
Dahv Reinhart

V00735279

dahvreinhart@hotmail.com

Andrew Fowler

V00715255

addy.mcfowfow@gmail.com

ABSTRACT– Our project is focused on

creating a machine learning algorithm for

the automated generation of ‘clickbait’

article titles. We scraped 3618 Buzzfeed

super titles and used them to train our

algorithm. When human test subjects were

shown one of the generated titles alongside

a real title pulled from our dataset and

asked which they though was

computationally generated, there was a

median error of 29%. This result shows the

algorithm’s ability to impersonate a human

author which hints at its level of intelligent

text generation.

PROBLEM DESCRIPTION AND

MOTIVATION – Our project focuses on

two main goals: to create a dataset of

scraped Buzzfeed articles and to use this

dataset to algorithmically generate de-novo

article titles. The motivation for this

investigation revolves primarily around two

ideas. First, there are monetary incentives

for the existence of such a tool. If we

succeed in teaching a computer to generate

titles, then there is no need to pay human

authors to do the same work. Furthermore,

titles can be generated at a much faster pace

and, thus, ad revenue can be increased.

Second, we observed a distinct lack of

previous work having been done in this

particular area. This remains an unsolved

problem. The few instances of previous

work will be discussed in the Related Work

section.

Given that there is a lack of previous work

done on this topic, this project has several

Chris Carr

V00782360

ccarreng@gmail.com

Trison Nguyen

V00178742

trison.ng@gmail.com

interesting possible outcomes. The ability to

generate meaningful text using

computational tools enables human authors

to focus on other, more creative endeavors.

This is especially salient in the arena of

news articles and article titles where the

writing is often formulaic and tedious.

Similarly, other monotonous forms of

writing, such as government policy, legal

documents, song writing and movie script

writing could also be automated. Indeed, any

literature that follows a somewhat rigid

structure could be automated.

Looking even further, text generation has

applications in areas such as artificial

intelligence, game programming and

computational interpretation of real world

stimuli (context awareness of images etc…).

In essence, good text generation tools are

needed if a computer is to express itself

fully.

RELATED WORK – As aforementioned,

there is a lack of examples of previous work

in this area. We were able to find three main

instances of people trying to accomplish

similar tasks.

First, we found the blog of Lars, a

programmer from Norway
1
. In 2015, Lars

attempted to use a neural network to

generate click-bait articles with a modicum

of success. To do this, he trained on ~2

million articles. This was the only instance

of click-bait title generation in particular that

we could find.

Clickbait Generator – Final Report
(10 Ways to Get an A+)

*This report was written as part of the requirements for SENG 474 / CSC 578D: Data Mining,
 offered at the University of Victoria, taught by Dr. Alona Fyshe.

mailto:dahvreinhart@hotmail.com
mailto:addy.mcfowfow@gmail.com
mailto:ccarreng@gmail.com
mailto:trison.ng@gmail.com

Second, a company called Narrative Science

tried to computationally generate full news

and sports articles
2
. Unfortunately,

Narrative science is a private company who

does not open source their software. Thus,

we could not study in any real depth their

approach to the problem of computational

text generation. However, their slogan offers

a glimpse into what it is they do: “Our

technology generates data-driven narratives

that explain, amplify and illuminate

significant events and outcomes. Our

mission is to enhance human productivity

and make people smarter.”
2

Lastly, we found a publication in the MIT

Technology Review about a Finnish team

who tried to generate rap lyrics
3
. Titled

‘DeepBeat’, this study aimed to generate

grammatically correct poetry in the style of

rap music
3
. Their results are quite interesting

with the algorithm being able to generate

rhyming lines that have very interesting

language. However, its ability to remain

coherent throughout a stanza left something

to be desired. To train the algorithm, 10000

songs were used for learning.

OUR APPROACH – The first step was to

scrape Buzzfeed to obtain a MongoDB

database of articles and article titles.

Specifically, we scraped the list of Buzzfeed

superlist articles. These are articles in the

“listicle” format which consists of a title and

several subtitles. Together with photos, this

comprises a typical Buzzfeed superlist

article. After the first iteration of scraping,

we obtained ~3900 titles and ~39000

subtitles.

Before the scraped data could be put into the

database, it had to be sanitized somewhat.

Namely, there were non-english posts that

had to be removed. To get rid of these, we

used the LangDetect python library. This

brought the final size of the database to 3618

titles.

Step two was tokenizing and tagging our

titles. This, as with most of the textual

classification, was accomplished using the

Natural Language Tool Kit (NLTK)

available as a python library. When tagging,

we used the built in Part of Speech (POS)

tagger within the NLTK. After this process

was run, each of the words in our database

was paired with its POS. This was used in

the upcoming automated text generation

step. This process took longer than we

thought, with each run taking ~4 hours to

complete.

Step three was to build a model for title

generation. Originally, we attempted to

create a custom Context Free Grammar

(CFG) to describe all of our possible titles.

We quickly realized that this approach

would not be fruitful as the titles being

generated were grammatically unsound.

This is because, when using a CFG, one

must handle edge cases using explicit

grammar rules. In our case, we would have

had to implement too many of these custom

rules to make this a feasible approach.

Discarding our CFG, we opted for a n-gram,

specifically bigram, model. Here, we

generated all the bigrams (pairs of words

that occur together within a given title) in

our dataset and, using these, generated a

frequency distribution (FD). The FD for a

given word consists of the number of

occurrences where each other word follows

the given word. Using such a structure, one

can obtain a list of which words are the most

popular successors to any given word. This

was then used to generate a new title.

The fourth and final step was to generate a

new title. To begin the process, we chose a

‘seed’ word and a length cutoff. The ‘seed’

word was chosen by randomly selecting a

start word from an article in our dataset. The

usual output of this was a number but not

always. The length cutoff was chosen by

randomly selecting a number of words

ranging from the length of the shortest title

in the dataset to the longest. Using the

previously discussed FD, we would then

choose a successor to the seed word by

randomly selecting one of the top three

words in the FD of that seed word. At this

point, our title would have two words in it.

This process was then repeated until the

length cutoff was achieved.

Once we had a generated title, we checked

its viability against a smattering of heuristics

meant to assess readability. These included:

 Checking that the title did not end on

a stop word from the NLTK’s Stop

Word Corpus (I, me, my, then, with

etc…)

 Checking that the title did not end on

a forbidden POS (preposition,

number, etc…)

 Checking that the title was not a

complete match to a real title in the

dataset (making sure it was in fact a

new title)

 Making sure the title had the correct

length

 Making sure the POS flow of the

title was viable (match cutoff)

The last bullet above requires further

explaining. When ensuring correct title flow,

we take the sequence of POS tags of the

generated title and see if there are any titles

in the dataset that are a sufficient match to

this ordering. For our algorithm we put the

similarity requirement (match cutoff) at

80%. This ensures that, although the words

and concepts in the generated title may be

novel, the textual flow and grammatical

ordering of the words is somewhat proven to

work (already existing in the dataset). This

greatly improves the readability of the

generated text.

If the generated title, in any way, failed the

above heuristics, it was thrown away and a

completely new title was generated. This

process runs in a loop structure. Thus, once

a title is returned by the function, we can be

confidant that it satisfies each and every

heuristic.

One last problem we encountered was that

the sentences were not logically making

sense. Although a title would fulfill all

heuristics, the concepts within the title were

often dissimilar and not complimentary. We

found that the source of the problem was the

number of dataset titles we were training on.

In the original version of our generate()

function, we evaluated the match cutoff

using all 3618 dataset titles. This was giving

the algorithm too much freedom with which

to match potentially illogical titles to. To

circumnavigate this, we began generating

titles based on a randomly selected slice of

100 dataset titles. This constrained the

match cutoff heuristic so that it was forced

to throw away many more titles, thus,

narrowing the possibly accepted titles. Since

the slices were randomly chosen and were

re-chosen every call to the generate()

function, the determinability of our titles

was not harmed. In fact we saw an increase

in possible contextual breadth. Also, the

time it took the algorithm to run was

shortened and the overall readability of the

titles was greatly improved.

RESULTS – Overall, the project was a

success. We were able to create novel titles

which obeyed the rules of English grammar

and which made contextual sense.

Furthermore, the dataset we created was

instrumental in this success.

Despite our overall success, there are some

recurrent problems in the algorithm. Despite

our best efforts (outlined above), the

generated title still sometimes ends on words

which have no logical reason to be at the

end of a sentence. This can be for several

reasons. First, the NLTK POS tagger is not

perfect. Mislabeling does occur and this can

cause a word to fill a POS niche that is not

concurrent with its normal place in everyday

speech. An example of this is that many

words, if capitalized, will get labeled as

proper nouns, even if they are clearly not.

To get around this, we down-cased all our

words prior to tagging them, however,

mislabeling like this still occurs to a small

degree. Second, ending on illogical words

can stem from the fact that not every

member of a POS can be used to end a

sentence. This is impossible to get around

without taking into account every single

word in the English language which we do

not have the resources to do.

Another problem, despite our match cutoff

heuristic, is that the sentences still

sometimes do not make contextual sense.

Due to the FD approach we take when

generating titles, this is always a risk. It is

unlikely that this could be remedied using

the approach we are using. Other

algorithmic structures, such as neural

networks, perform better in generating

coherent context but due to our lack of

knowledge on that subject we were unable

to explore such options.

Punctuation and plurality were other areas of

consternation. Since our algorithm had a

difficult time with generating punctuation in

the correct places, we decided to simply

delete most punctuation from the tokenized

dataset titles. We elected to keep

apostrophes and hyphens because these

marks often link two ‘halves’ of the same

word and these two halves must be present

in order for that particular vocabulary to

make grammatical sense. Plurality was also

an issue in that sometimes words such as ‘is’

or ‘are’ that extend expectation upon

succeeding words are sometimes out of

place. After all, a title such as ‘The dogs is

gray and black’ is not a logical sentence.

The last major area of literary incorrectness

was in the ‘flow’ of the title and its relation

to the title length. The ‘flow’ of the title is

comprised of the vocabulary and how it

relates to a certain set of ideas. In a correct

sentence, the physical length of the sentence

allows for the complete expression of the

concepts within that sentence. However, in

our titles, this balance is sometimes violated.

For example we often had titles such as, ’14

things you shouldn’t wear when thinking

about’. Here, although the title is (so far)

grammatically correct, the length does not

match the flow. If there were two or three

more words allowed to be in the sentence, it

may have worked out. This is a product of

how we choose our sentence length. We opt

to do it randomly (as outlined above) which

increases variability between sentences but

gives rise to problems with flow.

Overall, the problems discussed above were

eventualities brought about by the lack of

objective validation tools available to us.

Since there has been a lack of past work on

de-novo textual generation, so too has there

been a lack of development of tools to

analyze textual generation. Thus, we had

very little outside tools to assess if our

sentences were ‘correct’ or not. If we had

such tools, they could have easily been

incorporated during the selection process in

our generate() function. Many of the

nonsensical titles we got may have been

stripped out if this were the case.

Unfortunately, we had to develop all the

readability tools ourselves. This would be a

ripe area for future research seeing as how if

good tools were available, automated text

generation would be much easier to perfect.

Originally, we had scraped entire Buzzfeed

superlist articles. However, we ended up not

using the subtitles, opting instead to only

train based on the super-titles. Thus, the

subtitle features in our dataset went unused,

although, in future iterations of the

algorithm, these could be taken into account

in order to generate subtitles or more

verbose text.

Noticing we had a lack of objective

assessment of our algorithm, we sought to

obtain some. This was done by first, creating

a sample webpage which, upon activation,

generated and printed one of our titles along

with a title that was pulled directly from the

dataset. A sample group of 10 friends,

family members and co-workers was then

asked to choose between the two titles and

guess which one we had generated. Each test

subject underwent 10 trials. The correctness

or their responses was then recorded and

analyzed. A graph of the data is shown

below:

Figure 1: Human-Based Validation Responses to Generated vs. Real Article

Titles

As is visible in the graph above, the average

percent error of the test subjects was 29%.

Note that this is the parameter we were

trying to optimize. Also note that this

percent error could not meaningfully exceed

50% since 50% would denote a random

choice. We are happy with this outcome as it

shows that the algorithm has a solid ability

to fool humans. This alludes to the level of

grammatical correctness and high level

conceptual cohesion that the generated titles

portray. During this data collection, there

was a tendency for test subjects to catch on

to the specific ‘flavor’ of title that the

algorithm generated. Thus, the test subject’s

accuracy began to increase the more titles

they were shown.

CONCLUSION AND FUTURE WORK –

This project has shown us the difficulty of

generating readable and grammatically

correct text. At the outset we greatly

overestimated the amount of tools available

to us to aid in the completion of our goals.

In accordance with this, it is much clearer to

us now the amount of edge cases that must

be taken into account when generating text.

Originally, we thought that simply designing

the generation method was going to take the

most time. However, now, it is clear that the

bulk of the time and effort lies within

making sure a generated sentence is correct.

This is also an area that should be explored

more. Validation tools are an important part

of any endeavor as they allow you to know

what is going wrong. It was often hard for us

to realize what was causing a certain

problem. This made it similarly difficult to

fix the issue.

If we had more time to design our algorithm,

there are some additional features that we

would want to implement.

A bigger dataset would enable the algorithm

to choose from a bigger pool of possible

words. Also of note is that this additional

data would not have to come from clickbait

article titles. The inclusion of a plaintext

corpus such as the Gutenberg Corpus would

enable the algorithm to generate titles with

more vernacular freedom, the results of

which would be very interesting to see.

Although we decided not to use neural

networks, this approach has worked in the

past. Of particular significance is Google’s

research into picture captioning. (We

couldn’t find anything on this before starting

our project; hence it did not influence our

problem description.) At any rate, it would

be an interesting method to try as it is said

that neural nets are quite good at

maintaining contextual flow through a given

piece of generated text.

The last idea that we wanted to explore

involved differing n-gram structures.

Bigrams seemed to work quite well,

although trying to use trigrams, higher order

n-grams, or a combination of all three might

prove useful.

TASK BREAKDOWN -

Andrew: scraping Buzzfeed data,

MongoDB database creation, code

implementation of context free grammar

generator, implementation of n-gram/FD

model, evaluation of generated text using

computational methods, refactoring code,

website demo, report writing

Dahv: code implementation of context free

grammar generator, implementation of n-

gram/FD model, evaluation of generated text

using computational methods, refactoring

code, website demo, report writing

Chris: code implementation of context free

grammar generator, implementation of n-

gram/FD model, evaluation of generated text

using computational methods, refactoring

code, website demo, report writing

Trison: code implementation of context free

grammar generator, implementation of n-

gram/FD model, evaluation of generated text

using computational methods, refactoring

code, website demo, report writing

Our division of responsibility was designed

such that everyone had a hand in all aspects

of the development process. For creating our

algorithm, we would all meet, gather around

one computer, and discuss ideas. Thus, no

one person was responsible for doing

something that the others were not also

involved in. This is why there is so much

repetition in the duties held by each member

above. We feel this strengthened our

development process.

BIBLIOGRAPHY –

1. Lars Eidnes. 2015. Auto-Generating

ClickBait with Recurrant Neural

Networks. Available from:

http://larseidnes.com/2015/10/13/aut

o-generating-clickbait-with-

recurrent-neural-networks/

2. Narrative Science. 2012. Formal

article title unavailable. Available

from:

https://www.narrativescience.com/

3. Eric Malmi. 2015. Machine-

Learning Algorithm Mines Rap

Lyrics, Then Writes Its Own. MIT

Technology Review. Available from:

https://www.technologyreview.com/s

/537716/machine-learning-

algorithm-mines-rap-lyrics-then-

writes-its-own/

http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
https://www.narrativescience.com/
https://www.technologyreview.com/s/537716/machine-learning-algorithm-mines-rap-lyrics-then-writes-its-own/
https://www.technologyreview.com/s/537716/machine-learning-algorithm-mines-rap-lyrics-then-writes-its-own/
https://www.technologyreview.com/s/537716/machine-learning-algorithm-mines-rap-lyrics-then-writes-its-own/
https://www.technologyreview.com/s/537716/machine-learning-algorithm-mines-rap-lyrics-then-writes-its-own/

