
DMQL: A Data Mining Query Language for Relational Databases �

Jiawei Han Yongjian Fu Wei Wang Krzysztof Koperski Osmar Zaiane

Database Systems Research Laboratory

School of Computing Science

Simon Fraser University, B.C., Canada V5A 1S6

E-mail: fhan, yongjian, weiw, koperski, zaianeg@cs.sfu.ca

Abstract

The emerging data mining tools and systems lead naturally

to the demand of a powerful data mining query language,

on top of which many interactive and
exible graphical user
interfaces can be developed. This motivates us to design a

data mining query language, DMQL, for mining di�erent

kinds of knowledge in relational databases. Portions of
the proposed DMQL language have been implemented in

our DBMiner system for interactive mining of multiple-level

knowledge in relational databases.

1 Introduction

Data mining is a promising �eld with
ourishing R &
D activities and successful systems reported recently
[17, 5]. Since the tasks and applications of data mining
are broad and diverse, it is expected that various kinds
of
exible, interactive user interfaces for data mining
will emerge.

We believe that the development of successful data
mining systems may resemble that of relational sys-
tems which have been dominating the database system
market for decades. Although there are many di�erent
graphical user interfaces in commercial relational sys-
tems, its underlying \core" relational query language
sets a solid foundation for research and development of
relational systems, facilitates information exchange and
technology transfer, and promotes commercialization,
broad application, and wide acceptance of the technol-
ogy. In this sense, the success of the relational sys-
tems should be credited in part to the standardization
of relational query languages, which was done at the
early stage in the development of the �eld [20]. The
recent standardization activities in database systems,
such as the work related to SQL-3, OMG and ODMG
[3], show again the importance of a standard database

�Research was supported in part by the grant NSERC-A3723

from the Natural Sciences and Engineering Research Council

of Canada, the grant NCE:IRIS/PRECARN-HMI-5 from the

Networks of Centres of Excellence of Canada, and grants from

BC/Advanced Systems Institute, the MPR Teltech Ltd., and the

Hughes Research Laboratories.

language in the development and commercialization of
future database systems.

This motivates us to examine what should be the
primitives of a data mining language. The current data
mining R & D activities show that data mining covers
a wide spectrum of tasks, from data summarization to
mining association rules, data classi�cation, or �nding
some speci�c patterns. This makes the design of a
comprehensive data mining language a challenging task.
Currently, there are many graphical user interfaces for
di�erent tasks of data mining. However, we feel that it is
important to understand the underlying mechanisms of
di�erent data mining methods and construct a general
data mining language.

In this paper, we examine the general philosophies
which in
uence the design of such a data mining
query language and present step-by-step a tentatively
designed Data Mining Query Language, DMQL. The
design cannot be claimed complete by any standard.
However, it may serve as an interesting example for
further discussion.

2 Design of a data mining language:

philosophy

The philosophy of data mining may strongly in
uence
the design of a data mining language. We have the
following philosophical considerations which will serve
as guidelines in our design of a data mining language.

1. The set of data relevant to a data mining task should
be speci�ed in a data mining request.

Since a user may be interested in any portion of data
in a database, a data miner should be able to work
on any speci�c subset of data. This implies that a
data miner may take a database query as a subtask
to �rst retrieve the relevant set of data before
data mining. If a user cannot identify precisely
the relevant set of data, a superset of the data
can be collected, and certain mechanisms can be
developed to help identify or rank the relevant set

of data and/or attributes. Therefore, a data mining
language should take a query language as its subtask
in the speci�cation.

2. The kinds of knowledge to be discovered should be
speci�ed in a data mining request.

Ideally, one may expect that a knowledge discov-
ery system will perform interesting discovery au-
tonomously without human instruction or interac-
tion. However, since mining can be performed in
many di�erent ways on any speci�c set of data,
huge amounts and di�erent kinds of knowledge may
be generated by unguided, autonomous discovery,
whereas much of such discovered knowledge could be
out of user's interest. Thus, we propose command-

driven data mining, which speci�es both the poten-
tially relevant set of data and the kinds of knowl-
edge to be discovered. This leads to guided discov-
ery of desired kind of knowledge on a relevant set of
data and represents constrained search for the de-
sired knowledge.

3. Background knowledge could be generally available
for data mining process.

Discovery may be performed with the assistance
of relatively strong background knowledge (such as
conceptual hierarchy information, etc.) or with lit-
tle support of background knowledge. The discov-
ery of conceptual hierarchy information itself can be
treated as a part of a knowledge discovery process.
However, the availability of relatively strong back-
ground knowledge not only improves the e�ciency
of a discovery process but also expresses user's pref-
erence for guided generalization, which may lead to
an e�cient and desirable generalization process.

4. Data mining results should be able to be expressed
in terms of generalized or multiple-level concepts.

Without concept generalization, discovered knowl-
edge is expressed in terms of primitive data (data
stored in the databases), often in the form of func-
tional or multivalued dependency rules, primitive
level association rules, or integrity constraints. On
the other hand, with concept generalization, discov-
ered knowledge can be expressed in terms of concise,
expressive, and high-level or multiple-level abstrac-
tion, in the form of generalized rules or generalized
constraints, and be associated with statistical infor-
mation. Obviously, it is often desirable for large
databases to have rules expressed at the concept lev-
els higher than the primitive ones.

5. Various kinds of thresholds should be able to
be speci�ed
exibly to �lter out less interesting
knowledge.

A user may like to
exibly and/or interactively
specify various kinds of thresholds which can be used
to select desired, interesting rules and �lter out less
interesting ones in data mining.

3 Mining di�erent kinds of rules

Based on the above considerations, a data mining
query language, DMQL, has been designed in our
DBMiner project for mining several kinds of knowledge
in relational databases. It consists of the speci�cations
of four major primitives in data mining: (1) the
set of data in relevance to a data mining process,
(2) the kind of knowledge to be discovered, (3) the
background knowledge, and (4) the justi�cation of the
interestingness of the knowledge (i.e., thresholds).

The �rst primitive, the set of relevant data, can be
speci�ed in a way similar to that of a relational query,
which is to be used to fetch the set of relevant data from
the database.

The second primitive, the kind of knowledge to be
discovered, may include generalized relations, charac-
teristic rules, discriminant rules, classi�cation rules, as-
sociation rules, etc., which are detailed as follows.

1. A generalized relation is a relation obtained by
generalizing from a large set of low level data. A
generalized relation can then be used for extraction
of di�erent kinds of rules or be viewed at high
concept levels from di�erent angles.

2. A characteristic rule is an assertion which character-
izes a concept satis�ed by all or most of the examples
in the class undergoing examination (called the tar-
get class). For example, the symptoms of a speci�c
disease can be summarized by a characteristic rule.

3. A discriminant rule is an assertion which discrimi-
nates a concept of the class being examined (the
target class) from other classes (called contrasting

classes). For example, to distinguish one disease
from others, a discriminant rule should summarize
the symptoms that discriminate this disease from
others.

4. A classi�cation rule is a set of rules which classi�es
the relevant set of data, which is usually obtained by
�rst classifying the data (i.e., obtaining a preferred
classi�cation scheme) and then returning a set of
rules associated with each class or subclass. For
example, one may classify diseases and provide the
symptoms which describe each class or subclass.

5. An association rule describes association relation-
ships among a set of data (patterns). For example,

one may discover a set of symptoms frequently oc-
curring together with certain kinds of diseases and
further study the reasons behind it.

The third primitive, the background knowledge, is
a set of concept hierarchies or generalization operators
which provide corresponding higher level concepts and
assist generalization processes. Primitives for the
speci�cation of concept hierarchies will be discussed in
Section 4.

The fourth primitive, the interestingness or signi�-
cance of the knowledge to be discovered can be speci�ed
as a set of di�erent mining thresholds depending on the
kinds of rules to be mined, which will be examined in
more detail in Section 3.4.

3.1 Syntax of DMQL for mining di�erent

kinds of rules

DMQL adopts an SQL-like syntax to facilitate high
level data mining and natural integration with relational
query language, SQL.

The DMQL language is de�ned in an extended BNF
grammar, where \[]" represents 0 or one occurrence, \f
g" represents 0 or more occurrences, and words in sans

serif font represent keywords, as shown below.

hDMQLi ::=

use database hdatabase namei
fuse hierarchy hhierarchy namei for hattributeig
hrule speci
related to hattr or agg listi
from hrelation(s)i
[where hconditioni]
[order by horder listi]
fwith [hkinds ofi] threshold = hthreshold valuei

[for hattribute(s)i]g

In hDMQLi, \use database hdatabase namei" directs
the mining task to a speci�c database \hdatabase namei",
and the optional statement, \use hierarchy hhierarchyi for
hattributei", assigns hhierarchyi to a particular at-
tribute hattributei (otherwise, a default hierarchy is
used). The statement, hrule speci, is the speci�cation
of the kind of rules to be discovered. For discovering dif-
ferent kinds of rules, the rule speci�cation should be in
di�erent formats, which will be presented in detail in the
following sections. The related-to statement, \related
to hatt or agg listi", selects a list of relevant attributes
and/or aggregations for generalization. The \from" and
\where" clauses, \from hrelation(s)i [where hconditioni],
form an SQL query to collect the set of relevant data.
The \order by" clause simply speci�es the order of rows
to be printed. The \with-threshold" statement speci�es
various kinds of thresholds.

For rule speci�cation, the following kinds of rules are
considered in DMQL.

1. Data generalization.

hrule speci ::=
generalize data [into hrelation namei]

2. Mining characteristic rules.

hrule speci ::=

�nd characteristic rules [as hrule namei]

3. Mining discriminant rules.

hrule speci ::=
�nd discriminant rules [as hrule namei]
for hclass 1i with hcondition 1i
from hrelation(s) 1i

in contrast to hclass 2i with hcondition 2i
from hrelation(s) 2i

f in contrast to hclass ii with hcondition ii
from relation(s) i g

4. Data classi�cation and mining classi�cation rules.

hrule speci ::=

�nd classi�cation rules [as hrule namei]
[according to hattributesi]

5. Mining association rules.

hrule speci ::=

�nd association rules [as hrule namei]

3.2 Speci�cation of interestingness and

thresholds

A data mining task may need to specify a set of
thresholds to control its data mining process, including
guiding an induction process, constraining search for
interesting knowledge, testing the interestingness or
signi�cance of the discovered knowledge, etc. This
requires the introduction of the fourth set of primitives,
a set of data mining thresholds, in DMQL.

Di�erent kinds of rule mining may need to specify
di�erent kinds of thresholds which can be categorized
into at least three classes, as follows.

1. Signi�cance threshold. It indicates that there should
exist at least some reasonably substantial evidence
(support) of a pattern in the data set in order
to warrant its presentation. In mining association
rules, this threshold is called the minimum support

[1], and the patterns passing this support threshold
are called large (or frequent) data items; whereas
in mining characteristic rules, it is called noise

threshold [7], and the patterns which cannot pass
this threshold are treated as noise.

2. Rule con�dence threshold. It indicates that the
probability ofB under condition ofA in rule A ! B,
i.e., ProbfBjAg, must pass this threshold to make
sure that the implication relationship is reasonably
strong [1].

3. Rule redundancy threshold. It indicates that the
rules to be presented are not similar to those already
there [19].

The syntax of the threshold speci�cation is as below,

with [hkinds ofi] threshold = hthreshold valuei
[for hattribute(s)i]

where hkinds ofi can be support, con�dence, noise,

redundancy, etc., which will be shown in later examples.
Threshold values can be set and modi�ed interactively
using similar language primitives.

3.3 Examples of mining di�erent kinds of rules

Example 3.1 Let us examine a university database
with the following schema.

student(name, sno, status, major, gpa, birth date,

birth place, address)

course(cno, title, department)
grading(sno, cno, instructor, semester, grade)

A few data mining query examples are presented in
DMQL as follows. Notice that the statements like \use
database university database" is omitted in the example
queries.

1. Mining characteristic rules. Query, (q1), is to �nd
the general characteristics of the graduate students
in computing science in relevance to attributes gpa,
birth place and address, for the students born in
Canada.

(q1) : �nd characteristic rule

related to gpa, birth place, address, count(*)%

from student
where status = \graduate" and major = \cs"

and birth place = \Canada"

with noise threshold = 0.05

This data mining query will �rst retrieve data from
the database using a transformed SQL query, where
the high level constants \Canada" and \graduate"
are transformed into low level primitive concepts
in the database according to the provided (default)
concept hierarchy for each attribute. The algorithm
for �nding characteristic rules [7] is then executed
with the data generalized to high level for manipu-
lation and presentation. The set of generalized data
grouped according to the high level concept values of
the attributes gpa, birth place and address are pre-
sented, associated with the corresponding count(�)%

(i.e., the count of tuples in the corresponding group
in proportion to the total number of tuples). The
noise threshold 0.05 means that a generalized tuple
taking less than 5% of the total count will not be
included in the �nal result.

2. Mining discriminant rules. Query (q2) is to �nd the
discriminant features to compare graduate students
versus undergraduate students in computing science
in relevance to attributes gpa, birth place and ad-
dress, for the students born in Canada.

(q2) : �nd discriminant rule

for cs grads with status = \graduate"

in contrast to cs undergrads
with status = \undergraduate"

related to gpa, birth place, address, count(*)%

from student
where major = \cs" and birth place = \Canada"

This data mining query will �rst retrieve data into
two classes, \cs grads" and \cs undergrads", using
a transformed SQL query which maps the high level
constants in (q2) into low level ones. The algorithm
for �nding discriminant rules [7] is then executed for
data mining and result manipulation.

3. Mining classi�cation rules. Query (q3) is to classify
students according to their gpa's and �nd their
classi�cation rules for those majoring in computing
science and born in Canada, with the attributes
birth place and address in consideration.

(q3) : �nd classi�cation rules for cs students
according to gpa

related to birth place, address

from student
where major = \cs" and birth place = \Canada"

This query will �rst collect the relevant set of data,
and then execute some data classi�cation algorithm,
such as [14, 21] to classify students according to
their gpa's and present each class and its associated
characteristics.

4. Mining association rules. Query (q4) is to �nd
strong association relationships for those students
majoring in computing science and born in Canada,
in relevance to the attributes gpa, birth place and
address.

(q4) : �nd association rules

related to gpa, birth place, address

from student

where major = \cs" and birth place = \Canada"

with support threshold = 0.05

with con�dence threshold = 0.7

This query will �rst collect the relevant set of data
and then execute an association mining algorithm,

such as [1] or [8], to �nd a set of interesting
association rules. The support and con�dence
thresholds are speci�ed (otherwise using default
values) for mining strong rules. 2

4 Speci�cation of concept hierarchies

Concept hierarchy (or lattice) provides useful back-
ground knowledge for expressing data mining results
in concise, high-level terms. Concept hierarchies can
be speci�ed based on database attribute relationships,
particular grouping operations, etc. Any given concept
hierarchies should be able to be adjusted dynamically
based on current data distributions. Moreover, hier-
archies for numerical attributes should be able to be
constructed automatically based on data distributions.

DMQL handles concept hierarchy speci�cations as
follows.

1. Hierarchy speci�cation at the schema level. Concept
hierarchies can be speci�ed at the schema level based
on database attribute relationships since such rela-
tionships may exist in the attribute semantics. For
example, address(num; street; city; province; country)
may indicate that city is more general than street

but less general than province and country. Simi-
larly, date(day;month; year) forms naturally a built-
in concept hierarchy for generalization.

DMQL speci�es concept hierarchy at the schema
level in the following syntax.

hde�ne concept hierarchyi ::=

de�ne hierarchy for hattr namei
[(hhier namei)]: hattr seti < hattr seti

An example of such is shown below.

de�ne hierarchy for address:
fcity, province, countryg < fprovince, countryg

2. Hierarchy speci�cation by set grouping. Some hierar-
chical information can be speci�ed by concept group-
ing which explicitly shows that one group of concepts
is at a level lower than another. The syntax adopted
in DMQL is as follows.

hde�ne concept hierarchyi ::=

de�ne hierarchy for hattr namei
[(hhier namei)]: hconstant seti < hconstant seti

An example of such is shown below.

de�ne hierarchy for address: fB.C., Alberta,
Manitoba, Saskatchewang < fWestern Canadag

de�ne hierarchy for address: fWestern Canada,

Central Canada, Maritime Provincesg < fCanadag

3. Modi�cation of concept hierarchies. A given hierarchy
should be modi�able via some simple statements.
One may insert a term as a subordinate concept of
a superordinate one in a hierarchy or delete a term
from it. The syntax adopted in DMQL is as follows.

hmodify hierarchyi ::=

insert hconcept namei under hconcept namei
to hierarchy [(hhier namei)] for hattr namei

j delete hconcept namei under hconcept namei
from hierarchy [(hhier namei)] for hattr namei

An example of such is shown below.

delete hManitobai under Western Canada
from hierarchy for address

insert hTerritoriesi under Canada

to hierarchy for address

4. Primitives for concept hierarchy adoptions. There
could be multiple concept hierarchies for a set of
attributes. A hierarchy stored in a system may
not always suit a particular data mining task well.
Moreover, concept hierarchies may not always be
provided by speci�cation of attribute relationships
or set groupings. Thus, it is often necessary
to provide primitives to choose a hierarchy other
than the default one from a set of available ones,
dynamically adjust a hierarchy, or automatically
generate a hierarchy based on the statistics of the
relevant set of data. DMQL speci�es these options
in the following syntax.

hhierarchy adoptioni ::=

use hierarchy hhier namei for hattr namei
j display hierarchy [hhier namei] for hattr namei
j dynamically adjust hierarchy [hhier namei]
for hattr namei

j generate hierarchy [hhier namei] for hattr namei

Some examples are shown below.

use hierarchy climate regions for address

dynamically adjust hierarchy for address

generate hierarchy for gpa

5 Interactive data mining and graphical

user interfaces

5.1 Interactive mining of multiple-levels of

knowledge

Although a data mining task can be speci�ed
exibly
using the primitives discussed above, it is di�cult
to predict the mining results at the time of query
submission. Thus, interactive re�ning of a mining task
or mining results becomes essential for e�ective mining.

Interactive re�ning of a mining task often requires
easy modi�cation of a query condition, thresholds,

relevant attributes, selected hierarchies, or letting a
hierarchy be dynamically adjusted, etc. Such tasks
should be accomplished conveniently by a graphical user
interface although they can be speci�ed (but not so
conveniently) using DMQL language primitives.

For interactive re�ning of data mining results, one
should display the results using rule visualization tools
[12] or in di�erent output forms, including generalized
relations, projected statistical tables, bar charts, pie
charts, curves, surfaces, quantitative rules, etc. This
process may be helped by report writers or graphical
display softwares. DMQL provides the following primi-
tives for displaying results in di�erent forms.

hresult displayingi ::= display in hresult formi

where the hresult formi could be projected statistical
tables, bar charts, curves, etc. when appropriate.

Moreover, with the availability of concept hierarchies,
knowledge can be expressed at di�erent levels of ab-
stractions. Interactive mining should facilitate the dis-
covered knowledge to be viewed at di�erent concept lev-
els and from di�erent angles. This can be accomplished
by transforming data mining results conveniently with
\roll-up" and \drill-down" operations [11]. Notice that
roll-up can be done by climbing up the concept hierarchy
of an attribute or dropping some attribute(s); whereas
drill-down by stepping down the concept hierarchy of an
attribute or adding some attributes. DMQL provides
the following primitives for traversing through di�erent
levels of abstractions.

hmulti-level manipulationi ::= up on hattr namei
j down on hattr namei
j add hattr namei
j drop hattr namei

For example, one may \up on address" or \drop city"
to generalize the mining results.

5.2 From DMQL to
exible GUIs

As discussed above, the goal of designing the DMQL
language is to provide necessary primitives for data
mining engines to work on. However, a data mining
user may prefer to use
exible GUIs to interact with a
data miner for fruitful and convenient data mining. In
current relational technology, SQL provides the \core"
language of relational systems on top of which various
GUIs have been constructed. Similarly, a data mining
query language may serve as a \core language" for data
mining system implementations, on top of which various
kinds of GUIs should be developed for e�ective data
mining.

Based on our experience, a data mining GUI may
consist of the following functional components.

1. Data collection, which is an interface for collecting
the relevant set of data. Such an interface will be

very much like a GUI for construction of relational
queries.

2. Presentation of data mining results, which is an inter-
face for displaying data mining results in di�erent
forms, including tables, graphics, charts, curves, vi-
sualization of data mining results, etc.

3. Manipulation of data mining primitives, which may
include dynamic adjustment of various kinds of
thresholds, selection, display, and modi�cations of
concept hierarchies, or modi�cation of other mining
requests or conditions, etc.

4. Interactive multi-level mining, which may include roll-
up or drill-down of data mining results on any
selected attributes.

5. Other miscellaneous information, which may include
on-line manuals, help, indexed search, debugging,
and many other interactive graphical facilities.

We have designed and developed some data mining
GUIs on both the UNIX and PC platforms in our
DBMiner system [9]. By examination of many data
mining products or prototypes, it seems di�cult to
set up a standard on data mining GUIs. However,
classi�cation of GUI primitives and exploration of their
underlying mechanisms are quite useful at designing a
good data mining query language.

6 Discussions and conclusions

We designed and developed a preliminary version of a
data mining query language, DMQL, for e�ective data
mining in relational databases. Portions of the language
have been implemented in our DBMiner system [9] for
interactive data mining. Such a language also serves as
a base for further development of GUIs for interactive
mining of multiple-level knowledge.

There are many issues which need further studies in
this direction, which are listed as follows for discussion.

1. Besides mining characteristic, discriminant, classi�-
cation, and association rules, DMQL needs to spec-
ify primitives for other data mining tasks, including
data clustering [15, 4, 23], and mining data evolu-
tion rules or sequential patterns [2], deviation rules
[16], rules characterized by some speci�c patterns
[18, 6], etc. It is necessary to work out such lan-
guage primitives for e�ective communication with a
data mining system. Moreover, it is not clear to us
whether one could construct a more uniform syn-
tactic framework than the current DMQL to specify
primitives for mining all kinds of knowledge.

2. Graphical user interfaces have been popularly used
in data mining. It is unclear whether a standard
can be worked out for designing a \core" data
mining GUI. Such a \core", if possibly agreed by
di�erent researchers and developers, may facilitate
software development, system communication, and
standardization. Moreover, it seems that some GUI
primitives, such as pointing to a particular place in
a curve or graph, are di�cult to be speci�ed using a
text-based data mining query language like DMQL.
It is not clear whether we should eventually design
a \core" GUI-based language to substitute an SQL-
like data mining language.

3. It is reasonably easy to design a data mining
language for data mining in relational databases.
It is a great challenge to design languages for
knowledge mining in other kinds of databases,
such as transaction databases [1], object-oriented
databases [10], spatial databases [13], multimedia
databases, legacy databases, global information
systems [22], etc. With the emerging activities for
data mining in these databases, the design of data
mining languages for such mining tasks may become
an important issue in future research.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 Int. Conf. Very Large
Data Bases, pages 487{499, Santiago, Chile, September
1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proc. 1995 Int. Conf. Data Engineering, pages 3{14,
Taipei, Taiwan, March 1995.

[3] R.G.G. Cattell. Object Data Management: Object-
Oriented and Extended Relational Databases, Rev. Ed.
Addison-Wesley, 1994.

[4] M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discov-
ery in large spatial databases: Focusing techniques for
e�cient class identi�cation. In Proc. 4th Int. Symp. on
Large Spatial Databases (SSD'95), pages 67{82, Port-
land, Maine, August 1995.

[5] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy. Advances in Knowledge Discovery and
Data Mining. AAAI/MIT Press, 1996.

[6] Y. Fu and J. Han. Meta-rule-guided mining of as-
sociation rules in relational databases. In Proc.
1st Int'l Workshop on Integration of Knowledge Dis-
covery with Deductive and Object-Oriented Databases
(KDOOD'95), pages 39{46, Singapore, Dec. 1995.

[7] J. Han, Y. Cai, and N. Cercone. Data-driven discovery
of quantitative rules in relational databases. IEEE
Trans. Knowledge and Data Engineering, 5:29{40, 1993.

[8] J. Han and Y. Fu. Discovery of multiple-level associ-
ation rules from large databases. In Proc. 1995 Int.
Conf. Very Large Data Bases, pages 420{431, Zurich,
Switzerland, Sept. 1995.

[9] J. Han, Y. Fu, K. Koperski, G. Melli, W. Wang, and
O. R. Za��ane. Knowledge Mining in Databases: An
Integration of Machine Learning Methodologies with
Database Technologies. Canadian Arti�cal Intelligence,
October 1995.

[10] J. Han, S. Nishio, and H. Kawano. Knowledge discovery
in object-oriented and active databases. In F. Fuchi and
T. Yokoi, editors, Knowledge Building and Knowledge
Sharing, pages 221{230. Ohmsha, Ltd. and IOS Press,
1994.

[11] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Im-
plementing data cubes e�ciently. In Proc. 1996 ACM-
SIGMOD Int. Conf. Management of Data, Montreal,
Canada, June 1996.

[12] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivo-
nen, and A. I. Verkamo. Finding interesting rules from
large sets of discovered association rules. In Proc. 3rd
Int'l Conf. on Information and Knowledge Manage-
ment, pages 401{408, Gaithersburg, Maryland, Nov.
1994.

[13] K. Koperski and J. Han. Discovery of spatial association
rules in geographic information databases. In Proc. 4th
Int'l Symp. on Large Spatial Databases (SSD'95), pages
47{66, Portland, Maine, Aug. 1995.

[14] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A
fast scalable classi�er for data mining. In Proc. 1996
Int. Conference on Extending Database Technology
(EDBT'96), Avignon, France, March 1996.

[15] R. Ng and J. Han. E�cient and e�ective clustering
method for spatial data mining. In Proc. 1994 Int.
Conf. Very Large Data Bases, pages 144{155, Santiago,
Chile, September 1994.

[16] G. Piatetsky-Shapiro. Discovery, analysis, and pre-
sentation of strong rules. In G. Piatetsky-Shapiro
and W. J. Frawley, editors, Knowledge Discovery in
Databases, pages 229{238. AAAI/MIT Press, 1991.

[17] G. Piatetsky-Shapiro and W. J. Frawley. Knowledge
Discovery in Databases. AAAI/MIT Press, 1991.

[18] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Meta-
queries for data mining. In U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining, pages
375{398. AAAI/MIT Press, 1996.

[19] R. Srikant and R. Agrawal. Mining generalized
association rules. In Proc. 1995 Int. Conf. Very Large
Data Bases, pages 407{419, Zurich, Switzerland, Sept.
1995.

[20] M. Stonebraker. Readings in Database Systems, 2ed.
Morgan Kaufmann, 1993.

[21] L. Winstone, W. Wang, and J. Han. Multiple-level
data classi�cation in large databases. In submitted for
publication, March 1996.

[22] O. R. Za��ane and J. Han. Resource and knowledge
discovery in global information systems: A preliminary
design and experiment. In Proc. 1st Int. Conf. on
Knowledge Discovery and Data Mining (KDD'95),
pages 331{336, Montreal, Canada, Aug. 1995.

[23] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
an e�cient data clustering method for very large
databases. In Proc. 1996 ACM-SIGMOD Int. Conf.
Management of Data, Montreal, Canada, June 1996.

