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What is AI?

2

How would we know if we 
had achieved AI?



Robot Student Test 
(Goertzel, 2012)

• If a computer could…

– Register in a university program

– Attend classes

– Read the textbook

– Successfully complete tests/assignments

– Finish a degree

… that would be artificial intelligence
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AI2’s Aristo: 
8th Grade Science Tests

• Allen Institute for AI 

– Training an AI to “read” science textbooks and the 
internet 

– Take 8th grade science tests

http://allenai.org/aristo/5
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AI2’s Aristo: 
8th Grade Science Tests
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Robot Student Test (Goertzel)

• What would that require?

– perception 

• e.g. read figures in books

– represent knowledge

• e.g. foxes are like wolves

– communication via language (written at least)

• e.g. writing essays for class

– learn, reason, generalize, plan…
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This talk is not a complete overview

• There are many, many areas of AI I am not 
covering today

– Reinforcement Learning

– All of robotics (navigation, planning, interaction 
with the physical world…)

– …
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The Singularity

• I will not talk about AI taking over the world

• Instead, I will talk about 

– how AI currently impacts society

– how biased models sneak their way into our lives
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SKILL 1: PERCEPTION

The Robot Student Test
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Perception in AI

• Amazing advances in computer vision

– ImageNet

• First released 2009

• 1.2 million images

• more than 1000 concepts 
– e.g. cup, oil filter, ptarmigan

– Deep learning

• CNNs

http://image-net.org/ 15



ImageNet
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http://cs.stanford.edu/people/karpathy/cnnembed/



ImageNet
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http://image-net.org/challenges/LSVRC/2010/browse-synsets
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http://image-net.org/challenges/LSVRC/2012/analysis/



https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/
19

Krizhevsky, Sutskev & Hinton
Convolutional Neural Net (CNN)
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Self Driving Cars



Self Driving Cars
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Neural Nets: Crash course

22
http://cs231n.github.io/neural-networks-1/



Neural Nets: Crash course
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Neural Nets: Crash course
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Neural Nets: Crash course

• Architecture fixed (e.g. depth, # neurons) 

• Weights at each edge are learned

– Backpropagation (stochastic gradient descent)
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Convolutional Neural Nets
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Two additional operations: 
• Convolution
• Pooling/Subsampling



Convolutional Neural Nets (CNNS)
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https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png



CNNs: Convolution

28

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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CNNs: Convolution
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https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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CNNs: Convolution

• Typical Filters  (         )

30
Krizhevsky et al.
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CNNs: Convolution

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/ (Fergus intro)

• Output of convolution 
layer is a feature map
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CNNs: Pool/Subsample
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Krizhevsky et al.

4 3 4

2 4 3

2 3 4

Average = 3.2 

Max = 4



CNNs: Pool/Subsample
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Krizhevsky et al.
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• Supplies some invariance to local translations
• Reduces the dimension of subsequent layers



CNNs: Hidden representations

• Activations (feature maps) at each layer are a 
“hidden representation” of the image

• A compression of the information in image

– not unlike PCA/SVD
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What do the neurons represent?
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How can we make j2’s value
as high as possible?

What stimuli makes j2
fire maximally?
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Horikawa & Kamitani (2017)
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What do CNNs 
have to do with the brain?

• You keep using the word neuron…
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Horikawa & Kamitani (2017)

Horikawa & Kamitani (2017)
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CNNs vs the Brain

• Which predictions are most correlated with 
the true CNN representations?
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…

…

8 CNN layers

7 vision-related
areas

Train all possible 56 models to 
predict CNN

hidden representations  
from fMRI data
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CNNs vs the Brain

• There is a relationship between higher vision 
brain areas and higher levels of the CNN
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SKILL 2: REPRESENTING KNOWLEDGE

The Robot Student Test
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How can we represent knowledge?
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How can we represent knowledge?
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Vector Space Models (VSMs) 
of Semantics
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Vector Space Models of Semantics
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Scaling it up

• How can we differentiate >10k English words?

– more dimensions (many more!)

• Need to create dimensions and assign values 
automatically



Vector Space Models of Semantics

• Every word gets a vector

Apple

Banana 1 .9 9 0 .3 -1 -3

1 .8 .3 4 -.2 2 1
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Orange 1 .7 .9 2 -.4 1 .1

…

…

…



Representing Semantics

• Process a large text corpus

• Find words associated with word of interest

– banana appears 

• often with verb eat

• less often with verb drive

• Latent Semantic Analysis (LSA)
(Landauer and Dumais, 1997) 

• SkipGram (sometimes called Word2Vec)
(Mikolov et al. 2013)
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SkipGram

• Another neural network (surprise!)

• Given a central word (e.g. banana), predict 
probable context words (e.g. ate, yellow) 

• Use a corpus to generate pairs of central and 
context words
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Joe ate the banana, which was yellow
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SkipGram

• We call the hidden representation for each 
central word a word vector

• These vectors have (seemingly) magical 
properties*

57*Actually, it’s the data itself that’s magical.  See Levy, Goldberg, & Dagan (2015)
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What can word vectors do?

• Solve analogies

– Hammer is to nail as screwdriver is to…?

• screw

– Solve by finding word closest to 

(nail – hammer + screwdriver)
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Linguistic Regularities
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Mikolov, Sutskever, Chen, Corrado, & Dean (2013) 



Linguistic Regularities
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Mikolov, Yih & Zweig (2013)
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Mikolov, Sutskever, Chen, Corrado, & Dean (2013) 



What can word vectors do?

• Predict word similarity
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occipital, parietal)

x1

x2

x3

x4

xV

h1

h2

h3

y1

y2

…

y4

yV

…

y3

cat



RSA-style analysis, 
SkipGram <-> fMRI
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Ruan, Ling & Hu (2016)



BrainBench

The brain as a test bed for 

learned word representations

Xu, Murphy & Fyshe, 2016
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BrainBench

• Tests your favorite word vectors against the 
brain’s representations

• Multiple Modalities
– fMRI

– MEG

– EEG

• English and Italian

• Abstract and concrete nouns

• And growing!!

Xu, Murphy & Fyshe, 2016
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Average across 4 datasets

Non-distributional

Xu, Murphy & Fyshe, 2016

http://www.langlearnlab.cs.uvic.ca/brainbench/

Haoyan (Ed)
Xu

Dhanush
Dharmaretnam
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SkipGram vs the Brain

• SkipGram vectors are correlated with fMRI 
activity

• So are lots of other word vector models
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SKILL 3: COMMUNICATE VIA LANGUAGE

The Robot Student Test
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Recurrent Neural Network

• Neural networks that write

• Predict the next word as a function of 

– context 

– previous

• Write that word, and recurse
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Recurrent Neural Network Language Model
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Mikolov, Kombrink, Deoras, Burget & Cernocky (2011)



Recurrent Neural Network Language 
Model
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Sunspring

74https://arstechnica.com/gaming/2016/06/an-ai-wrote-this-movie-and-its-strangely-moving/



What do RNNs have to do
with the brain?
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Harry Potter and the Reading Brain

• MEG

• Read  Chapter 9 of Harry Potter and the 
Sorcerer’s Stone.

• Read one word at a time, each word for 0.5 s

Wehbe et al. 2014



When and where do the brain processes occur?

Conjecture

(a) Story context before seeing word w

(b) Perception of word w

(c) Integration of word w

word w+1word w-1 word w

0.5 s0.5 s 0.5 s

a

b

c

Leila Wehbe
Wehbe et al. 2014



Recurrent Neural Network Language Model
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Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukar Burget, and J Cernocky.
RNNLM- recurrent neural network language modeling toolkit.
ASRU Workshop 2014.

Wehbe et al. 2014



Parallelism

Brain processes:

(a) Represent context

(b) Retrieves properties

(c) Integrate the word with 
context

Neural Net components:

(a) Context vector

(b) Word Embedding

(c) P(w | context)

Wehbe et al. 2014



Annotate every word with new features

 Embedding of word w

 Context (before word w 

is seen)

 Probability of word w 

given context

Word w

Word w

Wehbe et al. 2014



Recurrent Neural Network Language 
Model

• Learned on Harry Potter fan fiction database. 
(60 million words) 

– Nearest Neighbors of Harry:

• James, Jinny, Lilly, Albus, Ron

• Model then “reads” Chapter 9 of The 
Sorcerer’s Stone word by word, and produces 
vectors of interest.

Wehbe et al. 2014



 Embedding of word w

 Context (before word w 

is seen)

 Probability of word w 

given context

Word w

Word w

Wehbe et al. 2014



Results: Context vector by time

Wehbe et al. 2014



Back
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visual

frontal

temporal

Results: time/sensor
 Context before word w

 Embedding of word w

 Probability of word w

Wehbe et al. 2014



RNNs vs the Brain

• There is a relationship to the representations 
an RNN learns and information in the brain

• Caveat: is this actually what reading is?
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Robot Student Test (Goertzel)

• What would that require?

– perception

• e.g. read figures in books

– represent knowledge

• e.g. foxes are like wolves

– communication via language (written at least)

• e.g. writing essays for class

– learn, reason, generalize, plan…
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AI = Neural Networks?

• Of course not…
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Bias in AI

88



89



Bias in AI

• Recall word vectors can solve analogy problems:

• e.g. Paris : France as Tokyo : x
Word vectors will tell you that x = Japan.

• father : doctor as  mother : x
x = nurse

• man : computer programmer as woman : x
x = homemaker

90
https://www.technologyreview.com/s/602025/how-vector-space-mathematics-reveals-the-hidden-sexism-in-language/



Bias in, Bias out?

• People have biases… should models have bias?

• Biases are harmful, even deadly, if perpetuated

– Face recognition works better for white people

• Increased mistaken identity among people of color

– Software used to decide parole/sentencing had 
elevated risk assessments for people of color that   
did not correlate to actual recidivism rates

91
https://www.theatlantic.com/technology/archive/2016/04/the-underlying-bias-of-facial-recognition-systems/476991/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing



Bias in, Bias out?

• Our models may even exaggerate bias!

• “For example, the activity cooking is over 33% 
more likely to involve females than males in a 
training set, and a trained model further 
amplifies the disparity to 68% at test time.”

92Zhao (2017) https://arxiv.org/pdf/1707.09457.pdf



Bias in Artificial Intelligence

• Combating bias in AI is an open research 
question

yearly conference FATML

http://www.fatml.org/

See also:

https://qz.com/1064035/google-goog-explains-how-artificial-intelligence-becomes-
biased-against-women-and-minorities/ (lots of good links at the bottom)

https://cdt.org/issue/privacy-data/digital-decisions/
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