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Summary. Clustering is the problem of grouping data based on similarity. While
this problem has attracted the attention of many researchers for many years, we
are witnessing a resurgence of interest in new clustering techniques. In this paper
we discuss some very recent clustering approaches and recount our experience with
some of these algorithms. We also present the problem of clustering in the presence
of constraints and discuss the issue of clustering validation.

1 Introduction

Cluster analysis is the automatic identification of groups of similar objects.
This analysis is achieved by maximizing inter-group similarity and minimizing
intra-group similarity. Clustering is an unsupervised classification process
that is fundamental to data mining. Many data mining queries are concerned
either with how the data objects are grouped or which objects could be
considered remote from natural groupings. There have been many works on
cluster analysis, but we are now witnessing a significant resurgence of interest
in new clustering techniques. Scalability and high dimensionality are not the
only focus of the recent research in clustering analysis. Indeed, it is getting
difficult to keep track of all the new clustering strategies, their advantages
and shortcomings. The following are the typical requirements for a good
clustering technique in data mining [10]:
• Scalability: The cluster method should be applicable to huge databases

and performance should decrease linearly with data size increase.
• Versatility: Clustering objects could be of different types - numerical

data, boolean data or categorical data. Ideally a clustering method should
be suitable for all different types of data objects.

• Ability to discover clusters with different shapes: This is an impor-
tant requirement for spatial data clustering. Many clustering algorithms
can only discover clusters with spherical shapes.

• Minimal input parameter: The method should require a minimum
amount of domain knowledge for correct clustering. However, most cur-
rent clustering algorithms have several key parameters and they are thus
not practical for use in real world applications.

• Robust with regard to noise: This is important because noise exists
everywhere in practical problems. A good clustering algorithm should be
able to perform successfully even in the presence of a great deal of noise.
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• Insensitive to the data input order: The clustering method should
give consistent results irrespective of the order the data is presented.

• Scaleable to high dimensionality: The ability to handle high dimen-
sionality is very challenging but real data sets are often multidimensional.

Historically, there is no single algorithm that can fully satisfy all the
above requirements. It is important to understand the characteristics of each
algorithm so the proper algorithm can be selected for the clustering problem
at hand. Recently, there are several new clustering techniques offering useful
advances, possibly even complete solutions.

In the next section, we attempt to put various approaches to clustering in
perspective and group them by their fundamental approach. We present their
basic concepts and principles. In Section 3, we discuss clustering techniques
for spatial data in the presence of physical constraints. Finally, in Section 4,
we conclude and discuss methods for validating cluster quality.

2 Taxonomy on Clustering Techniques

There exist a large number of clustering algorithms. Generally speaking, these
clustering algorithms can be clustered into four groups: partitioning methods,
hierarchical methods, density-based methods and grid-based methods. This
section gives a taxonomy analysis and an experimental study of representa-
tive methods in each group. In order to examine the clustering ability of clus-
tering algorithms, we performed experimental evaluation upon k-means [12],
CURE [21], ROCK [8], DBSCAN [2], CHAMELEON [14], WaveCluster [24] and
CLIQUE [1]. The DBSCAN code came from its authors while CURE and ROCK

codes were kindly supplied by the Department of Computer Science and En-
gineering, University of Minnesota. k-means, CHAMELEON, WaveCluster,
and CLIQUE programs were locally implemented. We evaluate these algo-
rithms by using two dimensional spatial data sets referenced and used in the
CHAMELEON paper [14] and data sets referenced and used in the WaveClus-
ter paper [24]. The reason for using two dimensional spatial data is because
we can visually evaluate the quality of the clustering result. Often people can
intuitively identify clusters on two dimensional spatial data, while this is usu-
ally very difficult for high dimensional data sets. We show the experimental
results of each algorithm on the t7 data set from the CHAMELEON paper as
shown in Figure 1. This data set is a good test because it has various cluster
shapes including clusters within clusters and a great deal of noise.

2.1 Partitioning methods

Suppose there are n objects in the original data set, partitioning methods
break the original data set into k partitions. The basic idea of partitioning
is very intuitive, and the process of partitioning is typically to achieve cer-
tain optimal criterion iteratively. The most classical and popular partitioning
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methods are k-means [12] and k-medoid [16], where each cluster is represented
by the gravity centre of the cluster in k-means method or by one of the “cen-
tral” objects of the cluster in k-medoid method. Once cluster representatives
are selected, data points are assigned to these representatives, and iteratively,
new better representatives are selected and points reassigned until no change
is made. CLARANS [20] is an improved k-medoid algorithm. Another exten-
sion of k-means is the k-modes method [11], which is specially designed for
clustering categorical data. Instead of a “mean” in k-means, k-modes defined
a “mode” for each cluster. A new development on the standard k-means al-
gorithm is bisecting k-means [26]. Starting with all data points in one cluster,
the algorithm proceeds by selecting the largest cluster and splitting it into
two using basic k-means. This iterates until the desired number of clusters k
is reached. By the nature of the algorithm, bisecting k-means tends to pro-
duce clusters of similar sizes unlike k-means, which tends to result in lower
entropy as large clusters will often have higher entropy.

All the partitioning methods have a similar clustering quality and the
major dificulties with these methods include: (1) The number k of clusters
to be found needs to be known prior to clustering requiring at least some
domain knowledge which is often not available; (2) it is dificult to identify
clusters with large variations in sizes (large genuine clusters tend to be split);
(3) the method is only suitable for concave spherical clusters.

Because partitioning algorithms have similar clustering results, we only
implemented k-means. K-mean’s result on t7 is shown in Figure 1 (A). From
here we see k-means tends indeed to find spherical clusters, and is unable
to find arbitrary shaped clusters. This is actually a general problem for all
the partition methods because they use only one gravity centre to represent
a cluster, and clustering of all the other points are decided by their relative
closeness to the gravity centres of clusters.

2.2 Hierarchical Methods

A hierarchical clustering algorithm produces a dendogram representing the
nested grouping relationship among objects. If the clustering hierarchy is
formed from bottom up, at the start each data object is a cluster by itself,
then small clusters are merged into bigger clusters at each level of the hier-
archy until at the top of the hierarchy all the data objects are in one cluster.
This kind of hierarchical method is called agglomerative. The inverse process
is called divisive hierarchical clustering. There are many new hierarchical
algorithms that have appeared in the past few years. The major difference
between all these hierarchical algorithms is how to measure the similarity
between each pair of clusters.

BIRCH [33] introduced the concept of clustering features and the CF-
tree. It first partitions objects hierarchically using the CF-tree structure. This
CF-tree is used as a summarized hierarchical data structure which compresses
data while trying to preserve the inherent clustering structure. After the
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Fig. 1. Clustering results on t7.10k.dat. (A): k-means with k=9; (B): CURE with
k=9, α=0.3, and 10 representative points per cluster; (C): ROCK with θ=0.975 and
k=1000; (D): CHAMELEON with k-NN=10, MinSize=2.5%, and k=9; (E): DB-
SCAN with ε=5.9 and MinPts=4; (F): DBSCAN with ε=5.5 and MinPts=4; (G):
WaveCluster with resolution=5 and τ=1.5; (H): WaveCluster with resolution=5
and τ=1.999397.
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Fig. 2. Clustering results on t7.10k.dat. (A): CLIQUE with threshold = 0.18 and
resolution = 20 ; (B): TURN* (no parameters needed).

building of the CF-tree, any clustering algorithm can be applied to the leaf
nodes. BIRCH is particularly suitable for large data sets, however, it does
not perform well if the clusters are not spherical in shape or there are big
differences among cluster sizes.

CURE: Instead of using a single point to represent a cluster in cen-
troid/medoid based methods, CURE [21] uses a set of points. This constant
number of representative points of each cluster are selected so that they are
well scattered and then shrunk towards the centroid of the cluster according
to a shrinking factor. Interatively, clusters are merged based on their similar-
ity. The similarity between two clusters is measured by the similarity of the
closest pair of the representative points belonging to different clusters. With
proper parameter selection, CURE partly remedies the problem of favouring
clusters with spherical shape and similar sizes, and sensitivity to outliers.
However, CURE’s result are very sensitive to how the representative points
are selected and the shrinking factor α. If α is large, CURE behaves like k-
means, when small, CURE is sensitive to outliers. Through experiments we
found that CURE has similar problems as k-means on complex data sets. In
particular, it cannot find elongated clusters (Figure 1(B)).

ROCK [8] operates on a derived similarity graph, so it is not only suit-
able for numerical data, but also applicable for categorical data. Instead of
using distance to measure similarity between data points, the concept of links
is used. The basic idea is that data points are similar if they have enough
common neighbours (i.e. links). The concept of links uses more global infor-
mation of the cluster space compared with the distance similarity measure
which only considers local distance between two points.

The problem of ROCK is that it is not successful in normalizing cluster
links: it uses a fixed global parameter to normalize the total number of links.
This fixed parameter actually reflects a fixed modeling of clusters, and it
is not suitable for clusters with various densities. ROCK’s clustering result
is not good for complex clusters with various data densities. Also, it is very
sensitive to the selection of parameters and sensitive to noise. After adjusting
parameters for a long time, the best clustering result on t7 we could find is
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illustrated in Figure 1(C). Notice that we set the number of clusters to be
1000, then among the resulting 1000 clusters, we got 5 big clusters, all the
other 995 are just noise. This is because ROCK does not collect noise in its
clustering process. For this data set, if we set cluster number to be 9, then
most of the points, 9985 points, are in one cluster, and the other 15 points
exists in the 8 noise clusters.

CHAMELEON [14] performs clustering through dynamic modeling:
two clusters are merged only if the inter-connectivity and closeness between
two clusters are comparable to the internal inter-connectivity and closeness
within the clusters. CHAMELEON also operates on a derived similarity graph,
so that this algorithm can be applied to both numerical data and categori-
cal data. It operates on a sparse graph in which nodes represent data items,
and weighted edges represent similarities among the data items. The sparse
graph is formed by keeping k-nearest neighbour of each node. A graph parti-
tioning method it used to pre-cluster objects in the sparse graph into a set of
small clusters. These small clusters are then merged based on their relative
interconnectivity and relative closeness. CHAMELEON has been found to be
very effective in clustering, but has significant shortcomings: it cannot handle
outliers and has too many parameters such as the number of nearest neigh-
bours in the sparse graph, MINSIZE the stopping condition for the graph
partitionning and α for adjusting relative closeness. CHAMELEON’s result
on the data set t7 is shown in Figure 1(D). Note that all the noise points are
included inside neighbouring clusters.

The common disadvantage of hierarchical clustering algorithms is setting
a termination condition which requires some domain knowledge for param-
eter setting. The problem of parameter setting makes them less useful for
real world applications. Also typically, hierarchical clustering algorithms have
high computational complexity.

2.3 Density-based Methods

The advantages of density-based methods are that they can discover clusters
with arbitrary shapes and they do not need to preset the number of clusters.

DBSCAN [2] connects regions with sufficient high density into clusters.
Each cluster is a maximum set of density-connected points. Points not con-
nected are considered outliers. For each object of a cluster, the neighbour-
hood of a given radius (ε) has to contain at least a minimum number of points
(MinPts). Methaphorically, it is like moving a flashlight of radius ε across
the data set and connecting data points as long as MinPts points are seen.
This is the notion of density-reachability, and it is repeated until all points
are labelled. In practice it works very well in spatial clustering. DBSCAN is
very sensitive to the selection of ε and MinPts and cannot identify clusters
efficiently when cluster density varies considerably. When we apply DBSCAN

to the data set t7, it gives very good results as illustrated in Figure 1(E).
However, if we slightly change ε from 5.9 to 5.5, it gives bad results (see
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Figure 1(F)). If we increase ε, the noise creates bridges that cause genuine
clusters to merge.

By the same authors, OPTICS [18] is an extension to DBSCAN. Instead
of producing one set of clustering results with one pre-setting radius (ε),
OPTICS produces an augmented ordering of the database representing its
density-based clustering structure. This cluster-ordering actually contains the
information about every clustering level of the data set. Restrictions of OP-
TICS are that it is still more suitable for numerical data, and also the user
still needs to set one parameter, MinPts.

TURN* [6] consists of an overall algorithm and two component algo-
rithms, one, an efficient resolution dependent clustering algorithm TURN-RES

which returns both a clustering result and certain global statistics (cluster
features) from that result and two, TurnCut, an automatic method for find-
ing the important or “optimum” resolutions from a set of resolution results
from TURN-RES. TurnCut uses the core of the TURN algorithm [5] to detect
a change in the third differential of a series to identify important areas in a
cluster feature across resolution series built by repeated calls to TURN-RES

by the TURN* algorithm. This change is the “turning” point in the over-
all trend of the curve - acceleration or reversal of the rate of change of the
clustering feature studied. This is very similar to the concept of finding the
“knee” in the cluster feature graph [17] used for cluster validation. Unlike
other approaches such as grid-based clustering, a resolution is simply a scale
by which all data point values are multiplied, thus all data points are used in
the process. At a given resolution, TURN-RES computes how tightly packed
the points are around each point and marks points with a high value as “in-
ternal”. At the same time, those neighbours of each point that are “close”
are also marked. These definitions are resolution dependent. Clustering in-
volves combining all close neighbours to an internal point into its cluster,
and iterating for all of those points that are internal. Applied to the data set
t7, TURN* gives very good results without the need of inputting parameters.
Results are illustrated in Figure 2(B).

2.4 Grid-based Methods

Grid-based methods first quantize the clustering space into a finite number of
cells, and then perform clustering on the gridded cells. The main advantage
of grid-based methods is that their speed only depends on the resolution of
griding, but not on the size of the data set. Grid-based methods are more
suitable for high density data sets with a huge number of data objects in
limited space.

WaveCluster [24] is a novel clustering approach based on wavelet trans-
forms. WaveCluster first summarizes the data by applying a multi-resolution
grid structure on the data space, then the original two-dimensional data
space is considered as two-dimensional signals and signal processing tech-
niques, wavelet transforms, are applied to convert the spatial data into the



8 Osmar R. Zäıane et al.

frequency domain. After wavelet transform, the natural clusters in the data
become distinguishable in a transformed frequency space. Dense regions, i.e.
clusters, are easily captured in the frequency domain. The process of cluster-
ing is reduced to finding connected strong signal components in the low pass
digital filter along the horizontal and vertical dimensions. Because Wavelet
transforms can filter out noise points, clustering in this fequency domain is
usually much simpler than clustering in the original 2-dimensional space. In
the process of WaveCluster, there are two main parameters to be selected:
one is the grid resolution; the other one is the signal threshold τ for deciding
whether a cell is a significant cell in the low pass digital filter of both dimen-
sions. WaveCluster’s clustering result on t7 is shown in Figure 1(G). Notice
that WaveCluster can not separate the two clusters connected by a “bridge”.
This is because in the convolved and down-sampled image with the low pass
filter, the bridge connecting the two clusters is still very a strong signal. To
separate the two clusters, other genuine clusters have to be separated as well.
Figure 1(H) shows another cluster result of WaveCluster by adjusting signal
threshold τ . Now it separates the bridge-connected clusters but breaks other
genuine clusters.

CLIQUE [1] is specifically designed for finding subspace clusters in sparce
high dimensional data. CLIQUE’s clustering process starts with the lower
dimensional space. When clustering for the k-dimensional space, CLIQUE

makes use of information of the (k-1)-dimension which is already available.
For instance, potentially dence cells of the grid in the 2-dimensional space
are identified by dense regions in the 1-dimentional space. All other cells are
simply disregarded. This is similar to the a-priori principle used in mining
frequent itemsets for association rules. CLIQUE is, however, unsuitable for
very noisy or dense spaces. CLIQUE’s clustering result on t7 is shown in Figure
2(A). CLIQUE is not ideal for clustering 2-dimensional data. Its sensitivity to
noise makes it merge genuine clusters at high resolution and disregard edge
points when the resolution is not high enough.

3 Clustering spatial data in presence of constraints

So far we have seen algorithms that focus on the efficiency and effectiveness
of clustering data. However, none of the algorithms consider possible con-
straints to the clustering. Examples of this are: (1) Constraints on individual
objects; (2) obstacle objects as constraints; (3) clustering parameters as “con-
straints”; and (4) contraints imposed on each individual cluster [29]. In spatial
data in particular, where data clustering has many applications in geograhic
information systems, there are physical constaints such as obstacles (rivers,
highways, mountain ranges, etc.) and crossings (bridges, pedways, etc.) that
can hinder or signicantly alter the clustering process.
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3.1 Constraint-based Clustering

In this section we present three algorithms recently devised that deal with
clustering spatial data in the presence of physical constraints: COD-CLARANS

[28], AUTOCLUST+ [3] and DBCluC [32].
COD-CLARANS [28] has been derived from CLARANS [20], a variant

of the k-medoids approach. COD-CLARANS takes into account the obstacles
by integrating an optimization scheme into the distance-error function in the
course of the CLARANS algorithm. Obstacles are modeled with a visibility
graph VG = (V, E) such that each vertex of the obstacle has a corresponding
node in V , and two nodes v1 and v2 in V are connected by an edge in E if and
only if the corresponding vertices they represent are visible to each other. The
visibility graph is pre-procossesed in order to compute the obstructed distance
between two data objects in a given planar space. The obstructed distance
is a detoured distance between two data objects with consideration of the
visibility graph. Once the visibility graph is constructed, Micro-clustering
is applied as pre-processing to group some data points from presumably a
same cluster in order to minimize the number of data points to consider dur-
ing COD-CLARANS clustering and fit the data set into main memory. Along
with using the CLARANS clustering algorithm, COD-CLARANS uses a prun-
ing function to reduce the search space by minimizing distance errors when
selecting cluster representatives. Unfortunately, COD-CLARANS inherits the
problems from CLARANS, a partitioning clustering method. It is sensitive to
noise and assumes significant pre-processing of the data space to deal with
the obstacles.

AUTOCLUST+ [3] is based on an extension to the clustering algorithm
AUTOCLUST [4], a graph partitioning algorithm. The algorithm uses a De-
launay Diagram where all data points are represented and linked by edges
based on mean and standard deviations of distances between points. Points
linked by short edges, indicating closness, are clustered together. Other edges
represent relations between clusters, and between clusters and noise. AUTO-

CLUST proceeds by eliminating edges from the graph to isolate data points
that form clusters. In AUTOCLUST+, an obstacle is modeled by a set of line
segments obstructing the edges from the Delaunay Diagram. AUTOCLUST+
then removes the edges from the Delaunay Diagram if they are impeded by a
line segment from an obstacle. A removed edge is replaced by a detour path
defined as the shortest path between the two data objects.

However, reconstructing the diagram after the removal of edges eventually
degrades the performance of the algorithm since the algorithm needs to find
a detour path for every intersected line segment with the Delaunay diagram.

DBCluC [32] is a density-based algorithm derived from DBSCAN. It
discovers clusters of arbitrary shapes and isolates noise while considering
not only disconnectivity dictated by obstacles but also connectivity forced
by bridges. Obstacles and bridges are modeled by polygons where bridge-
polygons have special edges considered as entry points. The DBCluC algo-
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rithm extends the density reachability notion in DBSCAN to take into account
visibility spaces created by the polygon edges. To enhance the clustering per-
formance, polygons are reduced to a minimal set of obstruction lines that pre-
serve the integrity of the visibility spaces. These lines stop the propagation of
point neighbourhood in DBSCAN when they are from obstruction-polygons,
or extend the neighbourhood when they are bridge-polygons.

4 Conclusion: Clustering Validation

One of the main difficulties with clustering algorithms is that, after cluster-
ing, how can one assess the quality of the clusters returned? Many of the
popular clustering algorithms are known to perform poorly on many types
of data sets. In addition, virtually all current clustering algorithms require
their parameters to be tweaked for the best results, but this is impossible
if one cannot assess the quality of the output. While 2D spatial data allows
for assessment by visual inspection, the result is dependent on the resolu-
tion presented to the inspector and most clustering tasks are not 2D or even
spatial. One solution [22,13,15] is to reduce any output to a 2D spatial pre-
sentation. Other solutions are based on 1) external, 2) internal and 3) relative
criteria [17]. The External and Internal Criteria approaches use Monte Carlo
methods [27] to evaluate whether the clustering is significantly different from
chance.

In the External approach, the clustering result C can be compared to an
independent partition of the data P built according to our intuition of the
structure of the data set or the proximity matrix P is compared to P. The
Internal Criteria approach uses some quantities or features inherent in the
data set to evaluate the result. If the clustering is hierarchical, a matrix Pc,
representing the proximity level at which two vectors are found in the same
cluster for the first time, can be compared to P. This is repeated for many
synthetic data sets to determine significance. For non-hierarchical methods
a cluster membership matrix is compared to P using the same Monte Carlo
method to determine significance.

These methods are clearly very expensive in processing time and only tell
us that the clustering result is not pure chance. The Relative Criteria does not
involve statistical tests but attempts to evaluate among several results arising
from different parameter settings. The challenge is to characterize the cluster-
ing result in a way that tells us the quality of the clustering. Naturally, there
is a grey line between measures used by clustering algorithms to determine
where to join or split clusters and indices, e.g. [30,23,19,9], proposed to deter-
mine if that was good. Like many clustering algorithms, these indices suffer
from problems especially inability to handle non-spherical clusters. Another
approach computes several indices such as the Root-Mean-Square Standard
Deviation, a measure of homogeneity, and plots them against k [23]. What-
ever the index, having created a graph, this is inspected visually for either
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a minima/maxima or a “knee”, being the greatest jump of the index with a
change in k. There is, however, no rigorous way of ensuring that this “knee”
identifies the correct k. There are different indices defined for evaluating
fuzzy clustering, e.g. [7,30]. An evaluation [17] of a number of indices on data
that contained only concave but not always circular clusters, found different
indices were better on different data sets showing their shape-dependence.
In a few cases, Clustering Validation approaches have been integrated into
clustering algorithms giving a relatively automatic clustering process. Smyth
presented MCCV [25], the Monte Carlo Cross-Validation algorithm though
this is intended for data sets where a likelihood function such as Gaussian
mixture models can be defined. We have developed TURN [5] and TURN* [6]
which handle arbitrary shapes, noise, and very large data sets in a fast and
efficient way. TURN is intended for categorical data while TURN* is density
based for spatial data.

An extended version of this paper is available in [31].
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