
CMPUT 391 – Database Management Systems University of Alberta 1 Dr. Osmar R. Zaïane, 2001

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2002

CMPUT 391: Database Design Theory

Chapter 15
of Textbook

CMPUT 391 – Database Management Systems University of Alberta 2 Dr. Osmar R. Zaïane, 2001 2

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• Spatial Data Management
• XML
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases

CMPUT 391 – Database Management Systems University of Alberta 3 Dr. Osmar R. Zaïane, 2001

Objectives of Lecture 2

• Understand some limitations of Entity
Relationship Model

• Introduce Functional Dependencies in
Relational Database Design

• Introduce Decomposition and
Normalization

Database Design Theory

CMPUT 391 – Database Management Systems University of Alberta 4 Dr. Osmar R. Zaïane, 2001

Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations

CMPUT 391 – Database Management Systems University of Alberta 5 Dr. Osmar R. Zaïane, 2001

Real World

Requirements
Analysis

Database
Requirements

Conceptual Design

Conceptual
Schema

Logical Design

Physical Design

Logical
Schema

Functional
Requirements

Functional Analysis

Access
Specifications

Application Pgm Design

E-R Modeling

Choice of a
DBMS

Data Model
Mapping

Database Design Process

CMPUT 391 – Database Management Systems University of Alberta 6 Dr. Osmar R. Zaïane, 2001

• Technical Factors
– data model, user interfaces

– programming languages,

– application development tools

– storage structures, access methods

• Economic Factors
– software, hardware, database

– acquisition, maintenance

– personnel, training, operation

• Political Factors

Choices of DBMS

CMPUT 391 – Database Management Systems University of Alberta 7 Dr. Osmar R. Zaïane, 2001

• System independent phase
– obtain a desirable database scheme in the

database model of the chosen database
management system

• System dependent phase
– adjust the database scheme obtained in the

previous phase to conform to the chose
database management system

– DDL statements

Logical Database Design

CMPUT 391 – Database Management Systems University of Alberta 8 Dr. Osmar R. Zaïane, 2001

• Purpose
– to specify the appropriate file structures and indexes

• Criteria
– efficiency

• Approach
– analyzing the database queries and transactions, including expected

frequency

– specifying the general user requirements

• Guideline
– speeding natural join operations

– separate read-only and update transactions

– index files for search and hashing for random access

– focus on attributes used most frequently

Physical Database Design

CMPUT 391 – Database Management Systems University of Alberta 9 Dr. Osmar R. Zaïane, 2001

• Coding
– DDL for database scheme

– SDL for physical scheme

– develop application programs

• Testing

• Operation and Maintenance

Implementation

CMPUT 391 – Database Management Systems University of Alberta 10 Dr. Osmar R. Zaïane, 2001

• Pitfalls in Relational Database Design
– Repetition of information

– Inability to represent certain information

– Loss of information

Consider the following relation schemes:

Branch = (branch-name, assets, branch-city)
Borrow = (branch-name, loan-number, customer-name, amount)
Deposit = (branch-name, account-number, customer-name, amount)

Bad Database Design

CMPUT 391 – Database Management Systems University of Alberta 11 Dr. Osmar R. Zaïane, 2001

Consider an alternative design with the single scheme below

Lending = (branch-name, assets, branch-city, loan-number, customer-name, amount)

branch-name assets branch-city loan-number customer-name amount

Downtown 9000 Edmonton 17 Jones 1000
Downtown 9000 Edmonton 93 Smith 2000
Downtown 9000 Edmonton 93 Hays 2900
Redwood 21000 Edmonton 23 Jackson 1200
Redwood 21000 Edmonton 23 Smith 2000
SUB 17000 Edmonton 19 Hays 2900
SUB 17000 Edmonton 19 Turner 500
SUB 17000 Edmonton 19 Brooks 2200

What if a customer wishes to open an account but not a loan ?

Repetition of Information

CMPUT 391 – Database Management Systems University of Alberta 12 Dr. Osmar R. Zaïane, 2001

Consider an alternative design

Branch-Cust = (branch-name, assets, branch-city, customer-name)
Cust-Loan = (customer-name, loan-number, amount)

branch-name assets branch-city customer-name

Downtown 9000 Edmonton Jones
Downtown 9000 Edmonton Smith
Downtown 9000 Edmonton Hays
Redwood 21000 Edmonton Jackson
Redwood 21000 Edmonton Smith
SUB 17000 Edmonton Hays
SUB 17000 Edmonton Turner
SUB 17000 Edmonton Brooks

Jones 17 1000
Smith 93 2000
Hays 93 2900
Jackson 23 1200
Smith 23 2000
Hays 19 2900
Turner 19 500
Brooks 19 2200

customer loan amount

What will happen if we do a join ?

Repetition of Information

CMPUT 391 – Database Management Systems University of Alberta 13 Dr. Osmar R. Zaïane, 2001

Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations

CMPUT 391 – Database Management Systems University of Alberta 14 Dr. Osmar R. Zaïane, 2001

The Evils of Redundancy
• Redundancyis at the root of several problems

associated with relational schemas:
– redundant storage, insert/delete/update anomalies

• Integrity constraints, in particularfunctional
dependencies, can be used to identify schemas with
such problems and to suggest refinements.

• Main refinement technique: decomposition
(replacing ABCD with, say, AB and BCD, or ACD
and ABD).

• Decomposition should be used judiciously:
– Is there reason to decompose a relation?
– What problems (if any) does the decomposition cause?

CMPUT 391 – Database Management Systems University of Alberta 15 Dr. Osmar R. Zaïane, 2001

Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations

CMPUT 391 – Database Management Systems University of Alberta 16 Dr. Osmar R. Zaïane, 2001

Functional Dependencies (FDs)

• A functional dependencyX Y holds over relation R if,
for every allowable instance r of R:
– t1 r, t2 r, (t1) = (t2) implies (t1) = (t2)

– i.e., given two tuples in r, if the X values agree, then the Y values
must also agree. (X and Y are setsof attributes.)

• An FD is a statement about all allowable relations.
– Must be identified based on semantics of application.

– Given some allowable instance r1 of R, we can check if it
violates some FD f, but we cannot tell if f holds over R!

• K is a candidate key for R means that K R
– However, K R does not require K to be minimal!

→

∈ ∈ π X π X π Y πY

→
→

CMPUT 391 – Database Management Systems University of Alberta 17 Dr. Osmar R. Zaïane, 2001

Example: Constraints on Entity Set

• Consider relation obtained from Hourly_Emps:
– Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

• Notation: We will denote this relation schema by listing
the attributes: SNLRWH
– This is really the setof attributes {S,N,L,R,W,H}.

– Sometimes, we will refer to all attributes of a relation by using the
relation name. (e.g., Hourly_Emps for SNLRWH)

• Some FDs on Hourly_Emps:
– ssnis the key: S SNLRWH

– rating determineshrly_wages: R W

→
→

CMPUT 391 – Database Management Systems University of Alberta 18 Dr. Osmar R. Zaïane, 2001

Example (Contd.)

• Problems due to R W :

– Update anomaly: Can we
change W in just the 1st
tuple of SNLRWH?

– Insertion anomaly: What if we
want to insert an employee and
don’t know the hourly wage for
his rating?

– Deletion anomaly: If we delete
all employees with rating 5, we
lose the information about the
wage for rating 5!

→

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7

Hourly_Emps2

Wages

CMPUT 391 – Database Management Systems University of Alberta 19 Dr. Osmar R. Zaïane, 2001

Refining an ER Diagram
• 1st diagram translated:

Workers(S,N,L,D,C)
Departments(D,M,B)

– Lots associated with workers.

• Suppose all workers in a dept
are assigned the same lot:
D L

• Redundancy; fixed by:
Workers2(S,N,D,C)
Dept_Lots(D,L)

Departments(D,M,B)

• Can fine-tune this:
Workers2(S,N,D,C)
Departments(D,M,B,L)

→

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

lot

dname

budget

did

since
name

Works_In DepartmentsEmployees

ssn

Before:

After:

CMPUT 391 – Database Management Systems University of Alberta 20 Dr. Osmar R. Zaïane, 2001

Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations

CMPUT 391 – Database Management Systems University of Alberta 21 Dr. Osmar R. Zaïane, 2001

Reasoning About FDs

• Given some FDs, we can usually infer additional FDs:
– ssn did, did lot implies ssn lot

• An FD f is implied bya set of FDsF if f holds whenever all
FDs in F hold.
– = closure of F is the set of all FDs that are implied by F.

• Armstrong’s Axioms (X, Y, Z are sets of attributes):
– Reflexivity: If Y X, then X Y

– Augmentation: If X Y, then XZ YZ for any Z

– Transitivity: If X Y and Y Z, then X Z

• These are soundand completeinference rules for FDs!

→ → →

F +

⊆ →
→ →

→ → →

CMPUT 391 – Database Management Systems University of Alberta 22 Dr. Osmar R. Zaïane, 2001

Reflexivity

• If Y X, then X Y

• R=(A,B,C,D,E)

⊆ →

Y

X
t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
πX(t1)= πX(t2) Î
a1 = a2,b1 = b2,c1 = c2,d1 = d2

πY(t1)= πY(t2) Í

CMPUT 391 – Database Management Systems University of Alberta 23 Dr. Osmar R. Zaïane, 2001

Augmentation

• If X Y, then XZ YZ for any Z

• R=(A,B,C,D,E)

→

Y

X

→

Z
t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
πXZ(t1)= πXZ(t2) Î
a1 = a2,b1 = b2,e1 = e2

Since X Y and e1 = e2

then c1 = c2,d1 = d2,e1 = e2

πYZ(t1)= πYZ(t2)

→

CMPUT 391 – Database Management Systems University of Alberta 24 Dr. Osmar R. Zaïane, 2001

Transitivity

• If X Y, and Y Z then X Z

• R=(A,B,C,D,E)

→

Y

X

→

Z

→

t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
assume X Y and Y Z
πX(t1)= πX(t2) Î
a1 = a2,b1 = b2

Since X Y then c1 = c2 ,d1 = d2

Î πY(t1)= πY(t2)
Since Y Y then e1 = e2

Î πZ(t1)= πZ(t2)

→ →

→

→

CMPUT 391 – Database Management Systems University of Alberta 25 Dr. Osmar R. Zaïane, 2001

Reasoning About FDs (Contd.)
• Couple of additional rules(that follow from Armstrong Axioms):

– Union: If X Y and X Z, then X YZ

– Decomposition: If X YZ, then X Y and X Z

• Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
– C is the key: C CSJDPQV

– Project purchases each part using single contract: JP C

– Dept purchases at most one part from a supplier: SD P

• JP C, C CSJDPQV imply JP CSJDPQV

• SD P implies SDJ JP

• SDJ JP, JP CSJDPQV imply SDJ CSJDPQV

→ → →
→ → →

→
→
→

→ → →
→ →
→ → →

CMPUT 391 – Database Management Systems University of Alberta 26 Dr. Osmar R. Zaïane, 2001

Closure of a Set of Functional
Dependencies

• It is not sufficient to consider the given set of
functional dependencies

• We need to consider ALL functional
dependencies that hold.

• Given F, a set of functional dependencies, the
set of all functional dependencies logically
implied by F are called the closure of F
denoted by F+

CMPUT 391 – Database Management Systems University of Alberta 27 Dr. Osmar R. Zaïane, 2001

Reasoning About FDs (Contd.)
• Computing the closure of a set of F of FDs can be

expensive. (Size of closure F+ is exponential in # attrs!)

• Typically, we just want to check if a given FD X Y is in
the closure of a set of FDsF. An efficient check:
– Compute attribute closureof X (denoted X +) wrt F:

• Set of all attributes A such that X A is in F+

• There is a linear time algorithm to compute this.

– Check if Y is in X +

• Does F = {A B, B C, C D E } imply A E?
– i.e, is A E in the closure F + ? Equivalently, is E in A+ ?

→

→

→ → → →
→

CMPUT 391 – Database Management Systems University of Alberta 28 Dr. Osmar R. Zaïane, 2001

Computing the Attribute Closure
• The attribute closure X+ of a set of attributes with

respect to a given set of functional dependencies F is
the set of all attributes A such that X A holds.

• To check whether an FD X Y holds wrt F, we just
have to check whether Y⊆ X+ (no need to compute F+)

• Algorithm for Attribute Closure:
closure:= X;
while (changes in closure) do

foreach functional dependency U V do
if U ⊆ closure then closure:= closure ∪ V;

→
→

→

CMPUT 391 – Database Management Systems University of Alberta 29 Dr. Osmar R. Zaïane, 2001

Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations

CMPUT 391 – Database Management Systems University of Alberta 30 Dr. Osmar R. Zaïane, 2001

Normal Forms
• Returning to the issue of schema refinement, the first

question to ask is whether any refinement is needed!

• If a relation is in a certain normal form(BCNF, 3NF etc.),
it is known that certain kinds of problems are
avoided/minimized. This can be used to help us decide
whether decomposing the relation will help.

• Role of FDs in detecting redundancy:
– Consider a relation R with 3 attributes, ABC.

• No FDs hold: There is no redundancy here.

• Given A B: Several tuples could have the same A value, and if so,
they’ll all have the same B value!

→

CMPUT 391 – Database Management Systems University of Alberta 31 Dr. Osmar R. Zaïane, 2001

Desired Normal Forms
• The normalization process was first introduced by

Codd in 1972. It takes a relation schema through a
series of tests and verifies whether it satisfies certain
normal forms.

• Initially, Codd introduced 3 normal forms 1NF, 2NF
and 3NF but later Boyce and Codd introduced a
stronger definition for 3NF called Boyce-Codd
Normal Form (BCNF).

• There are also 4NF and 5NF based on Multivalued
Dependencies.

CMPUT 391 – Database Management Systems University of Alberta 32 Dr. Osmar R. Zaïane, 2001

Normal Form Tests
• 1NF: Relation should have no non-atomic attributes or nested

relations

• 2NF: Relation where the primary key contains multiple attributes and
no nonkey attribute should be FD on a a part of the primary key.

• 3NF: Relation should not have a nonkey attribute functionally
determined by another nonkey attribute (or by a set of nonkey
attributes). That is, there should be no transitive dependency of a
nonkey attribute on the primary key.

• A relation in 3NF is also in 2NF and a relation in 2NF is also in 1NF.
First normal form (1NF)
Second normal form (2NF)
Third normal form (3NF)
Boyce-Codd normal form (BCNF)
Forth normal form (4NF)
Fifth normal form (5NF)

CMPUT 391 – Database Management Systems University of Alberta 33 Dr. Osmar R. Zaïane, 2001

1NF Example
• Activity relation is in 1NF

(each attribute has one
single value by tuple)

• Key= StuID+Activity

• Deletion and Insertion
anomalies

• Relation contains 2 themes

StuID Activity Fee
100 Skiing 200
100 Golf 100
150 Swimming 65
175 Squash 50
175 Swimming 65
200 Swimming 65
200 Golf 100

• Fee is dependent on part of the key (Activity)

• Split the relation into 2 relations with one theme each.

• 2NF: a non-key attribute can’t be dependent on part of
the key but must be dependent on the whole key

CMPUT 391 – Database Management Systems University of Alberta 34 Dr. Osmar R. Zaïane, 2001

2NF Example
StuID Activity
100 Skiing
100 Golf
150 Swimming
175 Squash
175 Swimming
200 Swimming
200 Golf

• No non-key attribute is dependent on part of a key

• Note that in this case the keys are just one attribute for
both relations Î automatically in 2NF

Activity Fee
Skiing 200
Golf 100
Swimming 65
Squash 50

CMPUT 391 – Database Management Systems University of Alberta 35 Dr. Osmar R. Zaïane, 2001

2NF Example 2 and 3NF

• Delete StuID 150, add (Fac. St-Jean, $2923) Î

modification anomalies.

• No non-key attribute is dependent on non-key
attribute/s (transitive dependency).

• 3NF is in 2NF+ no transitive dependencies

StuID Residence Fee
100 Lister $4907
150 Pembina $4587
200 Lister $4907
250 HUB $3600
300 Lister $4907

• Key = StuID Î 2NF

• StuID → (Residence, Fee)

• StuID → Residence but also
Residence → Fee (transitive
dependency)

StuID Residence Residence Fee

CMPUT 391 – Database Management Systems University of Alberta 36 Dr. Osmar R. Zaïane, 2001

Problems with 3NF (Example)

• 1NF and 2NF (all attrib part of key), 3NF (no transitive
dependencies)

• Delete StuID 300, add (Dahl advises statistics) Î modification
anomalies.

• Determinant (Faculty) is not part of a key Î not BCNF

StuID Major Faculty
100 Math Pavol
150 Physics Tico
200 Math Pavol
250 Math Calvert
300 Physics Popovic
300 Biology Wong

• Key = StuID + Major

• Candidate key= StuID+Faculty

• Faculty → Major

• Student can have many
majors and student can have
many advisorsÎ StuID → Major

andStuID → Faculty

CMPUT 391 – Database Management Systems University of Alberta 37 Dr. Osmar R. Zaïane, 2001

Boyce-Codd Normal Form (BCNF)
• Relation R with FDsF is in BCNF if, for all X A in

– A X (called a trivial FD), or

– X contains a key for R.

• In other words, R is in BCNF if the only non-trivial FDs
that hold over R are key constraints.
– No dependency in R that can be predicted using FDs alone.

– If we are shown two tuples that agree upon the
X value, we cannot infer the A value in
one tuple from the A value in the other.

– If example relation is in BCNF, the 2 tuples
must be identical (since X is a key).

F+→
∈

X Y A

x y1 a

x y2 ?

CMPUT 391 – Database Management Systems University of Alberta 38 Dr. Osmar R. Zaïane, 2001

Third Normal Form (3NF)
• Relation R with FDsF is in 3NF if, for all X A in

– A X (called a trivial FD), or

– X contains a key for R, or

– A is part of some key for R.

• Minimality of a key is crucial in third condition above!

• If R is in BCNF, obviously in 3NF.

• If R is in 3NF, some redundancy is possible. It is a
compromise, used when BCNF not achievable (e.g., no
``good’’ decomp, or performance considerations).
– Lossless-join, dependency-preserving decomposition of R into a

collection of 3NF relations always possible.

F+→
∈

CMPUT 391 – Database Management Systems University of Alberta 39 Dr. Osmar R. Zaïane, 2001

What Does 3NF Achieve?

• If 3NF violated by X A, one of the following holds:
– X is a subset of some key K

• We store (X, A) pairs redundantly.

– X is not a proper subset of any key.
• There is a chain of FDs K X A, which means that we cannot

associate an X value with a K value unless we also associate an A value
with an X value.

• But: even if reln is in 3NF, these problems could arise.
– e.g., Reserves SBDC, S C, C S is in 3NF, but for each

reservation of sailor S, same (S, C) pair is stored.

• Thus, 3NF is indeed a compromise relative to BCNF.

→

→ →

→ →

CMPUT 391 – Database Management Systems University of Alberta 40 Dr. Osmar R. Zaïane, 2001

Normal Form Conditions Revised

• 1NF

• 2NF

• 3NF

• BCNF

.
No nested tables and fixed # attributes

All non-key are dependent on all of the key

2NF and no transitive dependencies

3NF and all determinants are candidate key

CMPUT 391 – Database Management Systems University of Alberta 41 Dr. Osmar R. Zaïane, 2001

1NF and 2NF Revised

1NF: a relation in which the intersection of each row and
column contains one and only one value.
i.e. Tables should have atomic values only.

.
No nested tables and fixed # attributes

1NF

2NF: a relation in 1NF and every non primary key attribute is
fully functionally dependent on the primary key.
i.e. There are no non-key attributes with partial key
dependencies in any table.

All non-key are dependent on all of the key

2NF

CMPUT 391 – Database Management Systems University of Alberta 42 Dr. Osmar R. Zaïane, 2001

3NF and BCNF Revised

3NF

BCNF

3NF: a relation in 2NF and in which no non-primary key attribute
is transitively dependent on the primary key.
i.e. There are no non-key attributes with dependencies on other
non-key attributes (except candidate key).

BCNF: a relation in 3NF and in which there are no dependencies
of part of the compound key on another attribute.
i.e. Every determinant is a candidate key.

2NF and no transitive dependencies

3NF and all determinants are candidate key

CMPUT 391 – Database Management Systems University of Alberta 43 Dr. Osmar R. Zaïane, 2001

Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations

CMPUT 391 – Database Management Systems University of Alberta 44 Dr. Osmar R. Zaïane, 2001

Decomposition of a Relation Scheme
• Suppose that relation R contains attributes A1 ... An. A

decompositionof R consists of replacing R by two or more
relations such that:
– Each new relation scheme contains a subset of the attributes of R

(and no attributes that do not appear in R), and

– Every attribute of R appears as an attribute of one of the new
relations.

• Intuitively, decomposing R means we will store instances
of the relation schemes produced by the decomposition,
instead of instances of R.

• E.g., Can decompose SNLRWH into SNLRH and RW.

CMPUT 391 – Database Management Systems University of Alberta 45 Dr. Osmar R. Zaïane, 2001

Example Decomposition

• Decompositions should be used only when needed.
– SNLRWH has FDs S SNLRWH and R W

– Second FD causes violation of 3NF; W values repeatedly
associated with R values. Easiest way to fix this is to create a
relation RW to store these associations, and to remove W from the
main schema:

• i.e., we decompose SNLRWH into SNLRH and RW

• The information to be stored consists of SNLRWH tuples.
If we just store the projections of these tuples onto SNLRH
and RW, are there any potential problems that we should be
aware of?

→ →

CMPUT 391 – Database Management Systems University of Alberta 46 Dr. Osmar R. Zaïane, 2001

Problems with Decompositions

• There are three potential problems to consider:
� Some queries become more expensive.

• e.g., How much did sailor Joe earn? (salary = W*H)

� Given instances of the decomposed relations, we may not be able
to reconstruct the corresponding instance of the original relation!

• Fortunately, not in the SNLRWH example.

� Checking some dependencies may require joining the instances of
the decomposed relations.

• Fortunately, not in the SNLRWH example.

• Tradeoff: Must consider these issues vs. redundancy.

CMPUT 391 – Database Management Systems University of Alberta 47 Dr. Osmar R. Zaïane, 2001

Lossless Join Decompositions

• Decomposition of R into X and Y islossless-joinw.r.t. a
set of FDs F if, for every instance r that satisfies F:
– (r) (r) = r

• It is always true that r (r) (r)
– In general, the other direction does not hold! If it does, the

decomposition is lossless-join.

• Definition extended to decomposition into 3 or more
relations in a straightforward way.

• It is essential that all decompositions used to deal with
redundancy be lossless! (Avoids Problem (2).)

π X π Y��

⊆ π X �� π Y

CMPUT 391 – Database Management Systems University of Alberta 48 Dr. Osmar R. Zaïane, 2001

More on Lossless Join

• The decomposition of R into R1

and R2 is lossless-join wrt F iff
the closure of F contains:
– R1 R2 R1, or

– R1 R2 R2

• The attributes common to R1 and
R2 must contain a key for either
R1 or R2.

→
→

∩
∩ A B C

1 2 3
4 5 6
7 2 8
1 2 8
7 2 3

A B C
1 2 3
4 5 6
7 2 8

A B
1 2
4 5
7 2

B C
2 3
5 6
2 8

CMPUT 391 – Database Management Systems University of Alberta 49 Dr. Osmar R. Zaïane, 2001

Dependency Preserving Decomposition
• Consider the contract relation schema CSJDPQV,

C is key, JP → C (project purchases a part using one contract)

and SD → P (department purchases only one part from a suplier).

– BCNF decomposition: CSJDQV and SDP

– Problem: Checking JP → C requires a join!

• Dependency preserving decomposition (Intuitive):
– If R is decomposed into X, Y and Z, and we enforce the FDs that

hold on X, on Y and on Z, then all FDs that were given to hold on
R must also hold. (Avoids Problem (3).)

• Projection of set of FDs F: If R is decomposed into X, ...
projection of F onto X (denoted FX) is the set of FDs
U → V in F+ (closure of F) such that U, V are in X.

CMPUT 391 – Database Management Systems University of Alberta 50 Dr. Osmar R. Zaïane, 2001

Dependency Preserving Decompositions

• Decomposition of R into X and Y is dependency preservingif
(FX union FY) + = F+

– i.e., if we consider only dependencies in the closure F+ that can be checked in
X without considering Y, and in Y without considering X, these imply all
dependencies in F+.

• Important to consider F+, not F, in this definition:
– ABC, A B, B C, C A, decomposed into AB and BC.

– Is this dependency preserving? Is C A preserved?????

• Dependency preserving does not imply lossless join:
– ABC, A B, decomposed into AB and BC.

• And vice-versa! (Example?)

→ → →
→

→

CMPUT 391 – Database Management Systems University of Alberta 51 Dr. Osmar R. Zaïane, 2001

Decomposition into BCNF

• Consider relation R with FDs F. If X Y violates BCNF,
decompose R into R - Y and XY.
– Repeated application of this idea will give us a collection of

relations that are in BCNF; lossless join decomposition, and
guaranteed to terminate.

– e.g., CSJDPQV, key C, JP C, SD P, J S

– To deal with SD P, decompose into SDP, CSJDQV.

– To deal with J S, decompose CSJDQV into JS and CJDQV

• In general, several dependencies may cause violation of
BCNF. The order in which we ``deal with’’ them could
lead to very different sets of relations!

→

→ → →
→

→

CMPUT 391 – Database Management Systems University of Alberta 52 Dr. Osmar R. Zaïane, 2001

BCNF and Dependency Preservation
• In general, there may not be a dependency preserving

decomposition into BCNF.
– e.g., CSZ, CS Z, Z C

– Can’t decompose while preserving 1st FD; not in BCNF.

• Similarly, decomposition of CSJDQV into SDP, JS and
CJDQV is not dependency preserving (w.r.t. the FDs
JP C, SD P and J S).
– However, it is a lossless join decomposition.

– In this case, adding JPC to the collection of relations gives us a
dependency preserving decomposition.

• JPC tuples stored only for checking FD! (Redundancy!)

→ →

→ → →

CMPUT 391 – Database Management Systems University of Alberta 53 Dr. Osmar R. Zaïane, 2001

Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp into
BCNF can be used to obtain a lossless join decomp into
3NF (typically, can stop earlier).

• To ensure dependency preservation, one idea:
– If X Y is not preserved, add relation XY.

– Problem is that XY may violate 3NF! e.g., consider the addition
of CJP to `preserve’ JP C. What if we also have J C ?

• Refinement: Instead of the given set of FDs F, use a
minimal cover for F.

→

→

→

CMPUT 391 – Database Management Systems University of Alberta 54 Dr. Osmar R. Zaïane, 2001

Minimal Cover for a Set of FDs
• Minimal cover G for a set of FDs F:

– Closure of F = closure of G.

– Right hand side of each FD in G is a single attribute.

– If we modify G by deleting an FD or by deleting attributes from
an FD in G, the closure changes.

• Intuitively, every FD in G is needed, and ``as small as
possible’’ in order to get the same closure as F.

• e.g., A B, ABCD E, EF GH, ACDF EG
has the following minimal cover:
– A B, ACD E, EF G and EF H

• M.C. → Lossless-Join, Dep. Pres. Decomp!!! (in book)

→

→

→ →

→ →

→

→

CMPUT 391 – Database Management Systems University of Alberta 55 Dr. Osmar R. Zaïane, 2001

Multi-value Dependency

• We talk about multi-value dependencies

• StuID → → Major and StuID → → Activity

• Major and Activity are independent

• Anomalies: add student 100 signs up for squash,
remove student 100 and swimming.

StuID Major Activity
100 Math Skiing
100 Physics Skiing
100 Math Golf
100 Physics Golf
200 Physics Swimming
200 Biology Swimming

• Key= StuID+Major+Activity

• 1NF (obvious) 2NF (all atrib
key) 3NF (no transitive
dependency) BCNF (no
nonkey determinant)Î
StuID → Major, StuID → Activity

CMPUT 391 – Database Management Systems University of Alberta 56 Dr. Osmar R. Zaïane, 2001

4NF and 5NF

• Now suppose only students Majoring in PhysEd
can sign up for Decathlon

• Create another relation for the restrictions

StuID Major
100 Math
100 Physics
200 Physics
200 Biology

StuID Activity
100 Skiing
100 Golf
200 Swimming

Major Activity
PhysEd Decathlon

CMPUT 391 – Database Management Systems University of Alberta 57 Dr. Osmar R. Zaïane, 2001

Inference Rules
■ Reflexivity for FDs

If Y ⊆ X then X → Y.

■ Augmentation rule for FDs

If X → Y then XW → Y .

■ Transitivity rule for FDs

If X → Y and Y → Z then X → Z.

■ Complementation rule for MVDs

If X →→ Y then X →→ (R - XY)

■ Augmentation for MVDs

If X →→ Y and V ⊆ W, W ⊆ R then WX →→ VY.

■ Transitivity rule for MVDs

If X →→ Y and Y →→ Z then X →→ (Z - Y).

Rules for both FDs and MVDs

● If X → Y then X →→ Y.

● If X →→ Y and there exits
W ⊆ R such that W ∩ Y = Ø
and W → Ζ, then X → Ζ.

Replication
Coalescence

CMPUT 391 – Database Management Systems University of Alberta 58 Dr. Osmar R. Zaïane, 2001

Reduced Covering

• Let M be a set of MVDs on R. Then X →→ W in M+ is said to be
– trivial if XW = R or W ⊆ X,

– left-reducible if there exists an X’ ⊂ X such that X’ →→ W in M+,

– right-reducible if there exists a W’ ⊂ W such that X →→ W’ in M+,

– transferable if there exists an X’ ⊂ X such that X’ →→ (X - X’)W in M + .

• X →→ W is reduced if it is non-trivial, left-reduced, right-
reduced, and non-transferable.

• M* is then defined as the set of all reduced MVDs in M+.

A relation scheme R is in Fourth Normal Form (4NF) with respect to a set M of FDs
and MVDs if for every non-trivial MVD X →→ W in M+ that holds in R, X is a
key of R.

CMPUT 391 – Database Management Systems University of Alberta 59 Dr. Osmar R. Zaïane, 2001

Examples
• Faculty = { Prof, Course, GraduateStudent }

Prof →→ Course | GraduateStudent
Thus, { (Prof, Course); (Prof, GraduateStudent)} is a 4NF

decomposition of Faculty.

• Bank = { Customer, Account, Balance, Loan, Amount}
Customer →→ Account, Balance | Loan, Amount

Thus, {(Customer, Loan, Amount); (Customer, Account, Balance)}
is a 4NF decomposition of Bank.

• Employee (Name, Project, Dependent)
Name →→ Project | Dependent

Thus, {(Name, Project); (Name, Dependent)} is a 4NF
decomposition of Employee.

CMPUT 391 – Database Management Systems University of Alberta 60 Dr. Osmar R. Zaïane, 2001

Summary of Schema Refinement

• If a relation is in BCNF, it is free of redundancies that can
be detected using FDs. Thus, trying to ensure that all
relations are in BCNF is a good heuristic.

• If a relation is not in BCNF, we can try to decompose it
into a collection of BCNF relations.
– Must consider whether all FDs are preserved. If a lossless-join,

dependency preserving decomposition into BCNF is not possible
(or unsuitable, given typical queries), should consider
decomposition into 3NF.

– Decompositions should be carried out and/or re-examined while
keeping performance requirementsin mind.

1NF
2NF

3NF
BCNF

4NF
5NF

