IBM Software Group

business software

An (incomplete) Survey of Compiler
Technology at the IBM Toronto
Laboratory

Bob Blainey
March 26, 2002

Target systems

= Sovereign (Sun JDK-based) Just-in-Time (JIT) Compiler
»zSeries (S/390)
—-0S/390, Linux
—Resettable, shareable
»pSeries (PowerPC)
- AIX 32-bit and 64-bit
—Linux
»xSeries (x86 or I1A-32)
—Windows, 0OS/2, Linux, 4690 (POS)
—1A-64 (Itanium, McKinley) Windows, Linux

= C and C++ Compilers
»zSeries 0S/390
»pSeries AlX

= Fortran Compiler
»pSeries AlX

IBM Software Group =5

Key Optimizing Compiler Components

= TOBEY (Toronto Optimizing Back End with Yorktown)
» Highly optimizing code generator for S/390 and PowerPC targets

= TPO (Toronto Portable Optimizer)

» Mostly machine-independent optimizer for Wcode intermediate language
» Interprocedural analysis, loop transformations, parallelization

= Sun JDK-based JIT (Sovereign)

»Best of breed JIT compiler for client and server applications
»Based very loosely on Sun JDK

IBM Software Group

Inside a Batch Compilation

C source C++ source

v v

C++ Front
[C Front End} [End }
\\‘Vcode Wcode

{

IBM Software Group

Weode TPO Wcode

#Wcode

TOBEY
Back End

Object Code

Fortran source Other source

v v

Fortran [Other Front }

Front End Ends

Wcode++ l *

Wcode
Scalarizer

v

Wcode

TOBEY Optimizing Back End

= Project started in 1983 targetting S/370

= | ater retargetted to ROMP (PC-RT), Power, Power2, PowerPC,
SPARC, and ESAME/390 (64 bit)

= Experimental retargets to 1386 and PA-RISC

= Shipped in over 40 compiler products on 3 different platforms with 8
different source languages

= Primary vehicle for compiler optimization since the creation of the
RS/6000 (pSeries)

= [mplemented in a combination of PL.8 ("80% of PL/I") and C++ on
an AlX reference platform

IBM Software Group

Inside TOBEY

Wcode

4

Wcode-to-XIL
OPT(O) Translator

OPT(2)

Local Commoning Value Numbering

Control Flow Simple Early Redundancy Elimination
Straightening Optimization Optimization | Reassociation
Dead Store Elimination
Early Macro
Expansion
Value Numbering
OPT(O)V .L%te . Commoning/Code Motion
Optimization Dead Code Eliminati
Late Macro ead Code Elimination
Expansion
J/
OPT(0) OPT(2)
e
Instruction
Fast Register Scheduling
Allocation and Register
Allocation

Final
Assembly

IBM Software Group

TPO (Toronto Portable Optimizer)

= Project started in 1994 as an interprocedural optimizer for RS/6000

= Shipped first as an interprocedural optimizer for the 0S/390 C
compiler in 1996

= | ater shipped as part of C, C++ and Fortran compilers on AlX, the
C++ compiler on 0S/390 and as a linker enhancement on 0S/400

= Key optimization driver for the ASCI Blue and White projects and
PowerPC SPEC benchmark performance

= Provides OpenMP explicit parallel support and automatic loop
parallelization on RS/6000

= Being adapted to optimize large scale commercial software such as
DB2,0Oracle and SAP

= Implemented in C++ on an AlX reference platform

IBM Software Group

Inside TPO Compile Time Optimization

i g R P R R FNEDREEERDRNEDNNDNNRDNENRDNEDNEDNRENNEDNED RN EDNRENEDEFEEDINDDNEDNRDNNDRNENERDNEENENEENEREODENEREODEDNERD

Wcode
from FE Decode
Control Flow Analysis Store Motion
Intraprocedural Constant Propagation Redundant Condition Elimination
Control or &) Copy Propagation Loop Normalization
Alias Changed? . Opt|m|zat|ons Alias Analysis Loop Unswitching

Dead Store Elimination Loop Unrolling

Loop Fusion Scalar Replacement
LOOp Loop Distribution Loop Parallelization

. . Unimodular Trans Loop Vectorization
Optlmlzatlons Unroll-and-jam Code Motion and Commoning

Collection

Wcode
Encode | ‘0 BE

IBM Software Group

Loop Optimization

IR P FRTEENERNRNEDNNDENREDNNERDNENRERNDNEDNRENRED N REDNENENERDERENEODNRNEENENEDNEDNEENRERODENRERENEDNRODNED DO

Scalar
Optimization

Loop Nest
Canonization

Parallel Loops
High Level |
Transformations | ¢
Serial Parallel Loop
Loops Outlining

Low Level
Transformations

IBM Software Groupi information subject to change without notice

Inside an Link-time Compilation

Object files Libraries

Y ¥

OTHER LINK
INFORMATION TPO

[TOBEY }
l Object Files

[Linker }
v

Executable or shared library

IBM Software Group

Inside TPO Link Time Optimization

Symbol Backward | parameter & global def/use
Resolutlon Alias backward properties
Analys1s
([Call Graph LEVEL(2) _
| Completion Forward copy and constant propagation

Data-flow | pointer alias analysis
LEVEL(D‘ Analysis | dead code elimination

[Inlining p * <
Alias closure of context sensitive
LEVEL(0) ‘ Closure | pointer alias relationships
- J
[Data } *
Coalescmg Backward) invariant code motion
Data-flow | common subexpression elimination

| Analysis loop optimization

N\

Functlon
Part1t10n1ng

IBM Software Group

Selected TPO Optimizations

= [nterprocedural constant propagation, pointer alias analysis and
dead code elimination

= Partially invariant code motion

= Forward and backward store motion
= Partial constant propagation

= Redundant condition elimination

= Code and data partitioning

= | oop partitioning

IBM Software Group

Some Compiler Changes for Power4

= [nstruction scheduling for dispatch

= Register-conctrained modulo scheduling

= Avoid microcoded and some cracked instructions

= Generate stream touch instructions

= Eliminate small branch sequences using CA bit

= Tune loop optimization for 8 prefetch buffers

= Procedure and loop code alignment

= Use static branch prediction override with PDF

= [nline pointer glue and set BH for virtual and pointer calls
= Bias CR allocation to get same source/target for CR logic

IBM Software Group

Platform Neutral Improvements

= Profile directed interprocedural optimization

= Profiling and specialization of function pointer calls
= F90 MATMUL/TRANSPOSE improvements

= [nterprocedural loop optimization

= Profile directed outlining

IBM Software Group

Results: Regatta vs. Competition

1200
1000 = g +12%
N S
200 i H PA-8700 750MHz
1 g [] SPARC 900MHz
o N
= +21% Itanium 800MHz
600 \ \ a] Pentium 2.2GHz
Alpha 1.0GHz
400 = B Power4 1.3GHz
% [] Power4 + compiler
200- = -
0 I — I
SPECint2000 SPEC{p2000

* Note: Power4d measurements NOT official

IBM Software Group

2002 Performance Plan

= Themes
» Middleware performance (DB2)
» Practical SP Performance
» Continuing Power4 and follow-on support
= Optimization Priorities
» Low Level Optimization and Code Generation
»Loop Transformations
> Array Analysis
» Interprocedural Optimization
» C++ Optimization

IBM Software Group

2002 Optimization Highlights

= Shrink wrapping

= | oop fusion, distribution and index-set splitting

= | oop unrolling for machine balance and bandwidth utilization

= [nterprocedural register allocation

= Superblock scheduling

= Profile-driven commoning and code motion

= Array data flow analysis and privatization

= Optimization of C++ exceptions, virtual dispatch and templates
= Data dependence analysis for complex indexing

= [nterprocedural type-based analysis

IBM Software Group

Sovereign Java Architecture

Java
Compiler

(javac, jikes)

Sovereign

Java Virtual MMI

Machine

PowerPC § S/390

IBM Software Group .4

ll

Sovereign JIT Compilation Cycle

Recompile hot
method

Recompilation
Controller

Code
samples

Interpreter

Method invocation counts
Conditional path info

Loop detection

Sampler/Compiler
Hot methods |:>
Common parameters

IBM Software Group

Recompile
invalid code
Compiler Class
Loader
Compiled MMI Byte code
code
Transfer
Interpreter

Execution

Fast startup
Class & method resolution
Class initialization

Good code for warm methods
Best code for hot methods
Specialized hot methods

Inside the Sovereign JIT

4 N

Java Bytecode
Bytecode Optimization

Quadruple
Optimization

Instruction Scheduling
Register Allocation

IBM Software Group

Bytecode Optimization

IBM Software Group

JSR Inlining

v

s ™

Field

L Privatization)

v

NULL check elimination
Field privatization

Type flow analysis
Array check elimination

Java
Bytecode

Quadruple Optimization

Code
Quads Straightening}

Copy Propagation
Dead Store Elimination
Redundant Class Init
Class Flow Analysis

Busy Code Motion

Lazy Code Motion

Induction Variables
Loop Versioning
Loop Striding

IBM Software Group T ===

Instruction-Level Parallel Optimization (IA-64)

Ve N\
Parallelism-aware
Quad Register
PDG SISt
Allocation
" %

IF Conversion
Predicate Analysis

Control Speculation
Data Speculation
Exception Speculation

Instruction
Parallelization)

IBM Software Group

