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Abstract— Social networks are usually drawn from the
interactions between individuals, and therefore are temporal
and dynamic in essence. Examining how the structure of these
networks changes over time provides insights into their evolution
patterns, factors that trigger the changes, and ultimately predict
the future structure of these networks. One of the key structural
characteristics of networks is their community structure –groups
of densely interconnected nodes. Communities in a dynamic social
network span over periods of time and are affected by changes in
the underlying population, i.e. they have fluctuating members and
can grow and shrink over time. In this paper, we introduce a new
incremental community mining approach, in which communities in
the current time are obtained based on the communities from the
past time frame. Compared to previous independent approaches,
this incremental approach is more effective at detecting stable
communities over time. Extensive experimental studies on real
datasets, demonstrate the applicability, effectiveness, and sound-
ness of our proposed framework.

I. INTRODUCTION

A social network shows the structure of relationships
between individuals. These relationships are usually defined
based on some type of interaction, hence are temporal and
changing over time; examples are friendships between people,
co-authorship between scholars, email interactions between
employees within an organization. One can aggregate all the
interactions over time, into one snapshot, to model the network
using a static social network. However, by discarding these
temporal information, one is not able to detect invaluable
evolutionary patterns that are happening inside the network. A
better modeling for such a temporal/dynamic social network, is
using a sequence of consecutive static snapshots. In this model,
each snapshot incorporates interactions that happened in its
particular time-frame, the length of which can be determined
based on how dynamic is the network. Modeling a dynamic
network in this way, enables the study of its structure over
time, the detection of how the network evolves, and ultimately
the prediction of the future structure of the network .

Communities in dynamic social networks usually have
fluctuating members and could grow and shrink over time
[1]. Analyzing the evolution of these communities is useful in
many applications such as targeted marketing and advertising.
The 2010 Edelman Trust Barometer Report [2] shows that
44% of the users respond to the online marketing if there
are users in their peer group who have responded to the
advertisements. Two main approaches have been followed to
study the evolution of communities in a dynamic scenario. In
the independent community mining approach, the communities
at each snapshot are mined independently without considering

the temporal information and their relationship to communities
at the previous snapshots. Hence, this approach is suitable
for social networks with unstable community structures. On
the other hand, the incremental community mining approach
uses the temporal information directly during the detection,
where the community mining at a particular time is dependent
on the communities detected in the previous timeframe. This
approach finds a sequence of communities with temporal simi-
larity and hence, is only suitable for networks with community
structures that are stable over time.

In our previous works [3], [4], [5], we have explored
the independent community mining and proposed an effective
framework for tracking the evolution of communities over
time. In this paper, we propose an incremental community
mining approach that mines communities by considering the
communities discovered at previous times. This conditional
community mining approach is more appropriate for tracking
more stable communities compared to our previous indepen-
dent method. The main contribution of our paper is the adop-
tion of the static L-metric approach [6], to compute dynamic
communities; where community mining at each snapshot starts
by the communities found at the previous snapshot. The com-
munities found at different snapshots, are then matched based
on their similarity, and grouped as the instances of the evolving
communities over time. Furthermore, to capture the changes
that are likely to occur for a dynamic community, we apply
our event detection framework [5] to detect critical events
(i.e. survive, dissolve, split, merge, form) that characterize the
evolution of communities.

II. RELATED WORKS AND BACKGROUNDS

In the independent community mining, after computing
communities for each snapshot, the communities are tracked
and matched based on their similarity. Communities at dif-
ferent snapshots that are detected as matches, represent the
instances of the same community which spans over time.
The intuitive method is to compare two communities of the
consecutive time steps with rules based on the size of their
intersection. These rules can be used conjointly with the com-
munity mining algorithm [7], or heuristic algorithm to match
communities based on their interaction [8], [3], or even simpli-
fied by tracking specific core nodes that are more representative
of their community than others [9]. Although, most of the
independent community mining approaches consider matching
communities between two consecutive snapshots, a community
may not necessarily be observed at consecutive snapshots –
it may be missing from one or more intermediate steps. To



support these cases, this approach can be extended to consider
matching communities at current snapshot to communities at
all previous snapshots based on their intersections and time of
occurrence [5], [10].

The incremental community mining methods can be clas-
sified into cost function methods, and direct methods. Cost
function methods, first introduced by Chakrabarti et al. [11],
try to find communities in a particular snapshot that are
meaningful communities of the interactions that exist in that
snapshot, and at the same time, are similar to the communities
detected at its previous snapshot. These methods consider
the former as the snapshot quality and the latter as the
history quality, and minimize a cost function which is defined
as a trade-off between these two qualities. Lin et al. [12],
calculate the snapshot cost, as the KL-divergence between
the discovered community structure and the graph observed
at that snapshot. Similarly, the temporal cost is defined as
the KL-divergence between the communities discovered at the
current and previous time. They have introduced the FacetNet
framework which extends the overlapping community mining
proposed by Yu et al. [13] for static graphs to be applicable for
dynamic networks. At each snapshot, the community structure
is expressed by the mixture model proposed in [13], and the
cost function is used to regularize the community structure at
current time based on the community structure at the previous
snapshot. Tantipathananandh and Berger-Wolf [14], on the
other hand, introduced a cost function that consists of three
parts: 1) cost of a node that changes its community affiliation
between two snapshots; 2) cost of two nodes belonging to
the same community but do not interact 3) cost of two nodes
belonging to different communities but do interact. Then, they
propose the network community interpretation framework to
find a set of communities at each snapshot that minimizes the
above three costs and devise an approximation algorithm. The
main challenges of the cost function methods is to derive the
approximation algorithm and the optimum communities that
minimize the cost.

While the cost function methods focus to optimize a new
quality measure which incorporates deviation from history,
the direct methods mine communities at the current snapshot
incrementally by considering the communities discovered at
the previous time and updateding the community structure
as the new data arrives. For example, in the incremental
community mining algorithm based on the Dirichlet Process
Mixture Model, the discovered communities at the previous
snapshot are included in the base distribution of the Dirichlet
Process [15]. Aggarwal and Yu [16] propose to generate
the differential graph between the graphs at the current and
previous snapshots. The communities at the differential graph
are then mined using k-mean community mining. Kim and
Han [17] propose to recalculate the weight between each
pair of nodes to be a linear combination of their weights in
the previous and current snapshots. Density based clustering
is then applied with the new balanced weights to detect
communities. Aynaud, and Guillaume [18] extend the Louvain
static community mining [19], where the initialization of the
Louvain algorithm is changed to use the communities found
at the previous snapshot.

In this paper, we extend the L-metric community mining al-
gorithm by Chen et al. [6], to incrementally mine communities

Fig. 1: Local Community Definition. Figure reprinted from [6].

in a dynamic scenario following the direct approach. Similar
to [18], the main idea here is to change the initialization of
the algorithm in a way that the computation at each snapshot
starts by grouping nodes using the communities found at the
previous snapshot. Our proposed method, however, benefits
form the locality of the L-metric, which unlike most of static
community mining algorithms that implicitly assume global
information is always available, detects communities with
only local information. This locality makes L-metrics and
consequently our method, particularly desirable in case of
large real world networks, where the whole graph is usually
unavailable. In the following section, the L-metric community
mining algorithm is explained in more details.

A. L-metric Community Mining

The L-metric does not require any arbitrary thresholds
or other parameters, and is robust against outliers. Its main
assumption is that a community has fewer connections from
its boundary nodes to the unknown portion of the graph,
while having a greater number of connections within its
local community [6]. In more details, consider an undirected
network G, with the known local portion of the graph denote
as D. Two subsets of D are defined: the core node set C,
where all neighbours of v ∈ C belong to D; and the boundary
node set B, where any node v ∈ B have at least one neighbour
outside D. The shell node set S is the set of nodes with limited
available information and contains nodes that are adjacent to
nodes in D but do not belong to D (See Figure 1). Then the
metric L is defined as the ratio of the community internal
relation to the community external relation, i.e. Lin/Lex.
Where Lin is measured by the average internal degree of
nodes in D, and Lex is measured by the average external
degree of nodes in B. There are three situation in which the
modularity L increases after adding one node to the local
community. Assume L′in, L′ex and L′ are corresponding scores
after merging a node v into D. The three cases that will result
in L′ > L are: 1) L′in > Lin and L′ex < Lex, 2) L′in < Lin and
L′ex < Lex, and 3) L′in > Lin and L′ex > Lex Nodes in the
first case belong to the community, while nodes in the second
case are outliers. The nodes in the third case can be hubs, or
the first node of an enclosing community group that is going to
be merged one by one. However, at the time of merging a node,
it is too early to judge whether the incoming node is a hub or
not. Therefore, nodes in the first and third cases are merged
into the community temporarily. After all qualified nodes are
included, each node is re-examine by removing it from D and
re-calculating the modularity L to only include the nodes in
the first case. The remaining nodes are then constituent of the
local community.



III. INCREMENTAL L-METRIC

Our proposed Incremental L-metric community mining
considers the extracted connected components from communi-
ties of the previous snapshot as its initialization state. This is
due to the fact that the activities and interactions of the entities
frequently change and vary in time, the community found
at snapshot i − 1 may not result in a connected component
in snapshot i. Thus, in order to use communities Ci−1 in
the process of detecting communities Ci, we first extract
connected components from communities Ci−1. Then, the
nodes at snapshot i are grouped based on the extracted con-
nected components. And for each of the connected component
cc ∈ CCi, Algorithm 1 is executed iteratively. The connected
components found are not only the members of the same
communities at snapshot i− 1, but also are connected to each
other based on the interactions and connection at snapshot i.
Each of these connected components are set as the seed for the
L-metric community mining, where the algorithm construct its
region D with the nodes of the given connected component.
After that, the shell nodes of the region D have to be checked
and if possible, added as the new community members. More
specifically, a node v from the shell nodes is temporarily
merged in the first and third cases into the community. After
all qualified nodes are included, we re-examine each node by
removing it from D and checking the metric value change
if we merge it again. Now we only keep nodes if they are
associated with the first case.

Algorithm 1 Incremental L-metric Community Mining
Input: Gi (Graph at ith snapshot) and cc
Output: D (cc’s local community)
1. Discovery Phase:
D = all nodes from cc
Add all boundary nodes of D to B
Add all external neighbours of D to S
repeat

Find vm ∈ S with the maximum L′

if vm belongs to the first or third case then
add vm to D

else remove vm from S
end if
Update B, S, C, L

until L′ > L

2. Examination Phase:
for all v ∈ D do

Compute L′, keep v only when it is the first case
end for

A toy example to demonstrate the Incremental L-metric
community mining is provided in Figure 2. At snapshot 0
(Figure 2a), L-metric detects the red and green communities
(Figure 2b). To detect communities at snapshot 1 (Figure 2c),
first we have to group the nodes based on the communities
detected at snapshot 0. Finding the connected components,
three groups of nodes are extracted (Figure 2d). Each of these
three connected components are then the input of Algorithm
1, which results in the detection of the red, green, and blue
communities at snapshot 1 (Figure 2e).

(a) G0 (b) C0

(c) G1 (d) CC1 (e) C1

Fig. 2: Example: 2a and 2c show the structure of the network;
2d represents the connected components, while 2b and 2e
illustrate the discovered communities.

IV. EXPERIMENT RESULTS

In this section, we validate our proposed incremental
community mining approach on the Enron email dataset. The
Enron email dataset incorporates emails exchanged between
employees of Enron Corporation. The entire dataset includes a
period of 15 years and its corresponding email communication
network, for the entire period of time, has over 80,000 nodes
and several hundred thousand edges. We study the year 2001
and consider a total of 285 nodes and 23559 edges, with
each month being one snapshot. For each of the 12 snapshots,
one graph is constructed with the extracted employees as
the nodes and email exchanged between them as the edges.
Here, we compare the communities detected on Enron dataset
by Incremental L-metric with the communities detected by
Independent L-metric and FacetNet [12] algorithms. This
comparison is performed from two perspectives: first, relatively
based on a direct objective for dynamic communities, and then
indirectly based on how much they improve the event detection
framework.

A. Relative Evaluation

In the static scenario, the quality of a community mining
result is mainly measured by Modularity Q [20]. However,
in a dynamic scenario, the communities detected at one
snapshot should not only be a good partitioning for that
snapshot, but also a reasonable partitioning for the previous
snapshot. Thus, we propose the Dynamic Modularity, DQ, to
validate the quality of the partitioning on snapshot i defined
as DQi = αQ(Gi, Ci)+(1−α)Q(Gi−1, Ci). In this formula,
Q(G,C) computes the value of modularity Q for communities
C based on the structure of graph G. Consequently, Q(Gi, Ci)
is computing the normal static Q modularity for communities
discovered in snapshot i. While Q(Gi−1, Ci) is the value of
modularity Q for communities at snapshot i computed over
graph from the previous snapshot. The average quality on
all the snapshots, 1

n

∑n
i=1DQi, is then considered as the

quality indicator for comparing different community mining
algorithms. On the Enron dataset, we have the average score
of 0.49, 0.44, 0.47 respectively for the Incremental L-metric,
Independent L-metric and FacetNet, where α = .5. Figure 3,
presents a more detailed comparison of these three algorithms;



where quality, size, and number of communities over the
time is depicted respectively. In top Figure, we can clearly
see that the proposed incremental approach is consistently
detecting communities with higher quality –complying with
both current and temporal information. The other two Figures
are shedding light on another difference between the incre-
mental and independent approach. As we can see here, the
average size of communities is much lower for the independent
method. This is due to the fact that it failed to detect stable
communities that span over time and instead detected several
small communities, which is not surprising since it only looks
at the current timeframe to mine communities. The FacetNet
mining, fails similarly to the independent approach. One of the
disadvantages of the FacetNet mining is that the number of
communities should be similar for all the snapshots. As stated
in [12], the number of communities is the one maximizing the
average modularity over all the snapshots. For our results here,
we run the FacetNet with different number of communities and
chose 6, that resulted in the highest modularity.

Fig. 3: Relative Evaluation: the dynamic modularity, size of
communities, and the number of communities is reported for
each snapshot, while the average over time for each method is
represented by a constant dashed line.

B. Indirect Evaluation

Here we compare the algorithms in the context of our event
detection framework called MODEC [5], to see how accurate
are the events detected based on their resulted communities.
The comparison of events detected based on different commu-
nity mining algorithms is shown in Table I, where the total
number of events for each type detected during the 12 snap-
shots is provided. The Independent L-metric is too dynamic,

TABLE I: Indirect Evaluation: comparison of Events Detected based
on different algorithms (with the same parameter settings as [5]).

Framework Form Dissolve Survive Split Merge Mutual Topics
Incremental 10 10 32 5 8 4.12/10

L-metric

Independent 19 19 46 7 11 3.83/10
L-metric

FacetNet 6 6 66 0 0 4.02/10

detecting communities that vary much between snapshots, and
therefore, resulting in too many triggered events, e.g. 19 forms,
19 dissolve. The FacetNet algorithm, on the other hand, is too
stable, resulting in no merge or split events and only having
survival events. Which is a consequence of how it detects
communities over all the snapshots and has less emphasis
on what is happening in each snapshot, and therefore fails
to detect any of the events. The Incremental L-metric has
the balance between the two, i.e. it correctly determines the
communities survived over timeframes by incorporating the
temporal information, and at the same time, detects other types
of events reasonably.

The detailed communities and events detected are furthur
shown in Figure 4. Here communities at each snapshot are
marked with different colours, where these colours are the
notion of meta communities. The communities detected by
the Independent L-metric algorithm in Figure 4a, are too
dynamic and unstable; which result in triggering too many
events. For the first two snapshots for example, we can see
that it failed to detect the green/largest community correctly,
having that community as several separate smaller communi-
ties including the cyan/47 member community, which is not
a distinct community and disappears after only one snapshot.
The Incremental L-metric, Figure 4b, started with the same
communities in the first snapshot, detects the survival of this
green community correctly, by incorporating the temporal
information. Its communities also have a relatively higher
quality, with DQ = .495 to DQ = .456 of the independent
method. The FacetNet communities are different than those
found by the Independent and Incremental L-metric methods.
And at the same time, have lower quality index of DQ. These
communities are too stable and fail to trigger any events other
than survival. Thus one is not able to see the patterns of change
in the structure of the network using its detected communities.

In the Enron dataset, a community which survives multiple
timeframes is more likely to continue discussions of the same
topics. Therefore, we also incorporate the extraction of the
topics for the discovered communities; where we apply KEA
[21] to produce a list of 10 most frequent keywords discussed
in the emails within each community. Topics that persist in a
community from one snapshot to the other are called mutual
topics. The average mutual topics between any two survival
communities during the observation time is calculated for each
algorithm, which are reported at the last column of the Table I.
Here, the highest mutual topics out of the top 10 most frequent
keywords is obtained when using the Incremental L-metric
framework. Thus, the Incremental L-metric also results in the
most meaningful community evolution for Enron.



(a) Events Detected for Independent L-metric

(b) Events Detected for Incremental L-metric

(c) Events Detected for FaceNet

Fig. 4: Events Detected: solid, dashed, and dotted arrows
show detected survive, split, and merge events respectively.
Communities in (a)/(c) are too unstable/stable, while in (b)
we have a balance between the change and stability. Also on
average, the communities in (b) have a relatively higher quality
compared to those in (a)/(c) –quality of communities detected
in each snapshot is reported at the bottom of that snapshot.

V. CONCLUSION

One of the challenging research problems in dynamic social
networks is to mine communities and analyze their evolution
over the observation time. The traditional approach to solve
this problem is to extract communities at each snapshot inde-
pendent of the communities at other snapshots or the historic
data. In this paper, we overviewed and classified different
dynamic community mining approaches. We then proposed an
Incremental L-metric community mining approach to consider
both current and temporal data in the process of mining
communities. The proposed method is then compared with its
equivalent independent version and also with the most com-
monly used dynamic community method –FacetNet. Compared
to these two methods, the Incremental L-metric method detects
communities with higher quality when assessed directly with
a modified version of Q modularity for the dynamic scenario.
In addition, it is more successful in detecting the evolution
patterns of the communities and triggering appropriate events,
when used in our event detection framework, MODEC. The
Independent L-metric is too unstable and triggers too many
events, while the FacetNet is too stable and triggers no events

other than survivals. Our incremental method, on the other
hand, has the balance and provides meaningful communities
and events by incorporating the temporal information.
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