
DBMiner: A System for Mining Knowledge in Large Relational
Databases�

Jiawei Han Yongjian Fu Wei Wang Jenny Chiang Wan Gong Krzysztof Koperski Deyi Li

Yijun Lu Amynmohamed Rajan Nebojsa Stefanovic Betty Xia Osmar R. Zaiane

Data Mining Research Group, Database Systems Research Laboratory
School of Computing Science, Simon Fraser University, British Columbia, Canada V5A 1S6

E-mail: fhan, yongjian, weiw, ychiang, wgong, koperski, dli, yijunl, arajan, nstefano, bxia, zaianeg@cs.sfu.ca

URL: http://db.cs.sfu.ca/ (for research group) http://db.cs.sfu.ca/DBMiner (for system)

Abstract

A data mining system, DBMiner, has been developed
for interactive mining of multiple-level knowledge in
large relational databases. The system implements
a wide spectrum of data mining functions, including
generalization, characterization, association, classi�-
cation, and prediction. By incorporating several in-
teresting data mining techniques, including attribute-
oriented induction, statistical analysis, progressive
deepening for mining multiple-level knowledge, and
meta-rule guided mining, the system provides a user-
friendly, interactive data mining environment with
good performance.

Introduction

With the upsurge of research and development activ-
ities on knowledge discovery in databases (Piatetsky-
Shapiro & Frawley 1991; Fayyad et al. 1996), a data
mining system, DBMiner, has been developed based on
our studies of data mining techniques, and our experi-
ence in the development of an early system prototype,
DBLearn. The system integrates data mining tech-
niques with database technologies, and discovers vari-
ous kinds of knowledge at multiple concept levels from
large relational databases e�ciently and e�ectively.

The system has the following distinct features:

1. It incorporates several interesting data mining tech-
niques, including attribute-oriented induction (Han,
Cai, & Cercone 1993; Han & Fu 1996), statistical
analysis, progressive deepening for mining multiple-
level rules (Han & Fu 1995; 1996), and meta-rule
guided knowledge mining (Fu & Han 1995). It also
implements a wide spectrum of data mining func-
tions including generalization, characterization, as-
sociation, classi�cation, and prediction.

�Research was supported in part by the grant NSERC-
OPG003723 from the Natural Sciences and Engineering Re-
search Council of Canada, the grant NCE:IRIS/Precarn-
HMI-5 from the Networks of Centres of Excellence of
Canada, and grants from B.C. Advanced Systems Institute,
MPR Teltech Ltd., and Hughes Research Laboratories.

2. It performs interactive data mining at multiple con-
cept levels on any user-speci�ed set of data in a
database using an SQL-like Data Mining Query
Language, DMQL, or a graphical user interface.
Users may interactively set and adjust various
thresholds, control a data mining process, perform
roll-up or drill-down at multiple concept levels, and
generate di�erent forms of outputs, including gen-
eralized relations, generalized feature tables, multi-
ple forms of generalized rules, visual presentation of
rules, charts, curves, etc.

3. E�cient implementation techniques have been ex-
plored using di�erent data structures, including
generalized relations and multiple-dimensional data
cubes. The implementations have been integrated
smoothly with relational database systems.

4. The data mining process may utilize user- or expert-
de�ned set-grouping or schema-level concept hierar-
chies which can be speci�ed exibly, adjusted dy-
namically based on data distribution, and generated
automatically for numerical attributes. Concept hi-
erarchies are being taken as an integrated compo-
nent of the system and are stored as a relation in
the database.

5. Both UNIX and PC (Windows/NT) versions of the
system adopt a client/server architecture. The latter
may communicate with various commercial database
systems for data mining using the ODBC technology.

The system has been tested on several large rela-
tional databases, including NSERC (Natural Science
and Engineering Research Council of Canada) research
grant information system, with satisfactory perfor-
mance. Additional data mining functionalities are be-
ing designed and will be added incrementally to the
system along with the progress of our research.

Architecture and Functionalities

The general architecture of DBMiner, shown in Fig-
ure 1, tightly integrates a relational database system,
such as a Sybase SQL server, with a concept hierar-
chy module, and a set of knowledge discovery mod-
ules. The discovery modules of DBMiner, shown in Fig-

SQL Server

Data Concept Hierarchy

Graphical User Interface

Discovery Modules

Figure 1: General architecture of DBMiner

DBMiner:

Future
Modules

Meta-rule
Guided Miner

Deviation
Evaluator

Evolution
Evaluator

Association
Rule Finder

Discovery Modules

Characterizer Discriminator Classifier

Predictor

Figure 2: Knowledge discovery modules of DBMiner

ure 2, include characterizer, discriminator, classi�er,
association rule �nder, meta-rule guided miner, pre-
dictor, evolution evaluator, deviation evaluator, and
some planned future modules.

The functionalities of the knowledge discovery mod-
ules are briey described as follows:

� The characterizer generalizes a set of task-relevant
data into a generalized relation which can then be
used for extraction of di�erent kinds of rules or be
viewed at multiple concept levels from di�erent an-
gles. In particular, it derives a set of characteristic
rules which summarizes the general characteristics of
a set of user-speci�ed data (called the target class).
For example, the symptoms of a speci�c disease can
be summarized by a characteristic rule.

� A discriminator discovers a set of discriminant rules
which summarize the features that distinguish the
class being examined (the target class) from other
classes (called contrasting classes). For example,
to distinguish one disease from others, a discrimi-
nant rule summarizes the symptoms that discrimi-
nate this disease from others.

� A classi�er analyzes a set of training data (i.e., a set
of objects whose class label is known) and constructs
a model for each class based on the features in the
data. A set of classi�cation rules is generated by such
a classi�cation process, which can be used to classify
future data and develop a better understanding of

each class in the database. For example, one may
classify diseases and provide the symptoms which
describe each class or subclass.

� An association rule �nder discovers a set of asso-
ciation rules (in the form of \A1 ^ � � � ^ Ai !

B1 ^ � � � ^ Bj") at multiple concept levels from the
relevant set(s) of data in a database. For example,
one may discover a set of symptoms often occurring
together with certain kinds of diseases and further
study the reasons behind them.

� Ameta-rule guided miner is a data miningmechanism
which takes a user-speci�ed meta-rule form, such as
\P (x; y) ^ Q(y; z) ! R(x; z)" as a pattern to con-
�ne the search for desired rules. For example, one
may specify the discovered rules to be in the form
of \major(s : student; x) ^ P (s; y) ! gpa(s; z)" in
order to �nd the relationships between a student's
major and his/her gpa in a university database.

� A predictor predicts the possible values of some miss-
ing data or the value distribution of certain at-
tributes in a set of objects. This involves �nding the
set of attributes relevant to the attribute of inter-
est (by some statistical analysis) and predicting the
value distribution based on the set of data similar to
the selected object(s). For example, an employee's
potential salary can be predicted based on the salary
distribution of similar employees in the company.

� A data evolution evaluator evaluates the data evolu-
tion regularities for certain objects whose behavior
changes over time. This may include characteriza-
tion, classi�cation, association, or clustering of time-
related data. For example, one may �nd the general
characteristics of the companies whose stock price
has gone up over 20% last year or evaluate the trend
or particular growth patterns of certain stocks.

� A deviation evaluator evaluates the deviation pat-
terns for a set of task-relevant data in the database.
For example, one may discover and evaluate a set of
stocks whose behavior deviates from the trend of the
majority of stocks during a certain period of time.

Another important function module of DBMiner is
concept hierarchy which provides essential background
knowledge for data generalization and multiple-level
data mining. Concept hierarchies can be speci�ed
based on the relationships among database attributes
(called schema-level hierarchy) or by set groupings
(called set-grouping hierarchy) and be stored in the
form of relations in the same database. Moreover,
they can be adjusted dynamically based on the dis-
tribution of the set of data relevant to the data mining
task. Also, hierarchies for numerical attributes can be
constructed automatically based on data distribution
analysis (Han & Fu 1994).

DMQL and Interactive Data Mining

DBMiner o�ers both an SQL-like data mining query
language, DMQL, and a graphical user interface for
interactive mining of multiple-level knowledge.

Example 1. To characterize CS grants in the
NSERC96 database related to discipline code and
amount category in terms of count% and amount%,
the query is expressed in DMQL as follows,

use NSERC96
�nd characteristic rules for \CS Discipline Grants"
from award A, grant type G
related to disc code, amount, count(*)%, amount(*)%
where A.grant code = G.grant code

and A.disc code = \Computer Science"

The query is processed as follows: The system
collects the relevant set of data by processing a
transformed relational query, generalizes the data by
attribute-oriented induction, and then presents the out-
puts in di�erent forms, including generalized relations,
generalized feature tables, multiple (including visual)
forms of generalized rules, pie/bar charts, curves, etc.

A user may interactively set and adjust various kinds
of thresholds to control the data mining process. For
example, one may adjust the generalization threshold
for an attribute to allow more or less distinct values in
this attribute. A user may also roll-up or drill-down
the generalized data at multiple concept levels. 2

A data mining query language such as DMQL fa-
cilitates the standardization of data mining functions,
systematic development of data mining systems, and
integration with standard relational database systems.
Various kinds of graphical user interfaces can be de-
veloped based on such a data mining query language.
Such interfaces have been implemented in DBMiner on
three platforms: Windows/NT, UNIX, and Netscape.
A graphical user interface facilitates interactive speci-
�cation and modi�cation of data mining queries, con-
cept hierarchies, and various kinds of thresholds, selec-
tion and change of output forms, roll-up or drill-down,
and dynamic control of a data mining process.

Implementation of DBMiner

Data structures: Generalized relation vs.
multi-dimensional data cube

Data generalization is a core function of DBMiner.
Two data structures, generalized relation, and multi-
dimensional data cube, can be considered in the imple-
mentation of data generalization.

A generalized relation is a relation which consists
of a set of (generalized) attributes (storing generalized
values of the corresponding attributes in the original
relation) and a set of \aggregate" (measure) attributes
(storing the values resulted from executing aggregate
functions, such as count, sum, etc.), and in which each

60k-

Theory

Hardware

Software Eng.

Databases

AI

B.C. Ontario Quebec

0-20k
20-40k

40-60k

Comp_method

Prairies Maritime

Amount

Discipline_code

Province

Figure 3: A multi-dimensional data cube

tuple is the result of generalization of a set of tuples
in the original data relation. For example, a general-
ized relation award may store a set of tuples, such as
\award(AI; 20 40k; 37; 835900)", which represents the
generalized data for discipline code is \AI", the amount
category is \20 40k", and such kind of data takes 37
in count and $835,900 in (total) amount.

Amulti-dimensional data cubeis a multi-dimensional
array structure, as shown in Figure 3, in which each
dimension represents a generalized attribute and each
cell stores the value of some aggregate attribute, such
as count, sum, etc. For example, a multi-dimensional
data cube award may have two dimensions: \disci-
pline code" and \amount category". The value \AI"
in the \discipline code" dimension and \20-40k" in the
\amount category" dimension locate the corresponding
values in the two aggregate attributes, count and sum,
in the cube. Then the values, count% and amount%,
can be derived easily.

In comparison with the generalized relation struc-
ture, a multi-dimensional data cube structure has the
following advantages: First, it may often save stor-
age space since only the measurement attribute values
need to be stored in the cube and the generalized (di-
mensional) attribute values will serve only as dimen-
sional indices to the cube; second, it leads to fast access
to particular cells (or slices) of the cube using index-
ing structures; third, it usually costs less to produce a
cube than a generalized relation in the process of gen-
eralization since the right cell in the cube can be lo-
cated easily. However, if a multi-dimensional data cube
structure is quite sparse, the storage space of a cube is
largely wasted, and the generalized relation structure
should be adopted to save the overall storage space.

Both data structures have been explored in the DB-
Miner implementations: the generalized relation struc-
ture is adopted in version 1.0, and a multi-dimensional
data cube structure in version 2.0. A more exible
implementation is to consider both structures, adopt
the multi-dimensional data cube structure when the
size of the data cube is reasonable, and switch to the

generalized relation structure (by dynamic allocation)
otherwise (this can be estimated based on the num-
ber of dimensions being considered, and the attribute
threshold of each dimension). Such an alternative will
be considered in our future implementation.

Besides designing good data structures, e�cient im-
plementation of each discovery module has been ex-
plored, as discussed below.

Multiple-level characterization

Data characterization summarizes and characterizes a
set of task-relevant data, usually based on generaliza-
tion. For mining multiple-level knowledge, progressive
deepening (drill-down) and progressive generalization
(roll-up) techniques can be applied.

Progressive generalization starts with a conservative
generalization process which �rst generalizes the data
to slightly higher concept levels than the primitive data
in the relation. Further generalizations can be per-
formed on it progressively by selecting appropriate at-
tributes for step-by-step generalization. Strong charac-
teristic rules can be discovered at multiple abstraction
levels by �ltering (based on the corresponding thresh-
olds at di�erent levels of generalization) generalized
tuples with weak support or weak con�dence in the
rule generation process.

Progressive deepening starts with a relatively high-
level generalized relation, selectively and progressively
specializes some of the generalized tuples or attributes
to lower abstraction levels.

Conceptually, a top-down, progressive deepening
process is preferable since it is natural to �rst �nd gen-
eral data characteristics at a high concept level and
then follow certain interesting paths to step down to
specialized cases. However, from the implementation
point of view, it is easier to perform generalization than
specialization because generalization replaces low level
tuples by high ones through ascension of a concept hi-
erarchy. Since generalized tuples do not register the
detailed original information, it is di�cult to get such
information back when specialization is required later.

Our technique which facilitates specializations on
generalized relations is to save a \minimally general-
ized relation/cube" in the early stage of generalization.
That is, each attribute in the relevant set of data is
generalized to minimally generalized concepts (which
can be done in one scan of the data relation) and then
identical tuples in such a generalized relation/cube are
merged together, which derives the minimally gener-
alized relation. After that, both progressive deepening
and interactive up-and-down can be performed with
reasonable e�ciency: If the data at the current ab-
straction level is to be further generalized, generaliza-
tion can be performed directly on it; on the other hand,
if it is to be specialized, the desired result can be de-
rived by generalizing the minimally generalized rela-

tion/cube to appropriate level(s).

Discovery of discriminant rules

The discriminator of DBMiner �nds a set of discrimi-
nant rules which distinguishes the general features of a
target class from that of contrasting class(es) speci�ed
by a user. It is implemented as follows.

First, the set of relevant data in the database has
been collected by query processing and is partitioned
respectively into a target class and one or a set of con-
trasting class(es). Second, attribute-oriented induction
is performed on the target class to extract a prime tar-
get relation/cube, where a prime target relation is a
generalized relation in which each attribute contains
no more than but close to the threshold value of the
corresponding attribute. Then the concepts in the con-
trasting class(es) are generalized to the same level as
those in the prime target relation/cube, forming the
prime contrasting relation/cube. Finally, the informa-
tion in these two classes is used to generate qualitative
or quantitative discriminant rules.

Moreover, interactive drill-down and roll-up can be
performed synchronously in both target class and con-
trasting class(es) in a similar way as that explained in
the last subsection (characterization). These functions
have been implemented in the discriminator.

Multiple-level association

Based on many studies on e�cient mining of associa-
tion rules (Agrawal & Srikant 1994; Srikant & Agrawal
1995; Han & Fu 1995), a multiple-level association rule
�nder has been implemented in DBMiner.

Di�erent from mining association rules in transac-
tion databases, a relational association rule miner may
�nd two kinds of associations: nested association and
at association, as illustrated in the following example.

Example 2. Suppose the \course taken" relation in
a university database has the following schema:

course taken = (student id; course; semester; grade):

Nested association is the association between a data
object and a set of attributes in a relation by view-
ing data in this set of attributes as a nested rela-
tion. For example, one may �nd the associations be-
tween students and their course performance by view-
ing \(course; semester; grade)" as a nested relation as-
sociated with student id.

Flat association is the association among di�er-
ent attributes in a relation without viewing any at-
tribute(s) as a nested relation. For example, one may
�nd the relationships between course and grade in the
course taken relation such as \the courses in comput-
ing science tend to have good grades", etc.

Two associations require di�erent data mining tech-
niques.

For mining nested associations, a data relation can
be transformed into a nested relation in which the
tuples which share the same values in the unnested
attributes are merged into one. For example, the
course taken relation can be folded into a nested re-
lation with the schema,

course taken = (student id; course history)
course history = (course; semester; grade).

By such transformation, it is easy to derive associ-
ation rules like \90% senior CS students tend to take
at least three CS courses at 300-level or up in each
semester". Since the nested tuples (or values) can
be viewed as data items in the same transaction, the
methods for mining association rules in transaction
databases, such as (Han & Fu 1995), can be applied
to such transformed relations in relational databases.

Multi-dimensional data cube structure facilitates ef-
�cient mining of multi-level at association rules. A
count cell of a cube stores the number of occurrences
of the corresponding multi-dimensional data values,
whereas a dimension count cell stores the sum of counts
in the whole dimension. With this structure, it is
straightforward to calculate the measurements such as
support and con�dence of association rules. A set of
such cubes, ranging from the least generalized cube to
rather high level cubes, facilitate mining of association
rules at multiple concept levels. 2

Meta-rule guided mining

Since there are many ways to derive association rules
in relational databases, it is preferable to have users
to specify some interesting constraints to guide a data
mining process. Such constraints can be speci�ed in a
meta-rule (or meta-pattern) form (Shen et al. 1996),
which con�nes the search to speci�c forms of rules. For
example, a meta-rule \P (x; y) ! Q(x; y; z)", where P
and Q are predicate variables matching di�erent prop-
erties in a database, can be used as a rule-form con-
straint in the search.

In principle, a meta-rule can be used to guide the
mining of many kinds of rules. Since the association
rules are in the form similar to logic rules, we have �rst
studied meta-rule guided mining of association rules in
relational databases (Fu & Han 1995). Di�erent from
the study by (Shen et al. 1996) where a meta-predicate
may match any relation predicates, deductive predi-
cates, attributes, etc., we con�ne the search to those
predicates corresponding to the attributes in one rela-
tion. One such example is illustrated as follows.

Example 3. A meta-rule guided data mining query
can be speci�ed in DMQL as follows for mining a spe-
ci�c form of rules related to a set of attributes: \major,
gpa, status, birth place, address" in relation student for
those born in Canada in a university database.

�nd association rules in the form of

major(s : student; x) ^Q(s; y) ! R(s; z)

related to major, gpa, status, birth place, address
from student
where birth place = \Canada"

Multi-level association rules can be discovered in
such a database, as illustrated below:

major(s; \Science") ^ gpa(s; \Excellent") !
status(s; \Graduate") (60%)

major(s; \Physics") ^ status(s; \M:Sc") !
gpa(s; \3:8 4:0") (76%)

The mining of such multi-level rules can be imple-
mented in a similar way as mining multiple-level asso-
ciation rules in a multi-dimensional data cube. 2

Classi�cation

Data classi�cation is to develop a description or model
for each class in a database, based on the features
present in a set of class-labeled training data.

There have been many data classi�cation methods
studied, including decision-tree methods, such as ID-3
and C4.5 (Quinlan 1993), statistical methods, neural
networks, rough sets, etc. Recently, some database-
oriented classi�cation methods have also been investi-
gated (Mehta, Agrawal, & Rissanen 1996).

Our classi�er adopts a generalization-based decision-
tree induction method which integrates attribute-
oriented induction with a decision-tree induction tech-
nique, by �rst performing attribute-oriented induction
on the set of training data to generalize attribute val-
ues in the training set, and then performing decision
tree induction on the generalized data.

Since a generalized tuple comes from the generaliza-
tion of a number of original tuples, the count informa-
tion is associated with each generalized tuple and plays
an important role in classi�cation. To handle noise
and exceptional data and facilitate statistical analysis,
two thresholds, classi�cation threshold and exception
threshold, are introduced. The former helps justi�ca-
tion of the classi�cation at a node when a signi�cant
set of the examples belong to the same class; whereas
the latter helps ignore a node in classi�cation if it con-
tains only a negligible number of examples.

There are several alternatives for doing generaliza-
tion before classi�cation: A data set can be generalized
to either a minimally generalized concept level, an in-
termediate concept level, or a rather high concept level.
Too low a concept level may result in scattered classes,
bushy classi�cation trees, and di�culty at concise se-
mantic interpretation; whereas too high a level may
result in the loss of classi�cation accuracy.

Currently, we are testing several alternatives at
integration of generalization and classi�cation in
databases, such as (1) generalize data to some medium
concept levels; (2) generalize data to intermediate con-
cept level(s), and then perform node merge and split

for better class representation and classi�cation accu-
racy; and (3) perform multi-level classi�cation and se-
lect a desired level by a comparison of the classi�cation
quality at di�erent levels. Since all three classi�ca-
tion processes are performed in relatively small, com-
pressed, generalized relations, it is expected to result
in e�cient classi�cation algorithms in large databases.

Prediction

A predictor predicts data values or value distributions
on the attributes of interest based on similar groups of
data in the database. For example, one may predict
the amount of research grants that an applicant may
receive based on the data about the similar groups of
researchers.

The power of data prediction should be con�ned to
the ranges of numerical data or the nominal data gen-
eralizable to only a small number of categories. It is
unlikely to give reasonable prediction on one's name or
social insurance number based on other persons' data.

For successful prediction, the factors (or attributes)
which strongly inuence the values of the attributes of
interest should be identi�ed �rst. This can be done by
the analysis of data relevance or correlations by statis-
tical methods, decision-tree classi�cation techniques,
or simply be based on expert judgement. To analyze
attribute correlation, our predictor constructs a contin-
gency table followed by association coe�cient calcula-
tion based on �2-test by the analysis of minimally gen-
eralized data in databases. The attribute correlation
associated with each attribute of interest is precom-
puted and stored in a special relation in the database.

When a prediction query is submitted, the set of
data relevant to the requested prediction is collected,
where the relevance is based on the attribute correla-
tions derived by the query-independent analysis. The
set of data which matches or is close to the query con-
dition can be viewed as similar group(s) of data. If
this set is big enough (i.e., su�cient evidence exists),
its value distribution on the attribute of interest can be
taken as predicted value distribution. Otherwise, the
set should be appropriately enlarged by generalization
on less relevant attributes to certain high concept level
to collect enough evidence for trustable prediction.

Further Development of DBMiner

The DBMiner system is currently being extended in
several directions, as illustrated below.

� Further enhancement of the power and e�ciency of
data mining in relational database systems, includ-
ing the improvement of system performance and rule
discovery quality for the existing functional modules,
and the development of techniques for mining new
kinds of rules, especially on time-related data.

� Integration, maintenance and application of discov-
ered knowledge, including incremental update of
discovered rules, removal of redundant or less in-
teresting rules, merging of discovered rules into a
knowledge-base, intelligent query answering using
discovered knowledge, and the construction of mul-
tiple layered databases.

� Extension of data mining technique towards ad-
vanced and/or special purpose database systems,
including extended-relational, object-oriented, text,
spatial, temporal, and heterogeneous databases.
Currently, two such data mining systems, GeoMiner
and WebMiner, for mining knowledge in spatial
databases and the Internet information-base respec-
tively, are being under design and construction.

References

Agrawal, R., and Srikant, R. 1994. Fast algorithms for
mining association rules. In Proc. 1994 Int. Conf. Very

Large Data Bases, 487{499.

Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.; and
Uthurusamy, R. 1996. Advances in Knowledge Discovery

and Data Mining. AAAI/MIT Press.

Fu, Y., and Han, J. 1995. Meta-rule-guided mining of
association rules in relational databases. In Proc. 1st Int'l

Workshop on Integration of Knowledge Discovery with De-

ductive and Object-Oriented Databases, 39{46.

Han, J., and Fu, Y. 1994. Dynamic generation and re-
�nement of concept hierarchies for knowledge discovery
in databases. In Proc. AAAI'94 Workshop on Knowledge

Discovery in Databases (KDD'94), 157{168.

Han, J., and Fu, Y. 1995. Discovery of multiple-level
association rules from large databases. In Proc. 1995 Int.

Conf. Very Large Data Bases, 420{431.

Han, J., and Fu, Y. 1996. Exploration of the power of
attribute-oriented induction in data mining. In Fayyad,
U.; Piatetsky-Shapiro, G.; Smyth, P.; and Uthurusamy,
R., eds., Advances in Knowledge Discovery and Data Min-

ing. AAAI/MIT Press. 399{421.

Han, J.; Cai, Y.; and Cercone, N. 1993. Data-driven dis-
covery of quantitative rules in relational databases. IEEE
Trans. Knowledge and Data Engineering 5:29{40.

Mehta, M.; Agrawal, R.; and Rissanen, J. 1996. SLIQ:
A fast scalable classi�er for data mining. In Proc.

1996 Int. Conference on Extending Database Technology

(EDBT'96).

Piatetsky-Shapiro, G., and Frawley, W. J. 1991. Knowl-
edge Discovery in Databases. AAAI/MIT Press.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-

ing. Morgan Kaufmann.

Shen, W.; Ong, K.; Mitbander, B.; and Zaniolo, C.
1996. Metaqueries for data mining. In Fayyad, U.;
Piatetsky-Shapiro, G.; Smyth, P.; and Uthurusamy, R.,
eds., Advances in Knowledge Discovery and Data Mining.
AAAI/MIT Press. 375{398.

Srikant, R., and Agrawal, R. 1995. Mining generalized
association rules. In Proc. 1995 Int. Conf. Very Large

Data Bases, 407{419.

