
1

LOF: Identifying Density-Based Local Outliers

Markus M. Breunig†, Hans-Peter Kriegel†, Raymond T. Ng‡, Jörg Sander†

† Institute for Computer Science Department of Computer Science
University of Munich University of British Columbia

Oettingenstr. 67, D-80538 Munich, Germany Vancouver, BC V6T 1Z4 Canada

{ breunig | kriegel | sander }
@dbs.informatik.uni-muenchen.de rng@cs.ubc.ca

ABSTRACT
For many KDD applications, such as detecting criminal activities in
E-commerce, finding the rare instances or the outliers, can be more
interesting than finding the common patterns. Existing work in out-
lier detection regards being an outlier as a binary property. In this
paper, we contend that for many scenarios, it is more meaningful to
assign to each object a degree of being an outlier. This degree is
called the local outlier factor (LOF) of an object. It is local in that
the degree depends on how isolated the object is with respect to the
surrounding neighborhood. We give a detailed formal analysis
showing that LOF enjoys many desirable properties. Using real-
world datasets, we demonstrate that LOF can be used to find outliers
which appear to be meaningful, but can otherwise not be identified
with existing approaches. Finally, a careful performance evaluation
of our algorithm confirms we show that our approach of finding lo-
cal outliers can be practical.

Keywords
Outlier Detection, Database Mining.

1. INTRODUCTION
Larger and larger amounts of data are collected and stored in data-
bases, increasing the need for efficient and effective analysis meth-
ods to make use of the information contained implicitly in the data.
Knowledge discovery in databases (KDD) has been defined as the
non-trivial process of identifying valid, novel, potentially useful,
and ultimately understandable knowledge from the data [9].

Most studies in KDD focus on finding patterns applicable to a con-
siderable portion of objects in a dataset. However, for applications
such as detecting criminal activities of various kinds (e.g. in elec-
tronic commerce), rare events, deviations from the majority, or ex-
ceptional cases may be more interesting and useful than the com-

mon cases. Finding such exceptions and outliers, however, has not
yet received as much attention in the KDD community as some oth-
er topics have, e.g. association rules.

Recently, a few studies have been conducted on outlier detection
for large datasets (e.g. [18], [1], [13], [14]). While a more detailed
discussion on these studies will be given in section 2, it suffices to
point out here that most of these studies consider being an outlier as
a binary property. That is, either an object in the dataset is an outlier
or not. For many applications, the situation is more complex. And
it becomes more meaningful to assign to each object a degree of be-
ing an outlier.

Also related to outlier detection is an extensive body of work on
clustering algorithms. From the viewpoint of a clustering algo-
rithm, outliers are objects not located in clusters of a dataset, usual-
ly called noise. The set of noise produced by a clustering algorithm,
however, is highly dependent on the particular algorithm and on its
clustering parameters. Only a few approaches are directly con-
cerned with outlier detection. These algorithms, in general, consid-
er outliers from a more global perspective, which also has some ma-
jor drawbacks. These drawbacks are discussed in detail in section 2
and section 3. Furthermore, based on these clustering algorithms,
the property of being an outlier is again binary.

In this paper, we introduce a new method for finding outliers in a
multidimensional dataset. We introduce a local outlier (LOF) for
each object in the dataset, indicating its degree of outlier-ness. This
is, to the best of our knowledge, the first concept of an outlier which
also quantifies how outlying an object is. The outlier factor is local
in the sense that only a restricted neighborhood of each object is
taken into account. Our approach is loosely related to density-based
clustering. However, we do not require any explicit or implicit no-
tion of clusters for our method. Specifically, our technical contribu-
tions in this paper are as follow:

• After introducing the concept of LOF, we analyze the formal
properties of LOF. We show that for most objects in a cluster
their LOF are approximately equal to 1. For any other object,
we give a lower and upper bound on its LOF. These bounds
highlight the local nature of LOF. Furthermore, we analyze
when these bounds are tight. We identify classes of objects for
which the bounds are tight. Finally, for those objects for which
the bounds are not tight, we provide sharper bounds.

• The LOF of an object is based on the single parameter of
MinPts, which is the number of nearest neighbors used in de-

2

fining the local neighborhood of the object. We study how this
parameter affects the LOF value, and we present practical
guidelines for choosing the MinPts values for finding local out-
liers.

• Last but not least, we present experimental results which show
both the capability and the performance of finding local outli-
ers. We conclude that finding local outliers using LOF is mean-
ingful and efficient.

The paper is organized as follows. In section 2, we discuss related
work on outlier detection and their drawbacks. In section 3 we dis-
cuss in detail the motivation of our notion of outliers, especially, the
advantage of a local instead of a global view on outliers. In section
4 we introduce LOF and define other auxiliary notions. In section 5
we analyze thoroughly the formal properties of LOF. Since LOF re-
quires the single parameter MinPts, in section 6 we analyze the im-
pact of the parameter, and discuss ways to choose MinPts values for
LOF computation. In section 7 we perform an extensive experi-
mental evaluation.

2. RELATED WORK
Most of the previous studies on outlier detection were conducted in
the field of statistics. These studies can be broadly classified into
two categories. The first category is distribution-based, where a
standard distribution (e.g. Normal, Poisson, etc.) is used to fit the
data best. Outliers are defined based on the probability distribution.
Over one hundred tests of this category, called discordancy tests,
have been developed for different scenarios (see [5]). A key draw-
back of this category of tests is that most of the distributions used
are univariate. There are some tests that are multivariate (e.g. mul-
tivariate normal outliers). But for many KDD applications, the un-
derlying distribution is unknown. Fitting the data with standard dis-
tributions is costly, and may not produce satisfactory results.

The second category of outlier studies in statistics is depth-based.
Each data object is represented as a point in a k-d space, and is as-
signed a depth. With respect to outlier detection, outliers are more
likely to be data objects with smaller depths. There are many defi-
nitions of depth that have been proposed (e.g. [20], [16]). In theory,
depth-based approaches could work for large values of k. However,
in practice, while there exist efficient algorithms for k = 2 or 3
([16], [18], [12]), depth-based approaches become inefficient for
large datasets for k ≥ 4. This is because depth-based approaches
rely on the computation of k-d convex hulls which has a lower

bound complexity of Ω(nk/2) for n objects.

Recently, Knorr and Ng proposed the notion of distance-based out-
liers [13], [14]. Their notion generalizes many notions from the dis-
tribution-based approaches, and enjoys better computational com-
plexity than the depth-based approaches for larger values of k. Later
in section 3, we will discuss in detail how their notion is different
from the notion of local outliers proposed in this paper. In [17] the
notion of distance based outliers is extended by using the distance
to the k-nearest neighbor to rank the outliers. A very efficient algo-
rithms to compute the top n outliers in this ranking is given, but
their notion of an outlier is still distance-based.

Given the importance of the area, fraud detection has received more
attention than the general area of outlier detection. Depending on
the specifics of the application domains, elaborate fraud models
and fraud detection algorithms have been developed (e.g. [8], [6]).

In contrast to fraud detection, the kinds of outlier detection work
discussed so far are more exploratory in nature. Outlier detection
may indeed lead to the construction of fraud models.

Finally, most clustering algorithms, especially those developed in
the context of KDD (e.g. CLARANS [15], DBSCAN [7], BIRCH
[23], STING [22], WaveCluster [19], DenClue [11], CLIQUE [3]),
are to some extent capable of handling exceptions. However, since
the main objective of a clustering algorithm is to find clusters, they
are developed to optimize clustering, and not to optimize outlier de-
tection. The exceptions (called “noise” in the context of clustering)
are typically just tolerated or ignored when producing the clustering
result. Even if the outliers are not ignored, the notions of outliers are
essentially binary, and there are no quantification as to how outly-
ing an object is. Our notion of local outliers share a few fundamen-
tal concepts with density-based clustering approaches. However,
our outlier detection method does not require any explicit or implic-
it notion of clusters.

3. PROBLEMS OF EXISTING
(NON-LOCAL) APPROACHES

As we have seen in section 2, most of the existing work in outlier
detection lies in the field of statistics. Intuitively, outliers can be de-
fined as given by Hawkins [10].

Definition 1: (Hawkins-Outlier)
An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism.

This notion is formalized by Knorr and Ng [13] in the following
definition of outliers. Throughout this paper, we use o, p, q to de-
note objects in a dataset. We use the notation d(p, q) to denote the
distance between objects p and q. For a set of objects, we use C
(sometimes with the intuition that C forms a cluster). To simplify
our notation, we use d(p, C) to denote the minimum distance be-
tween p and object q in C, i.e. d(p,C) = min{ d(p,q) | q ∈ C }.

Definition 2: (DB(pct, dmin)-Outlier)
An object p in a dataset D is a DB(pct, dmin)-outlier if at least
percentage pct of the objects in D lies greater than distance
dmin from p, i.e., the cardinality of the set {q ∈ D | d(p, q) ≤
dmin} is less than or equal to (100− pct)% of the size of D.

The above definition captures only certain kinds of outliers. Be-
cause the definition takes a global view of the dataset, these outliers
can be viewed as “global” outliers. However, for many interesting
real-world datasets which exhibit a more complex structure, there
is another kind of outliers. These can be objects that are outlying

C2

C1

o2

o1

Figure 1: 2-d dataset DS1

3

relative to their local neighborhoods, particularly with respect to
the densities of the neighborhoods. These outliers are regarded as
“local” outliers.

To illustrate, consider the example given in Figure 1. This is a sim-
ple 2-dimensional dataset containing 502 objects. There are 400 ob-
jects in the first cluster C1, 100 objects in the cluster C2, and two

additional objects o1 and o2. In this example, C2 forms a denser

cluster than C1. According to Hawkins' definition, both o1 and o2

can be called outliers, whereas objects in C1 and C2 should not be.

With our notion of a "local" outlier, we wish to label both o1 and o2

as outliers. In contrast, within the framework of distance-based out-
liers, only o1 is a reasonable DB(pct,dmin)-outlier in the following

sense. If for every object q in C1, the distance between q and its

nearest neighbor is greater than the distance between o2 and C2

(i.e., d(o2,C2)), we can in fact show that there is no appropriate val-

ue of pct and dmin such that o2 is a DB(pct,dmin)-outlier but the the

objects in C1 are not.

The reason is as follows. If the dmin value is less than the distance
d(o2,C2), then all 501 objects (pct = 100*501/502) are further away

from o2 than dmin. But the same condition holds also for every ob-

ject q in C1. Thus, in this case, o2 and all objects in C1 are DB(pct,

dmin)-outliers.

Otherwise, if the dmin value is greater than the distance d(o2, C2),

then it is easy to see that: o2 is a DB(pct,dmin)-outlier implies that

there are many objects q in C1 such that q is also a DB(pct,dmin)-

outlier. This is because the cardinality of the set
{p ∈ D | d(p,o2) ≤ dmin} is always bigger than the cardinality of

the set {p∈ D | d(p,q) ≤ dmin}. Thus, in this case, if o2 is a

DB(pct,dmin)-outlier, so are many objects q in C1. Worse still,

there are values of pct and dmin such that while o2 is not an outlier,

some q in C1 are.

4. FORMAL DEFINITION OF LOCAL
OUTLIERS

The above example shows that the global view taken by DB(pct,
dmin)-outliers is meaningful and adequate under certain conditions,
but not satisfactory for the general case when clusters of different
densities exist. In this section, we develop a formal definition of lo-
cal outliers, which avoids the shortcomings presented in the previ-
ous section. The key difference between our notion and existing no-
tions of outliers is that being outlying is not a binary property.
Instead, we assign to each object an outlier factor, which is the de-
gree the object is being outlying.

We begin with the notions of the k-distance of object p, and, corre-
spondingly, the k-distance neighborhood of p.

Definition 3: (k-distance of an object p)
For any positive integer k, the k-distance of object p, denoted as
k-distance(p), is defined as the distance d(p,o) between p and an
object o ∈ D such that:

(i) for at least k objects o’∈D \ { p} it holds that
d(p,o’) ≤ d(p,o), and
(ii) for at most k-1 objects o’∈D \ { p} it holds that
d(p,o’) < d(p,o).

Definition 4: (k-distance neighborhood of an object p)
Given the k-distance of p, the k-distance neighborhood of p
contains every object whose distance from p is not greater than
the k-distance, i.e. Nk-distance(p)(p) = { q ∈ D\{p} | d(p, q) ≤ k-

distance(p) }.
These objects q are called the k-nearest neighbors of p.

Whenever no confusion arises, we simplify our notation to use
Nk(p) as a shorthand for Nk-distance(p)(p). Note that in definition 3,

the k-distance(p) is well defined for any positive integer k, although
the object o may not be unique. In this case, the cardinality of Nk(p)

is greater than k. For example, suppose that there are: (i) 1 object
with distance 1 unit from p; (ii) 2 objects with distance 2 units from
p; and (iii) 3 objects with distance 3 units from p. Then 2-dis-
tance(p) is identical to 3-distance(p). And there are 3 objects of 4-
distance(p) from p. Thus, the cardinality of N4(p) can be greater

than 4, in this case 6.

Definition 5: (reachability distance of an object p w.r.t. ob-
ject o)

Let k be a natural number. The reachability distance of object
p with respect to object o is defined as

reach-distk(p, o) = max { k-distance(o), d(p, o) }.

Figure 2 illustrates the idea of reachability distance with k = 4. In-
tuitively, if object p is far away from o (e.g. p2 in the figure), then

the reachability distance between the two is simply their actual dis-
tance. However, if they are “sufficiently” close (e.g., p1 in the fig-

ure), the actual distance is replaced by the k-distance of o. The rea-
son is that in so doing, the statistical fluctuations of d(p,o) for all the
p's close to o can be significantly reduced. The strength of this
smoothing effect can be controlled by the parameter k. The higher
the value of k, the more similar the reachability distances for ob-
jects within the same neighborhood.

So far, we have defined k-distance(p) and reach-distk(p) for any

positive integer k. But for the purpose of defining outliers, we focus
on a specific instantiation of k which links us back to density-based
clustering. In a typical density-based clustering algorithm, such as
[7], [3], [22], or [11], there are two parameters that define the notion
of density: (i) a parameter MinPts specifying a minimum number of
objects; (ii) a parameter specifying a volume. These two parameters
determine a density threshold for the clustering algorithms to oper-
ate. That is, objects or regions are connected if their neighborhood
densities exceed the given density threshold. To detect density-

o

p1

p2

Figure 2: reach-dist(p1,o) and reach-dist(p2,o), for k=4

reach-distk(p1, o) = k-distance(o)

reach-distk(p2, o)

4

based outliers, however, it is necessary to compare the densities of
different sets of objects, which means that we have to determine the
density of sets of objects dynamically. Therefore, we keep MinPts
as the only parameter and use the values reach-distMinPts(p, o), for

o ∈ NMinPts(p), as a measure of the volume to determine the density

in the neighborhood of an object p.

Definition 6: (local reachability density of an object p)
The local reachability density of p is defined as

Intuitively, the local reachability density of an object p is the in-
verse of the average reachability distance based on the MinPts-
nearest neighbors of p. Note that the local density can be ∞ if all the
reachability distances in the summation are 0. This may occur for
an object p if there are at least MinPts objects, different from p, but
sharing the same spatial coordinates, i.e. if there are at least MinPts
duplicates of p in the dataset. For simplicity, we will not handle this
case explicitly but simply assume that there are no duplicates. (To
deal with duplicates, we can base our notion of neighborhood on a
k-distinct-distance, defined analogously to k-distance in definition
3, with the additional requirement that there be at least k objects
with different spatial coordinates.)

Definition 7: ((local) outlier factor of an object p)
The (local) outlier factor of p is defined as

The outlier factor of object p captures the degree to which we call
p an outlier. It is the average of the ratio of the local reachability
density of p and those of p’s MinPts-nearest neighbors. It is easy to
see that the lower p's local reachability density is, and the higher the
local reachability densities of p's MinPts-nearest neighbors are, the
higher is the LOF value of p. In the following section, the formal
properties of LOF are made precise. To simplify notation, we drop
the subscript MinPts from reach-dist, lrd and LOF, if no confusion
arises.

5. PROPERTIES OF LOCAL OUTLIERS
In this section, we conduct a detailed analysis on the properties of
LOF. The goal is to show that our definition of LOF captures the
spirit of local outliers, and enjoys many desirable properties. Spe-
cifically, we show that for most objects p in a cluster, the LOF of p
is approximately equal to 1. As for other objects, including those
outside of a cluster, we give a general theorem giving a lower and
upper bound on the LOF. Furthermore, we analyze the tightness of
our bounds. We show that the bounds are tight for important classes
of objects. However, for other classes of objects, the bounds may
not be as tight. For the latter, we give another theorem specifying
better bounds.

5.1 LOF for Objects Deep in a Cluster
In section 3, we motivate the notion of a local outlier using figure 1.
In particular, we hope to label o2 as outlying, but label all objects in

the cluster C1 as non-outlying. Below, we show that for most ob-

jects in C1 its LOF is approximately 1, indicating that they cannot

be labeled as outlying.

Lemma 1: Let C be a collection of objects. Let reach-dist-min de-
note the minimum reachability distance of objects in C, i.e., reach-
dist-min = min { reach-dist(p, q) | p, q ∈ C}. Similarly, let reach-
dist-max denote the maximum reachability distance of objects in C.
Let ε be defined as (reach-dist-max/reach-dist-min − 1).
Then for all objects p ∈ C, such that:

(i) all the MinPts-nearest neighbors q of p are in C, and
(ii) all the MinPts-nearest neighbors o of q are also in C,

it holds that 1/(1 + ε) ≤ LOF(p) ≤ (1 + ε).

Proof (Sketch): For all MinPts-nearest neighbors q of p, reach-
dist(p, q) ≥ reach-dist-min. Then the local reachability density
of p, as per definition 6, is ≤ 1/reach-dist-min. On the other
hand, reach-dist(p, q) ≤ reach-dist-max. Thus, the local reach-
ability density of p is ≥ 1/reach-dist-max.
Let q be a MinPts-nearest neighbor of p. By an argument iden-
tical to the one for p above, the local reachability density of q is
also between 1/reach-dist-max and 1/reach-dist-min.
Thus, by definition 7, we have reach-dist-min/reach-dist-max
≤ LOF(p) ≤ reach-dist-max/reach-dist-min. Hence, we estab-
lish 1/(1 + ε) ≤ LOF(p) ≤ (1 + ε). ■

The interpretation of lemma 1 is as follows. Intuitively, C corre-
sponds to a “cluster”. Let us consider the objects p that are “deep”
inside the cluster, which means that all the MinPts-nearest neigh-
bors q of p are in C, and that, in turn, all the MinPts-nearest neigh-
bors of q are also in C. For such deep objects p, the LOF of p is
bounded. If C is a “tight” cluster, the ε value in lemma 1 can be
quite small, thus forcing the LOF of p to be quite close to 1.

To return to the example in figure 1, we can apply lemma 1 to con-
clude that the LOFs of most objects in cluster C1 are close to 1.

5.2 A General Upper and Lower Bound on
LOF

Lemma 1 above shows a basic property of LOF, namely that for ob-
jects deep inside a cluster, their LOFs are close to 1, and should not
be labeled as a local outlier. A few immediate questions come to
mind. What about those objects that are near the periphery of the
cluster? And what about those objects that are outside the cluster,
such as o2 in figure 1? Can we get an upper and lower bound on the

LOF of these objects?

Theorem 1 below shows a general upper and lower bound on
LOF(p) for any object p. As such, theorem 1 generalizes lemma 1
along two dimensions. First, theorem 1 applies to any object p, and
is not restricted to objects deep inside a cluster. Second, even for
objects deep inside a cluster, the bound given by theorem 1 can be
tighter than the bound given by lemma 1, implying that the epsilon
defined in lemma 1 can be made closer to zero.. This is because in
lemma 1, the values of reach-dist-min and reach-dist-max are ob-
tained based on a larger set of reachability distances. In contrast, in
theorem 1, this minimum and maximum are based on just the
MinPts-nearest neighborhoods of the objects under consideration,

lrdMinPts p() 1

reach-distMinPts p o,()

o NMinPts p()∈
∑

NMinPts p()

 
 
 
 
 
 

⁄=

LOFMinPts p()

lrdMinPts o()

lrdMinPts p()

o NMinPts p()∈
∑

NMinPts p()
--=

5

giving rise to tighter bounds. In section 5.3, we will analyze in
greater details the tightness of the bounds given in theorem 1.

Before we present theorem 1, we define the following terms. For
any object p, let directmin(p) denote the minimum reachability dis-

tance between p and a MinPts-nearest neighbor of p, i.e.,
directmin(p) = min { reach-dist(p, q) | q ∈ NMinPts(p) }.

Similarly, let direct_max(p) denote the corresponding maximum, i.e.
directmax(p) = max { reach-dist(p, q) | q ∈ NMinPts(p) }.

Furthermore, to generalize these definitions to the MinPts-nearest
neighbor q of p, let indirectmin(p) denote the minimum reachability

distance between q and a MinPts-nearest neighbor of q, i.e.,
indirectmin(p) = min { reach-dist(q, o) | q ∈ NMinPts(p) and o

∈ NMinPts(q)}.

Similarly, let indirectmax(p) denote the corresponding maximum.

In the sequel, we refer to p’s MinPts-nearest neighborhood as p’s di-
rect neighborhood, and refer to q’s MinPts-nearest neighbors as p’s
indirect neighbors, whenever q is a MinPts-nearest neighbor of p.

Figure 3 gives a simple example to illustrate these definitions. In
this example, object p lies some distance away from a cluster of ob-
jects C. For ease of understanding, let MinPts = 3. The directmin(p)

value is marked as dmin in the figure; the directmax(p) value is

marked as dmax. Because p is relatively far away from C, the 3-dis-

tance of every object q in C is much smaller than the actual distance
between p and q. Thus, from definition 5, the reachability distance
of p w.r.t. q is given by the actual distance between p and q. Now
among the 3-nearest neighbors of p, we in turn find their minimum
and maximum reachability distances to their 3-nearest neighbors.
In the figure, the indirectmin(p) and indirectmax(p) values are

marked as imin and imax respectively.

Theorem 1: Let p be an object from the database D, and
1 ≤ MinPts ≤ | D |.
Then, it is the case that

Proof (Sketch): (a) :

: ,

by definition of .

, i.e.

: ,

by definition of .

,i.e.

Thus, it follows that

(b) : analogously. ■

To illustrate the theorem using the example in figure 3, suppose
that dmin is 4 times that of imax, and dmax is 6 times that of imin. Then

by theorem 1, the LOF of p is between 4 and 6. It should also be
clear from theorem 1 that LOF(p) has an easy-to-understand inter-
pretation. It is simply a function of the reachability distances in p’s
direct neighborhood relative to those in p’s indirect neighborhood.

5.3 The Tightness of the Bounds
As discussed before, theorem 1 is a general result with the specified
upper and lower bounds for LOF applicable to any object p. An im-
mediate question comes to mind. How good or tight are these
bounds? In other words, if we use LOFmax to denote the upper

bound directmax/indirectmin, and use LOFmin to denote the lower

bound directmin/indirectmax, how large is the spread or difference

between LOFmax and LOFmin? In the following we study this issue.

A key part of the following analysis is to show that the spread LOF-

max-LOFmin is dependent on the ratio of direct/indirect. It turns out

that the spread is small under some conditions, but not so small un-
der other conditions.

p

CMinPts = 3

dmin

imax

dmin = 4∗imax

Figure 3: Illustration of theorem 1

⇒ LOFMinPts(p) ≥ 4

dmax imin

dmax = 6∗imin

⇒ LOFMinPts(p) ≤ 6

directmin p()

indirectmax p()
---------------------------------- LOF≤ p()

directmax p()

indirectmin p()
---------------------------------≤

directmin p()

indirectmax p()
---------------------------------- LOF p()≤

o NMinPts p()∈∀ reach-dist p o,() directmin p()≥

directmin p()

 1

reach-dist p o,()

o NMinPts p()∈
∑

NMinPts p()
---⁄⇒ 1

directmin p()
----------------------------≤

lrd p()
1

directmin p()
----------------------------≤

q NMinPts o()∈∀ reach-dist o q,() indirectmax p()≤

indirectmax p()

1

reach-dist o q,()

q NMinPts o()∈
∑

NMinPts o()
---⁄ 1

indirectmax p()
----------------------------------≥⇒

lrd o()
1

indirectmax p()
----------------------------------≥

LOF p()

lrd o()
lrd p()

o NMinPts p()∈
∑

NMinPts p()
--

1
indirectmax p()
---------------------------------- 

 

1
directmin p()
---------------------------- 

 
--

o NMinPts p()∈
∑

NMinPts p()
--

≥

directmin p()

indirectmax p()

=

=

LOF p()
directmax p()

indirectmin p()
---------------------------------≤

6

Given directmin(p) and directmax(p) as defined above, we use di-

rect(p) to denote the mean value of directmin(p) and directmax(p).

Similarly, we use indirect(p) to denote the mean value of indirect-

min(p) and indirectmax(p). In the sequel, whenever no confusion

arises, we drop the parameter p, e.g., direct as a shorthand of di-
rect(p).

Now to make our following analysis easier to understand, we sim-
plify our discussion by requiring that
(directmax - directmin)/direct = (indirectmax - indirectmin)/indirect.

That is, we assume that the reachability distances in the direct and
indirect neighborhoods fluctuate by the same amount. Because of
this simplification, we can use a single parameter pct in the sequel
to control the fluctuation. More specifically, in figure 4, pct = x%
corresponds to the situation where directmax = direct*(1+x%), di-

rectmin = direct*(1-x%), indirectmax = indirect*(1+x%) and indi-

rectmin = indirect*(1-x%). Figure 4 shows the situations when pct

is set to 1%, 5% and 10%. The spread between LOFmax and LOFmin

increases as pct increases.

More importantly, figure 4 shows that, for a fixed percentage
pct=x%, the spread between LOFmax and LOFmin grows linearly

with respect to the ratio direct/indirect. This means that the relative
span (LOFmax - LOFmin)/(direct/indirect) is constant. Stated differ-

ently, the relative fluctuation of the LOF depends only on the ratios
of the underlying reachability distances and not on their absolute
values. This highlights the spirit of local outliers.

To be more precise, in fact, the whole situation is best captured in
the 3-dimensional space where the three dimensions are: (LOFmax

- LOFmin), (direct/indirect), and pct. Figure 4 then represents a se-

ries of 2-D projections on the first two dimensions. But figure 4
does not show the strength of the dependency between the relative
fluctuation of the LOF and the relative fluctuation of pct. For this
purpose, figure 5 is useful. The y-axis of the figure shows the ratio
between the two dimensions (LOFmax - LOFmin) and (direct/indi-

rect) in the 3-dimensional space mentioned above, and the x-axis
corresponds to the other dimension pct. To understand the shape of
the curve in figure 5, we have to take a closer look at the ratio (LOF-

max - LOFmin)/(direct/indirect):

Figure 5 shows that (LOFmax - LOFmin)/(direct/indirect) is only de-

pendent on the percentage value pct. Its value approaches infinity
if pct approaches 100, but it is very small for reasonable values of
pct. This also verifies that the relative fluctuation of the LOF is con-
stant for a fixed percentage pct, as we have seen in figure 4.

To summarize, if the fluctuation of the average reachability dis-
tances in the direct and indirect neighborhoods is small (i.e., pct is
low), theorem 1 estimates the LOF very well, as the minimum and
maximum LOF bounds are close to each other. There are two im-
portant cases for which this is true.

• The percentage pct is very low for an object p, if the fluctuation
of the reachability distances is rather homogeneous, i.e., if the
MinPts-nearest neighbors of p belong to the same cluster. In this
case, the values directmin, directmax, indirectmin and indirectmax
are almost identical, resulting in the LOF being close to 1. This
is consistent with the result established in lemma 1.

• The argument above can be generalized to an object p which is
not located deep inside a cluster, but whose MinPts-nearest
neighbors all belong to the same cluster (as depicted in
figure 3). In this case, even though LOF may not be close to 1,
the bounds on LOF as predicted by theorem 1 are tight.

5.4 Bounds for Objects whose Direct Neighbor-
hoods Overlap Multiple Clusters

So far we have analyzed the tightness of the bounds given in
theorem 1, and have given two conditions under which the bounds
are tight. An immediate question that comes to mind is: under what

0.00

5.00

10.00

15.00

20.00

0 5 10 15

Figure 4: Upper and lower bound on LOF depending on direct/
indirect for different values of pct

proportion direct/indirect

LOFmax : pct=10%

LOFmin : pct=10%

LOFmax : pct=5%

LOFmax : pct=1%

LOFmin : pct=1%

LOFmin : pct=5%

ou
tl

ie
r

fa
ct

or
 L

O
F

LOFmax LOFmin–

direct
indirect

-- indirect
direct

direct
direct pct⋅

100
----------------------------+

indirect
indirect pct⋅

100
---------------------------------–

direct

direct pct⋅
100

----------------------------–

indirect
indirect pct⋅

100
---------------------------------+

--–

 
 
 
 
 

⋅

=

=

1
pct
100
---------+

1
pct
100
---------–

1

pct
100
---------–

1
pct
100
---------+

-------------------–

 
 
 
 
  4

pct
100
---------×

1
pct
100
--------- 

  2
–

--------------------------==

0.00

50.00

100.00

0 10 20 30 40 50 60 70 80 90 100

Figure 5: Relative span for LOF depending on percentage of
fluctuation for d and w

percentage of fluctuation pct

L
O

F
m

ax
 -

 L
O

F
m

in

di
re

ct
/i

nd
ir

ec
t

7

condition are the bounds not tight? Based on figure 5, if the MinPts-
nearest neighbors of an object p belong to different clusters having
different densities, the value for pct may be very large. Then based
on figure 5, the spread between LOFmax and LOFmin value can be

large. In this case, the bounds given in theorem 1 do not work well.

As an example, let us consider the situation shown in figure 1
again. For object o2, because all its MinPts-nearest neighbors come

from the same cluster C2, the bounds given by theorem 1 on the

LOF of o2 is expected to be tight. In contrast, the MinPts-nearest

neighbors of o1 come from both clusters C1 and C2. In this case, the

given bounds on the LOF of o1 may not be as good.

Theorem 2 below intends to give better bounds on the LOF of ob-
ject p when p’s MinPts-nearest neighborhood overlaps with more
than one cluster. The intuitive meaning of theorem 2 is that, when
we partition the MinPts-nearest neighbors of p into several groups,
each group contributes proportionally to the LOF of p.

An example is shown in figure 6 for MinPts=6. In this case, 3 of ob-
ject p’s 6-nearest neighbors come from cluster C1, and the other 3

come from cluster C2. Then according to theorem 2, LOFmin is giv-

en by (0.5*d1min + 0.5*d2min)/(0.5/i1max + 0.5/i2max), where d1min

and d2min give the minimum reachability distances between p and

the 6-nearest neighbors of p in C1 and C2 respectively, and i1max

and i2max give the maximum reachability distances between q and

q’s 6-nearest neighbors, where q is a 6-nearest neighbor of p from
C1 and C2 respectively. For simplicity, figure 6 does not show the

case for the upper bound LOFmax.

Theorem 2: Let p be an object from the database D,
1 ≤ MinPts ≤ | D |, and C1, C2, ..., Cn be a partition of NMinPts(p),

i.e. NMinPts(p) = C1 ∪ C2 ∪ ... ∪ Cn ∪ {p} with Ci ∩ Cj = ∅,
Ci ≠ ∅ for 1 ≤ i,j ≤ n, i ≠ j.

Furthermore, let be the percentage of ob-

jects in p’s neighborhood, which are also in Ci. Let the notions

, , , and

 be defined analogously to directmin(p), direct-

max(p), indirectmin(p), and indirectmax(p) but restricted to the set Ci

(e.g., denotes the minimum reachability distance be-

tween p and a MinPts-nearest neighbor of p in the set Ci).

Then, it holds that (a)

and (b)

■

We give a proof sketch of theorem 2 in the appendix. Theorem 2
generalizes theorem 1 in taking into consideration the ratios of the
MinPts-nearest neighbors coming from multiple clusters. As such,
there is the following corollary.

Corollary 1: If the number of partitions in theorem 2 is 1, then
LOFmin and LOFmax given in theorem 2 are exactly the same corre-
sponding bounds given in theorem 1.■

6. THE IMPACT OF THE PARAMETER
MINPTS

In the previous section, we have analyzed the formal properties of
LOF. For objects deep inside a cluster, we have shown that the LOF
is approximately equal to 1. For other objects, we have established
two sets of upper and lower bounds on the LOF, depending on
whether the MinPts-nearest neighbors come from one or more clus-
ters. It is important to note that all the previous results are based on
a given MinPts value. In this section, we discuss how the LOF val-
ue is influenced by the choice of the MinPts value, and how to de-
termine the right MinPts values for the LOF computation.

6.1 How LOF Varies according to Changing
MinPts Values

Given the analytic results established in the previous section, sev-
eral interesting questions come to mind. How does the LOF value
change when the MinPts value is adjusted? Given an increasing se-
quence of MinPts values, is there a corresponding monotonic se-
quence of changes to LOF? That is, does LOF decrease or increase
monotonically?

Unfortunately, the reality is that LOF neither decreases nor increas-
es monotonically. Figure 7 shows a simple scenario where all the
objects are distributed following a Gaussian distribution. For each
MinPts value between 2 and 50, the minimum, maximum and mean
LOF values, as well as the standard deviation, are shown.

Let us consider the maximum LOF as an example. Initially, when
the MinPts value is set to 2, this reduces to using the actual inter-
object distance d(p,o) in definition 5. By increasing the MinPts val-
ue, the statistical fluctuations in reachability distances and in LOF
are weakened. Thus, there is an initial drop on the maximum LOF
value. However, as the MinPts value continues to increase, the
maximum LOF value goes up and down, and eventually stabilizes
to some value.

If the LOF value changes non-monotonically even for such a pure
distribution like the Gaussian distribution, the LOF value changes
more wildly for more complex situations. Figure 8 shows a two-di-
mensional dataset containing three clusters, where S1 consists of 10

p

C2
MinPts = 6

Figure 6: Illustration of theorem 2

C1

d1min
d2min

i2max

i1max

ξi Ci NMinPts p()⁄=

direct
i
min p() direct

i
max p() indirect

i
min p()

indirect
i
max p()

direct
i
min p()

LOF p() ξi direct
i
min p()⋅

i 1=

n

∑
 
 
 
  ξi

indirect
i
max p()

i 1=

n

∑
 
 
 
 
⋅≥

LOF p() ξi direct
i
max p()⋅

i 1=

n

∑
 
 
 
  ξi

indirect
i
min p()

i 1=

n

∑
 
 
 
 
⋅≤

8

objects, S2 of 35 objects and S3 of 500 objects. On the right side are

representative plots for one object from each of these clusters. The
plots show the LOF over MinPts for the range from 10 to 50. While
the LOF of an object in S3 is very stable around 1, the LOFs of the

objects in S1 and S3 change more wildly.

6.2 Determining a Range of MinPts Values
Because the LOF value can go up and down, we propose as a heu-
ristic that we use a range of MinPts values. In the following, we
provide guidelines as to how this range can be picked. We use
MinPtsLB and MinPtsUB to denote the “lower bound” and the “up-
per bound” of the range.

Let us first determine a reasonable value of MinPtsLB. Clearly,
MinPtsLB can be as small as 2. However, as explained above and
before definition 5, it is wise to remove unwanted statistical fluctu-
ations due to MinPts being too small. As an example, for the Gaus-
sian distribution shown in figure 7, the standard deviation of LOF
only stabilizes when MinPtsLB is at least 10. As another extreme
example, suppose we turn the Gaussian distribution in figure 7 to a
uniform distribution. It turns out that for MinPts less than 10, there
can be objects whose LOF are significant greater than 1. This is
counter-intuitive because in a uniform distribution, no object
should be labeled as outlying. Thus, the first guideline we provide
for picking MinPtsLB is that it should be at least 10 to remove un-
wanted statistical fluctuations.

The second guideline we provide for picking MinPtsLB is based on
a more subtle observation. Consider a simple situation of one object
p and a set/cluster C of objects. If C contains fewer than MinPtsLB
objects, then the set of MinPts-nearest neighbors of each object in
C will include p, and vice versa. Thus, by applying theorem 1, the
LOF of p and all the objects in C will be quite similar, thus making
p indistinguishable from the objects in C.

If, on the other hand, C contains more than MinPtsLB objects, the
MinPts-nearest neighborhoods of the objects deep in C will not
contain p, but some objects of C will be included in p's neighbor-
hood. Thus, depending on the distance between p and C and the
density of C, the LOF of p can be quite different from that of an ob-
ject in C. The key observation here is that MinPtsLB can be regard-
ed as the minimum number of objects a “cluster” (like C above) has
to contain, so that other objects (like p above) can be local outliers

relative to this cluster. This value could be application-dependent.
For most of the datasets we experimented with, picking 10 to 20 ap-
pears to work well in general.

Next, we turn to the selection of a reasonable value of MinPtsUB,
the upper bound value of the range of MinPts values. Like the lower
bound MinPtsLB, the upper bound also has an associated meaning.
Let C be a set/cluster of “close by” objects. Then MinPtsUB can be
regarded as the maximum cardinality of C for all objects in C to po-
tentially be local outliers. By “close by” we mean, that the direct-

min, directmax, indirectmin and indirectmax values are all very simi-

lar. In this case, for MinPts values exceeding MinPtsUB, theorem 1
requires that the LOF of all objects in C be close to 1. Hence, the
guideline we provide for picking MinPtsUB is the maximum num-
ber of “close by” objects that can potentially be local outliers.

As an example, let us consider the situation shown in figure 8
again. Recall that S1 consists of 10 objects, S2 of 35 objects and S3
of 500 objects. From the plots, it is clear that the objects in S3 are

never outliers, always having their LOF values close to 1. In con-
trast, the objects in S1 are strong outliers for MinPts values between

10 and 35. The objects in S2 are outliers starting at MinPts = 45.

The reason for the last two effects is that, beginning at MinPts = 36,
the MinPts-nearest neighborhoods of the objects in S2 start to in-

clude some object(s) from S1. From there on, the objects in S1 and

S2 exhibit roughly the same behavior. Now at MinPts = 45, the

members of this “combined” set of objects S1 and S2 start to include

object(s) from S3 in their neighborhoods, and thus starting to be-

come outliers relative to S3. Depending on the application domain,

we may want to consider a group of 35 objects (like S2) a cluster or

a bunch of “close by” local outliers. To facilitate this, we can
choose a MinPtsUB value accordingly, that is either smaller than 35
or larger than 35. A similar argument can be made for MinPtsLB
with respect to the minimum number of objects relative to which
other objects can be considered local outliers.

Having determined MinPtsLB and MinPtsUB, we can compute for
each object its LOF values within this range. We propose the heu-
ristic of ranking all objects with respect to the maximum LOF value
within the specified range. That is, the ranking of an object p is
based on: max{LOFMinPts(p) | MinPtsLB ≤ MinPts ≤ MinPtsUB}.

Gaussian Distribution

0

0.5

1

1.5

2

2.5

3

1 6 11 16 21 26 31 36 41 46 51

max
mean with std.dev.
min

Figure 7: Fluctuation of the outlier-factors within a Gaussian cluster
MinPts

ou
tl

ie
r

fa
ct

or
 L

O
F

9

Given all the LOF values within the range, instead of taking the
maximum, we could take other aggregates, such as the minimum or
the mean. The situation in figure 8 shows that taking the minimum
could be inappropriate as the minimum may erase the outlying na-
ture of an object completely. Taking the mean may also have the ef-
fect of diluting the outlying nature of the object. We propose to take
the maximum to highlight the instance at which the object is the
most outlying.

7. EXPERIMENTS
In this section, with the proposed heuristic of taking the maximum
LOF value within the range, we show that our ideas can be used to
successfully identify outliers which appear to be meaningful but
cannot be identified by other methods. We start with a synthetical
2-dimensional dataset, for which we show the outlier factors for all
objects, in order to give an intuitive notion of the LOF values com-
puted. The second example uses the real-world dataset that has
been used in [KN98] to evaluate the DB(pct, dmin) outliers. We re-
peat their experiments to validate our method. In the third example,
we identify meaningful outliers in a database of german soccer

players, for which we happen to have a “domain expert” handy,
who confirmed the meaningfulness of the outliers found. The last
subsection contains performance experiments showing the practi-
cability of our approach even for large, high-dimensional datasets.

Additionally, we conducted experiments with a 64-dimensional
dataset, to demonstrate that our definitions are reasonable in very
high dimensional spaces. The feature vectors used are color histo-
grams extracted from tv snapshots [2]. We indentified multiple
clusters, e.g. a cluster of pictures from a tennis match, and reason-
able local outliers with LOF values of up to 7.

7.1 A Synthetic Example
The left side of figure 9 shows a 2-dimensional dataset containing
one low density Gaussian cluster of 200 objects and three large
clusters of 500 objects each. Among these three, one is a dense
Gaussian cluster and the other two are uniform clusters of different
densities. Furthermore, it contains a couple of outliers. On the right
side of figure 9 we plot the LOF of all the objects for MinPts = 40
as a third dimension. We see that the objects in the uniform clusters
all have their LOF equal to 1. Most objects in the Gaussian clusters

S1 S2

S3

Example dataset

point in S1 point in S2 point in S3

1

LO
F

MinPts (10 to 50)MinPts (10 to 50) MinPts (10 to 50)

Figure 8: Ranges of LOF values for different objects in a sample dataset

0

2

4

6

8

10

12

14

16

ou
tl

ie
r

fa
ct

or
 O

F

Figure 9: Outlier-factors for points in a sample dataset (MinPts=40)

10

also have 1 as their LOF values. Slightly outside the Gaussian clus-
ters, there are several weak outliers, i.e., those with relatively low,
but larger than 1, LOF values. The remaining seven objects all have
significantly larger LOF values. Furthermore, it is clear from the
figure that the value of the LOF for each of these outliers depends
on the density of the cluster(s) relative to which the object is an out-
lier, and the distance of the outlier to the cluster(s).

7.2 Hockey Data
In [13], the authors conducted a number of experiments on histori-
cal NHL player data; see [13] for a more detailed explanation of the
attributes used. We repeat their experiments on the NHL96 dataset,
computing the maximum LOF in the MinPts range of 30 to 50.

For the first test, on the 3-dimensional subspace of points scored,
plus-minus statistics and penalty-minutes, they identified Vladimir
Konstantinov as the only DB(0.998, 26.3044) outlier. He was also
our top outlier with the LOF value of 2.4. The second strongest lo-
cal outlier, with the LOF of 2.0, is Matthew Barnaby. For most out-
liers found, we do not explain why they are outliers from a domain-
expert standpoint here; the interested reader can find this informa-
tion in [13]. The point here is that by ranking outliers with their
maximum LOF value, we get almost identical results. In the next
subsection, we show how this approach can identify some outliers
that [13] cannot find.

In the second test, they identified the DB(0.997, 5) outliers in the 3-
dimensional subspace of games played, goals scored and shooting
percentage, finding Chris Osgood and Mario Lemieux as outliers.
Again, they are our top outliers, Chris Osgood with the LOF of 6.0
and Mario Lemieux with the LOF of 2.8. On our ranked list based
on LOF, Steve Poapst, ranked third with the LOF of 2.5, played
only three games, scored once and had a shooting percentage of
50%.

7.3 Soccer Data
In the following experiment, we computed the local outliers for a
database of soccer-player information from the “Fußball 1. Bundes-
liga” (the German national soccer league) for the season 1998/99.
The database consists of 375 players, containing the name, the
number of games played, the number of goals scored and the posi-
tion of the player (goalie, defense, center, offense). From these we
derived the average number of goals scored per game, and per-
formed outlier detection on the three-dimensional subspace of
number of games, average number of goals per game and position
(coded as an integer). In general, this dataset can be partitioned into
four clusters corresponding to the positions of the players. We com-
puted the LOF values in the MinPts range of 30 to 50. Below we
discuss all the local outliers with LOF > 1.5 (see table 3), and ex-
plain why they are exceptional.

The strongest outlier is Michael Preetz, who played the maximum
number of games and also scored the maximum number of goals,
which made him the top scorer in the league (“Torschützenkönig”).
He was an outlier relative to the cluster of offensive players. The
second strongest outlier is Michael Schjönberg. He played an aver-
age number of games, but he was an outlier because most other de-
fense players had a much lower average number of goals scored per
game. The reason for this is that he kicked the penalty shots (“Elf-
meter”) for his team. The player that was ranked third is Hans-Jörg
Butt, a goalie who played the maximum number of games possible

and scored 7 goals. He was the only goalie to score any goal; he too
kicked the penalty shots for his team. On rank positions four and
five, we found Ulf Kirsten and Giovane Elber, two offensive play-
ers with very high scoring averages.

7.4 Performance
In this section, we evaluate the performance of the computation of
LOF. The following experiments were conducted on an Pentium
III-450 workstation with 256 MB main memory running Linux 2.2.
All algorithms were implemented in Java and executed on the IBM
JVM 1.1.8. The datasets used were generated randomly, containing
different numbers of Gaussian clusters of different sizes and densi-
ties. All times are wall-clock times, i.e. include CPU-time and I/O.

To compute the LOF values within the range between MinPtsLB
and MinPtsUB, for all the n objects in the database D, we imple-
mented a two-step algorithm. In the first step, the MinPtsUB-near-
est neighborhoods are found, and in the second step the LOFs are
computed. Let us look at these two steps in detail.

In the first step, the MinPtsUB-nearest neighbors for every point p
are materialized, together with their distances to p. The result of this
step is a materialization database M of size n*MinPtsUB distances.
Note that the size of this intermediate result is independent of the
dimension of the original data. The runtime complexity of this step

Rank
Outlier
Factor

Player Name
Games
Played

Goals
Scored

Position

1 1.87 Michael Preetz 34 23 Offense

2 1.70 Michael Schjönberg 15 6 Defense

3 1.67 Hans-Jörg Butt 34 7 Goalie

4 1.63 Ulf Kirsten 31 19 Offense

5 1.55 Giovane Elber 21 13 Offense

minimum 0 0

median 21 1

maximum 34 23

mean 18.0 1.9

standard deviation 11.0 3.0

Table 3: Results of the soccer player dataset

Figure 10: Runtime of the materialization of the
50-nn queries for different dataset sizes and

different dimensions using an index

n [*1000]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

100 200 300 400 500 600 700 800 900

20d
10d
5d
2d

ti
m

e
[s

ec
]

11

is O(n*time for a k-nn query). For the k-nn queries, we have a
choice among different methods. For low-dimensional data, we can
use a grid based approach which can answer k-nn queries in con-
stant time, leading to a complexity of O(n) for the materialization
step. For medium to medium high-dimensional data, we can use an
index, which provides an average complexity of O(log n) for k-nn
queries, leading to a complexity of O(n log n) for the materializa-
tion. For extremely high-dimensional data, we need to use a se-
quential scan or some variant of it, e.g. the VA-file ([21]), with a

complexity of O(n), leading to a complexity of O(n2) for the mate-
rialization step. In our experiments, we used a variant of the X-tree
([4]), leading to the complexity of O(n log n). Figure 10 shows per-
formance experiments for different dimensional datasets and
MinPtsUB=50. The times shown do include the time to build the in-
dex. Obviously, the index works very well for 2-dimensional and 5-
dimensional dataset, leading to a near linear performance, but de-
generates for the 10-dimensional and 20-dimensionsal dataset. It is
a well known effect of index structures, that their effectivity de-
creases with increasing dimension.

In the second step, the LOF values are computed using the materi-
alization database M. The original database D is not needed for this
step, as M contains sufficient information to compute the LOFs.
The database M is scanned twice for every value of MinPts between
MinPtsLB and MinPtsUB. In the first scan, the local reachability
densities of every object are computed. In the second step, the final
LOF values are computed and written to a file. These values can
then be used to rank the objects according to their maximum LOF
value in the interval of MinPtsLB and MinPtsUB. The time com-
plexity of this step is O(n). This is confirmed by the graph shown
in figure 11, where the LOF values for MinPtsLB=10 to
MinPtsUB=50 were computed.

8. CONCLUSIONS
Finding outliers is an important task for many KDD applications.
Existing proposals consider being an outlier as a binary property. In
this paper, we show that for many situations, it is meaningful to
consider being an outlier not as a binary property, but as the degree
to which the object is isolated from its surrounding neighborhood.
We introduce the notion of the local outlier factor LOF, which cap-
tures exactly this relative degree of isolation. We show that our def-
inition of LOF enjoys many desirable properties. For objects deep

inside a cluster, the LOF value is approximately 1. For other ob-
jects, we give tight lower and upper bounds on the LOF value, re-
gardless of whether the MinPts-nearest neighbors come from one or
more clusters. Furthermore, we analyze how the LOF value de-
pends on the MinPts parameter. We give practical guidelines on
how to select a range of MinPts values to use, and propose the heu-
ristic of ranking objects by their maximum LOF value within the
selected range. Experimental results demonstrate that our heuristic
appears to be very promising in that it can identify meaningful local
outliers that previous approaches cannot find. Last but not least, we
show that our approach of finding local outliers is efficient for
datasets where the nearest neighbor queries are supported by index
structures and still practical for very large datasets.

There are two directions for ongoing work. The first one is on how
to describe or explain why the identified local outliers are excep-
tional. This is particularly important for high-dimensional datasets,
because a local outlier may be outlying only on some, but not on all,
dimensions (cf. [14]). The second one is to further improve the per-
formance of LOF computation. For both of these directions, it is in-
teresting to investigate how LOF computation can "handshake"
with a hierarchical clustering algorithm, like OPTICS [2]. On the
one hand, such an algorithm may provide more detailed informa-
tion about the local outliers, e.g., by analyzing the clusters relative
to which they are outlying. On the other hand, computation may be
shared between LOF processing and clustering. The shared compu-
tation may include k-nn queries and reachability distances.

References

[1] Arning, A., Agrawal R., Raghavan P.: “A Linear Method for
Deviation Detection in Large Databases”, Proc. 2nd Int. Conf.
on Knowledge Discovery and Data Mining, Portland, OR,
AAAI Press, 1996, p. 164-169.

[2] Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.:
“OPTICS: Ordering Points To Identify the Clustering
Structure”, Proc. ACM SIGMOD Int. Conf. on Management
of Data, Philadelphia, PA, 1999.

[3] Agrawal R., Gehrke J., Gunopulos D., Raghavan P.:
“Automatic Subspace Clustering of High Dimensional Data
for Data Mining Applications”, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Seattle, WA, 1998, pp. 94-105.

[4] Berchthold S., Keim D. A., Kriegel H.-P.: “The X-Tree: An
Index Structure for High-Dimensional Data”, 22nd Conf. on
Very Large Data Bases, Bombay, India, 1996, pp. 28-39.

[5] Barnett V., Lewis T.: “Outliers in statistical data”, John Wiley,
1994.

[6] DuMouchel W., Schonlau M.: “A Fast Computer Intrusion
Detection Algorithm based on Hypothesis Testing of
Command Transition Probabilities”, Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining, New York, NY,
AAAI Press, 1998, pp. 189-193.

[7] Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-Based
Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”, Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining, Portland, OR, AAAI Press, 1996,
pp. 226-231.

[8] Fawcett T., Provost F.: “Adaptive Fraud Detection”, Data
Mining and Knowledge Discovery Journal, Kluwer Academic
Publishers, Vol. 1, No. 3, 1997, pp. 291-316.

[9] Fayyad U., Piatetsky-Shapiro G., Smyth P.: “Knowledge

Figure 11: Runtime for the computation of the LOFs
for different dataset sizes

tim
e

[s
ec

]

n [*1000]

0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900

20d
10d
5d
2d

12

Discovery and Data Mining: Towards a Unifying
Framework”, Proc. 2nd Int. Conf. on Knowledge Discovery
and Data Mining, Portland, OR, 1996, pp. 82-88.

[10] Hawkins, D.: “Identification of Outliers”, Chapman and Hall,
London, 1980.

[11] Hinneburg A., Keim D. A.: “An Efficient Approach to
Clustering in Large Multimedia Databases with Noise”, Proc.
4th Int. Conf. on Knowledge Discovery and Data Mining, New
York City, NY, 1998,pp. 58-65.

[12] Johnson T., Kwok I., Ng R.: “Fast Computation of 2-
Dimensional Depth Contours”, Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining, New York, NY,
AAAI Press, 1998, pp. 224-228.

[13] Knorr E. M., Ng R. T.: “Algorithms for Mining Distance-
Based Outliers in Large Datasets”, Proc. 24th Int. Conf. on
Very Large Data Bases, New York, NY, 1998, pp. 392-403.

[14] Knorr E. M., Ng R. T.: “Finding Intensional Knowledge of
Distance-based Outliers”, Proc. 25th Int. Conf. on Very Large
Data Bases, Edinburgh, Scotland, 1999, pp. 211-222.

[15] Ng R. T., Han J.: “Efficient and Effective Clustering Methods
for Spatial Data Mining”, Proc. 20th Int. Conf. on Very Large
Data Bases, Santiago, Chile, Morgan Kaufmann Publishers,
San Francisco, CA, 1994, pp. 144-155.

[16] Preparata F., Shamos M.: “Computational Geometry: an
Introduction“, Springer, 1988.

[17] Ramaswamy S., Rastogi R., Kyuseok S.: “Efficient Algorithms
for Mining Outliers from Large Data Sets”, Proc. ACM
SIDMOD Int. Conf. on Management of Data, 2000.

[18] Ruts I., Rousseeuw P.: “Computing Depth Contours of
Bivariate Point Clouds, Journal of Computational Statistics
and Data Analysis, 23, 1996, pp. 153-168.

[19] Sheikholeslami G., Chatterjee S., Zhang A.: “WaveCluster: A
Multi-Resolution Clustering Approach for Very Large Spatial
Databases”, Proc. Int. Conf. on Very Large Data Bases, New
York, NY, 1998, pp. 428-439.

[20] Tukey J. W.: “Exploratory Data Analysis”, Addison-Wesley,
1977.

[21] Weber R., Schek Hans-J., Blott S.: “A Quantitative Analysis
and Performance Study for Similarity-Search Methods in
High-Dimensional Spaces”, Proc. Int. Conf. on Very Large
Data Bases, New York, NY, 1998, pp. 194-205.

[22] Wang W., Yang J., Muntz R.: “STING: A Statistical
Information Grid Approach to Spatial Data Mining”, Proc.
23th Int. Conf. on Very Large Data Bases, Athens, Greece,
Morgan Kaufmann Publishers, San Francisco, CA, 1997,
pp. 186-195.

[23] Zhang T., Ramakrishnan R., Linvy M.: “BIRCH: An Efficient
Data Clustering Method for Very Large Databases”, Proc.
ACM SIGMOD Int. Conf. on Management of Data, ACM
Press, New York, 1996, pp.103-114.

Appendix
Proof of Theorem 2 (Sketch): Let p be an object from the database
D, 1 ≤ MinPts ≤ | D |, and C1, C2, ..., Cn be a partition of NMinPts(p),

i.e. NMinPts(p) = C1 ∪ C2 ∪ ... ∪ Cn ∪ {p} with Ci ∩ Cj = ∅,
C i ≠ ∅ f o r 1 ≤ i , j ≤ n , i ≠ j . Fur th e r mo r e , l e t

 be the percentage of objects in p’s neigh-

borhood which are in the set Ci. Let the notions ,

, , and be defined

analogously to directmin(p), directmax(p), indirectmin(p), and indi-

rectmax(p) but restricted to the set Ci.

(a)

: , by definit ion of

. ⇒

i.e.

:

.Thus, it follows that

(b)

: analogously. ■

ξi Ci NMinPts p()⁄=

direct
i
min p()

direct
i
max p() indirect

i
min p() indirect

i
max p()

LOF p() ξi direct
i
min p()⋅

i 1=

n

∑
 
 
 
  ξi

indirect
i
max p()

i 1=

n

∑
 
 
 
 
⋅≥

o Ci∈∀ reach-dist p o,() direct
i
min p()≥

direct
i
min p()

1

reach-dist p o,()

o NMinPts p()∈
∑

NMinPts p()
--⁄ reach-dist p o,()

NMinPts p()

o Ci∈
∑

i 1=

n

∑
 
 
 
  1–

=

direct
i
min p()

NMinPts p()

o Ci∈
∑

i 1=

n

∑
 
 
 
  1–

Ci direct
i
min p()⋅

NMinPts p()

i 1=

n

∑
 
 
 
  1–

ξi direct
i
min p()⋅

i 1=

n

∑
 
 
 
  1–

==

=≤

lrd p() ξi direct
i
min p()⋅

i 1=

n

∑
 
 
 
  1–

≤

q NMinPts o()∈∀ reach-dist o q,() indirect
i
max p()≤

lrd o()⇒ 1

indirect
i
max p()

-------------------------------------≥

LOF p()

lrd o()
lrd p()

o NMinPts p()∈
∑

NMinPts p()
-------------------------------- 1

lrd p()
-------------- lrd o()

NMinPts p()

o NMinPts p()∈
∑⋅= =

 ξi direct
i
min p()⋅

i 1=

n

∑
 
 
 
 

1

indirect
i
max p()

NMinPts p()

o Ci∈
∑

i 1=

n

∑
 
 
 
 
 

ξi direct
i
min p()⋅

i 1=

n

∑
 
 
 
  ξi

indirect
i
max p()

i 1=

n

∑
 
 
 
 

⋅=

⋅≥

LOF p() ξi direct
i
max p()⋅

i 1=

n

∑
 
 
 
  ξi

indirect
i
min p()

i 1=

n

∑
 
 
 
 
⋅≤

