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ABSTRACT– Our project is focused on 

creating a machine learning algorithm for 

the automated generation of ‘clickbait’ 

article titles. We scraped 3618 Buzzfeed 

super titles and used them to train our 

algorithm. When human test subjects were 

shown one of the generated titles alongside 

a real title pulled from our dataset and 

asked which they though was 

computationally generated, there was a 

median error of 29%. This result shows the 

algorithm’s ability to impersonate a human 

author which hints at its level of intelligent 

text generation. 

 

PROBLEM DESCRIPTION AND 

MOTIVATION – Our project focuses on 

two main goals: to create a dataset of 

scraped Buzzfeed articles and to use this 

dataset to algorithmically generate de-novo 

article titles.  The motivation for this 

investigation revolves primarily around two 

ideas. First, there are monetary incentives 

for the existence of such a tool. If we 

succeed in teaching a computer to generate 

titles, then there is no need to pay human 

authors to do the same work. Furthermore, 

titles can be generated at a much faster pace 

and, thus, ad revenue can be increased. 

Second, we observed a distinct lack of 

previous work having been done in this 

particular area. This remains an unsolved 

problem. The few instances of previous 

work will be discussed in the Related Work 

section. 

 

Given that there is a lack of previous work 

done on this topic, this project has several  
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interesting possible outcomes. The ability to 

generate meaningful text using 

computational tools enables human authors 

to focus on other, more creative endeavors. 

This is especially salient in the arena of 

news articles and article titles where the 

writing is often formulaic and tedious.  

Similarly, other monotonous forms of  

writing, such as government policy, legal 

documents, song writing and movie script 

writing could also be automated. Indeed, any 

literature that follows a somewhat rigid 

structure could be automated. 

 

Looking even further, text generation has 

applications in areas such as artificial 

intelligence, game programming and 

computational interpretation of real world 

stimuli (context awareness of images etc…). 

In essence, good text generation tools are 

needed if a computer is to express itself 

fully. 

 

RELATED WORK – As aforementioned, 

there is a lack of examples of previous work 

in this area. We were able to find three main 

instances of people trying to accomplish 

similar tasks.  

 

First, we found the blog of Lars, a 

programmer from Norway 
1
. In 2015, Lars 

attempted to use a neural network to 

generate click-bait articles with a modicum 

of success. To do this, he trained on ~2 

million articles. This was the only instance 

of click-bait title generation in particular that 

we could find.  

 

Clickbait Generator – Final Report 
(10 Ways to Get an A+) 

 

 

 

*This report was written as part of the requirements for  SENG 474 / CSC 578D: Data Mining, 
                   offered at the University of Victoria, taught by Dr. Alona Fyshe.
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Second, a company called Narrative Science 

tried to computationally generate full news 

and sports articles
2
.  Unfortunately, 

Narrative science is a private company who 

does not open source their software. Thus, 

we could not study in any real depth their 

approach to the problem of computational 

text generation. However, their slogan offers 

a glimpse into what it is they do: “Our 

technology generates data-driven narratives 

that explain, amplify and illuminate 

significant events and outcomes. Our 

mission is to enhance human productivity 

and make people smarter.”
2
 

 

Lastly, we found a publication in the MIT 

Technology Review about a Finnish team 

who tried to generate rap lyrics
3
. Titled 

‘DeepBeat’, this study aimed to generate 

grammatically correct poetry in the style of 

rap music
3
. Their results are quite interesting 

with the algorithm being able to generate 

rhyming lines that have very interesting 

language. However, its ability to remain 

coherent throughout a stanza left something 

to be desired. To train the algorithm, 10000 

songs were used for learning. 

 

OUR APPROACH – The first step was to 

scrape Buzzfeed to obtain a MongoDB 

database of articles and article titles. 

Specifically, we scraped the list of Buzzfeed 

superlist articles. These are articles in the 

“listicle” format which consists of a title and 

several subtitles. Together with photos, this 

comprises a typical Buzzfeed superlist 

article. After the first iteration of scraping, 

we obtained ~3900 titles and ~39000 

subtitles. 

 

Before the scraped data could be put into the 

database, it had to be sanitized somewhat. 

Namely, there were non-english posts that 

had to be removed. To get rid of these, we 

used the LangDetect python library. This 

brought the final size of the database to 3618 

titles. 

 

Step two was tokenizing and tagging our 

titles. This, as with most of the textual 

classification, was accomplished using the 

Natural Language Tool Kit (NLTK) 

available as a python library.  When tagging, 

we used the built in Part of Speech (POS) 

tagger within the NLTK. After this process 

was run, each of the words in our database 

was paired with its POS. This was used in 

the upcoming automated text generation 

step. This process took longer than we 

thought, with each run taking ~4 hours to 

complete.  

 

Step three was to build a model for title 

generation. Originally, we attempted to 

create a custom Context Free Grammar 

(CFG) to describe all of our possible titles. 

We quickly realized that this approach 

would not be fruitful as the titles being 

generated were grammatically unsound. 

This is because, when using a CFG, one 

must handle edge cases using explicit 

grammar rules.  In our case, we would have 

had to implement too many of these custom 

rules to make this a feasible approach. 

Discarding our CFG, we opted for a n-gram, 

specifically bigram, model. Here, we 

generated all the bigrams (pairs of words 

that occur together within a given title) in 

our dataset and, using these, generated a 

frequency distribution (FD).  The FD for a 

given word consists of the number of 

occurrences where each other word follows 

the given word. Using such a structure, one 

can obtain a list of which words are the most 

popular successors to any given word. This 

was then used to generate a new title. 

 

The fourth and final step was to generate a 

new title. To begin the process, we chose a 

‘seed’ word and a length cutoff. The ‘seed’ 

word was chosen by randomly selecting a 



start word from an article in our dataset. The 

usual output of this was a number but not 

always. The length cutoff was chosen by 

randomly selecting a number of words 

ranging from the length of the shortest title 

in the dataset to the longest. Using the 

previously discussed FD, we would then 

choose a successor to the seed word by 

randomly selecting one of the top three 

words in the FD of that seed word. At this 

point, our title would have two words in it. 

This process was then repeated until the 

length cutoff was achieved.  

 

Once we had a generated title, we checked 

its viability against a smattering of heuristics 

meant to assess readability. These included: 

 Checking that the title did not end on 

a stop word from the NLTK’s Stop 

Word Corpus (I, me, my, then, with 

etc…) 

 Checking that the title did not end on 

a forbidden POS (preposition, 

number, etc…) 

 Checking that the title was not a 

complete match to a real title in the 

dataset (making sure it was in fact a 

new title) 

 Making sure the title had the correct 

length 

 Making sure the POS flow of the 

title was viable (match cutoff) 

 

The last bullet above requires further 

explaining. When ensuring correct title flow, 

we take the sequence of POS tags of the 

generated title and see if there are any titles 

in the dataset that are a sufficient match to 

this ordering.  For our algorithm we put the 

similarity requirement (match cutoff) at 

80%. This ensures that, although the words 

and concepts in the generated title may be 

novel, the textual flow and grammatical 

ordering of the words is somewhat proven to 

work (already existing in the dataset). This 

greatly improves the readability of the 

generated text. 

 

If the generated title, in any way, failed the 

above heuristics, it was thrown away and a 

completely new title was generated. This 

process runs in a loop structure. Thus, once 

a title is returned by the function, we can be 

confidant that it satisfies each and every 

heuristic.  

 

One last problem we encountered was that 

the sentences were not logically making 

sense. Although a title would fulfill all 

heuristics, the concepts within the title were 

often dissimilar and not complimentary. We 

found that the source of the problem was the 

number of dataset titles we were training on. 

In the original version of our generate() 

function, we evaluated the match cutoff 

using all 3618 dataset titles. This was giving 

the algorithm too much freedom with which 

to match potentially illogical titles to. To 

circumnavigate this, we began generating 

titles based on a randomly selected slice of 

100 dataset titles. This constrained the 

match cutoff heuristic so that it was forced 

to throw away many more titles, thus, 

narrowing the possibly accepted titles. Since 

the slices were randomly chosen and were 

re-chosen every call to the generate() 

function, the determinability of our titles 

was not harmed. In fact we saw an increase 

in possible contextual breadth. Also, the 

time it took the algorithm to run was 

shortened and the overall readability of the 

titles was greatly improved. 

 

RESULTS – Overall, the project was a 

success. We were able to create novel titles 

which obeyed the rules of English grammar 

and which made contextual sense. 

Furthermore, the dataset we created was 

instrumental in this success.  

 



Despite our overall success, there are some 

recurrent problems in the algorithm. Despite 

our best efforts (outlined above), the 

generated title still sometimes ends on words 

which have no logical reason to be at the 

end of a sentence. This can be for several 

reasons. First, the NLTK POS tagger is not 

perfect. Mislabeling does occur and this can 

cause a word to fill a POS niche that is not 

concurrent with its normal place in everyday 

speech. An example of this is that many 

words, if capitalized, will get labeled as 

proper nouns, even if they are clearly not. 

To get around this, we down-cased all our 

words prior to tagging them, however, 

mislabeling like this still occurs to a small 

degree. Second, ending on illogical words 

can stem from the fact that not every 

member of a POS can be used to end a 

sentence. This is impossible to get around 

without taking into account every single 

word in the English language which we do 

not have the resources to do. 

 

Another problem, despite our match cutoff 

heuristic, is that the sentences still 

sometimes do not make contextual sense. 

Due to the FD approach we take when 

generating titles, this is always a risk. It is 

unlikely that this could be remedied using 

the approach we are using. Other 

algorithmic structures, such as neural 

networks, perform better in generating 

coherent context but due to our lack of 

knowledge on that subject we were unable 

to explore such options. 

 

Punctuation and plurality were other areas of 

consternation. Since our algorithm had a 

difficult time with generating punctuation in 

the correct places, we decided to simply 

delete most punctuation from the tokenized 

dataset titles. We elected to keep 

apostrophes and hyphens because these 

marks often link two ‘halves’ of the same 

word and these two halves must be present 

in order for that particular vocabulary to 

make grammatical sense. Plurality was also 

an issue in that sometimes words such as ‘is’ 

or ‘are’ that extend expectation upon 

succeeding words are sometimes out of 

place. After all, a title such as ‘The dogs is 

gray and black’ is not a logical sentence. 

 

The last major area of literary incorrectness 

was in the ‘flow’ of the title and its relation 

to the title length. The ‘flow’ of the title is 

comprised of the vocabulary and how it 

relates to a certain set of ideas. In a correct 

sentence, the physical length of the sentence 

allows for the complete expression of the 

concepts within that sentence. However, in 

our titles, this balance is sometimes violated. 

For example we often had titles such as, ’14 

things you shouldn’t wear when thinking 

about’. Here, although the title is (so far) 

grammatically correct, the length does not 

match the flow. If there were two or three 

more words allowed to be in the sentence, it 

may have worked out. This is a product of 

how we choose our sentence length. We opt 

to do it randomly (as outlined above) which 

increases variability between sentences but 

gives rise to problems with flow.  

 

Overall, the problems discussed above were 

eventualities brought about by the lack of 

objective validation tools available to us. 

Since there has been a lack of past work on 

de-novo textual generation, so too has there 

been a lack of development of tools to 

analyze textual generation. Thus, we had 

very little outside tools to assess if our 

sentences were ‘correct’ or not. If we had 

such tools, they could have easily been 

incorporated during the selection process in 

our generate() function. Many of the 

nonsensical titles we got may have been 

stripped out if this were the case. 

Unfortunately, we had to develop all the 

readability tools ourselves. This would be a 

ripe area for future research seeing as how if 



good tools were available, automated text 

generation would be much easier to perfect.  

 

*** 

 

Originally, we had scraped entire Buzzfeed 

superlist articles. However, we ended up not 

using the subtitles, opting instead to only 

train based on the super-titles. Thus, the 

subtitle features in our dataset went unused, 

although, in future iterations of the 

algorithm, these could be taken into account 

in order to generate subtitles or more 

verbose text.  

 

 

 

 

 

 

 

Noticing we had a lack of objective 

assessment of our algorithm, we sought to 

obtain some. This was done by first, creating 

a sample webpage which, upon activation, 

generated and printed one of our titles along 

with a title that was pulled directly from the 

dataset.  A sample group of 10 friends, 

family members and co-workers was then 

asked to choose between the two titles and 

guess which one we had generated. Each test 

subject underwent 10 trials. The correctness 

or their responses was then recorded and 

analyzed. A graph of the data is shown 

below: 

 

 

 

 

 

 

 

Figure 1: Human-Based Validation Responses to Generated vs. Real Article 

Titles 



As is visible in the graph above, the average 

percent error of the test subjects was 29%. 

Note that this is the parameter we were 

trying to optimize. Also note that this 

percent error could not meaningfully exceed 

50% since 50% would denote a random 

choice. We are happy with this outcome as it 

shows that the algorithm has a solid ability 

to fool humans. This alludes to the level of 

grammatical correctness and high level 

conceptual cohesion that the generated titles 

portray. During this data collection, there 

was a tendency for test subjects to catch on 

to the specific ‘flavor’ of title that the 

algorithm generated. Thus, the test subject’s 

accuracy began to increase the more titles 

they were shown. 

 

CONCLUSION AND FUTURE WORK –  

 

This project has shown us the difficulty of 

generating readable and grammatically 

correct text. At the outset we greatly 

overestimated the amount of tools available 

to us to aid in the completion of our goals. 

In accordance with this, it is much clearer to 

us now the amount of edge cases that must 

be taken into account when generating text. 

Originally, we thought that simply designing 

the generation method was going to take the 

most time. However, now, it is clear that the 

bulk of the time and effort lies within 

making sure a generated sentence is correct. 

This is also an area that should be explored 

more. Validation tools are an important part 

of any endeavor as they allow you to know 

what is going wrong. It was often hard for us 

to realize what was causing a certain 

problem. This made it similarly difficult to 

fix the issue. 

 

If we had more time to design our algorithm, 

there are some additional features that we 

would want to implement. 

 

A bigger dataset would enable the algorithm 

to choose from a bigger pool of possible 

words. Also of note is that this additional 

data would not have to come from clickbait 

article titles. The inclusion of a plaintext 

corpus such as the Gutenberg Corpus would 

enable the algorithm to generate titles with 

more vernacular freedom, the results of 

which would be very interesting to see. 

 

Although we decided not to use neural 

networks, this approach has worked in the 

past. Of particular significance is Google’s 

research into picture captioning. (We 

couldn’t find anything on this before starting 

our project; hence it did not influence our 

problem description.) At any rate, it would 

be an interesting method to try as it is said 

that neural nets are quite good at 

maintaining contextual flow through a given 

piece of generated text. 

 

The last idea that we wanted to explore 

involved differing n-gram structures. 

Bigrams seemed to work quite well, 

although trying to use trigrams, higher order 

n-grams, or a combination of all three might 

prove useful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TASK BREAKDOWN -  

 

Andrew: scraping Buzzfeed data, 

MongoDB database creation, code 

implementation of context free grammar 

generator, implementation of n-gram/FD 

model, evaluation of generated text using 

computational methods, refactoring code, 

website demo, report writing 

 

Dahv: code implementation of context free 

grammar generator, implementation of n-

gram/FD model, evaluation of generated text 

using computational methods, refactoring 

code, website demo,  report writing 

 

Chris: code implementation of context free 

grammar generator, implementation of n-

gram/FD model, evaluation of generated text 

using computational methods, refactoring 

code, website demo, report writing 

 

Trison: code implementation of context free 

grammar generator, implementation of n-

gram/FD model, evaluation of generated text 

using computational methods, refactoring 

code, website demo, report writing 

 

*** 

 

Our division of responsibility was designed 

such that everyone had a hand in all aspects 

of the development process. For creating our 

algorithm, we would all meet, gather around 

one computer, and discuss ideas. Thus, no 

one person was responsible for doing 

something that the others were not also 

involved in. This is why there is so much 

repetition in the duties held by each member 

above. We feel this strengthened our 

development process.  
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