
Alberta Collegiate
Programming Contest

October 1st, 2005 – 11:00 to 16:00

ACPC 2005
Problem A: Dropping Water Balloons
Problem B: Throwing Cards Away I
Problem C: Land Surveyor’s Job
Problem D: Blackbeard the Pirate
Problem E: Flea Circus
Problem F: Ants, Aphids and a Ladybug
Problem G: Throwing Cards Away II
Problem H: Words Adjustment
Problem I: Can of Beans

Main Site:
http://ugweb.cs.ualberta.ca/~acpc/

Live Contest Page:
http://pages.cpsc.ucalgary.ca/acmicpc/acpclive/

Prizes and funding for this contest is provided by the
 Alberta Informatics Circle of Research Excellence.

2005 Alberta Collegiate Programming Contest 1

Problem A: Dropping Water Balloons
It's frosh week, and this year your friends have decided that they
would initiate the new computer science students by dropping water
balloons on them. They've filled up a large crate of identical water bal-
loons, ready for the event. But as fate would have it, the balloons
turned out to be rather tough, and can be dropped from a height of sev-
eral stories without bursting!
So your friends have sought you out for help. They plan to drop the
balloons from a tall building on campus, but would like to spend as
little effort as possible hauling their balloons up the stairs, so they
would like to know the lowest floor from which they can drop the bal-
loons so that they do burst.
You know the building has n floors, and your friends have given you k identical balloons which you
may use (and break) during your trials to find their answer. Since you are also lazy, you would like
to determine the minimum number of trials you must conduct in order to determine with absolute
certainty the lowest floor from which you can drop a balloon so that it bursts (or in the worst case,
that the balloons will not burst even when dropped from the top floor). A trial consists of dropping a
balloon from a certain floor. If a balloon fails to burst for a trial, you can fetch it and use it again for
another trial.
The input consists of a number of test cases, one case per line. The data for one test case consists of
two numbers k and n, 1≤k≤100 and a positive n that fits into a 64 bit integer (yes, it's a very tall
building). The last case has k=0 and should not be processed.
For each case of the input, print one line of output giving the minimum number of trials needed to
solve the problem. If more than 63 trials are needed then print More than 63 trials
needed. instead of the number.

Sample input
2 100
10 786599
4 786599
60 1844674407370955161
63 9223372036854775807
0 0

Output for sample input
14
21
More than 63 trials needed.
61
63

Piotr Rudnicki

2005 Alberta Collegiate Programming Contest 2

Problem B: Throwing Cards Away I

Given is an ordered deck of n cards numbered 1 to n with card
1 at the top and card n at the bottom. The following operation is
performed as long as there are at least two cards in the deck:

Throw away the top card and move the card that is
now on the top of the deck to the bottom of the deck.

Your task is to find the sequence of discarded cards and the last,
remaining card.
Each line of input (except the last) contains a number n ≤ 50.
The last line contains 0 and this line should not be processed.
For each number from the input produce two lines of output.
The first line presents the sequence of discarded cards, the sec-
ond line reports the last remaining card. See the sample for the
expected format.

Sample input
7
19
10
6
0

Output for sample input
Discarded cards: 1, 3, 5, 7, 4, 2
Remaining card: 6
Discarded cards: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 4, 8, 12, 16, 2, 10, 18, 14
Remaining card: 6
Discarded cards: 1, 3, 5, 7, 9, 2, 6, 10, 8
Remaining card: 4
Discarded cards: 1, 3, 5, 2, 6
Remaining card: 4

Folklore, adapted by Piotr Rudnicki

2005 Alberta Collegiate Programming Contest 3

Problem C: Land Surveyor's Job
The job of a land surveyor has been substantially changed with the
arrival of GPS and satellite imaging. However, the traditional tools
of a land surveyor still are a theodolite, for measuring angles, and a
measuring tape for measuring distances. Although in real land sur-
veying we are concerned with three dimensions, for this problem we
will restrict ourselves to a plane.
The backbone of any land survey is a traverse consisting of a se-
quence of n stations numbered 1,2, ..., n. Stations are chosen by
some criteria that do not concern us here. For each station i two
measurements are taken:
 • the length of the forward shot, i.e. the distance from station i to station i+1, in case

of station n this is the distance to station 1,
 • the angle between the back shot and the fore shot measured clockwise; this is the

angle from the segment (i,i-1) to the segment (i,i+1) measured clockwise. In case of
station 1, this angle is entered as 0 since the n-th station is not known in advance.
For station n this angle is the angle between the segments (n,n-1) and (n,1). For all
stations other than station 1 this angle is non-zero.

For a given traverse, when locations of stations i and i+1 are available
we can compute the location of station i+2. In consequence, given a
traverse and actual locations of stations 1 and 2 we can calculate the
locations of all other stations. However, because of the inaccuracy of
theodolites and measuring tapes, the results of our calculations are
approximate. Therefore, after computing locations of stations n-1 and
n we can compute the location of station 1 and compare it to the as-
sumed actual location. We say that a traverse is acceptable if the dis-
tance between the actual location of station 1 and its location as calcu-
lated from the traverse is less than 0.1% of the total length of the trav-
erse.
The input consists of a number of cases. The data of each case appears
on a number of input lines, the first of which contains a non-negative
integer n giving the number of the stations in a traverse, 3 ≤ n ≤ 1000.
The following n lines contain the distance and angle measured for each station in increasing order of
their numbers. Except for station 1, all angles are specified in degrees, minutes and seconds in the
format shown in the sample input. Note that the angle for station 1 is shown as 0.
Input is terminated by a line with n equal to 0.
For each case of input, output one line stating whether the traverse of this case was Acceptable
or Not acceptable.

2005 Alberta Collegiate Programming Contest 4

Sample input
4
1 0
1 90d00'00"
0.999 90d00'00"
1 90d00'00"
4
10 0
10 270d00'00"
9.95 270d00'00"
10 270d00'00"
0

Output for sample input
Acceptable
Not acceptable

H. James Hoover, Piotr Rudnicki

2005 Alberta Collegiate Programming Contest 5

Problem D: Blackbeard the Pirate
Blackbeard the Pirate has stashed up to 10 treasures on a tropical island, and now he wishes to re-
trieve them. He is being chased by several authorities however, and so would like to retrieve his
treasure as quickly as possible. Blackbeard is no fool; when he hid the treasures, he carefully drew a
map of the island which contains the position of each treasure and positions of all obstacles and hos-
tile natives that are present on the island.
Given a map of an island and the point where he comes ashore, help Blackbeard determine the least
amount of time necessary for him to collect his treasure.
Input consists of a number of test cases. The first line of each test case contains two integers h and w
giving the height and width of the map, respectively, in miles. For simplicity, each map is divided
into grid points that are a mile square. The next h lines contain w characters, each describing one
square on the map. Each point on the map is one of the following:

 • @ The landing point where Blackbeard comes ashore.
 • ~ Water. Blackbeard cannot travel over water while on the island.
 • # A large group of palm trees; these are too dense for Blackbeard to

travel through.
 • . Sand, which he can easily travel over.
 • * A camp of angry natives. Blackbeard must stay at least one square

away or risk being captured by them which will terminate his quest.
Note, this is one square in any of eight directions, including diagonals.

 • ! A treasure. Blackbeard is a stubborn pirate and will not leave unless
he collects all of them.

Blackbeard can only travel in the four cardinal directions; that is, he cannot travel diagonally.
Blackbeard travels at a nice slow pace of one mile (or square) per hour, but he sure can dig fast, be-
cause digging up a treasure incurs no time penalty whatsoever.
The maximum dimension of the map is 50 by 50. The input ends with a case where both h and w are
0. This case should not be processed.
For each test case, simply print the least number of hours Blackbeard needs to collect all his treasure
and return to the landing point. If it is impossible to reach all the treasures, print out -1.

Sample Input
7 7
~~~~~~~
~#!###~
~...#.~
~~....~
~~~.@~~
.~~~~~~
...~~~.
10 10

2005 Alberta Collegiate Programming Contest 6


~~~~~~~~~~
~~!!!###~~
~##...###~
~#....*##~
~#!..**~~~
~~....~~~~
~~~....~~~
~~..~..@~~
~#!.~~~~~~
~~~~~~~~~~
0 0

Output for sample input
10
32

Broderick Arneson

2005 Alberta Collegiate Programming Contest 7



Problem E: Flea Circus
Sometimes, if you are searching for ladybugs, all you find are 
tree fleas. An old tree near the anthill serves as a home of two 
fleas who sometimes steal honeydew from aphids living on the 
tree. On the old tree, branches connect the forks (spaces where 
two or more branches meet) and leaves where the fleas can rest. 
Fleas are so small that the ants cannot see them and thus fleas 
are safe. Because of their size, the fleas satiate their appetite 
pretty quickly and then have a lot of energy to jump. They de-
cide to jump toward each other complying with the following 
rules:
 • There is exactly one way for the fleas to go from one 

leaf or fork in the tree to another leaf or fork without 
ever turning back. Each of the fleas starts jumping along 
such a route to the current location of the other flea.

 • The fleas can only jump from one fork or leaf of the tree 
to another fork or leaf if they are connected by a branch.

 • If the two fleas land at the same time in the same place 
then they decide to sit and chat for quite a while.

 • If the two fleas land at the same time in two neighboring places on the tree (forks or leaves) 
then they keep jumping forever.

The input file contains multiple test cases. Each test case starts with an integer n, the number of 
leaves and forks in the tree, 1≤n≤5000. We assume that leaves and forks are numbered from 1 to n. 
Each of the following n-1 lines describe tree branches; each branch is described by two integers a 
and b, meaning that the branch connects the fork or leaf labeled a and the fork or leaf labeled b. In 
the (n+1)-st line there is one integer l, 1≤l≤500, saying how many starting positions of the fleas you 
are to consider for the tree. Each of the following l lines contains two positive integers (not greater 
than n). These numbers define the tree places in which the fleas start their jumping. Input is termi-
nated by the case with n equal to 0.
Your program should output l lines for each test case. The i-th line for a case should look like
The fleas meet at p.
where p identifies the place where the fleas meet, or
The fleas jump forever between p and r.
where p and r are two neighboring places on the tree with p ≤ r

Sample input
8
1 2
1 3
2 4

2005 Alberta Collegiate Programming Contest 8



2 5
3 6 
3 7
5 8
5
5 1 
7 4
1 8
4 7
7 8
0

Output for sample input
The fleas meet at 2.
The fleas meet at 1.
The fleas jump forever between 2 and 5.
The fleas meet at 1.
The fleas jump forever between 1 and 2.

Piotr Rudnicki

2005 Alberta Collegiate Programming Contest 9



Problem F: Ants, Aphids and a Ladybug
If you are searching for ladybugs, the best place to look is 
near ants. The ants suck sweet honeydew from aphids and 
therefore, where there are ants, there must be aphids. Where 
there are aphids, there are more likely to be ladybugs. Ants 
defend aphids against ladybugs --- for which aphids are a 
much sought for delicacy.
An old tree near the anthill serves as an aphid farm. On the 
old tree, branches connect the forks (spaces where two or 
more branches meet) and leaves where the aphids feed. There 
are k ant-guards (numbered from 1 to k) working on the farm. 
A ladybug hunting aphids lands on the places where aphids 
feed, i.e. on leaves or forks. When a ladybug lands on the 
tree, the guard-ants set off in her direction in order to chase 
her away. They comply with the following rules: 
 • There is exactly one way for an ant to go from one fork or leaf in the tree to another fork or 

leaf without ever turning back. Upon the ladybug's landing, all of the ant-guards simultane-
ously start going along such a route to the place where the ladybug landed.

 • If there is an ant in the place of the ladybug's landing, the ladybug takes off immediately.
 • If at any time an ant rushing towards the ladybug spots another ant anywhere ahead on its 

route, the ant stops and remains in its current position, yielding to the ant that is farther 
ahead.

 • If two or more ants try to reach the same fork of the tree at the same time, only one does so -- 
the one with the smallest ID number. The other ants trying to reach the same fork remain in 
their places.

 • An ant which gets to the place of ladybug's landing chases it away and remains in this place.

The ladybug is stubborn and lands on the tree again, and then the ant-guards set off again trying to 
chase the intruder away. In order to simplify the problem we assume that for each ant it takes a unit 
of time to walk between two neighboring forks or a fork and a leaf (2 leaves cannot be neighbors).
The input file contains multiple test cases. Each test case starts with an integer n, the number of 
leaves and forks in the tree, 1<=n<=5000. We assume that leaves and forks are numbered from 1 to 
n. Each of the following n-1 lines describes tree branches; each branch is described by two integers 
a and b, meaning that the branch connects forks or leaves labeled a and b. In the (n+1)-st line there 
is one integer k, 1<=k<=1000 and k<=n; k is the number of ants that guard the tree. There is one 
positive integer (not greater than n) in each of the following k lines. The integer written in the 
(n+1+i)-th line is the start position of the  i-th ant. There is no fork or leaf in the tree occupied by 
more than one ant. The line n+k+2 contains one integer l, 1<=l<=500, l saying how many times a 
ladybug lands on the tree. Each of the following l lines contains one positive integer (not greater 
than n). These numbers define a sequence of tree places in which the ladybug lands. Input is termi-
nated by the case with n equal to 0.

2005 Alberta Collegiate Programming Contest 10



Your program should output k lines for each test case. In the i-th line for a case there should be two 
integers separated by a single space --- the final position of the i-th ant (number of a fork or a leaf) 
and the number of times the i-th ant chased the ladybug away.

Sample input
8
1 2
1 3
2 4
2 5
3 6 
3 7
5 8
3 
1
2
6
5 
2
4
5
8
7
0

Output for sample input
5 2
2 2
7 1

Krzysztof Lorys, adapted by P. Rudnicki

2005 Alberta Collegiate Programming Contest 11



Problem G: Throwing Cards Away II
Given is an ordered deck of n cards numbered 1 to n 
with card 1 at the top and card n at the bottom. The 
following operation is performed as long as there are at 
least two cards in the deck:

Throw away the top card and move the 
card that is now on the top of the deck to 
the bottom of the deck.

Your task is to find the last, remaining card.
Each line of input (except the last) contains a positive number n ≤ 500000. The last line contains 0 
and this line should not be processed. For each number from input produce one line of output giving 
the last remaining card.
Input will not contain more than 500000 lines.

Sample input
7
19
10
6
0

Output for sample input
6
6
4
4

Folklore, adapted by Piotr Rudnicki

2005 Alberta Collegiate Programming Contest 12



Problem H: Words Adjustment
In this problem, you are given two words x and y, and a finite sequence of words 
{ w1, w2, ... wk }. If it is possible to obtain the same word by appending to x and 
y some words from the given sequence of words, we say that x and y can be ad-
justed. We would like to check whether the words x and y can be adjusted using 
the words from the given sequence.
Given a word w, we can perform an operation w*wi, 1<=i<=k, consisting in ap-
pending the word wi to the word w at the right. We define this as an append op-
eration. The task is to find the smallest number of append operations that are 
necessary to adjust two given words using the words from a given sequence.
For example, words abba and ab can be adjusted by the words from the sequence { baaabad, aa, 
badccaa, cc }. It suffices to append to abba two words: aa and badccaa, and to ab three 
words: baaabad, cc and aa. In both cases we obtain: abbaaabadccaa.
The first line of input contains the number of cases that follow. The first two lines of data for each 
case contain the words x and y, respectively. The third line contains the integer k, 0<=k<=1000, 
which is the length of the sequence of words that can be used for word adjustment. The following k 
lines contain one word each. All words use only lowercase letters and contain between 1 and 1000 
characters.
For each case output one nonnegative integer giving the minimal number of operations that are 
needed to adjust two given words, or output -1 if it is impossible.

Sample input
2
abba
ab
4
baaabad
aa
badccaa
cc
a
ab
4
bb
ab
ba
aa

Output for sample input
5
-1

Wojciech Rytter, adapted by P. Rudnicki

2005 Alberta Collegiate Programming Contest 13



Problem I: Can of Beans
Starving, Jimmy went to the cupboard to see what he could make 
for lunch. Unfortunately for him, the only food item inside was an 
old can of beans. Under normal circumstances, he wouldn't think 
about it, but the old, beaten up appearance of the can worried him. 
"How long has this been in here?", he wondered out loud.
Turning the can over, he saw three cryptic numbers stamped into 
the bottom: 09 06 03
Quickly realizing it was the best before date, he heaved a sigh of 
relief: the can was still good for another 4 years or so...if the first 
number was a year. Suddenly realizing the "09" could be the day 
and not the year, he wasn't so sure anymore. In fact, if the last 
number (the "03") was the year, then the can could have gone bad 
2 years before! (This Jimmy lives in the year 2005).
You have to help out Jimmy! Given the century that Jimmy lives 
in and the three numbers on the bottom of the can, print out the 
earliest valid date the can could have gone bad.
The first line will contain an integer t which is the number of test cases to follow. Each test case con-
sists of four integers, c, x, y, z on a line by themselves. c+1 is the century that Jimmy lives in, and is 
in the range 0 <= c < 230. x, y, z are the possible day, month, and year in the century but in an un-
known order. All are in the range 0 <= x, y, z < 100.
Recall we want the earliest VALID date, so don't forget about leap years! Here are a few facts you 
can use about leap years:

• the year 0 is a leap year;
• every fourth year after 0 is a leap year, but
• every hundred year is NOT a leap year, but
• every four hundred year IS a leap year.

This isn't exactly true in our world, but Jimmy lives on a different planet in a different galaxy. 
Strangely enough, they use a calendar system astonishingly like our own, speak English, and also 
eat beans packaged in cans!
Jimmy's calendar, like ours, has the months January through December, numbered 01 through 12. 
Each of Jimmy's months contain the same number of days as our months on the standard, Gregorian 
calendar. The days within months are numbered from 01 to 31, and no month has more than 31 days. 
On a leap year, Jimmy's Februaries also have 29 days instead of 28.
The output will contain the integers in the order "YY MM DD" of the earliest possible date at which 
the can of beans could have gone bad. If there is no valid date, print "-1". Each test case should be 
written on a line by itself.

2005 Alberta Collegiate Programming Contest 14



Sample Input
2
20 9 6 3
13244324 99 99 99

Sample Output
03 06 09
-1

Broderick Arneson

2005 Alberta Collegiate Programming Contest 15


