
AIM Compilation Products and Technology

April 1, 2003 © 2002 IBM Corporation

IBM Java Technology

Kevin Stoodley
IBM Distinguished Engineer
Toronto Laboratory
stoodley@ca.ibm.com

1



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Outline

J9 VM Technology Overview
Testarossa JIT Technology Overview
Virtual Call-Site Optimizations
Escape Analysis
Open Forum

2



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

J9 Java Virtual Machine

Sun IP-free, but Java 2 (1.3) compliant/"Java 
Powered" (J2ME) and J2SE
Highly configurable class library implementation
Multi-platform
Currently shipping in IBM Websphere Studio 
Device Developer (WSDD) product v2.0
Will ship in 2003 as part of IBM JDK 1.3.1 and 1.4.2
Flexible and sophisticated technology

3



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Sun IP-free, but compliant   

Developed jointly between IBM Ottawa Laboratory (previously Object 
Technology International--an IBM subsiduary) and IBM Toronto 
Laboratory
J2METM configurations are free of Sun IP 

CLDCTM  Connected Limited Device Configuration
CDCTM  Connected Device Configuration
MIDPTM  Mobile Information Device Profile  (ex cell phone)
PDAP Personal Digital Assistant Profile

J2SETM configuration requires Sun IP dlls (AWT, Swing, etc)

4



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Highly configurable class library implementation--Example 
configurations

Choose the size/functionality tradeoff appropriate to the application
Extreme (jclXtr)--100K JVM + 100K jcl

io, lang, net, util subsets; no security support
Core (jclCore)--300K JVM + 300K jcl

io, lang, net, util, util.zip subsets; no security support
Max (jclMax)--500K JVM + 2M jcl

java.io java.lang java.lang.ref java.lang.reflect java.math 
java.net java.security java.security.acl java.security.cert 
java.security.interfaces java.security.spec java.text 
java.util java.util.jar java.util.zip

5



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Multi-platform

PowerPC (AIX, Linux, OSE, QNX, WinCE, Mac OS X)
IA32 (Windows, Linux, QNX, Neutrino)
Sparc (Solaris)
ARM (Linux, QNX, PocketPC)
SH4 (WinCE, Itron, QNX)
SH3 (WinCE)
MIPS (PocketPC, QNX)
68K (PalmOS)
390 (Linux)
Others--supported by VM Builder (Alpha, PA-RISC, X86-64, IA64, ...)

6



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Flexible and sophisticated technology

Port library
Multi-VM
Garbage Collection
Sharing, eXecute In Place (XIP), Ahead Of Time 
(AOT) compile
Debug, profile and runtime JVM interfaces
Testarossa JIT

7



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Port Library--Designed for Embedding and Retargetting

Thin layer to isolate use of OS services and resources
memory, files, threads, sockets, locks, interrupt 
management
equally appropriate for embedding within 
middleware--J9 does not have to be "on top"

Multiple independent port libraries can be simultaneously 
supported

8



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Multi-VM

Multiple JVMs in single address space
No MMU support required
Flexible deployment story 

Multiple jcls on same target, eg. RT - non-RT
will share "stuff" if the same

Each JVM instance may have different port library
Each JVM instance may have different invocation 
parameters (GC, code cache, increments, etc)

JVM-local storage
Used for globals
JNI code made re-entrant per VM (no statics)

9



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Garbage Collection (GC)

Four (accurate) GC implementations with Thread Local Heap (TLH)
Generational scavenger (write barriers req'd)
Mark & sweep - full stop and optional compact
3-colour concurrent incremental (write barriers req'd)

Predictable, low latency, user callable (with bounds)
Large Heap/Parallel Prototype

Highly configurable through the invocation API  or command line
Nursery size
Tenure size + increment
Memory maximum
Remembered set size
TLH parameters

10



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Sharing, eXecute In Place (XIP), Ahead Of Time (AOT) 
compile

Classes divided into ROM and RAM sides
ROM side can be shared across JVM instances

"JXE" == ROMable jar
Created with JXELink tool
Various flavours of static and feedback-directed 
optimizations available
Bytecode modified for reentrancy--no quick variants

AOT compiled code
Leverages JIT infrastructure in a static mode
Code is fully compliant
Used for "instant on", core libraries
Brings compiled code performance to smaller platforms

11



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Debug, profile and runtime JVM interfaces

Debugging with JDWP
Uses JDI only,  JVMDI is not supported
Remote proxy to allow for smaller targets
Added hot code replace to WP

Profiling with JVMPI
1.2 Support

JNI 1.2 and class loaders

12



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

IBM's approach to J2SE

Support the diversity of platforms - both IBM and others - focussing on 
..

Performance and scalability
Reliability, Availability, Serviceability
Service and Support
Write-Once-Run-Anywhere

Provide ..
.. a high-quality base for IBM's broad set of middleware solutions
.. competitive leadership for IBM's hardware solutions
.. industry leadership in web-services and enterprise Java solutions

Principally deliver Java SDKs and JREs as part of IBM hardware and 
software solutions

13



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Desktop and Server Technology Features

High performance locking implementation "Tasuki Locks"
type accurate GC Implementations with TLH

concurrent, incremental, parallel, large heap...
Efficient object model, esp. 64 bit
Fine-grained locking of VM data structures (scalability)
Shared classes
Profile driven dynamic recompilation (more later)

14



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Testarossa JIT Technology

15



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Testarossa Design Goals

Clean separation of concerns along 3 major axes
JVM implementation (VM and OS services)
Java implementation (object model, runtime specializations, GC, threads, runtime 
interfaces)
Hardware targets

Java centric design
Portable and maintainable C++ implementation with some special purpose assembler
Fast compile time
Small footprint
Configurable optimization framework

extremely complete suite of classical & Java-specific optimizations
High performance code with deep platform exploitation
Hot Code Replace (HCR) and Full-speed Debug (FSD)
Complete solution: optimizing transformations fully operational in the presence of 
exception handling, security manager, stack trace, unresolved or volatile entities, etc
Dynamic recompilation with profile directed optimizations
Aggressive specialization and speculative optimizations

16



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

JVM Interface (TR_VM, TR_Method classes)

JVM

OptimizerIL 
Generator

Code 
Generators

JVM

JIT Compilation (TR_Compilation class)

Bytecodes
Trees & 

CFG
Trees & 

CFG

Instructions 
& 

Meta-data

x86, 390, MIPS
PowerPC
ARM, SH4

J9, JXELink, ...

Runtimes

A peek under the hood

17



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Diverse set of ISAs supported

Fully supported targets
x86
32-bit PowerPC (bi-endian)
ARM
SH4

Under development
64-bit PowerPC
32-bit 390
X86-64
MIPS (bi-endian)

In plan for 2003
64-bit 390

18



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Testarossa IL representation

TR_IL is a list of expression trees
Close to bytecode level of operators
Side-effects are separated out into different trees

ensures correct order of execution
separation of operation and exception aliasing

Cross-tree references allowed within a basic block
local common sub-expression elimination and 
register assignment rely on this capability
simplifies many other local analyses and 
transformations

19



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

IL Trees Example

 int tstBar(int x) {
  int tot=0;
  int[] arr = new int[x];
  for (int i=0;i<x;++i) {
    arr[i] = i;
    tot += arr[i];
  }
  return tot;
}

NULLCHK #12[0x224ce0] Shadow[0x224ccc]
    iiload #13[0x224d68] Shadow[0x224d78]+12
        aload #9[0x2245a4] Auto[0x22457c]
dbgFence
BNDCHK #14[0x224e1c] Shadow[0x224e08]
    ishr
        ==>iiload
        iconst 2
    iload #10[0x224680] Auto[0x224658]
dbgFence
iistore #15[0x224f58] Shadow[0x224f44]
    aiadd
        ==>aload
        iadd
            ishl
                ==>iload
                ==>iconst 2
            iconst 16
    ==>iload

20



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Control Flow Graph

i = 1;

try {
if (i < j)

i = 2; i = 3;

} // end try
return i;

entry block

exit block

catch(...) {

i++;
} // end catch

catch(...) {

i++;
} // end catch

Regular edges

Exception edges

21



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Complete suite of classical and Java optimizations

Platform neutral optimizer performs IL-IL transformations
parameterized by platform specific code to handle 
different cpu capabilities (eg. # regs)

Multiple optimization strategies for different code 
quality/compile time tradeoffs

used to compose optimizations into a collection of 
transformations
spend compile time where it makes biggest difference

Extremely generalized solutions and infrastructure
Eg. Inliner capable of functioning effectively in 
presence of exception handling, security manager, 
stack trace, etc.

22



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Fixed Optimization Strategy

Method compiled only once.
Compile triggered by invokation count.

Separate counts for methods with backward branches and methods 
without

Same optimization level for all compilations
Optimization Levels

Level 0: NoOpt  
Tree Simplification

Level 1: LowOpt
Local Optimizations

Level 2: BestAvailOpt
Local Optimizations
Most Global Optimizations
Some short cuts to reduce compile time

Level 3: HighOpt
Full Global Optimizations

Level 4: Ahead-Of-Time
Full Global Optimizations with multiple passes.

23



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Details: NoOpt

Tree Simplification
Inline and fast-path some method calls

getClass, currentThread, currentTimeMillis
Inline and fast-path some helpers

instanceof, checkcast, monitor enter, monitor exit
Fast path JNI calls (Direct2JNI)
Local Register Allocation

24



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Tree Simplification

A local optimization, operates on a block at a time
Constant folding
Strength reduction
Algebraic simplification
Tree normalization (move constant child to RHS)
Constant switch folding
Remove branch to following block
Remove constant conditional branch
Coalesce adjacent blocks

25



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Details: LowOpt

Inlining
guarded inlining of virtuals

CFG Simplification
Simple loop unrolling
Return block hoisting
Local re-ordering
Block re-ordering
Basic block extension
Local constant/type propagation

Local Async Check Removal
Local Comon Subexpression 
Elimination
Catch block removal
Local dead store elimination
Isolated store elimination
Simple global register allocation
Local live variables for GC

All of NoOpt, plus

26



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Details: BestAvailOpt

More Inlining
Virtual guard tail splitting
Global constant/type propagation
Late Inlining
Loop canonicalization
Loop versioning
Loop unrolling

Global copy propagation
Global dead store elimination
Global Async Check Removal
Global live variables for GC
Fast-path ArrayCopy
IA32 Floating Point Precision 
Conversion

All of LowOpt, plus

Some optimizations are repeated for loopy 
methods

27



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Details: HighOpt

Iterative Global constant/type 
propagation
Aggressive thresholds for Inlining
Better Global Register Allocation

All of BestAvailOpt, 
plus

Some optimizations are repeated 
conditionally

Ahead-Of-Time Strategy:
Similar to HighOpt
Compile time is assumed to be 
less of an issue.

28



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Recompilation Strategy
Compile methods cheaply initially
Recompile hot methods more aggressively later
Counting Recompilation

First compilation triggered after a said number of invokations
Compiled code decrements counter at yield points (method entry, and async checks)
Code at method entry decides if recompilation is to be be performed

Sampling Recompilation
Regularly (~10ms) interrupt application threads
Analyze the context of the application thread to find method being executed
Previous compilation sets up counters and hotness for next compilation
A counter is decremented each time a method is sampled
Recompilation is triggered when

The counter goes to zero, or
Every 3rd time the method is sampled, check if it is particularly hot

If this method has shown up 3 or more times in the last 20 global samples, it is 
scorching hot.
If this method has shown up 3 or more times in the last 300 global samples, it is 
hot.

Still Evolving

29



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Cold Method Strategy: early compile for a loopy method
Local optimizations

Warm Method Strategy: first compile of an initially loopless method, 
triggered after an initial number of invokations

Most Global Optimizations
Some short cuts to reduce compile time

Hot Methods Strategy: A loopy method that has been compiled before, 
and is discovered to be hot

Full Global Optimizations
Profiling Strategy: en route to Scorching Strategy

Similar to Hot Method Strategy
Code instrumented for profiling

Scorching Strategy: Last compile for a method
Aggressive full global optimizations, utilizing profiling information.

Recompilation Levels

30



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Profile directed sampling recompilation

Sampling thread drives compilation based on perceived hotness
Initial compilation is no or low opt
Hot methods are recompiled at increasingly higher optimization levels
"Scorching hot" methods

recompiled with profiling instrumentation
edge counts with inferences, value profiling, virtual call sites, etc

run long enough to gather representative data
recompiled at highest opt level directed by profile information

basic block scheduling
inlining
loop versioning and unrolling
devirtualization
aggressive replication
speculative opts

31



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Recompilation infrastructure is basis for

Aggressive speculative optimizations
pre-existence based devirtualization and inlining
other class hierarchy based optimizations
single threaded optimizations

Hot Code Replace (HCR)
Fix/Enhance code while running and without restarting

Advanced problem determination and performance monitoring features
Phase change adaptations

32



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Full Speed Debug (FSD)

JIT is active while running program under debugger
Most (fairly hot) application code being run is compiled
Current level of optimization is quite low

initial release, no technical barrier precluding higher opt levels
Debug events may cause decompilation using on-stack replacement or 
may set a limit to preclude compiling that method

setting a breakpoint
single step

Supports Hot Code Replace (HCR)
Supports Data Change Breakpoints

Gives combination of rich interpreted debug environment with 
performance of a dynamically compiled runtime

33



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

online auction  

                                                                                  

0

10

20

30

40

50

60

70

se
cs

 *

J9 J9 Debug JDK JDK debug

HW: P4 2.0GHz machine with 1GB of RAM under WSAD5.0.
* time taken from  the "Operation in progress" dialogue disappearing to the Auction web page coming up with the "Done" 
status.

Full Speed Debug (FSD): WSAD online auction example

  

34



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Virtual Call-Site Optimizations Overview

Motivation
Guarded Devirtualization
Virtual Guard NOPing
Type Propagation 
Pre-Existence
Class-Lookahead
Miscellaneous

Escape Analysis
Splitting

Future Work and Ideas

35



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Motivation: Method Inlining

Important for Java JIT Compilers
Java methods are typically small
Interprocedural analysis usually too expensive

Relatively simple for non virtual calls
Dispatches on methods in final classes
Constructors, private methods, and super()
Static methods

Tricky for virtual calls
Dynamic Class Loading

Allows demand driven loading of classes
The target of a virtual call may change at run time
Not all possible targets are known at compile time.

Devirtualization
Guarded Devirtualization
Direct Devirtualization

���������
��	
����������
��	�����
�

�������
�����
���	
���
���	
�����������
����������
����������������
������
��	���
���
�

36



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Guarded Devirtualization
Generally, all needed classes are already loaded before a method is invoked

Make assumptions about the current state of the class hierarchy
While providing mechanism for correctness once the assumption is invalidated

�	
�����������
��������
�����������������
����
��	���
�

37



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Guarded Devirtualization
Generally, all needed classes are already loaded before a method is invoked

Make assumptions about the current state of the class hierarchy
While providing mechanism for correctness once the assumption is invalidated

Inline currently monomorphic sites, surrounded by an if-statement (guard)
Runtime test to ensure correct dispatch

need to pay the cost of performing the test for each invoke
will pay the extra penalty of the test/jump if the target changes at runtime because of 
dynamic class loading
Can reduce this cost by using NOPing.

�	
����������
��������
���������������
����
���������
�
����
���
����
�����
����������
����
���������
���
����������
�
����
��	���
�

�	
�����������
��������
�����������������
����
��	���
�

virtual guard

38



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Virtual Guards
Conventional Types of Virtual Guards

Class Test
At runtime, check the type of the receiver object
Relatively low runtime cost

Implementable with a single dereference operation
Can guard multiple class sites dispatching different methods on the same object
Have good type information in the protected region of code

Method Test
At runtime, check the address of the target method
Higher runtime cost

Atleast 2 dereference operations
Can cover call sites where receiver type is polymorphic, but target is 
monomorphic

Testarossa: 'Not-Overridden' Guard
Default virtual guard used by Testarossa
Keep a bit on each method indicating if it has been overridden
Does not need Type Analysis or Class Hierarchy Analysis (CHA)

Devirtualization can be done even at "NoOpt" optimization level
Low runtime cost, single dereference

39



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Virtual Guards

Several Kinds of Guards used by Testarossa
Not-Overridden-Guard
VFT Guard (Class Test)
Not-Overridden-Guard for InterfaceCall

checks the is-overridden bit on the method in the implementing class
Used for interface classes that currently have exactly one implementation

VFT Guard for Interface Call
checks the class pointer againts that of the current unique concerete 
implementation

VFT Guard for Profiled Call
used for dispatches on methods that are already overridden
profile the class-object of the call
inline the common case with a class test

Method Guard for methods not overridden in a particular part of the hierarchy
VFT Guard for methods not overridden in a particular part of hierarchy

40



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Virtual Guard NOPing

Guard tests incur runtime penalty 
��
������� ����!!�	���
"#�$
%	&���'()�''
���	��	�!���!�
���

'()�''*

41



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Virtual Guard NOPing

Guard tests incur runtime penalty
Emit a NOP instead of the comparison

create RuntimeAssumption
on the overridden status of the method 
(not-overridden/method guards)
or on the Currently-Final status of a class 
(vft-guards


��
������� ����!!�	���
"#�$
%	&���'()�''
���	��	�!���!�
���

'()�''*

	�+
���	��	�!���!�
���

'()�''*

NOPed guard

42



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Virtual Guard NOPing

Guard tests incur runtime penalty
Emit a NOP instead of the comparison

create RuntimeAssumption 
on the overridden status of the method 
(not-overridden/method guards)
or on the Currently-Final status of a class 
(vft-guards)

When the RuntimeAssumption is violated
VM informs JIT of every class load and 
method-override event
change method code to always execute the virtual 
dispatch

NOPing Issues:
Atomicity
Cache Coherence
NOPs are not always fre


��
������� ����!!�	���
"#�$
%	&���'()�''
���	��	�!���!�
���

'()�''*

	�+
���	��	�!���!�
���

'()�''*

%,+��'()�''
�����
���

'()�''*

method overridden

NOPed guard

43



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Effects of Guarded Devirtualization

Virtual Calls are kill points for most JIT optimizations
Optimizations have to be pessimistic about the side effects

the method being called may not even exist yet
Aliasing

A call may write to all global and indirect symbols (fields)
The call node still exists in the control flow graph
Optimizations still account for the presence of the call

v-guard

inlined 
code virtual 

dispatch

merge
�	
����������
��������
�����������	�
�� ����!!�	���
����
�����
����������
����
���������
���
����������
�
����
��	���
�

44



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Type Propagation

Type Propagation can directly devirtualize when the type of the receiver 
is more accurately known.
Type Information orginates from

Method and Field Signatures
Freshly new'd allocations
instanceof / checkcast

Performs unguarded devirtualization
Backup paths are not generated
Kills backup paths that already exist

May decide to change to type of the guard to better exploit type 
information in the inlined code.

Mark the receiver as of fixed type in a region guarded by a VFT 
guard
Try to inline more in a VFT guarded region

45



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Pre-Existence

A.foo() has only one current target
Idea: Specialize the method bar

directly devirtualize all currently monomorphic invokes
recompile the specialized method when A gets extended.

Needs on-stack-replacement, in general
Special cases in which this can be done without needing on stack 
replacement

�	
����������
����
��	�������
�

�������
�����
���	
���
���	
�����������
����������
�������������������
������
��	���
���
�

?

46



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Invariant Argument Pre-Existence

Arguments to a method must be allocated before the invoke
i.e. they "Pre-Exist"

Autos and Parms are thread-local
If a class is loaded during the execution of qux

Argument 'a' cannot become anything other than type A, if it is of 
type A at method entry.

Recompile qux on next invokation.

�	
�-��������
���������
��������!������
�

47



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Invariant Argument Pre-Existence

Arguments to a method must be allocated before the invoke
i.e. they "Pre-Exist"

Autos and Parms are thread-local
If a class is loaded during the execution of qux

Argument 'a' cannot become anything other than type A, if it is of 
type A at method entry.

Recompile qux on next invokation.
Cannot, generally, devirtualize invoke on o.field

Need more powerful opts: eg. Single Threaded Opts.

�	
�-��������
���������
��������!������
�

:-)
:-(

48



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Invariant Argument Pre-Existence (Example)
��
.�!��/	
�����
0�1���1#�2��	
��	
�����
#�����
�3�������!����
�����
���	
�����
�)�,��	���1�4�
�����	�#���1�4�
5����
��	�#�����#�

��
�����

Object

Ray Point

Vector

combine()getDirection()
getOrigin()

Ray is currently final
Point has been extendended but Combine 
is not overridden.
Can directly devirtualize all calls listed 
above
Need to recompile Intersect if

Ray is extended
Combine is overridden

49



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Class Lookahead

Peek into the classes of hot methods
Prove that particular fields are always initalized to the same types
Analyze all methods in the class to see how the field is accessed

Find private fields that are always initialized and are immutable in the 
rest of the class
Also analyze inner classes if they exist

Can directly devirtualize invokes on these fields
Also, remove checkcasts, boundchecks, nullchecks, etc.

50



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Miscellaneous

Escape Analysis
Remove monitor enter/monitor exit from invokes on objects that do 
not escape
.. or haven't escaped yet.
Ask Desynchronizing Inliner to inline the call if possible
Remove existing locks, if already inlined

Block Splitting
Works with profiling statistics gathered
Split control flow at merge points
Better type information results in more devirtualization

Tail Splitting
Perform tail duplication of control flow to avoid merge points
Optimize common code sequences of the form:

OctFaces[3].GetVert().GetDirection().GetX()

51



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Purpose
Overview of the analysis
Some details
Results
Future work

Escape Analysis Overview 

52



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Purpose

Find allocations in this method that

Cannot escape from this method to other 
threads, and

Cannot escape from this method to its 
caller

These are "local allocations", with the 
same lifetime as the method.

53



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Purpose

We may be able to put local allocations 
on the stack instead of the heap

We can de-synchronize calls to the local 
allocation object's methods

54



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Finding local allocations

Look for TR_new, TR_newarray, TR_anewarray
Discard new of class that implements "Runnable"
(or that may, i.e unresolved class)

Use def/use and value number info to collect all 
value numbers that can possibly represent the use 
of a candidate

Look for each use of each value number to see if 
the candidate can escape the method

Sniff into called methods as much as possible, 
mapping arguments to parameters

55



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Handling local allocations

They are all candidates for de-synchronization

They are NOT candidates for stack allocation if

The object is too big
Allocation is inside a loop
JVMPI is enabled
Class is not completely initialized
Class is finalizable, abstract or interface
Array with variable bound
Array of doubles or longs (alignment problems)

56



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Allocating on the stack

If there is code that needs the object to keep its 
original shape, allocate space for the complete 
object on the stack, including header 
(contiguous allocation)

Otherwise allocate each referenced field as if it 
were a separate local and don't allocate a 
header (non-contiguous allocation)

Initialize fields and header (if needed) at the 
original allocation point

57



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

When must an allocation be contiguous?

A use can be reached from some other 
def
       C o;
       if (x)
          o = new C;
       else
          o = p;

       y = o.f;

The allocation is passed as a call 
argument
       o = new C;

       o.foo();

58



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

When must an allocation be contiguous?

An array index is non-constant
       C o[] = new C[10];
       o[5] = c1; // This reference is 

OK

       o[i] = c1; // but this one isn't

Access to an unresolved field (the 
access must stay an indirect load or 
store)
       o = new C;

       o.f = 2; // f is unresolved

59



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

When must an allocation be contiguous?

Access to a slot within the header

Checkcast or instanceof to an unresolved 
class (will be a call to a helper)

Also other calls to helpers, e.g. arraycopy

60



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

When must an allocation be contiguous?

Sometimes we can allocate the fields as 
separate locals and allocate a separate 
java/lang/Object representing the header:

       o = new C;
       if (x)
          o1 = o;
       else
          o1 = p;
       y = o.f;
       if (o1 == o)
          ...

(also used for failing checkcast)

61



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

After the dust settles

Fix up all references to candidates that 
are to be local allocations

Fix up the allocation nodes themselves, 
add initializations

Perform useful inlining

62



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Set up contiguous stack allocation 

For each field or array element reference
If the local allocation is the only def to reach the 
access, remove write barrier store

Replace the allocation node with a loadaddr for its 
local and insert explicit header initialization

Insert explicit zero initialization, using existing field 
symbol references where possible

63



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Set up non-contiguous stack allocation 

For each field or array element reference

Find or create the local that is to represent it
Change the load or store into a direct load or store 
of the local
Convert an ArrayStoreCHK on a candidate array 
into a (special) checkcast, if needed

Replace the allocation node with explicit zero initialization of the locals 
representing the fields

Note that only referenced fields are turned into 
locals, unreferenced fields are ignored

If necessary, create and initialize a local 
object containing just the object header

64



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

De-synchronizing 

Desynchronizing calls
Currently can only be done by inlining the call
Special inliner code does not generate monent and 
monexit for the inlined method

Monitor enter and monitor exit
Mark the monitor enter and exit as being for a local 
object
Leave it to Redundant Monitor Elimination to get rid 
of them if it can

65



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Multiple passes

If inlining will cause a contiguous allocation to 
become a non-contiguous allocation

Leave the allocation node alone
Inline the appropriate methods
Do another pass of Escape Analysis once this one 
is completed

Maximum number of passes depends on 
method hotness

66



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Splitting local allocations

Sometimes it is advantageous to split an 
allocation so that on one path it is local
       o = new C;
       if (virtual-guard-for-x)
          {
          ... // inlined x.foo(o);
          }
       else
          x.foo(o);

becomes
       if (virtual-guard-for-x)
          {
          o = new C;
          ... // inlined x.foo(o);
          }
       else
          {
          o = new C;
          x.foo(o);     
          }

67



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Special handling for exception objects

If "printStackTrace" is never called, 
then ...

No need to call "fillInStackTrace"

68



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Future work 

Handle monitor enter and exit properly for local 
non-contiguous and contiguous objects

Allow indirect store of one candidate into another 
candidate's field or array element

Handle allocations inside loops

Track values returned from sniffed methods

Desynchronize by method versioning

Don't map contiguous local allocations into the GC stack 
map

69



AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Open Forum

70


