How did *this* get published?

Pitfalls in experimental evaluation of computing systems

José Nelson Amaral

University of Alberta

Edmonton, AB, Canada
Thing #1: Aggregation

Thing #2: Learning

Thing #3: Reproducibility
So, a computing scientist entered a Store....

http://archive.constantcontact.com/fs042/1101916237075/archive/1102594461324.html

So, a computing scientist entered a Store….

They want $2,700 for the server and $100 for the iPod.

I will get both and pay only $2,240 altogether!

So, a computing scientist entered an Store….

Ma’am you are $560 short.

But the average of 10% and 50% is 30% and 70% of $3,200 is $2,240.

$ 3,000.00

$ 200.00

$ 3,000.00

$ 200.00

http://www.businessinsider.com/10-ways-to-fix-googles-busted-android-app-market-2010-1?op=1

So, a computing scientist entered an Store....

Ma’am you cannot take the arithmetic average of percentages!

But... I just came from at top CS conference in San Jose where they do it!

h�://www.businessinsider.com/10-­‐ways-­‐to-­‐fix-­‐googles-­‐busted-­‐android-­‐app-­‐market-­‐2010-­‐17op=1

The Problem with Averages
A Hypothetical Experiment

Execution Time

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Time (minutes)</th>
<th>Baseline</th>
<th>Transformed</th>
</tr>
</thead>
<tbody>
<tr>
<td>benchA</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>benchB</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>benchC</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>benchD</td>
<td>4</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

With thanks to Iain Ireland
Speedup

\[
\text{Speedup} = \frac{\text{Baseline Time}}{\text{Transformed Time}}
\]
The transformed system is, on average, 2.6 times faster than the baseline!
Normalized Time

\[
\text{Normalized Time} = \frac{\text{Transformed Time}}{\text{Baseline Time}}
\]
The transformed system is, on average, 2.6 times slower than the baseline!
Latency \times Throughput

• What matters is latency:

• What matters is throughput:
Aggregation for Latency: Geometric Mean

$$GeoMean = \sqrt[n]{\prod_{i=0}^{n-1} S_i}$$
The performance of the transformed system is, on average, the same as the baseline!
The performance of the transformed system is, on average, the same as the baseline!
Aggregation for Throughput

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Execution Time (minutes)</th>
<th>Baseline</th>
<th>Transformed</th>
</tr>
</thead>
<tbody>
<tr>
<td>benchA</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>benchB</td>
<td>10</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>benchC</td>
<td>20</td>
<td>5.25</td>
<td>8.25</td>
</tr>
<tr>
<td>benchD</td>
<td>20</td>
<td>8.25</td>
<td>5.25</td>
</tr>
<tr>
<td>Arith</td>
<td>8.25</td>
<td>5.25</td>
<td>1.6</td>
</tr>
<tr>
<td>Avg</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

The throughput of the transformed system is, on average, **1.6 times faster** than the baseline.

Speedup = \(\frac{8.25}{5.25} = 1.6 \)
The Evidence

• A careful reader will find the use of arithmetic average to aggregate normalized numbers in many top CS conferences.

• Papers that have done that have appeared in:
 – LCTES 2011
 – PLDI 2012 (at least two papers)
 – CGO 2012
 • A paper where the use of the wrong average changed a negative conclusion into a positive one.
 – 2007 SPEC Workshop
 • A methodology paper by myself and a student that won the best paper award.
This is not a new observation...

Edgar H. Sibley
Panel Editor

Using the arithmetic mean to summarize normalized benchmark results leads to mistaken conclusions that can be avoided by using the preferred method: the geometric mean.

HOW NOT TO LIE WITH STATISTICS: THE CORRECT WAY TO SUMMARIZE BENCHMARK RESULTS

PHILIP J. FLEMING and JOHN J. WALLACE

RULE 1: Do Not Use the Arithmetic Mean to Average Normalized Numbers

RULE 2: Use the Geometric Mean to Average Normalized Numbers

RULE 3: Use the Sum (or arithmetic mean) of Raw, Unnormalized Results whenever This “Total” Has Some Meaning

No need to dig dusty papers...

Geometric mean
From Wikipedia, the free encyclopedia

\[
GM\left(\frac{X_i}{Y_i}\right) = \frac{GM(X_i)}{GM(Y_i)}
\]

This makes the geometric mean the only correct mean when averaging normalized results, that is results that are presented as ratios to reference values.\[^4\] This is the case when presenting
So, the computing scientist returns to the Store...

Hello. I am just back from Beijing. Now I know that we should take the geometric average of percentages.

Hello.

I am just back from Beijing.

Now I know that we should take the geometric average of percentages.
So, a computing scientist entered a Store....

Sorry Ma’am, we don’t average percentages...

Thus I should get \(\sqrt{50 \times 10} \)

\[= 22.36\% \text{ discount and pay } 0.7764 \times \$3,200 = \$2,484.48 \]
So, a computing scientist entered a Store....

The original price is $3,200. You pay $2,700 + $100 = $2,800. If you want an aggregate summary, your discount is $400/3,200 = 12.5%
Disregard to methodology when using automated learning
Example:
Evaluation of Feedback Directed Optimization (FDO)
We have:

We want to measure the effectiveness of an FDO-based code transformation.
Generic relations were moved in Django revision 5172:
try:
 from django.contrib.contenttypes import generic
except ImportError:
 from django.db.models import generic

class Tag(models.Model):
 A basic tag

 name = models.CharField(max_length=50, unique=True,
 db_index=True, error_message=[u'isTag()]
 objects = TagManager()

class Meta:
 db_table = 'tag'
 verbose_name = 'Tag'
 verbose_name_plural = 'Tags'
 ordering = ('name',)
The FDO transformation produces code that is XX faster for this application.
The Evidence

• Many papers that use a single input for training and a single input for testing appeared in conferences (notably CGO).
• For instance, a paper that uses a single input for training and a single input for testing appears in:
 – ASPLOS 2004
Generic relations were moved in Django revision 5172.
```python
from django.contrib.contenttypes import import壁垒
except ImportError:
    import django.db.models as generic

class Tag(models.Model):
    A basic
    name = models.CharField(max_length=50, unique=True,
                            db_index=True)
    objects = TagManager()

class Meta:
    db_table = 'tag'
    verbose_name = 'Tag'
    verbose_name_plural = 'Tags'
    ordering = ('name',)
```

A diagram illustrates the evaluation set, application code, compiler, optimized code, and profile. The diagram shows the process of optimizing code through profiling and compilation. The website http://www.orchardoo.com is mentioned as a reference for more information.
Combined Profiling (Berube, ISPASS12)

Cross-Validated Evaluation (Berube, SPEC07)

http://www.orchardoo.com

Generic relations were moved in Django revision 5172

try:
 from django.contrib.contenttypes import generic
except ImportError:
 import django.db.models as generic

class Tag(models.Model):
 A basic class
 name = models.CharField(max_length=50, unique=True,
 db_index=True, null=True, blank=True)
 objects = TagManager()

 class Meta:
 db_table = 'tag'
 verbose_name = 'Tag'
 verbose_name_plural = 'Tags'
 ordering = ('name',)
Evaluation Set

Application Code

Compiler

Optimized Code

Wrong Evaluation!

Profile

Performance

[FDO]

http://www.orchardoo.com

Generic relations were moved in Django revision 5172
try:
 from django.contrib.contenttypes import generic
except ImportError:
 import django.db.models as generic

class Tag(models.Model):
 A basic Tag
 name = models.CharField(max_length=50, unique=True,
 db_index=True, error_messages={'unique': '[tag]'
 ' must be unique'})
 objects = TagManager()

class Meta:
 db_table = 'tag'
 verbose_name = 'Tag'
 verbose_name_plural = 'Tags'
 ordering = ('name',)
The Evidence

• For instance, a paper that incorrectly uses the same input for training and testing appeared in:
 – PLDI 2006
Expectation:
When reproduced, an experimental evaluation should produce similar results.
Issues

Have the measurements been repeated a sufficient number of times to capture measurement variations?

Availability of code, data, and precise description of experimental setup.

Lack of incentives for reproducibility studies.
Progress

Program committees/reviewers starting to ask questions about reproducibility.

Steps toward infrastructure to facilitate reproducibility.
SPEC Research Group

http://research.spec.org/

14 industrial organizations
20 universities or research institutes
SPEC Research Group

http://research.spec.org/

Performance Evaluation

Benchmarks for New Areas

Performance Evaluation Tools

Evaluation Methodology

Repository for Reproducibility

http://icpe2013.ipd.kit.edu/

4th ACM/SPEC International Conference on Performance Engineering

ICPE 2013

Prague - Czech Republic - April 21-24
Evaluate Collaboratory:
http://evaluate.inf.usi.ch/

Open Letter to PC Chairs

Anti Patterns

Evaluation in CS education
Parting Thoughts....

Creating a culture that enables full reproducibility seems daunting...

Initially we could aim for:

Reasonable expectation by a reasonable reader that, if reproduced, the experimental evaluation would produce similar results.