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Target systems

= Sovereign (Sun JDK-based) Just-in-Time (JIT) Compiler
»zSeries (S/390)
—-0S/390, Linux
—Resettable, shareable
»pSeries (PowerPC)
- AIX 32-bit and 64-bit
—Linux
»xSeries (x86 or I1A-32)
—Windows, 0OS/2, Linux, 4690 (POS)
—1A-64 (Itanium, McKinley) Windows, Linux

= C and C++ Compilers
»zSeries 0S/390
»pSeries AlX

= Fortran Compiler
»pSeries AlX
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Key Optimizing Compiler Components

= TOBEY (Toronto Optimizing Back End with Yorktown)
» Highly optimizing code generator for S/390 and PowerPC targets

= TPO (Toronto Portable Optimizer)

» Mostly machine-independent optimizer for Wcode intermediate language
» Interprocedural analysis, loop transformations, parallelization

= Sun JDK-based JIT (Sovereign)

»Best of breed JIT compiler for client and server applications
»Based very loosely on Sun JDK
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Inside a Batch Compilation
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TOBEY Optimizing Back End

= Project started in 1983 targetting S/370

= | ater retargetted to ROMP (PC-RT), Power, Power2, PowerPC,
SPARC, and ESAME/390 (64 bit)

= Experimental retargets to 1386 and PA-RISC

= Shipped in over 40 compiler products on 3 different platforms with 8
different source languages

= Primary vehicle for compiler optimization since the creation of the
RS/6000 (pSeries)

= [mplemented in a combination of PL.8 ("80% of PL/I") and C++ on
an AlX reference platform
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Inside TOBEY
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TPO (Toronto Portable Optimizer)

= Project started in 1994 as an interprocedural optimizer for RS/6000

= Shipped first as an interprocedural optimizer for the 0S/390 C
compiler in 1996

= | ater shipped as part of C, C++ and Fortran compilers on AlX, the
C++ compiler on 0S/390 and as a linker enhancement on 0S/400

= Key optimization driver for the ASCI Blue and White projects and
PowerPC SPEC benchmark performance

= Provides OpenMP explicit parallel support and automatic loop
parallelization on RS/6000

= Being adapted to optimize large scale commercial software such as
DB2,0Oracle and SAP

= Implemented in C++ on an AlX reference platform

IBM Software Group



Inside TPO Compile Time Optimization
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Loop Optimization
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Inside an Link-time Compilation
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Inside TPO Link Time Optimization
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Selected TPO Optimizations

= [nterprocedural constant propagation, pointer alias analysis and
dead code elimination

= Partially invariant code motion

= Forward and backward store motion
= Partial constant propagation

= Redundant condition elimination

= Code and data partitioning

= | oop partitioning
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Some Compiler Changes for Power4

= [nstruction scheduling for dispatch

= Register-conctrained modulo scheduling

= Avoid microcoded and some cracked instructions

= Generate stream touch instructions

= Eliminate small branch sequences using CA bit

= Tune loop optimization for 8 prefetch buffers

= Procedure and loop code alignment

= Use static branch prediction override with PDF

= [nline pointer glue and set BH for virtual and pointer calls
= Bias CR allocation to get same source/target for CR logic
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Platform Neutral Improvements

= Profile directed interprocedural optimization

= Profiling and specialization of function pointer calls
= F90 MATMUL/TRANSPOSE improvements

= [nterprocedural loop optimization

= Profile directed outlining
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Results: Regatta vs. Competition
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* Note: Power4d measurements NOT official
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2002 Performance Plan

= Themes
» Middleware performance (DB2)
» Practical SP Performance
» Continuing Power4 and follow-on support
= Optimization Priorities
» Low Level Optimization and Code Generation
»Loop Transformations
> Array Analysis
» Interprocedural Optimization
» C++ Optimization
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2002 Optimization Highlights

= Shrink wrapping

= | oop fusion, distribution and index-set splitting

= | oop unrolling for machine balance and bandwidth utilization

= [nterprocedural register allocation

= Superblock scheduling

= Profile-driven commoning and code motion

= Array data flow analysis and privatization

= Optimization of C++ exceptions, virtual dispatch and templates
= Data dependence analysis for complex indexing

= [nterprocedural type-based analysis
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Sovereign Java Architecture
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Sovereign JIT Compilation Cycle

Recompile hot
method

Recompilation
Controller

Code
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Interpreter
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Common parameters
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Inside the Sovereign JIT
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Bytecode Optimization
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Quadruple Optimization
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Instruction-Level Parallel Optimization (IA-64)
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