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Abstract—In this paper, we use data mining techniques
and statistical methods to analyse weather data. We
collected and processed records from six weather stations
located at various locations in the southern part of Van-
couver Island. Weather data is an example of time series
data which requires a special approach in data mining.
In particular, we studied on how to use ARIMA to build
models for our dataset. We discuss how to use the Dickey-
Fuller method to test data stationarity. We also discuss how
to determine the optimum ARIMA model parameters, by
using ACF/PACF, and AIC/BIC. Finally, we show some
examples of our analyses and discuss the results.
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I. INTRODUCTION

Weather and climate prediction play an important
role for agriculture and industry. A great proportion
of agricultural and industrial activities are strongly
affected by climate conditions.

From the view of short-term, the temperature and
precipitation are basic condition for crop growth and
yield in agriculture. Each crop has its own mini-
mum, optimal, maximum temperature for growing.
The crop stops growing when the temperature goes
below the minimum temperature. The crop growth
increased as the temperature goes up from the
minimum to the maximum temperature. However
the crop growth decreases as the temperature goes
beyond its optimal temperature to the maximum

temperature. The crop growth stops again when
the temperature reaches its maximum temperature.
Warmer temperature may favor some crops to grow
more quickly and increase their yields, but it could
also reduce growth and yields for other kinds of
crops. So accurate prediction of future weather
condition could help farmers select the proper crops
in order to increase growth and yield as well as
economic incomes. The fast growth of crops such
as grains may reduce the amount of time that seeds
need to grow and mature [1]. The crop growth
not only depends on the temperature, but also on
soil water and nutrient elements such as nitrogen,
phosphorus and potassium. The soil nutrients are
adsorbed by crops with soil water adsorption. The
proper soil moisture is strongly related to the pre-
cipitation. The seasonal distribution of precipitation
also affects the crop growth and yields. Similar to
responding to the temperature, some crops favor
the wet weather condition, others favor dry weather
condition. So accurate prediction of future precip-
itation could help farmers select the crops too in
order to maximum crop growth yields as well as
economic income.

Aviation, airports, and airlines are strongly af-
fected by the weather condition. A bad weather
condition may result in flight cancellations and
substantial losses for both consumers and the air-
line industry. Some business losses caused by the
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cancellation of flight due to bad weather condition
are not compensated. Business traveling to meetings
and conferences are major revenue to many airlines
and regional carriers, but canceled events are often
not rescheduled. As a result, revenue lost due to bad
weather is unlikely to be recovered [2]. Industries
such as constructions need to consider weather con-
ditions for planning and the operations. Heavy wind
and extreme low temperature not only affect the
construction quality, but also injury the workers, and
damage the equipment and machines [3]. Extreme
weather condition is the main reasons of natural
disasters. Flooding and storms were the main cause
of property damages. The extreme high temperature
often causes people die and more common to affect
adversely human life. An accurate prediction for fu-
ture weather could help prevent the loss of property
and life.

The earth system and climate condition has been
changed by the human activities. The third report
of the Intergovernmental Panel on Climate Change
(ICPP) stated: ”There is now new and stronger
evidence that most of the warming observed over
the last 50 years is attributable to human activities.”
The global warming is referred to the increase
the mean air temperature as a result of increased
atmospheric loading of greenhouse gases such as
carbon dioxide from fossil fuel combustion. So the
prediction of long-term impacts of human activities
on global weather condition in terms of temperature
and precipitation is critical to maintain a health
global living environment for human being [4].

The short and long term weather simulation and
forecast have been a scientific research area for
meteorologists. With the development of computer
technology, the integration of complicated mathe-
matical models with computer algorithms has been
used to effectively simulate and predict the short-
and long-term climate and weather condition for
local,regional, and global scale. Although the math-
ematical models and computer algorithms have been
developed, the accuracy of simulation and predic-
tion are still needed to be improved. The objectives
of this course project was to predict seasonal climate
change using temperature as a indictor based on
the data collected from weather stations located
in Vancouver Island. These weather stations are
operated by the Environment Canada. To achieve the

objective, we used the time series model ARIMA in
this project. The ARIMA was trained and tested by
the temperature data from different weather stations.

II. RELATED WORKS

Weather forecast could be back up to a century
ago when the forecast was imprecise and unreliable.
The reasons are that the weather stations were
not enough to collect enough data for building
mathematical and statistical models that can be used
to simulate and forecast the weather conditions. In
addition, the observations in those weather stations
were often irregular. Especially, the observations for
the upper atmospheric layers and over the ocean
were extremely difficult. It was impossible to cal-
culate massive atmospheric physics data by hands.
The weather forecast had significantly breakthrough
as computer technology advanced. The first time
of computer used in meteorology study was in
1950 when the Electronic Numerical Integrator and
Computer (ENIAC) were used in weather con-
dition simulation in Aberdeen, Maryland of the
Unites States [5], [6]. Using advanced computer
technology, meteorological scientists could study
the complex atmospheric systems by integrating the
numerical models with computational algorithms to
simulate and predict short- and long-term climate
and weather changes.

For the long term, various general circulation
models (GCMs) of the atmosphere and ocean have
been developed based on the human activities such
as increased greenhouse emission in terms of carbon
dioxide caused by the combustion of fissile fuel [4],
[6]. The GCMs were trained using the weather
data from past centuries and predict the climate
change over the next couple of centuries based on
the assumed scenarios of greenhouse mission in the
future. The Canadian Centre for Climate Modelling
and Analysis has developed the Canadian Middle
Atmosphere Model (CMAM) and the Canadian
Regional Climate Model (CRCM) to simulate and
predict regional climate changes in Canada and the
world over the past and future centuries based on
the different scenarios of greenhouse emission [7].
Hawkins and Rowan [8] studied the importance of
narrowing uncertainty on regional climate predic-
tions. They also introduced several approaches in
order to reduce prediction uncertainty. Giorgi [9]
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provided an example about using Limited Area
Model (LAM) to simulate and predict January cli-
mate over the western US. Through this example, he
introduced other three models (T42, R15 and MM4).

For the short term weather forecast, Radhika and
Shashi [10] used support vector machine (SVM)
for weather prediction for a chosen location. The
SVM was used to predict the next day maximum
temperature based on the maximum temperature of
the previous days. The results of the SVM predic-
tion were compared with the Multi Layer Perception
(MLP), the SVM performed better than the MLP.
The mean square error of the MLP prediction varies
from 8.07 to 10.2 and the SVM from 7.07 to 7.56.
Patel and Christian [11] used fuzzy set theory to
predict temperature for inland cities of India based
on the mean sea level pressure and relative humid-
ity. The results showed that the fuzzy set theory
reproduced the observed temperature well with root
mean square error equal to 2.59. De and Deb-
nath [12] used an artificial neural network (ANN)
to predict the maximum and minimum temperature
for the summer monsoon months, i.e., June, July,
and August, in India. The ANN-based predicted
mode was a three-layered feed forward neural net.
In both cases, maximum and minimum temperature
were greatly predicted in the month of August. In
the largest part of the cases, prediction error lies
below 5%. Pal et al. used a hybrid neural network
to predict atmospheric temperature [13]. The self-
organizing feature map (SOFM) and MLPs were
used to build the hybrid network named SOFMMLP.
The SOFMMLP has been compared with other local
and global predictors and has been found to produce
a much better prediction than others.

Besides the temperature, the data mining tech-
niques were also used to predict recipitation and
wind speed. Guhathakurta used the deterministic ar-
tificial neural network model to predict the monsoon
rainfall in the next year based on the past years
of monsoon rainfall data [14] . The deterministic
artificial neural network model predicted monsoon
rainfall well for the 36 meteorological sub-divisions.
The Mohandes et al used the SVM to predict wind
speed. The results were compared with the MLP. It
showed that the SVM performance was better than
the MLP [15].

III. DATA RESOURCES

The climate data were retrieved from the Environ-
ment Canada historical online climate database. The
Environment Canada has operated over eight thou-
sand weather stations across the country to record
weather conditions since 1840. The data attributes
include: maximum, minimum and average tempera-
ture; total rain, snow and precipitation; heating and
cooling degree day, dew point temperature, relative
humidity, wind direction and speed, visibility, at-
mosphere pressure, and cloudy condition in hourly,
daily and monthly time step. The data also include
the station geographical information, in terms of
latitude, longitude, and elevation. These data can be
directly downloaded from the Environment Canada
website [16]. The climate data varies from station to
station in details, time duration and attributes. Some
stations have more details in weather records than
the others.

Missing data often occur due to the failure of
the equipment. The missing data was filled using
Lagrange polynomial interpolation [17]. Its mathe-
matical equation is expressed as

P (X) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0)+

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)+

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2)

(1)

where f(x0), f(x1)and f(x2) are the observed tem-
perature value at the time x0, x1, and x2, respec-
tively.

Six weather stations were selected for this project.
They are located in Pender island, Victoria inter-
national airport, Shawnigan lake, Saanichton town,
Victoria Hightland, and the University of Victoria
(Fig. 1). These stations were chosen mainly because
the weather data were relatively consistence.

The weather station in Pender Island is located
at latitude N 48◦76′0′′ and longitude W 123◦29′0′′

and data covered from 1972 to 2007; Shawnigan
Lake at N 48◦56′0′′ and W 123◦29′0′′ from 1911
to 2007; Saanichton Town at 48 o N 48◦62′0′′ and
W 123◦42′0′′ from 1914 to 2007; the University
of Victoria at N 48◦46′0′′ and W 123◦30′0′′ from
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Fig. 1: Geographic location of six weather station
in Vancouver Island

1992 to 2007; Victoria Hightland at N 48◦51′0′′

and W 123◦52′0′′ from 1961 to 2007; and Victoria
International Airport at N 48◦65′0′′ and W 123◦43′0′′

from 1940 to 2016. A typical temperature varia-
tions for the University of Victoria are shown in
Fig. 2. The figure shows that the extreme maximum
and minimum temperature was around 35oC and
−7.5oC, respectively.

Fig. 2: Variation of temperature data in the Univer-
sity of Victoria

The extreme temperature changed around 8oC
from year to year. Average mean temperature range
from 4oC to 18oC. The precipitation major consists
of rain and a little snow (Fig. 3).

IV. MODELING

A. Time Series

Data based on time intervals is called time
series (TS), and there are many ways and methods

Fig. 3: Rain, snow and total precipitation in the
University of Victoria

for analysis, process and forecast. One of them,
which deals with time based data is Time Series
Modeling. As the name suggests, it involves
working on time (yearly, monthly, daily, etc)
based data, to unveil hidden aspects in order to
make informed decision. Time series models are
useful when we have serially correlated data. Most
businesses implement some kind of time series
analysis, such as to analyze sales number for the
next year, predict peek website traffic, and market
competitive position, just to name a few.

Now we know Time series (TS) is a collection
of data points collected at constant time intervals.
These are analyzed to determine the long term trend
so as to forecast the future or perform some other
form of analysis. But what makes a TS different
from say a regular regression problem? There are
two reasons:
Time dependent: The basic assumption of a linear

regression model is that the observations are
independent, which does not hold in this case.
The value of an attribute at an instant might
depend on the value at the time before.

Seasonality trends: Along with an increasing or
decreasing trend, most TS have some form of
seasonality trends, i.e. variations specific to a
particular time frame. For example, if you see
the sales of a woolen jacket over time, you will
invariably find higher sales in winter.

Solution to such a problem of time series data is
autoregressive method. In an autoregressive model,
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we forecast the variable of interest using a linear
combination of past values of the variable. The term
autoregressive indicates that it is a regression of the
variable against itself. Thus an autoregressive model
of order P can be written as

yt = c+ φ1yt1 + φ2yt2 + . . .+ φpytp + et (2)

where c is a constant value and et is white noise.
This is like a multiple regression but with lagged
values of yt as predictors. We refer to this as an
AR(P) model. Autoregressive models are remark-
ably flexible at handling a wide range of different
time series patterns.
Sklearn [18] is an open source machine learn-

ing library for the Python. Unfortunately, at this
moment, it does not have a complete set of tools for
time series analysis. In this project we mainly used
pandas [19] and statsmodels [20]. Pandas
is a python library written for data manipulation
and analysis. In particular, it offers data structures
and operations for manipulating numerical tables
and time series. Pandas introduces two new data
structures to Python Series and DataFrame, both
of which are built on top of NumPy [21]. Pandas
also has dedicated libraries for handling time series
objects, particularly the datetime64[ns] class
which stores time information and allows us to
perform some operations really fast.

The key library is statsmodels, which is
a Python library that allows users to explore
data, estimate statistical models, and perform
statistical tests. An extensive list of descriptive
statistics, statistical tests, plotting functions, and
result statistics are available for different types of
data and each estimator. This module provides a
comprehensive autoregressive integrated moving
average (ARIMA) model for time series analysis.
We also used matplotlib.pylab [22] for
making graphs.

B. Statistical stationarity
A stationary time series is one whose statistical

properties such as mean, variance, autocorrelation,
etc., are all constant over time. Most statistical
forecasting methods are based on the assumption
that the time series can be rendered approximately
stationary (e.g.,”stationarized”) through the use of

mathematical transformations. Stationarizing a time
series through differencing (where needed) is an
important part of the process of fitting an ARIMA
model.

Dickey Fuller Test of Stationarity This is one
of the statistical tests for checking stationarity. Here
the null hypothesis is that the TS is non-stationary.
The test results comprise of a Test Statistic and some
Critical Values for difference confidence levels. If
the Test Statistic is less than the Critical Value, we
can reject the null hypothesis and say that the series
is stationary.

ARMA Model ARMA models are commonly
used in time series modeling. In ARMA model,
AR stands for auto-regression and MA stands for
moving average. And ARMA model is built not
to be applied on non-stationary time series so it is
important to always have stationary data for ARMA
model.The primary difference between an AR and
MA model is based on the correlation between
time series objects at different time points. The
correlation between x(t) and x(t-n) for n > order
of MA is always zero. This directly flows from the
fact that covariance between x(t) and x(t − n) is
zero for MA models. The correlation of x(t) and
x(t−n) gradually declines with n becoming larger
in the AR model.

ARIMA Model ARIMA is a generalization of
ARMA where we have integrated (I) part.

Cross-validation for time series Cross-
validation is primarily a way of measuring the
predictive performance of a statistical model. One
way to measure the predictive ability of a model is
to test it on a set of data not used in estimation.
Data miners call this a ”test set” and the data used
for estimation is the ”training set”. However, there
is often not enough data to allow some of it to be
kept back for testing. A more sophisticated version
of training/test sets is leave-one-out cross-validation
(LOOCV).One of Variations on cross-validation is
k-fold cross-validation (where the original sample
is randomly partitioned into k subsamples and
one is left out in each iteration). When the data
are not independent, cross-validation becomes
more difficult as leaving out an observation does
not remove all the associated information due
to the correlations with other observations. A
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cross-validation method would works as follows
[24] :

1) Fit the model to the data y1, . . . ,yt and let ŷt+1

denote the forecast of the next observation.
Then compute the error (e∗t+1 = yt+1 − ŷt+1)
for the forecast observation.

2) Repeat step 1 for t = m, . . . , n1 where m is
the minimum number of observations needed
for fitting the model.

3) Compute the MSE from (e∗m+1, . . . , e
∗
n).

Time-series (or other intrinsically ordered data)
can be problematic for cross-validation. If some
pattern emerges in year 3 and stays for years 4-
6, then your model can pick up on it, even though
it wasn’t part of years 1 & 2.

V. ANALYSES AND RESULTS

For the analysis we take samples from our data
collection. The first sample that we looked at is
the monthly mean temperature at the Shawnigan
Lake station from January 1991 to December 2000.
We use the python library pandas to extract and
label the data (using the months). The dataset that
we have is a times series, with one temperature
data for each month. Naturally, we do not have
many data points in our dataset. Our preliminary
study had shown the difficulty of using simple
linear regression with polynomial features to built a
model; namely, on determining the degree of the
polynomials, and the related problem of overfit-
ting/underfitting.

We then studied data mining methods that are
suited for time series 1. This lead us to the ARIMA
which was described above. The python library
statsmodels.tsa (tsa stands for time series
analysis) has ARIMA class that we use for our
computations. To use ARIMA we need to check the
stationarity and invertibility of our dataset. The AR
requires that the dataset is stationer, while the MA
requires that the dataset is within the invertibility
boundary.

Our first step in the analysis is to visualize the
dataset in order to get a preliminary understanding

1We are indebted to Aarshay Jain [23] for giving us insight on how
to do time series analysis using python.

of its properties. This is shown in Fig. 4 (the blue
line). We have also computed the rolling average
(red line) and the rolling standard deviation (gray
line). These, at any instant of time, are calculated for
the previous twelve months; hence the first twelve
months are undefined.

Fig. 4: Monthly mean temperature at Shawnigan
Lake from 1991 to 2000, with rolling average and
standard deviation.

We see a periodicity, of period twelve months,
which is as expected for weather data. However,
there is also year to year variation, which although
is not relatively large is significant. This is exactly
the problem that we need to deal with in building
our model.

Visual presentation is not reliable for checking
stationarity. To check the stationarity of the dataset
we employ the Dickey-Fuller test, which is a sta-
tistical measure on the correlation among values
at different times. The statsmodels library also
provides a function to do this test. For this raw data,
the result is shown in Table I.

TABLE I: The Dickey-Fuller test result for the raw
dataset.

Test Statistic -2.466812
p-value 0.123760
Critical Value (5%) -2.889217
Critical Value (1%) -3.493602
Critical Value (10%) -2.581533

The test statistic for this dataset is less negative
than the critical values, even at 10% (which corre-
sponds to the 90% confidence level). Alternatively,
we can also look at the p-value, and for this one it
is greater than 0.1. Therefore, this raw dataset does
not satisfy the stationarity requirement.
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Taking a log on the data can alleviate the station-
arity problem as it penalize the high values. Indeed
this is what we got with the Dickey-Fuller test, as
shown in Table II.

TABLE II: The Dickey-Fuller test result for the log
dataset.

Test Statistic -2.651400
p-value 0.082832
Critical Value (5%) -2.889217
Critical Value (1%) -3.493602
Critical Value (10%) -2.581533

In fact, the log dataset stationarity is acceptable at
the 10% level, so we can use this dataset for some
ARIMA models, but let us go a bit further. There are
many ways to stationarize a dataset, which can be
categorized as detrending, differencing, or seasonal
decomposition. Here we use a differencing method,
in which we take differences of the log of a data
point and the previous one. We will refer this as
Log-Diff from here on.

The Dickey-Fuller test result for our Log-Diff
data set is shown in Table III.

TABLE III: The Dickey-Fuller test result for the
Log-Diff dataset.

Test Statistic -7.976118e+00
p-value 2.699565e-12
Critical Value (5%) -2.888697e+00
Critical Value (1%) -3.492401e+00
Critical Value (10%) -2.581255e+00

We can see that now the p-value is tiny, which
means that the dataset is stationer. Thus, we can
then proceeds to the modeling using ARIMA. First,
we need to determine the values of the ARIMA
parameters (p, d, q) that we should use. One method
is by using the Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF). We
computed ACF and PACF for this dataset, and the
result is shown in Fig. 4.

The ACF graph is gradually decreasing, and this
suggests (roughly) that we do not need MA, so
q = 0. However, we will discuss more on this later.
The PACF graph is decaying fast (although with
some chaotic behaviour later on), and crossing the
threshold at around 1 or 2. This suggests that the

Fig. 5: The Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) of the Log-
Diff dataset for the Shawnigan Lake 1991-2000 data
(Fig. 4).

value of p is either 1 or 2. It turns out (when we
tried both) that p = 1 yields a (slightly) better fit.
So, we choose p = 1. Since the differencing that
we do is first order, we take d = 1 (but we can
also take a look at the log dataset instead, and set
d = 0). Thus, we take (p, d, q) = (1, 1, 0), and we
proceed with fitting the ARIMA model with this set
of parameters. The result is shown in Fig. 6.

Fig. 6: ARIMA model/fit on the Shawnigan Lake
dataset for (p, d, q) = (1, 1, 0) (top), and the fit in
temperature (bottom) . Note: the fit at the top is
shifted one time step to the right.

Also, we got a model that is shrank from the orig-
inal data. When shown in the original temperature
scale, the model yields lower numbers compared to
the original data. Turns out, the difference can be
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alleviated by a multiplication (adjustment) factor.
Multiplying by 1.4 gives Fig. 7.

Fig. 7: ARIMA(1,1,0) fit in temperature as in
(Fig. 6) with adjustment factor of 1.4.

The prediction, on the other hand, is quite good.
The in-sample prediction, for the year 1994, is
shown in Fig. 8. Although not a perfect match, the
prediction (red line) is tagging along the original
data. For out-sample prediction, we note that the
model can only predict one or two months into
the future; afterward the prediction becomes flat,
hence meaningless. But, perhaps, this is the nature
of weather prediction in general, that it is impossible
to predict far into the future (unless we have an
oracle and then we would be rich).

Fig. 8: In-sample prediction of ARIMA(1,1,0) for
the monthly mean temperature at Shawnigan Lake
in 1994 (red), compared with the real data.

Now, going back to Fig. 7, notice, however, that
even with adjustment the fit is still not perfect. The
ARIMA plot (green) is a bit tilted, lower in the past
and higher in the future. Also, this adjustment factor
is difficult to explain. We would have to dig up the
ARIMA modelling mechanism in detail.

Yet another way to determine the optimum
ARIMA parameters is by using the AIC (Akaike
Information Criteria) and BIC (Bayesian Informa-
tion Criteria), which are some kinds of statistical

measures using likelihood. We should choose pa-
rameters that give us minimum AIC and BIC.

We computed the AIC and BIC on our log
dataset, for the range of 0 ≤ p ≤ 5, 0 ≤ d ≤ 2 and
0 ≤ q ≤ 3. We cannot compute the AIC and BIC
for some sets of the parameters because the dataset
is not invertible for those. Table IV is a partial list of
the results. We include only those that are essential
for illustration and for our discussion here.

TABLE IV: The AIC and BIC values for some
ARIMA (p, d, q) parameters for the Shawnigan
Lake 1991-2000 (Log) dataset.

p d q AIC BIC
0 0 0 -44.74 -39.17
0 0 1 -151.76 -143.40
0 1 0 -171.68 -166.12
0 1 1 -204.49 -196.16
1 0 0 -179.70 -171.34
1 0 1 -216.81 -205.66
1 1 0 -218.46 -210.13
2 0 1 -320.48 -306.54
2 1 0 -216.51 -205.40
3 0 1 -324.28 -307.55
3 1 0 -224.88 -210.98
3 2 0 -191.50 -177.65
4 0 1 -325.40 -305.89
4 0 2 -356.37 -334.07
4 0 3 -353.51 -328.42

Fig. 9: ARIMA model/fit on the Shawnigan Lake
dataset for (p, d, q) = (4, 0, 2) (top), and the fit in
temperature (bottom) .

We can see that (p, d, q) = (1, 1, 0) is actually
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not the minimum. The set of the parameters that
minimizes AIC and BIC turns out to be (p, d, q) =
(4, 0, 2). Thus, we tried ARIMA model with these
parameters on the log dataset (without the diff as
d = 0). The result is shown in Fig. 9. We can
see that this model gives a better fit with lower
RMSE. Moreover, we do not need any adjustment
parameter.

Note, however, that with (p, d, q) = (4, 0, 2)
we got a warning from python about convergence.
We need to understand this before we could be
confidence with our result. Unfortunately, due to the
time constraint of the project we have not been able
to look into this in more detail.

Similarly, for the other stations we searched the
optimum ARIMA (p, d, q) parameters by scanning
AIC and BIC values. We then use those parameters
to build the model. The results are plotted as in
Fig. 10. The North Pender Island station is not as re-
liable as the other stations. There are many missing
data, and we do not have long enough continuous
data segment. For this reason, we decided to drop
analysing data from this station.

The next question that we looked into, is whether
more data (i.e. longer period of time) in the dataset
would help. To explore this problem, we sample the
Shawnigan Lake data from 1951 to 2000. We found
that, from stationarity point of view, more data does
help. Table V is the Dickey-Fuller test result for the
raw data. We can see that the p-value is already
small, hence the time series is stationer. Compare
this to Table I above.

TABLE V: The Dickey-Fuller test result for Shawni-
gan Lake 1951-2000 raw data.

Test Statistic -4.914344
p-value 0.000033
Critical Value (5%) -2.866493
Critical Value (1%) -3.441578
Critical Value (10%) -2.569408

The fitting is also a bit better. With (p, d, q) =
(3, 0, 2) which is slightly different from the one
we used for the shorter time series above, we get
RMSE = 2.5, as compared to 2.8 above. However,
one might argue that the improvement is not much.
The model is plotted in Fig. 11. We notice that the

Fig. 10: ARIMA model/fit for (a) Victoria Highland
1991-1999 using ARIMA(2,0,3), (b) Saanichton
1991-2000 using ARIMA(5,0,2), (c) Victoria Inter-
national Airport 1991-2000 using ARIMA(2,0,2),
and University of Victoria 1993-2002 using
ARIMA(3,0,3).

outlier maximum and minimum points are still not
caught by the model.

We choose to first analyze the mean temperature
because it intuitively should be easier to handle
than the extreme temperature. Now that we have
a working program, it should work in the same
way with extreme temperature. If given more time,
we can expand our research on the other weather
attributes as well.
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Fig. 11: ARIMA model/fit for Shawnigan Lake from
1951 to 2000 using ARIMA(3,0,2).

We do not include cross validation here due to
the time and space restriction of the project.

VI. CONCLUSION

In conclusion, we have implemented a time
series analysis tool to forecast local temperature
using Python libraries. The result shows that the
statsmodels ARIMA model works quite well.
The key in using ARIMA is how to determine the
best parameters. We found that visual interpretation
(using ACF/PACF graphs) is not reliable. Statistical
criterias such as AIC and BIC should be used
instead.

We have learned a lot on time series analysis
in this project; a topic which was not covered in
the class. Nonetheless, it is a valuable subject. As
computer scientists, we might continue studying this
subject on our own.

The time series models such as ARIMA allow
for the inclusion of information from the past ob-
servations of a series, but not for the inclusion of
other information that may be relevant. In the future,
we plan to extend ARIMA models to allow other
information to be included in the models. The idea is
to combine regression models and ARIMA models
to give regression with ARIMA errors, which is
known as dynamic regression models.
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