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Abstract. In this paper, we address the problem of protecting the under-
lying attribute values when sharing data for clustering. The challenge is how
to meet privacy requirements and guarantee valid clustering results as well.
To achieve this dual goal, we propose a novel spatial data transformation
method called Rotation-Based Transformation (RBT). The major features
of our data transformation are: a) it is independent of any clustering al-
gorithm, b) it has a sound mathematical foundation; c) it is efficient and
accurate; and d) it does not rely on intractability hypotheses from algebra
and does not require CPU-intensive operations. We show analytically that
although the data are transformed to achieve privacy, we can also get ac-
curate clustering results by the safeguard of the global distances between
data points.

1 Introduction

Achieving privacy preservation when sharing data for clustering is a challeng-
ing problem. To address this problem, data owners must not only meet privacy
requirements but also guarantee valid clustering results. The fundamental ques-
tion addressed in this paper is: how can organizations protect personal data
subjected to clustering and meet their needs to support decision making or to
promote social benefits?

Clearly, sharing data for clustering poses new challenges for novel uses of
data mining technology. Let us consider two real-life motivating examples where
the sharing of data for clustering poses different constraints.

– Suppose that a hospital shares some data for research purposes (e.g. group
patients who have a similar disease). The hospital’s security administrator
may suppress some identifiers (e.g. name, address, phone number, etc) from
patient records to meet privacy requirements. However, the released data
may not be fully protected. A patient record may contain other information
that can be linked with other datasets to re-identify individuals or entities
[11]. How can we identify groups of patients with a similar disease without
revealing the values of the attributes associated with them?



– Two organizations, an Internet marketing company and an on-line retail
company, have datasets with different attributes for a common set of indi-
viduals. These organizations decide to share their data for clustering to find
the optimal customer targets so as to maximize return on investments. How
can these organizations learn about their clusters using each other’s data
without learning anything about the attribute values of each other?

Note that the above scenarios describe two different problems of privacy-
preserving clustering (PPC). We refer to the former as PPC over centralized
data, and the latter as PPC over vertically partitioned data. The problem of
PPC over vertically and horizontally partitioned data has been addressed in the
literature [13, 7], while the problem of PPC over centralized data has not been
significantly tackled. In this paper, we focus on PPC over centralized data.

There is very little literature regarding the problem of PPC over centralized
data. A notable exception is the work presented in [10]. The key finding of this
study was that adding noise to data would meet privacy requirements, but may
compromise the clustering analysis. The main problem is that by distorting the
data, many data points would move from one cluster to another jeopardizing
the notion of similarity between points in the global space. Consequently, this
introduces the problem of misclassification

One limitation with the above solution is the trade-off between privacy and
accuracy of the clustering results. We claim that a challenging solution for PPC
must do better than a trade-off, otherwise the transformed data will be useless.
A desirable solution for PPC must consider not only privacy safeguards, but also
accurate clustering results.

To support our claim, we propose a novel spatial data transformation method
called Rotation-Based Transformation (RBT). The major features of our data
transformation are: a) it is independent of any clustering algorithm, which rep-
resents a significant improvement over our previous work [10]; b) it has a sound
mathematical foundation; c) it is efficient and accurate since the distances be-
tween data points are preserved; and d) it does not rely on intractability hy-
potheses from algebra and does not require CPU-intensive operations.

This paper is organized as follows. Related work is reviewed in Section 2.
The basic concepts of data clustering and geometric data transformations are
discussed in Section 3. In Section 4, we introduce our RBT method. In Section 5,
we discuss and prove some important issues of security and accuracy pertained
to our method. Finally, Section 6 presents our conclusions.

2 Related Work

Some effort has been made to address the problem of privacy preservation in
data clustering. The class of solutions has been restricted basically to data par-
titioning [13, 7] and data distortion [10]. The work in [13] addresses clustering
vertically partitioned data, whereas the work in [7] focuses on clustering horizon-
tally partitioned data. In a horizontal partition, different objects are described



with the same schema in all partitions, while in a vertical partition the attributes
of the same objects are split across the partitions.

The work in [13] introduces a solution based on security multi-part compu-
tation. Specifically, the authors proposed a method for k-means clustering when
different sites contain different attributes for a common set of entities. In this
solution, each site learns the cluster of each entity, but learns nothing about the
attributes at other sites. This work ensures reasonable privacy while limiting
communication cost.

The feasibility of achieving PPC through geometric data transformation was
studied in [10]. This investigation revealed that geometric data transforma-
tions, such as translation, scaling, and simple rotation are unfeasible for privacy-
preserving clustering if we do not consider the normalization of the data before
transformation. The reason is that the data transformed through these methods
would change the similarity between data points. As a result, the data shared for
clustering would be useless. This work also revealed that the distortion meth-
ods adopted to successfully balance privacy and security in statistical databases
are limited when the perturbed attributes are considered as a vector in the
n-dimensional space. Such methods would exacerbate the problem of misclassi-
fication. A promising direction of the work in [10] was that PPC through data
transformation should be to some extent possible by isometric transformations,
i.e., transformations that preserve distances of objects in the process of moving
them in the Euclidean space.

More recently, a new method, based on generative models, was proposed to
address privacy preserving distributed clustering [7]. In this approach, rather
than sharing parts of the original data or perturbed data, the parameters of
suitable generative models are built at each local site. Then such parameters are
transmitted to a central location. The best representative of all data is a certain
“mean” model. It was empirically shown that such a model can be approximated
by generating artificial samples from the underlying distributions using Markov
Chain Monte Carlo techniques. This approach achieves high quality distributed
clustering with acceptable privacy loss and low communication cost.

The work presented here is orthogonal to that one presented in [13, 7] and
differs in some aspects from the work in [10]. In particular, we build on our
previous work. First, instead of distorting data for clustering using translations,
scaling, rotations or even some combinations of these transformations, we distort
attribute pairs using rotations only to avoid misclassification of data points.
Second, our transformation presented here advocates the normalization of data
before transformation. We show that successive rotations on normalized data will
protect the underlying attribute values and get accurate clustering results. Third,
we provide an analysis of the complexity of RBT and discuss a relevant feature
of our method - the independence of clustering algorithm, which represents a
significant improvement over the existing solutions in the literature. In addition,
we show that the computational security of RBT does not rely on formal proof
of security. Rather, it is based on the amount of computational work required
to reverse the transformation process.



3 Basic Concepts

In this section, we review the basic concepts that are necessary to understand
the issues addressed in this paper.

3.1 Isometric Transformations

An isometry (also called congruence) is a special class of geometric transforma-
tions [12, 4]. The essential characteristic of an isometry is that distances between
objects are preserved in the process of moving them in a n-dimensional Euclidean
space. In other words, distance must be an invariant property. Formally, an iso-
metric transformation can be defined as follows [4]:

Definition 1 (Isometric Transformation). Let T be a transformation in the
n-dimensional space, i.e., T : �n → �n. T is said to be an isometric transfor-
mation if it preserves distances satisfying the following constraint: |T (p)−T (q)|
= |p− q| for all p, q ∈ �n.

Isometries also preserves angles and transform sets of points into congruent
ones. Special cases of isometries include: (1) translations, which shift points a
constant distance in parallel directions; (2) Rotations, which have a center a such
that |T (p)− a| = |p − a| for all p; and (3) Reflections, which map all points to
their mirror images in a fixed (d− 1)-dimensional plane.

In this work, we focus primarily on rotations. For the sake of simplicity, we
describe the basics of such a transformation in a 2D discrete space. In its simplest
form, this transformation is for the rotation of a point about the coordinate axes.
Rotation of a point in a 2D discrete space by an angle θ is achieved by using
the transformation matrix in Equation (1). The rotation angle θ is measured
clockwise and this transformation affects the values of X and Y coordinates.
Thus, the rotation of a point in a 2D discrete space could be seen as a matrix
representation v′ = Rv, where R is a 2 × 2 rotation matrix, v is the vector
column containing the original coordinates, and v′ is a column vector whose
coordinates are the rotated coordinates.

R =
[

cos θ sin θ
−sin θ cos θ

]
(1)

3.2 Data Matrix

Objects (e.g. individuals, patterns, events) are usually represented as points
(vectors) in a multi-dimensional space. Each dimension represents a distinct
attribute describing the object. Thus, an object is represented as an m × n
matrix D, where there are m rows, one for each object, and n columns, one
for each attribute. This matrix is referred to as a data matrix, represented as
follows:



D =




a11 . . . a1k . . . a1n

a21 . . . a2k . . . a2n

...
...

. . .
...

am1 . . . amk . . . amn


 (2)

The attributes in a data matrix are sometimes normalized before being used.
The main reason is that different attributes may be measured on different scales
(e.g. centimeters and kilograms). For this reason, it is common to standardize
the data so that all attributes are on the same scale. There are many methods
for data normalization [6]. We review only two of them in this section: min-max
normalization and z-score normalization.

Min-max normalization performs a linear transformation on the original data.
Each attribute is normalized by scaling its values so that they fall within a small
specific range, such as 0.0 and 1.0. Min-max normalization maps a value v of an
attribute A to v′ as follows:

v′ =
v −minA

maxA −minA
× (new maxA − new minA) + new minA (3)

where minA and maxA represent the minimum and maximum values of an
attribute A, respectively, while new minA and new maxA are the new range in
which the normalized data will fall.

When the actual minimum and maximum of an attribute are unknown, or
when there are outliers that dominate the min-max normalization, z-score nor-
malization (also called zero-mean normalization) should be used. In z-score nor-
malization, the values for an attribute A are normalized based on the mean and
the standard deviation of A. A value v is mapped to v′ as follows:

v′ =
v −A

σA
(4)

where A and σA are the mean and the standard deviation of the attribute A,
respectively.

3.3 Dissimilarity Matrix

A dissimilarity matrix stores a collection of proximities that are available for all
pairs of objects. This matrix is often represented by an m × m table. In (5),
we can see the dissimilarity matrix DM corresponding to the data matrix D in
(2), where each element d(i, j) represents the difference or dissimilarity between
objects i and j.

DM =




0
d(2, 1) 0
d(3, 1) d(3, 2) 0

...
...

...
d(m, 1) d(m, 2) . . . . . . 0




(5)



In general, d(i, j) is a nonnegative number that is close to zero when the
objects i and j are very similar to each other, and becomes larger the more they
differ.

To calculate the dissimilarity between objects i and j one could use either
the distance measure in Equation (6) or in Equation (7), or others, where i =
(xi1, xi2, ..., xin) and j = (xj1, xj2, ..., xjn) are n-dimensional data objects.

d(i, j) = [
n∑

k=1

(xik − xjk)2]1/2 (6)

d(i, j) =
n∑

k=1

|xik − xjk| (7)

The metric in Equation (6) is the most popular distance measure called
Euclidean distance, while the metric in Equation (7) is known as Manhattan or
city block distance. Both Euclidean distance and Manhattan distance satisfy the
following constraints:

– d(i, j) ≥ 0: distance is a nonnegative number.
– d(i, i) = 0: the distance of an object to itself.
– d(i, j) = d(j, i): distance is a symmetric function.
– d(i, j) ≤ d(i, k) + d(k, j): distance satisfies the triangular inequality.

4 The Rotation-Based Transformation Method

In this Section, we introduce our method Rotation-Based Transformation (RBT).
This method is designed to protect the underlying attribute values subjected to
clustering by rotating the values of two attributes at a time.

4.1 General Assumptions

Our approach to distort data points in the n-dimensional Euclidean space draws
the following assumptions:

– The data matrix D, subjected to clustering, contains only confidential nu-
merical attributes that must be transformed to protect individual data values
before clustering.

– The existence of an object (e.g. ID) may be revealed but it could be also
anonymized by suppression. However, the values of the attributes associated
with an object are private and must be protected.

– The transformation RBT when applied to a database D must preserve the
distances between the data points.

We also assume that the raw data is pre-processed as follows:



– Suppressing Identifiers. Attributes that are not subjected to clustering (e.g.
address, phone, etc) are suppressed. Again, the existence of a particular
object, say ID, could be revealed depending on the application (e.g. our first
real-life example), but it could be suppressed when data is made public (e.g.
census, social benefits).

– Normalizing Numerical Attributes. Normalization helps prevent attributes
with large ranges (e.g. salary) from outweighing attributes with smaller
ranges (e.g. age). The Equations (3) and (4) can be used for normalization.

The major steps of the data transformation, before clustering analysis, are
depicted in Figure 1. In the first step, the raw data is normalized to give all
the variables an equal weight. Then, the data are distorted by using our RBT
method. In doing so, the underlying data values would be protected, and miners
would be able to cluster the transformed data. There is no need for normalizing
after the transformation process occurs.

Normalized Data Transformed DataRaw Data
Step 1

Normalization

Step 2

Data Distortion

Fig. 1. Major steps of the data transformation before clustering analysis.

4.2 General Approach

Now that we have described the assumptions associated with our method, we
move on to defining a function that distorts the attribute values of a given
data matrix to preserve privacy of individuals. We refer to such a function as
rotation-based data perturbation function, defined as follows:

Definition 2 (Rotation-Based Data Perturbation Function). Let Dm×n

be a data matrix, where each of the m rows represents an object, and each object
contains values for each of the n numerical attributes. We define a Rotation-
Based Data Perturbation function fr as a bijection of n-dimensional space into
itself that transforms D into D′ satisfying the following conditions:

– Pairwise-Attribute Distortion: ∀i, j, such that 1 ≤ i, j ≤ n and i �= j, the
vector V = (Ai, Aj) is transformed into V ′ = (A′

i, A
′
j) using the matrix

representation V ′ = R × V , where Ai, Aj ∈ D, A′
i, A

′
j ∈ D′, and R is the

transformation matrix for rotation.
– Pairwise-Security Threshold: the transformation of V into V ′ is performed

based on the Pairwise-Security Threshold PST (ρ1, ρ2), such that the con-
straints must hold: V ariance(Ai − A′

i) ≥ ρ1 and V ariance(Aj − A′
j) ≥ ρ2,

with ρ1 > 0 and ρ2 > 0.



The first condition of Definition 2 states that the transformation applied to a
data matrix D distorts a pair of attributes at a time. In case of an odd number of
attributes in D, the last attribute can be distorted along with any other already
distorted attribute, as long as the second condition is satisfied.

The second condition (Pairwise-Security Threshold) is the fundamental re-
quirement of a data perturbation method. It quantifies the security of a method
based on how closely the original values of a modified attribute can be estimated.

Traditionally, the security provided by a perturbation method has been mea-
sured as the variance between the actual and the perturbed values [1, 9]. This
measure is given by V ar(X − Y ) where X represents a single original attribute
and Y the distorted attribute. This measure can be made scale invariant with re-
spect to the variance of X by expressing security as Sec = V ar(X−Y )/V ar(X).

In particular, RBT adopts the traditional way to verify the security of a
perturbation method. However, the security offered by RBT is more challenging.
We impose a pairwise-security threshold for every two distorted attributes. The
challenge is how to strategically select an angle θ for a pair of attributes to be
distorted so that the second condition is satisfied. In Section 4.3, we introduce
the algorithm that strategically computes the value of θ.

Based on the definition of the rotation-based data perturbation function, now
we define our RBT method as follows:

Definition 3 (RBT Method). Let Dm×n be a data matrix, where each of
the m rows represents an object, and each object contains values for each of
the n numerical attributes. The Rotation-Based Data Perturbation method of
dimension n is an ordered pair, defined as RBT = (D, fr), where:

– D ∈ �m×n is a normalized data matrix of objects to be clustered.
– fr is a rotation-based data transformation function, fr : �n → �n

4.3 The Algorithm for the RBT Method

The procedure to distort the attributes of a data matrix has essentially 2 major
steps, as follows:

Step 1. Selecting the attribute pairs: We select k pairs of attributes Ai

and Aj in D, where i �= j. If the number of attributes n in D is even, then
k = n/2. Otherwise, k = (n + 1)/2. The pairs are not selected sequentially.
A security administrator could select the pairs of attributes in any order of
his choice. If n is odd, the last attribute selected is distorted along with any
other attribute already distorted. We could try all the possible combinations
of attribute pairs to maximize the variance between the original and the dis-
torted attributes. However, given that we ditort normalized attributes, the
variance of any attribute pairs tends to lie in the same range. We illustrate
this idea in our example presented in Section 5.1.

Step 2. Distorting the attribute pairs: The pairs of attributes selected pre-
viously are distorted as follows:



– (a) Computing the distorted attribute pairs as a function of θ: We com-
pute V (A′

i, A
′
j) = R × V (Ai, Aj) as a function of θ, where R is the

rotation matrix, defined in Equation (1).
– (b) Meeting the pairwise-security threshold: We derive two inequations

for each attribute pair based on the constraints: V ariance(Ai−A′
i) ≥ ρ1

and V ariance(Aj −A′
j) ≥ ρ2, with ρ1 > 0 and ρ2 > 0.

– (c) Choosing the proper value for θ: Based on the inequations found
previously, we identify a range for θ that satisfies the pairwise-security
threshold PST (ρ1, ρ2). We refer to such a range as security range. Then,
we randomly select a real number in this range and assign it to θ.

– (d) Outputting the distorted attribute pairs: Given that θ is already de-
termined, we now recompute the substep (a), i.e., V (A′

i, A
′
j) = R ×

V (Ai, Aj), and output the distorted attribute pairs.

Each inequation in substep (b) is solved by computing the variance of the matrix
subtraction [Ai − A′

i]. In [5], it is shown that the sample variance of N values
x1, x2, ..., xN is calculated by:

V ar(x1, x2, ..., xN ) =
1
N
×

N∑
i=1

(xi − x)2 (8)

where x is the arithmetic mean of the values x1, x2, ..., xN .
The inputs for the RBT algorithm are a normalized data matrix D and a

set of k pairwise-security thresholds Tk. We assume that there are k pairs of
attributes to be distorted. The output is the transformed data matrix D′ which
is shared for clustering analysis. The sketch of the RBT algorithm is given as
follows:

RBT Algorithm
Input: Dm×n, Tk

Output: D′
m×n

1. k ← 	n/2

2. Pk ← k Pairs(Ai, Aj) in D such that 1 ≤ i, j ≤ n and i �= j
3. For each selected pair Pk in Pairs(D) do

3.1 V (A′
i, A

′
j)← Rθ × V (Ai, Aj) //V is computed as a function of θ

3.2 Compute(V ar(Ai −A′
i) ≥ ρ1, V ar(Aj −A′

j) ≥ ρ2)
3.3 θk ← SecurityRange(V ar(Ai −A′

i) ≥ ρ1, V ar(Aj −A′
j) ≥ ρ2)

3.4 V (A′
i, A

′
j)← Rθk

× V (Ai, Aj) //Output the distorted attributes of D′

End for
End Algorithm

Theorem 1. The running time of the RBT Algorithm is O(m×n), where m is
the number of objects and n is the number of attributes in a data matrix D.

Proof. Let D be a data matrix composed of m rows (objects) and n numerical
attributes, and k the number of attribute pairs in D to be distorted.



Line 1 is a straightforward computation that takes O(1). In line 2, the algo-
rithm does not select all the possible combinations of pairs. The selection of the
attribute pairs is performed by simply grouping the attributes in pairs but not
sequentially. In general, this computation takes n/2 when n is even and (n+1)/2
when n is odd. Thus, the running time for Step 1 (lines 1 and 2) is O(n).

The matrix product in line 3.1 takes 2 × 2 ×m. When m is large, line 3.1
takes O(m). Line 3.2 encompasses two vector subtractions, each one taking m×
1, resulting in 2 × m iterations. After computing the vector subtractions, we
compute the variance of these vectors. We scan both vectors once to compute
their mean since they have the same order. Then we scan these vectors again to
compute their variance. Each scan takes m×1. Thus, line 3.2 takes 2×m+2×m.
Therefore, the running time of line 3.2 is O(m). Line 3.3 is a straightforward
computation that takes O(1) since one value for θ is selected randomly. Line 3.4
is similar to line 3.1 and takes O(m). Recall that the whole loop is performed
at most n times. Thus, the running time for line 3 is O(n × (m + m + 1 + m)),
which can be simplified to O(n ×m).

The running time of the RBT algorithm is the sum of running times for each
step, i.e, O(n + n×m). When m is large, n×m grows faster than n. Thus, the
running time of the RBT algorithm takes O(m× n). �

5 RBT Method: Accuracy versus Security

In this Section, we analyze some issues of accuracy, security, and privacy per-
tained to the RBT method.

5.1 RBT Method: Accuracy

We illustrate the accuracy of the RBT method through one example. Then we
show analytically that the accuracy of our method is independent of the database
size.

Let us consider the sample relational database in Table 1 and the correspond-
ing normalized database in Table 2, using Equation (4). This sample contains
real data of the Cardiac Arrhythmia Database available at the UCI Repository
of Machine Learning Databases [2]. We purposely selected only three numerical
attributes of this database: age, weight, and heart rate (number of heart beats
per minute).

First, we select the pairs of attributes to distort. Let us assume that the
pairs selected are: pair1 = [age; heart rate], and pair2 = [weight, age]. Then,
we set a pairwise-security threshold for each pair of attributes selected: PST1 =
(0.30, 0.55) and PST2 = (2.30, 2.30).

After setting the pairwise-security thresholds, we start the transformation
process for the first attribute pair by computing V ′(age′, heart rate′) = R ×
V (age, heart rate):



ID age weight heart rate
1237 75 80 63
3420 56 64 53
2543 40 52 70
4461 28 58 76
2863 44 90 68
Table 1. A sample of the car-
diac arrhythmia database.

ID age weight heart rate
1237 1.4809 0.7095 -0.3476
3420 0.4151 -0.3041 -1.5061
2543 -0.4824 -1.0642 0.4634
4461 -1.1556 -0.6841 1.1586
2863 -0.2580 1.3430 0.2317
Table 2. The corresponding
normalized database.

V ′ =
[

cos θ sin θ
−sin θ cos θ

]
×

[
1.4809 0.4151 −0.4824 −1.1556 −0.2580
−0.3476 −1.5061 0.4634 1.1586 0.2317

]
(9)

Note that the vector V ′(age′, heart rate′) is computed as a function of θ.
Therefore, the following constraints are function of θ as well.

– V ariance(age− age′) ≥ 0.30
– V ariance(heart rate− heart rate′) ≥ 0.55

Recall that the values for age and heart rate are available in the normal-
ized data matrix in Table 2. Our goal is to find the proper angle θ to ro-
tate the attributes age and heart rate satisfying the above constraints. The
rotated attributes are age′ and heart rate′. To accomplish that, we plot the
above inequations and identify the security range, as can be seen in Figure 2.
In this Figure, there are two lines representing the pairwise-security thresh-
old PST1 = (0.30, 0.55). We identify the security range for θ that satisfies
both thresholds at the same time. As can be seen, this interval ranges from
48.03 to 314.97 degrees. Then we randomly choose one angle θ in this interval,
say θ = 312.47. For this choice, the values of V ariance(age − age′) = 0.318
and V ariance(heart rate − heart rate′) = 0.9805, which satisfies the pairwise-
security threshold PST1 = (0.30, 0.55).

After distorting the attributes age and heart rate, we now repeat the steps
performed previously to distort the attributes weight and age. We combine weight
with age because we need exactly two attributes to be distorted at a time. We
could combine weight with heart rate as well. The values of the attribute age
have been distorted in the previous steps.

We plot the inequations and identify the security range, as can be seen in
Figure 3. This interval ranges from 118.74 to 258.70 degrees. Then we randomly
choose one angle θ in this interval, say θ = 147.29. For this choice, the values
of V ariance(weight − weight′) = 2.9714 and V ariance(age − age′) = 6.9274,
which satisfies the pairwise-security threshold PST2 = (2.30, 2.30).

The cardiac arrhythmia database after transformation is showed in Table 3,
while Table 4 shows the dissimilarity matrix corresponding to Table 3.
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Fig. 2. The security range for V ar(age−age′) and V ar(heart rate−heart rate′).

ID age weight heart rate
1237 -1.4405 0.0819 0.8577
3420 -1.0063 1.0077 -0.7108
2543 1.1368 0.5347 -0.0429
4461 1.7453 -0.3078 -0.0701
2863 -0.4353 -1.3165 -0.0339
Table 3. The cardiac arrhythmia
database after transformation.




0
1.8723 0
2.7674 2.2940 0
3.3409 3.1164 1.0396 0
1.9393 2.4872 2.4287 2.4029 0




Table 4. The dissimilarity matrix
corresponding to Table 3.

Here we highlight an interesting outcome yielded by our method: the dissim-
ilarity matrix corresponding to the normalized database in Table 2 is exactly
the dissimilarity matrix in Table 4. This result suggests that RBT method is
one isometry in the n-dimensional space, independent of the database size to be
transformed:

Theorem 2. The RBT method is one isometric transformation in the n-dimensional
space.

Proof. By using the concept of distance between objects.
Let Dm×n be a data matrix where m is the number of objects and n is the num-
ber of attributes. Without loss of generality, the rotation of any two attributes
Ai and Aj in D, where i �= j, will maintain the distance between the m objects
invariant. The preservation of such distances is assured because rotations are
isometric transformations [4, 8]. Applying the RBT method to D will result in
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Fig. 3. The security range for V ar(weight− weight′) and V ar(age− age′).

a transformed data matrix D′ where all the attributes in D′ are transformed by
successive rotations of an attribute pair at a time. Hence, the RBT method is
one isometric transformation in the n-dimensional space. �

A natural consequence of Theorem 2 is that our transformation method is
independent of the clustering algorithm. After applying the RBT method to a
data matrix D, the clusters mined from the released data matrix D′ will be
exactly the same as those mined in D, given the same clustering algorithm:

Corollary 1. Given a data matrix D and a transformed data matrix D′ by using
the RBT method, the clusters mined from D and D′ are exactly the same for
any clustering algorithm.

Proof. By using the concept of dissimilarity matrix.
From Theorem 2 we know that the distances between the objects in a data matrix
D is exactly the same as the distances between the corresponding objects in
the transformed data matrix D′. Hence, applying any distance-based clustering
algorithm to D and D′ will result in the same clusters. �

5.2 RBT Method: Computational Security

Unlike methods in cryptography that requires formal proof of security, the com-
putational security of RBT is based on the amount of computational work re-
quired to reverse the transformation process. A brute force attack would require
a great deal of computational power to get the original data.



In general, the computational security of RBT is a function which depends
on the following factors:

– The selection of attribute pairs: the combination of the attribute pairs is ex-
tremely important since each attribute pair will lead to a particular security
range.

– The order of attribute pairs: the order of an attribute in a pair gives the
direction of the vectors representing data objects in the n-dimensional space.

– The selection of pairwise-security thresholds: the lower the pairwise-security
threshold selected by a security administrator the broader the security range.

– The selection of the angle θ: the angle θ for each attribute pair is selected
randomly in a continuous interval (the security range).

In our previous example, the security range for the attribute pairs would
be completely different if we had selected the pairs as follows: pair1 = [weight;
heart rate], and pair2 = [heart rate, age]. In addition, the order of the attributes
in an attribute pair will indicate the direction of the rotation in the space.
Clearly, the computational difficulty becomes progressively harder as the number
of attributes in a database increases. Apart from that, it is not trivial for an
attacker to guess the angle θ for a particular attribute pair since the security
range is a continuous interval. Note that the angles selected in our previous
example are real numbers.

Based on the four factors above, RBT can be seen as a technique on the bor-
der with obfuscation. Obfuscation techniques aim at making information highly
illegible without actually changing its inner meaning [3]. In other words, using
RBT the original data is transformed so that the transformed data captures
all the information for clustering analysis while protecting the underlying data
values.

Now we show the security of our method against attacks. We know that the
variances of the attributes in a database are equal to 1 after normalization, using
Equation (4). For instance, the variances of the attributes in Table 2 are [1.000;
1.000; 1.000]. On the contrary, the variances of the distorted database in Table 3
are [1.9039; 0.7840; 0.3122]. Note that although the variances of the attributes in
Table 2 and Table 3 are different, we know that their dissimilarity matrices are
exactly the same, as showed in Section 5.1. Even that an attacker who has access
to the perturbed data also has access to the variances of the original data (nor-
malized), this attacker cannot reverse the transformation process. The reason is
that the variances of the original data (normalized) and the variances of the dis-
torted data are completely different. On the other hand, if this attacker tries to
normalize the data in Table 3 trying to reverse the transformation process, the
distances between the objects will be changed as can be seen in the dissimilarity
matrix in Table 5. In this case, the data normalized after the distortion process
would be useless and the attempt to reverse the transformation process would
be frustrated.






0
3.0121 0
2.5196 2.0314 0
2.8778 2.7384 1.0499 0
2.3604 2.9205 2.3811 1.9492 0




Table 5. The dissimilarity matrix
corresponding to Table 3 after nor-
malization.




0
1.8723 0
2.7674 2.2940 0
3.3409 3.1164 1.0396 0
1.9393 2.4872 2.4287 2.4029 0




Table 6. A copy of the dissimilar-
ity matrix corresponding to Table 3
without normalization.

5.3 RBT Method: The Privacy Preservation Process

The process of protecting privacy of objects through the RBT method is accom-
plished in three major steps as follows:

Step 1: Data Obscuring. First, we try to obscure the raw data by normaliza-
tion. Clearly, normalization is not secure at all, even though it is one way to
obfuscate attribute values subjected to clustering. On the other hand, data
normalization brings two important benefits to PPC: a) it gives an equal
weight to all attributes; and most importantly b) it makes difficult the re-
identification of objects with other datasets since in general public data are
not normalized.

Step 2: Data Anonymization. We could also anonymize the released database
by removing identifiers from the distorted data. For example, the attribute
ID in Table 3 could be suppressed from the data. In doing so, the privacy of
individuals would be enhanced.

Step 3: Data Distortion. Disguising the data by normalization and by anony-
mization is not enough. So we distort attribute values by rotating two at-
tributes at a time. Note that RBT follows the security requirements of tradi-
tional methods for data distortion. The fundamental basis of such methods
is that the security provided after data perturbation is measured as the vari-
ance between the actual and the perturbed values. RBT is more flexible than
the traditional methods in the sense that a security administrator can impose
a security threshold for each attribute pair before the distortion process.

6 Conclusions

In this paper, we have introduced a novel spatial data transformation method for
Privacy-Preserving Clustering, called Rotation-Based Transformation (RBT).
Our method was designed to protect the underlying attribute values subjected
to clustering without jeopardizing the similarity between data objects under
analysis. Releasing a database transformed by RBT, a database owner meets
privacy requirements and guarantees valid clustering results. The data shared
after the transformation to preserve privacy do not need to be normalized again.



RBT can be seen as a technique on the border with obfuscation since the
transformation process makes the original data difficult to perceive or under-
stand, and preserves all the information for clustering analysis.

The highlights of our method are as follows: a) it is independent of any clus-
tering algorithm, which represents a significant improvement over the existing
methods in the literature; b) it has a sound mathematical foundation; c) it is
efficient, accurate and provides security safeguard to protect privacy of individ-
uals; and d) it does not rely on intractability hypotheses from algebra and does
not require CPU-intensive operations.
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