not take connectivity issues into account. ProActive [9] requires users to hand
write descriptor files that specify connectable points, yet this is a high burden
on the user. SmartSockets [23] attempts to establish connectivity on the Grid by
transparently attempting various methods to establish TCP connection(s). How-
ever, none of the above take connection scalability into account, which becomes
increasingly important with hundreds of coordinating processes.

We propose to construct an overlay network over which communication is
routed transparently. Each processes establishes a small number of connections,
and address the connection scalability issue. Connectivity is achieved by a high
probability via our overlay construction scheme.

3 The Programming Model

In this section, we present a distributed object-oriented framework that operates
in a NAT/firewall-prone environment with dynamically joining/leaving nodes.



To the user, we provide a seamless view of the underlying environment, and
present a set of simple interfaces by which nodes may communicate via RMIs,
new nodes may join, and failing nodes are detected.

Like other distributed object-oriented frameworks, our model provides re-
mote objects and communication among them are abstracted in the form of
RMIs [9, 8]. However, we address a number of topics important to Grid-enabled
programming that were not, or only partially discussed before.

3.1 Synchronization and Asynchronous Event Handling

In the context of parallel computing, parallel and asynchronous RMIs are crucial.
Yet, manipulating asynchronous RMIs is still a non-trivial task. Some imple-
mentations allow the users to define callbacks for when the results are available.
However, this requires using locks to handle critical data. To resolve this issue,
there are future primitives that allow the invoking thread to block for results
when they become necessary; the invoking thread may perform other computa-
tion in the mean time. Its advantage is that a single thread is in control of the
entire flow, and the transition from sequential programming is natural.

This does not resolve the issue on the RMI handler’s standpoint. Since a
remote object may receive an incoming invocation handled by an independent
thread at any time, the programmer must use locks for objects that might receive
incoming RMIs. To resolve this problem, some models [9] have implemented ac-
tive objects where there is a dedicated thread for each object. The dedicated
thread handles all incoming RMIs sequentially. However, this model easily cre-
ates deadlocks when an RMI handler also is an RMI invoker.

Yet another issue arises when the program has to handle asynchronous events,
such as new node joins. The RMI-based model alone cannot handle these events.
One possible approach is to handle RMI callbacks, node failures, and node joins
all in one single event driven loop, like in many other master-worker frameworks.
The obvious advantage is that a single control thread does all operations, elimi-
nating locks and conditional variables. However the programmer must take care
so that event handlers do not block, and the natural flow derived from sequential
programming is completely lost.

We summarize the qualities favorable in a distributed object-oriented model.

– provides future primitives for expressing parallelism
– allows objects to be accessed mutually exclusively without explicit locks
– avoids unpleasant deadlocks induced by implicit serialization semantics above
– may handle asynchronous events without low-level event handling models

In the proposed model, at most one thread may run on an object at a time;
the thread implicitly acquires the object’s ownership for the duration. However,
if this thread blocks while in the scope of a method, it temporarily releases
the ownership, and another pending thread is permitted to run. When there are
more than one pending thread, an arbitrary thread is scheduled, and acquires the
ownership. We supply future primitives by which threads may block for results.



Finally, we provide a signaling mechanism for each object, by which a thread
blocking on future primitives in the object’s context is made to unblock.

When an asynchronous RMI is performed, the invocation returns immedi-
ately with a future object. To do an RMI fib on an object foo, do the following.

future = foo.fib.future(args)

In order to obtain the results for the asynchronous RMI, we do

result = future.get()

If the results are not available, the call will block until they are. For scheduling, it
is also very common that one waits for an array of future objects simultaneously,
until any result becomes ready. To this end, we provide a global wait primitive
that takes a list of future objects, blocks until at least one of the futures’ results
are available, and returns a list of futures whose results are available.

ready = wait(futures)

Finally, each object is provided with a signaling primitive invoked by

obj.signal()

This forcefully unblocks a thread that is blocking on wait in the object’s context.
If no threads are blocking at that time, the next thread that calls on wait in its
context will be woken. The woken thread will contest for and reaquire the object
ownership, after which the unblocked wait primitive will return None.

This serialization semantics eliminates the need for explicit locking. This is
similar to that of active objects, adopted in some object-based languages [9]. Ac-
tive objects, however, easily lead to an unpleasant behavior called self-recursion
deadlocks. In contrast, our model allows another thread to run on an object when
the current thread blocks in the midst of a method execution (a synchronous
RMI, call on wait, or future.get). This property prevents deadlocks due to
such recursive calls. With respect to atomicity, a thread is guaranteed to have
exclusive control in between potentially blocking operations. Thus, the object’s
state may be modified without worrying about races.

Furthermore, a special method signal allows to unblock a thread currently
waiting on the object. This is similar to the semantics of UNIX signals, which
unblocks threads blocking on some I/O system calls (e.g., read). This can be
used to wake a blocking thread for handling of some event(s).

3.2 Failure Semantics and Bootstrapping Nodes

For RMI failures and object lookups, we utilize the semantics widely accepted
in existing RMI frameworks. Node failures are commonplace on the Grid, and
simple means for handling them must be presented to the programmer. To this
end, node failures are abstracted as exceptions for RMIs to objects on failed
nodes. The user may catch such exceptions for failure handling. Aside from
uncaught application-level exceptions in an RMI, when any of the below failures



occur during an RMI, a RemoteException is raised on the caller side. In all cases,
they may be handled by the invoker to perform recovery or evasive measures in
the regular Python semantics.

1. The communication route between the caller and the callee nodes is broken
2. The callee node fails during execution

Another crucial issue for Grid-computing with dynamically joining nodes is
bootstrapping a node. In distributed object-oriented models, this translates to
obtaining the first reference to a remote object. In our framework, any remote
object may be published with a human readable string name as follows:

object.register("any_name")

A process may obtain a reference to a published object using the name.

ref = RemoteRef("any_name")

This way, the newly joining node may obtain the reference to an existing object
and thus join the computation by notifying existing members of its joining.

3.3 Sample Code

Using our programming model, one can easily implement applications using dy-
namic processes. We show one of such examples in Figure 1(a), a simple yet
complete template for master-worker applications. The master initiates work on
each worker, and results are collected using futures. The code can accommodate
node joins using the signal primitive. Node failures are handled by catching ex-
ceptions. It is noteworthy that locks are not necessary, and that by using futures,
the master’s flow resembles that of a sequential program. With the active object
model, where locks are also unnecessary, maintaining this flow is impossible as
the master object is in method run the entire time; workers will never have a
chance to run nodeJoin. In comparsion, Figure 1(b) shows the code for a typi-
cal master-worker framework. A handler, independently invoked on each event,
has to branch of each event type, and the loop must perform explicit mutual
exclusion. The event-driven code also destroys natural sequential flow of control.

3.4 Discussion

In our object semantics, atomic blocks do not encompass an entire method block,
but rather between potentially blocking operations within a method. Yet we
believe this is acceptable semantics. Atomic sections in real life applications
are very short (e.g., checking if a given value exists in a map before insertion).
Moreover, users are aware of blocking operations in advance (synchronous RMIs,
access to futures, calling wait). Also, as common practice, it is not favorable to
design atomic blocks such that they encompass blocking operations.

In the semantics however, livelocks may still occur, like in cases where a
thread infinitely loops in a method without blocking. This is arguably as hard
to debug as deadlocks. Currently, we defer this as future work.



c l a s s M a s t e r :
d e f _ _ i n i t _ _ ( s e l f , j o b s ) :

s e l f . n o d e s = [ ]
s e l f . j o b s = j o b s

d e f n o d e J o i n ( s e l f , n o d e ) :
s e l f . n o d e s . a p p e n d ( n o d e )
s e l f . s i g n a l ( ) # n o t i f y j o i n

d e f r u n ( s e l f ) :
a s s i g n e d = {}
w h i l e T r u e :

# d i s p a t c h w o r k t o a v a i l a b l e w o r k e r s

w h i l e l e n ( s e l f . n o d e s )>0
a n d l e n ( s e l f . j o b s )>0:

n o d e = s e l f . n o d e s . p o p ( )
j o b = s e l f . j o b s . p o p ( )
# a s y n c h r o u s R M I t o w o r k e r

f = n o d e . w o r k . f u t u r e ( j o b )
a s s i g n e d [ f ] = ( n o d e , j o b )

# w a i t f o r a n y r e s u l t s

r e a d y s = w a i t ( a s s i g n e d . k e y s ( ) )

# i f g o t s i g n a l , l o o p b a c k

i f r e a d y s == N o n e : c o n t i n u e

# r e a d r e a d y r e s u l t s

f o r f i n r e a d y s :
n o d e , j o b = a s s i g n e d . p o p ( f )
t r y :

p r i n t ”done : ” , f . g e t ( )
s e l f . n o d e s . a p p e n d ( n o d e )

e x c e p t R e m o t e E x c e p t i o n , e :
# i n c a s e o f a f a u l t , r e r u n j o b

s e l f . j o b s . a p p e n d ( j o b )

c l a s s W o r k e r :
d e f w o r k ( s e l f , j o b ) :

# d o w o r k o n j o b . . .

r e t u r n r e s u l t s

d e f r u n ( s e l f , m a s t e r n a m e ) :
# o b t a i n r e f e r e n c e t o m a s t e r a n d j o i n

m a s t e r = R e m o t e R e f ( m a s t e r n a m e )
m a s t e r . n o d e J o i n ( s e l f )

c l a s s M a s t e r :
d e f _ _ i n i t _ _ ( s e l f , j o b s ) :

s e l f . j o b s = j o b s

s e l f . w o r k e r s = [ ]
s e l f . t a b s = {}
s e l f . l o c k = L o c k ( ) # f o r m u t e x

# i n v o k e d o n n e w e v e n t w i t h a r g . e

d e f h a n d l e E v e n t ( s e l f , e ) :
# n e e d m u t u a l e x c l u s i o n

s e l f . l o c k . a c q u i r e ( )
t r y :

# g i v e j o b t o n e w n o d e

i f e . t y p e == N E W _ N O D E :
n o d e = e . n o d e

# g i v e n e w j o b , i f a n y

i f l e n ( s e l f . j o b s ) > 0 :
j o b = s e l f . j o b s . p o p ( )
s e l f . t a b s [ n o d e ] = j o b

s e l f . g i v e J o b ( n o d e , j o b )
e l s e :

s e l f . w o r k e r s . a p p e n d ( n o d e )

# h a n d l e r e s u l t a n d g i v e - o u t a n e w j o b

e l i f e . t y p e == J O B _ D O N E :
p r i n t ”done : ” , e . r e s u l t

n o d e = e . n o d e

# g i v e n e w j o b , i f a n y

i f l e n ( s e l f . j o b s ) > 0 :
j o b = s e l f . j o b s . p o p ( )
s e l f . t a b s [ n o d e ] = j o b

s e l f . g i v e J o b ( n o d e , j o b )
e l s e :

s e l f . w o r k e r s . a p p e n d ( n o d e )

# re - e n q u e l o s t j o b o n n o d e f a i l u r e

# d o n o t re - e n q u e u e w o r k e r

e l i f e . t y p e == F A I L U R E :
n o d e = e . n o d e

j o b = s e l f . t a b s . p o p ( n o d e )
s e l f . j o b s . a p p e n d ( j o b )

f i n a l l y :
s e l f . l o c k . r e l e a s e ( )

a. The core for a simple Master-Worker Program. b. Master-Program template in
Classes for the Master and the Worker are shown. a typical master-worker framework

Fig. 1. Sample Code and Comparison with typical master-worker framework

Our signal mechanism sends the signal to objects rather than to threads. This
design decision was motivated by the fact that in a distributed non-active object
model, threads are ephemeral existences only used to gain parallelism. Thus, the
programmer is more concerned about interacting with objects, than threads.

Finally, our model can address a wide range of applications beyond the
master-worker model shown in the sample code. For example, more P2P-like
applications like distributed island-GA applications, where each node performs
GA and periodically do crossovers with other peer nodes, can also be easily
expressed using RMIs to each other’s object.

4 Implementation

In the following section, we will discuss how we implemented our framework
to cope with the physical issues of a Grid environment. In particular, we had
to resolve three issues: point-to-point communication in a WAN setting (NATs,
firewalls), allowing nodes to join with ease, tolerating abrupt node failures.



4.1 Overlay Network Construction

In our framework, to realize point-to-point communication among all nodes, we
automatically construct an overlay using TCP connections. Each participating
node establishes connections with a small number of nodes chosen at random
(about 10 connections). Analysis has shown that such a scheme will create a con-
nected graph of all participating nodes with high probability [24]. However, some
cluster completely filter incoming and outgoing packets, and thus there are no
means by which these resources may be connected. For these exceptional cases,
we automatically perform SSH portforwarding over which TCP connections are
forcefully established. Only for these cases, we require the user to specify the
points between which SSH portforwarding is done. However, we view this as a
very rare case and only requires one line in a configuration file.

Over this overlay, we implement a routing layer adapted from a reactive
routing protocol, AODV [25]. It adapts well to dynamic graph changes and fits
our setting where nodes join and leave at will; the lazy routing path construction
does not entail broadcast storms in face of high churn. The routing metric is the
RTT latency for each TCP link.

4.2 Dynamic node join

For nodes to join the computation, it must first become connected with the
overlay. In order to do so, it needs a set of bootstrap peer node information,
or endpoints, with which it will first connect. In a TCP overlay, this entails
obtaining a set of initial (IP, port) pairs. We implemented an endpoint server
that all nodes access before joining. Each node obtains a set of endpoints. It then
adds its own endpoint to the server so that other nodes may connect to itself.
We provide a number of options for this server. One is an HTTP server. The
other is a server built on top of GXP 1[26], a Grid shell. Using GXP, one may
log into hundreds of remote servers via SSH and execute commands on them in
parallel. It also provides a mechanism with which all nodes may communicate
via SSH tunnels. Because all communication is done via SSH, this mechanism
can be used even for resources that are not accessible by any other means.

4.3 RMI Fault Detection

In our context of an overlay network, a communication route between 2 points
may constitute more than 1 TCP connection, and thus is not trivial to detect
RMI faults. We assume that when a node fails, it closes all established TCP
connections. For our implementation, an RMI is realized by two protocol mes-
sages, the RMI Request and the RMI Return message. Additionally, each RMI is
identified by a globally unique id, an RMIID. In the implementation, we define
an RMI to have failed if either the RMI handler node fails, or if any of the TCP
connections that the RMI Request message has traversed fails.

1 http://www.logos.ic.i.u-tokyo.ac.jp/gxp/
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Fig. 2. The left and right figures show how an RMI Request and Return messages are
sent along connections. The center figure depicts what would happen if an intermediate
connection is lost.

On method invocation, an RMI Request Message is sent towards the object
hosting node. As a node forwards the message, it creates a path pointer for the
RMIID along the connection to the forwarded node.

After the method invocation has been handled by the object hosting node, an
RMI Return Message is returned towards the invoker. The message is forwarded
along the path on which the RMI Request message came. As it follows the path
in reverse, all intermediate nodes erase the path pointer for the RMIID.

When a node fails, all nodes connected to it will detect a connection failure.
Each node finds out if any RMI path pointer exists along the failed connection.
If such a pointer exists, the node deletes the pointer and sends an RMI Return
message carrying a failure exception, back along the stored path. By doing so,
the intermediate node can notify the RMI invoker of the RMI failure, and the
path created by the RMI Request message is effectively torn down. An image of
the entire process is shown in Figure 2.

5 Evaluation

By using the program shown in Figure 1(a) as the base, we have implemented
a number of master-worker type applications. In this section, we provide some
micro-benchmarks to evaluate our overlay performance. We also evaluate its
ability and effectiveness to run in a Grid environment with dynamic resources
fluctuations. First, we explain the setup of our experimental environment. In
Figure 3, we show the clusters used for our evaluations. Most cluster nodes are
Core2Duo 2.13GHz, except for kototoi and mirai and hiro (Xeon 2.33GHz),
istbs (Xeon 2.4GHz), and tsubame (Dual Core Opteron 2.4GHz). It is notewor-
thy that each cluster has different network administration settings. For example,
due to the NAT configuration, most nodes in cluster kyoto and imade are not
accessible from outside. Clusters kototoi have global IPs, yet due to the firewall
at the gateway router, no incoming connections can be accepted. However, we
were able to utilize all nodes in all clusters without any manual configuration;
our bootstrapping scheme in Section 4.2 automatically bootstrapped all nodes to
the peer-to-peer overlay. Exceptions are cluster istbs and tsubame, in which all
its incoming and outgoing packets on most ports are filtered for security reasons.
In order to utilize the two clusters, we enabled configurations for ssh forwarding
from one gateway node in each cluster to a node in cluster hongo; all other nodes
in the cluster connected to the gateway node within its cluster.
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5.1 Micro-Benchmark

We present our framework’s microbenchmarks on our overlay, in particular, its
latency overhead and its performance with data-intensive operations. We utilize
clusters chiba, hongo, kototoi, hiro, imade, kyoto, and mirai. From a node in
cluster chiba, we made RMIs on objects located on each of the other nodes. We
show the latency of a ping() method, a no-op, of selected nodes from each cluster
(denoted by clusterXXX) in Figure 4(a). The actual RTT value is paired to show
the ideal minimum. Most nodes were reached within 3 hops on the overlay. The
intra-cluster latency for cluster chiba was ˜150[us]. The hop latency overhead
amounts to roughly 1.5[ms], sufficiently small for inter-cluster communication.

We do the same operation using the send_data() method, which is a no-op
that takes 1 argument, and see the throughput of the data transfer. As its ar-
gument, we pass a long string of 100[MB]. The throughput is computed from
the method completion time and is shown in Figure 4(b). The arguments have
to be serialized (throughput: 78[MB/s]) for communication, and this reduces
the maximum throughput for 1Gbit Ethernet links (overlapping serialization
and sending would prevent the maximum throughput to drop to 40[MB/s], this
remains to be our future work). The maximum possible point to point through-
put, that accounts for serialization, calculated from iperf is paired to show the
ideal maximum. For nodes where 1Gbit Ethernet is available, a value close to
this is obtained. imade, kyoto, mirai have gateway switches of only 100Mbit.
imade and kyoto have particularly anemic bandwidth where even iperf registers
3.5[MB/s]. Within the same cluster, some nodes have much lower throughput
(e.g., chiba103, hongo102, kototoi001). This is because these nodes take multiple
hops on the overlay, and the store-and-forward routing diminishes the through-
put on each hop.

We submit 10,000 invocations of a send_and_wait() method, same as send_data()
but additionally sleeps 1[s], in a master-worker style to see the parallelism
throughput when the argument size varies. This measures our framework’s toler-
ance to parallelly handling jobs with large input data. We show the speed-up for
710 cores in Figure 4(c). The speed-up drops dramatically from around 50[KB].
This is expected as the master’s maximum bandwidth(40[MB/s]) becomes sat-
urated from the size of 56[KB] with 710 workers.
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Fig. 4. Benchmark Results

5.2 Fault-Tolerance

We evaluated our framework’s ability to handle dynamic node insertions and
failures. A single Master object dynamically distributes 10,000 tasks to Worker
objects. For node addition, we used the method described in Section 4.2. For node
failures, we simply killed the processes on nodes abruptly without warning. No
tasks were lost during this experiment. We give the time series for the number
of Workers running, and the number of tasks allocated by the Master to each
Worker in Figure 4(d). The figure shows that as the number of workers fluctuates,
the master schedules the tasks accordingly. The failure detection latency was in
the order of milliseconds. All fault detection is done at the programmer level
by detecting faults as exceptions as in Figure 1(a). Moreover, it is noteworthy
that all participating nodes are interconnected on a TCP overlay and direct
connection is not necessary for fault-detection due to the scheme in Section 4.3.

5.3 Real-life Application

Many real-life distributed applications require parallel tasks to interact with each
other. An example of such applications is a problem solver that uses branch-and-
bound. In these applications, it is imperative that all parallel solvers share the
latest bound information for efficient computation; these are applications that



Master

Worker

doJob() exchange_bound()

0 0.2 0.4 0.6 0.8 1

169

569

948

Efficiency

C
P

U
 C

or
es

a. Master-worker RMI interaction b. Execution efficiency

Fig. 5. Evaluation of the Permutation Flowshop Solver

require periodic communication among nodes. Such applications are impossible
to express in programmingless frameworks where inter-task communication is
not permitted, or in divide-and-conquer type frameworks where communication
is limited to immediate parent and children tasks. As discussed in [13], such
applications can be expressed naturally in master-worker models, but there are
virtually no frameworks that can handle the hostile network environment (NATs,
firewalls, and IP filtering) in our experimental settings.

As our case study, we have taken on one such problem, the Permutation
Flowshop Scheduling Problem. (P-FSP). P-FSP is a problem where n jobs have
to be processed on m machines in the same order. This problem entails finding a
schedule which minimizes the makespan (execution time) with proof. The solver
does parallel branch and bound in a master-worker model, where each worker
receives a small section of the search space.

When a worker first joins, it first receives a task to solve. The worker and the
master periodically (every 60 seconds) exchange bound information used for the
branch-and-bound. When a worker finishes or aborts its given task, the master
gives it its next task. The flow is expressed in Figure 5(a).

Because the computation would take months(perhaps years), fault-tolerance
was a crucial part of the design. The master and the worker programs, which
won the 3rd Grid Plugtest Competition [12], had already been implemented in
C++. We used our framework to serve as the glue to integrate the two and
deploy it on our platform. The code in Python took merely about 250 lines.

We ran the program on three different configurations: 168, 569, and 948 cores.
The only necessary network configuration, in the 948 core case, was to specify
the SSH portforwarding settings for clusters istbs and tsubame, which took a
mere 6 lines. The rest of the deployment was taken care of automatically and
successfully created a connected graph of all processes.

We present an evaluation using a relatively small randomly generated prob-
lem instance of (n = 28, m = 20). To measure the performance of our framework,
rather than of the algorithm, we calculated the computation efficiency as C

NT ,
where N , T , and C resepctively denote the core count, the completion time,
and the cummuative computation time across all cores. The results are shown
in Figure 5(b). With 948 cores across 9 sites, 88% efficiency is maintained.



6 Conclusion

We have presented a programming framework that aims at simple and flexi-
ble programming in a Grid environment with limited network connectivity, dy-
namic node joins, and node failures. We provide simplicity, without the loss of
generality, by extending a widely accepted object-oriented language, Python for
wide-area parallel computing. Parallelism is expressed in the form of RMIs with
the aid of futures for a natural transition from sequential programs. Accesses to
objects are implicitly serialized without the fear of deadlocks, effectively elimi-
nating locks. We provide simple means to add nodes to ongoing computation,
as well as to tolerate node failures without jeopardizing the computation. We
automatically construct a TCP overlay and realize transparent communication
among nodes even in the face of NATs and firewalls.

Taking a branch-and-bound optimization application as an example, we showed
that our framework enables quick and effective development of parallel applica-
tions in large Grid environments with 900 cores, despite network hindrances
like NATs and firewalls. A prototype for gluepy is currently available from its
homepage:

http://www.logos.ic.i.u-tokyo.ac.jp/˜kenny/gluepy.
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