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Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR 
• Spatial Data Management
• XML
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases

CMPUT 391 – Database Management Systems University  of Alberta 3 Dr. Osmar R. Zaïane, 2001

Objectives of Lecture 2

• Understand some limitations of Entity 
Relationship Model

• Introduce Functional Dependencies in 
Relational Database Design

• Introduce Decomposition and 
Normalization

Database Design Theory
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Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations
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Real World
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Choice of a
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Database Design Process
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• Technical Factors
– data model, user interfaces

– programming languages, 

– application development tools

– storage structures, access methods

• Economic Factors
– software, hardware, database

– acquisition, maintenance

– personnel, training, operation

• Political Factors

Choices of DBMS
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• System independent phase
– obtain a desirable database scheme in the 

database model of the chosen database 
management system

• System dependent phase
– adjust the database scheme obtained in the 

previous phase to conform to the chose 
database management system

– DDL statements

Logical Database Design
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• Purpose
– to specify the appropriate file structures and indexes

• Criteria
– efficiency

• Approach
– analyzing the database queries and transactions, including expected 

frequency

– specifying the general user requirements

• Guideline
– speeding natural join operations

– separate read-only and update transactions

– index files for search and hashing for random access

– focus on attributes used most frequently 

Physical Database Design
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• Coding
– DDL for database scheme

– SDL for physical scheme

– develop application programs

• Testing

• Operation and Maintenance

Implementation
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• Pitfalls in Relational Database Design
– Repetition of information

– Inability to represent certain information

– Loss of information

Consider the following relation schemes:

Branch = (branch-name, assets, branch-city)
Borrow = (branch-name, loan-number, customer-name, amount)
Deposit =  (branch-name, account-number, customer-name, amount)

Bad Database Design
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Consider an alternative design with the single scheme below

Lending  = (branch-name, assets, branch-city, loan-number, customer-name, amount)

branch-name    assets     branch-city     loan-number    customer-name      amount

Downtown           9000         Edmonton           17           Jones                     1000
Downtown           9000         Edmonton           93           Smith                     2000
Downtown           9000         Edmonton           93           Hays                      2900
Redwood            21000        Edmonton           23           Jackson                 1200
Redwood            21000        Edmonton           23           Smith                     2000
SUB                    17000        Edmonton           19       Hays                      2900
SUB                    17000        Edmonton           19       Turner                     500
SUB                    17000        Edmonton           19       Brooks                   2200     

What if a customer wishes to open an account but not a loan ?  

Repetition of Information
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Consider an alternative design

Branch-Cust  = (branch-name, assets, branch-city, customer-name)
Cust-Loan = (customer-name, loan-number, amount)

branch-name    assets     branch-city     customer-name

Downtown           9000         Edmonton Jones                     
Downtown           9000         Edmonton Smith
Downtown           9000         Edmonton Hays                   
Redwood            21000        Edmonton Jackson               
Redwood            21000        Edmonton Smith                  
SUB                    17000         Edmonton Hays                   
SUB                    17000         Edmonton Turner                
SUB                    17000         Edmonton Brooks                   

Jones   17  1000           
Smith 93 2000
Hays        93           2900
Jackson    23           1200   
Smith       23           2000
Hays         19          2900
Turner       19            500
Brooks      19          2200   

customer loan  amount 

What will happen if we do a join ?  

Repetition of Information
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Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations
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The Evils of Redundancy
• Redundancyis at the root of several problems 

associated with relational schemas:
– redundant storage, insert/delete/update anomalies

• Integrity constraints, in particularfunctional 
dependencies, can be used to identify schemas with 
such problems and to suggest refinements.

• Main refinement technique:  decomposition
(replacing ABCD with, say, AB and BCD, or ACD 
and ABD).

• Decomposition should be used judiciously:
– Is there reason to decompose a relation?
– What problems (if any) does the decomposition cause?
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Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations
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Functional Dependencies (FDs)

• A functional dependencyX      Y holds over relation R if, 
for every allowable instance r of R:
– t1    r,  t2    r,        (t1) =        (t2)  implies        (t1) =        (t2)

– i.e., given two tuples in r, if the X values agree, then the Y values 
must also agree.  (X and Y are setsof attributes.)

• An FD is a statement about all allowable relations.
– Must be identified based on semantics of application.

– Given some allowable instance r1 of R, we can check if it 
violates some FD f, but we cannot tell if f holds over R!

• K is a candidate key for R means that K      R
– However, K      R does not require K to be minimal!

→

∈ ∈ π X π X π Y πY

→
→
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Example:  Constraints on Entity Set

• Consider relation obtained from Hourly_Emps:
– Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

• Notation:  We will denote this relation schema by listing 
the attributes:   SNLRWH
– This is really the setof attributes {S,N,L,R,W,H}.

– Sometimes, we will refer to all attributes of a relation by using the 
relation name.  (e.g., Hourly_Emps for SNLRWH)

• Some FDs on Hourly_Emps:
– ssnis the key:    S        SNLRWH 

– rating determineshrly_wages:    R       W

→
→
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Example (Contd.)

• Problems due to R     W :

– Update anomaly:  Can we 
change W in just  the 1st
tuple of SNLRWH?

– Insertion anomaly:  What if we 
want to insert an employee and 
don’t know the hourly wage for 
his rating?

– Deletion anomaly: If we delete 
all employees with rating 5, we 
lose the information about the 
wage for rating 5!  

→

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7

Hourly_Emps2

Wages
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Refining an ER Diagram
• 1st diagram translated:           

Workers(S,N,L,D,C)       
Departments(D,M,B)

– Lots associated with workers.

• Suppose all workers in a dept 
are assigned the same lot:        
D       L

• Redundancy; fixed by: 
Workers2(S,N,D,C) 
Dept_Lots(D,L)

Departments(D,M,B)

• Can fine-tune this: 
Workers2(S,N,D,C) 
Departments(D,M,B,L) 

→

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

lot

dname

budget

did

since
name

Works_In DepartmentsEmployees

ssn

Before:

After:
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Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations
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Reasoning About FDs

• Given some FDs, we can usually infer additional FDs:
– ssn       did,  did        lot    implies ssn        lot

• An FD f is implied bya set of FDsF if f holds whenever all
FDs in F hold.
– = closure of F is the set of all FDs that are implied by F.

• Armstrong’s Axioms (X, Y, Z are sets of attributes):
– Reflexivity:  If  Y       X,  then   X        Y 

– Augmentation:  If  X       Y,  then   XZ         YZ   for any Z

– Transitivity:  If  X       Y  and  Y        Z,  then   X        Z

• These are soundand completeinference rules for FDs!

→ → →

F +

⊆ →
→ →

→ → →
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Reflexivity

• If  Y       X,  then   X        Y

• R=(A,B,C,D,E)

⊆ →

Y

X
t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
πX(t1)= πX(t2) Î
a1 = a2,b1 = b2,c1 = c2,d1 = d2

πY(t1)= πY(t2)     Í
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Augmentation

• If  X       Y,  then   XZ        YZ for any Z

• R=(A,B,C,D,E)

→

Y

X

→

Z
t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
πXZ(t1)= πXZ(t2) Î
a1 = a2,b1 = b2,e1 = e2

Since X    Y and e1 = e2

then c1 = c2,d1 = d2,e1 = e2

πYZ(t1)= πYZ(t2)     

→
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Transitivity

• If  X       Y,  and Y Z then   X        Z

• R=(A,B,C,D,E)

→

Y

X

→

Z

→

t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2) 
assume X     Y and Y Z
πX(t1)= πX(t2) Î
a1 = a2,b1 = b2

Since X    Y then c1 = c2 ,d1 = d2

Î πY(t1)= πY(t2) 
Since Y   Y then e1 = e2 

Î πZ(t1)= πZ(t2)     

→ →

→

→
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Reasoning About FDs  (Contd.)
• Couple of additional rules(that follow from Armstrong Axioms):

– Union:   If X       Y  and  X        Z,   then  X          YZ

– Decomposition:   If X         YZ,   then  X        Y  and  X        Z

• Example:    Contracts(cid,sid,jid,did,pid,qty,value), and:
– C is the key:   C         CSJDPQV

– Project purchases each part using single contract: JP        C

– Dept purchases at most one part from a supplier: SD        P

• JP      C,  C       CSJDPQV   imply   JP       CSJDPQV

• SD      P   implies   SDJ      JP

• SDJ      JP,   JP      CSJDPQV   imply   SDJ       CSJDPQV

→ → →
→ → →

→
→
→

→ → →
→ →
→ → →
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Closure of a Set of Functional 
Dependencies

• It is not sufficient to consider the given set of 
functional dependencies

• We need to consider ALL functional 
dependencies that hold.

• Given F, a set of functional dependencies, the 
set of all functional dependencies logically 
implied by F are called the closure of F
denoted by F+
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Reasoning About FDs  (Contd.)
• Computing the closure of a set of F of FDs can be 

expensive.  (Size of closure F+ is exponential in # attrs!)

• Typically, we just want to check if a given FD X     Y is in 
the closure of a set of FDsF.  An efficient check:
– Compute attribute closureof X (denoted  X +) wrt F:

• Set of all attributes A such that X       A is in F+

• There is a linear time algorithm to compute this. 

– Check if Y is in X +

• Does F = {A      B,  B      C,  C D      E }  imply  A      E?
– i.e,  is  A      E  in the closure  F + ?  Equivalently, is E in  A+ ? 

→

→

→ → → →
→
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Computing the Attribute Closure
• The attribute closure X+ of a set of attributes with 

respect to a given set of functional dependencies F is 
the set of all attributes A such that X     A holds.

• To check whether an FD X   Y holds wrt F, we just 
have to check whether Y⊆ X+ (no need to compute F+)

• Algorithm for Attribute Closure:
closure:= X;
while (changes in closure) do

foreach functional dependency U  V do
if U ⊆ closure then closure:= closure ∪ V;

→
→

→
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Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations
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Normal Forms
• Returning to the issue of schema refinement, the first 

question to ask is whether any refinement is needed!

• If a relation is in a certain normal form(BCNF, 3NF etc.), 
it is known that certain kinds of problems are 
avoided/minimized.  This can be used to help us decide 
whether decomposing the relation will help.

• Role of FDs in detecting redundancy:
– Consider a relation R with 3 attributes, ABC.  

• No FDs hold:   There is no redundancy here.

• Given A       B:   Several tuples could have the same A value, and if so, 
they’ll all have the same B value!

→
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Desired Normal Forms
• The normalization process was first introduced by 

Codd in 1972. It takes a relation schema through a 
series of tests and verifies whether it satisfies certain 
normal forms. 

• Initially, Codd introduced 3 normal forms 1NF, 2NF 
and 3NF but later Boyce and Codd introduced a 
stronger definition for 3NF called Boyce-Codd 
Normal Form (BCNF).

• There are also 4NF and 5NF based on Multivalued 
Dependencies.
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Normal Form Tests
• 1NF: Relation should have no non-atomic attributes or nested 

relations

• 2NF: Relation where the primary key contains multiple attributes and 
no nonkey attribute should be FD on a a part of the primary key. 

• 3NF: Relation should not have a nonkey attribute functionally 
determined by another nonkey attribute (or by a set of nonkey 
attributes). That is, there should be no transitive dependency of a 
nonkey attribute on the primary key.

• A relation in 3NF is also in 2NF and a relation in 2NF is also in 1NF.
First normal form (1NF)
Second normal form (2NF)
Third normal form (3NF)
Boyce-Codd normal form (BCNF)
Forth normal form (4NF)
Fifth normal form (5NF)
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1NF Example
• Activity relation is in 1NF 

(each attribute has one 
single value by tuple)

• Key= StuID+Activity

• Deletion and Insertion 
anomalies 

• Relation contains 2 themes

StuID   Activity   Fee
100 Skiing 200
100 Golf 100
150 Swimming 65
175 Squash 50
175 Swimming 65
200 Swimming 65
200 Golf 100

• Fee is dependent on part of the key (Activity)

• Split the relation into 2 relations with one theme each.

• 2NF: a non-key attribute can’t be dependent on part of 
the key but must be dependent on the whole key
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2NF Example
StuID   Activity   
100 Skiing
100 Golf
150 Swimming
175 Squash
175 Swimming
200 Swimming 
200 Golf

• No non-key attribute is dependent on part of a key

• Note that in this case the keys are just one attribute for 
both relations Î automatically in 2NF

Activity   Fee
Skiing 200
Golf 100
Swimming 65
Squash 50
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2NF Example 2 and 3NF

• Delete StuID 150, add (Fac. St-Jean, $2923) Î

modification anomalies.

• No non-key attribute is dependent on non-key 
attribute/s (transitive dependency).

• 3NF is in 2NF+ no transitive dependencies

StuID   Residence Fee   
100 Lister $4907
150 Pembina $4587
200 Lister $4907
250 HUB $3600
300 Lister $4907

• Key = StuID Î 2NF

• StuID → (Residence, Fee)

• StuID → Residence but also 
Residence → Fee (transitive 
dependency)

StuID   Residence Residence Fee
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Problems with 3NF (Example)

• 1NF and 2NF (all attrib part of key), 3NF (no transitive 
dependencies)

• Delete StuID 300, add (Dahl advises statistics) Î modification 
anomalies. 

• Determinant (Faculty) is not part of a key Î not BCNF

StuID   Major Faculty   
100 Math Pavol
150 Physics Tico
200 Math Pavol
250 Math Calvert
300 Physics Popovic
300 Biology Wong

• Key = StuID + Major

• Candidate key= StuID+Faculty

• Faculty → Major

• Student can have many 
majors and student can have 
many advisorsÎ StuID → Major 

andStuID → Faculty
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Boyce-Codd Normal Form  (BCNF)
• Relation R with FDsF is in BCNF if, for all X      A  in

– A      X   (called a trivial FD), or

– X contains a key for R.

• In other words, R is in BCNF if the only non-trivial FDs
that hold over R are key constraints.
– No dependency in R that can be predicted using FDs alone.

– If we are shown two tuples that agree upon the                              
X value, we cannot infer the A value in                         
one tuple from the A value in the other.

– If example relation is in BCNF, the 2 tuples                                  
must be identical  (since X is a key).

F+→
∈

X Y A

x y1 a

x y2 ?
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Third Normal Form  (3NF)
• Relation R with FDsF is in 3NF if, for all X      A  in

– A      X   (called a trivial FD), or

– X contains a key for R, or

– A is part of some key for R.

• Minimality of a key is crucial in third condition above!  

• If R is in BCNF, obviously in 3NF.

• If R is in 3NF, some redundancy is possible.  It is a 
compromise, used when BCNF not achievable (e.g., no 
``good’’ decomp, or performance considerations).
– Lossless-join, dependency-preserving decomposition of R into a 

collection of 3NF relations always possible.

F+→
∈
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What Does 3NF Achieve?

• If 3NF violated by X     A, one of the following holds:
– X is a subset of some key K

• We store (X, A) pairs redundantly.

– X is not a proper subset of any key.
• There is a chain of FDs  K        X        A, which means that we cannot 

associate an X value with a K value unless we also associate an A value 
with an X value.

• But: even if reln is in 3NF, these problems could arise.
– e.g., Reserves  SBDC,  S       C,   C        S   is in 3NF, but for each 

reservation of sailor S,  same (S, C) pair is stored.

• Thus, 3NF is indeed a compromise relative to BCNF.

→

→ →

→ →
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Normal Form Conditions Revised

• 1NF

• 2NF

• 3NF

• BCNF

. . . . . .
No nested tables and fixed # attributes

All non-key are dependent on all of the key

2NF and no transitive dependencies

3NF and all determinants are candidate key
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1NF and 2NF Revised

1NF: a relation in which the intersection of each row and 
column contains one and only one value.
i.e. Tables should have atomic values only.

. . . . . .
No nested tables and fixed # attributes

1NF

2NF: a relation in 1NF and every non primary key attribute is 
fully functionally dependent on the primary key.
i.e. There are no non-key attributes with partial key 
dependencies in any table.

All non-key are dependent on all of the key

2NF

CMPUT 391 – Database Management Systems University  of Alberta 42 Dr. Osmar R. Zaïane, 2001

3NF and BCNF Revised

3NF

BCNF

3NF: a relation in 2NF and in which no non-primary key attribute 
is transitively dependent on the primary key.
i.e. There are no non-key attributes with dependencies on other 
non-key attributes (except candidate key).

BCNF: a relation in 3NF and in which there are no dependencies 
of part of the compound key on another attribute.
i.e. Every determinant is a candidate key.

2NF and no transitive dependencies

3NF and all determinants are candidate key
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Database Design Theory

• Database Design Process

• Redundancy Anomalies

• Functional Dependencies

• Armstrong Axioms and Derived Rules

• Normal Forms

• Decomposition of Relations
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Decomposition of a Relation Scheme
• Suppose that relation R contains attributes A1 ... An.  A 

decompositionof R consists of replacing R by two or more 
relations such that:
– Each new relation scheme contains a subset of the attributes of R 

(and no attributes that do not appear in R), and

– Every attribute of R appears as an attribute of one of the new 
relations.

• Intuitively, decomposing R means we will store instances 
of the relation schemes produced by the decomposition, 
instead of instances of R.

• E.g.,  Can decompose SNLRWH into SNLRH and RW.
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Example Decomposition

• Decompositions should be used only when needed.
– SNLRWH has FDs  S        SNLRWH  and  R       W

– Second FD causes violation of 3NF; W values repeatedly 
associated with R values.  Easiest way to fix this is to create a 
relation RW to store these associations, and to remove W from the 
main schema: 

• i.e., we decompose SNLRWH into SNLRH and RW 

• The information to be stored consists of SNLRWH tuples.  
If we just store the projections of these tuples onto SNLRH 
and RW, are there any potential problems that we should be 
aware of?

→ →
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Problems with Decompositions

• There are three potential problems to consider:
� Some queries become more expensive.  

• e.g.,  How much did sailor Joe earn?  (salary = W*H)

� Given instances of the decomposed relations, we may not be able
to reconstruct the corresponding instance of the original relation!  

• Fortunately, not in the SNLRWH example.

� Checking some dependencies may require joining the instances of
the decomposed relations.

• Fortunately, not in the SNLRWH example.

• Tradeoff:   Must consider these issues vs. redundancy.
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Lossless Join Decompositions

• Decomposition of R into X and Y islossless-joinw.r.t. a 
set of FDs F if, for every instance r that satisfies F:
– (r)              (r)   =  r

• It is always true that   r            (r)             (r)
– In general, the other direction does not hold!  If it does, the 

decomposition is lossless-join. 

• Definition extended to decomposition into 3 or more 
relations in a straightforward way.

• It is essential that all decompositions used to deal with 
redundancy be lossless!  (Avoids Problem (2).) 

π X π Y��

⊆ π X �� π Y
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More on Lossless Join

• The decomposition of R into  R1

and R2 is lossless-join wrt F  iff
the closure of F contains:
– R1 R2 R1,   or

– R1 R2 R2

• The attributes common to R1 and 
R2 must contain a key for either 
R1 or R2.

→
→

∩
∩ A B C

1 2 3
4 5 6
7 2 8
1 2 8
7 2 3

A B C
1 2 3
4 5 6
7 2 8

A B
1 2
4 5
7 2

B C
2 3
5 6
2 8
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Dependency Preserving Decomposition
• Consider the contract relation schema CSJDPQV,             

C is key,  JP  → C  (project purchases a part using one contract)

and  SD → P (department purchases only one part from a suplier).

– BCNF decomposition:   CSJDQV and SDP

– Problem:  Checking  JP → C  requires a join!

• Dependency preserving decomposition (Intuitive):
– If R is decomposed into X, Y and Z, and we enforce the FDs that 

hold on X, on Y and on Z, then all FDs that were given to hold on 
R must also hold.  (Avoids Problem (3).)

• Projection of set of FDs F:   If R is decomposed into X, ... 
projection of F onto X  (denoted FX ) is the set of FDs       
U → V in F+ (closure of F ) such that U, V are in X.
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Dependency Preserving Decompositions

• Decomposition of R into X and Y is dependency preservingif  
(FX union   FY ) +  =  F+

– i.e., if we consider only dependencies in the closure F+ that can be checked in 
X without considering Y, and in Y without considering X,  these imply all 
dependencies in F+.

• Important to consider F+, not F, in this definition:
– ABC,  A      B,  B      C,  C      A, decomposed into AB and BC.

– Is this dependency preserving?  Is  C       A  preserved?????

• Dependency preserving does not imply lossless join:
– ABC,  A       B,  decomposed into AB and BC.

• And vice-versa!  (Example?)

→ → →
→

→
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Decomposition into BCNF

• Consider relation R with FDs F.  If X      Y violates BCNF, 
decompose R into  R - Y and XY.
– Repeated application of this idea will give us a collection of 

relations that are in BCNF; lossless join decomposition, and 
guaranteed to terminate.

– e.g.,  CSJDPQV,  key C,  JP      C,  SD       P,   J       S

– To deal with SD      P, decompose into  SDP, CSJDQV.

– To deal with J       S, decompose CSJDQV into JS and CJDQV

• In general, several dependencies may cause violation of 
BCNF.  The order in which we ``deal with’’ them could 
lead to very different sets of relations!

→

→ → →
→

→
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BCNF and Dependency Preservation
• In general, there may not be a dependency preserving 

decomposition into BCNF.
– e.g.,  CSZ,  CS       Z,  Z       C

– Can’t decompose while preserving 1st FD;  not in BCNF.

• Similarly,  decomposition of CSJDQV into SDP, JS and 
CJDQV is not dependency preserving  (w.r.t. the FDs       
JP      C,  SD        P  and  J        S).
– However, it is a lossless join decomposition.

– In this case, adding   JPC to the collection of relations gives us a 
dependency preserving decomposition.

• JPC tuples stored only for checking FD!  (Redundancy!)

→ →

→ → →
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Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp into 
BCNF can be used to obtain a lossless join decomp into 
3NF (typically, can stop earlier).

• To ensure dependency preservation, one idea:
– If  X      Y  is not preserved,  add relation XY.

– Problem is that XY may violate 3NF!  e.g.,  consider the addition 
of CJP to `preserve’  JP        C.   What if we also have  J    C ?

• Refinement:  Instead of the given set of FDs F, use a 
minimal cover for F.

→

→

→
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Minimal Cover for a Set of FDs
• Minimal cover G for a set of FDs F:

– Closure of F  =  closure of G.

– Right hand side of each FD in G is a single attribute.

– If we modify G by deleting an FD or by deleting attributes from 
an FD in G, the closure changes.

• Intuitively, every FD in G is needed, and ``as small as 
possible’’ in order to get the same closure as F.

• e.g.,  A       B,  ABCD        E,  EF      GH,  ACDF        EG 
has the following minimal cover:
– A       B,  ACD        E,  EF        G  and  EF        H

• M.C. → Lossless-Join, Dep. Pres. Decomp!!! (in book)

→

→

→ →

→ →

→

→
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Multi-value Dependency

• We talk about multi-value dependencies

• StuID → → Major and StuID → → Activity

• Major and Activity are independent

• Anomalies: add student 100 signs up for squash, 
remove student 100 and swimming.

StuID   Major        Activity   
100 Math Skiing
100 Physics         Skiing
100 Math Golf
100 Physics         Golf
200 Physics        Swimming
200 Biology        Swimming

• Key= StuID+Major+Activity

• 1NF (obvious) 2NF (all atrib 
key) 3NF (no transitive 
dependency) BCNF (no 
nonkey determinant)Î
StuID → Major, StuID → Activity
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4NF and 5NF

• Now suppose only students Majoring in PhysEd 
can sign up for Decathlon

• Create another relation for the restrictions

StuID   Major
100 Math
100 Physics
200 Physics
200 Biology

StuID Activity   
100 Skiing
100      Golf
200      Swimming

Major Activity   
PhysEd Decathlon
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Inference Rules
■ Reflexivity for FDs

If Y ⊆ X    then   X →  Y.

■ Augmentation rule for FDs

If  X →  Y   then    XW →  Y .

■ Transitivity rule for FDs

If X →  Y  and  Y →  Z   then X →  Z.

■ Complementation rule for MVDs

If X →→ Y then X →→  (R - XY)

■ Augmentation for MVDs

If X →→ Y and V ⊆ W, W ⊆ R  then  WX →→ VY.

■ Transitivity rule for MVDs

If X →→ Y and Y →→ Z then X →→ (Z - Y).

Rules for both FDs and MVDs

● If X →  Y then X →→ Y.

● If  X →→ Y  and there exits 
W ⊆ R such that W ∩ Y = Ø 
and W → Ζ, then  X → Ζ.

Replication
Coalescence
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Reduced Covering

• Let M be a set of MVDs on R. Then X →→ W in M+ is said to be
– trivial if XW = R  or W ⊆ X,

– left-reducible if there exists an X’ ⊂ X such that X’ →→ W in M+, 

– right-reducible if there exists a W’ ⊂ W such that X →→ W’ in M+,

– transferable if there exists an X’ ⊂ X such that X’ →→ (X - X’)W in M + .

• X →→ W is reduced if it is non-trivial, left-reduced, right-
reduced, and non-transferable.

• M* is then defined as the set of all reduced MVDs in M+.

A relation scheme R is in Fourth Normal Form (4NF) with respect to a set M of FDs
and MVDs  if for every non-trivial MVD X →→ W in M+ that holds in R,  X is a 
key of R.
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Examples
• Faculty = { Prof, Course,  GraduateStudent }

Prof →→ Course | GraduateStudent
Thus,    { (Prof, Course);  (Prof, GraduateStudent)} is a 4NF 

decomposition of  Faculty.

• Bank = { Customer,  Account, Balance,  Loan, Amount}
Customer →→ Account, Balance | Loan, Amount

Thus,    {(Customer,  Loan, Amount); (Customer, Account, Balance)}
is a 4NF decomposition of Bank.

• Employee (Name,  Project, Dependent)  
Name →→ Project |  Dependent

Thus,     {(Name, Project);  (Name, Dependent)}  is a 4NF 
decomposition of Employee.
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Summary of Schema Refinement

• If a relation is in BCNF, it is free of redundancies that can 
be detected using FDs.  Thus, trying to ensure that all 
relations are in BCNF is a good heuristic.

• If a relation is not in BCNF, we can try to decompose it 
into a collection of BCNF relations.
– Must consider whether all FDs are preserved.  If a lossless-join, 

dependency preserving decomposition into BCNF is not possible 
(or unsuitable, given typical queries), should consider 
decomposition into 3NF.

– Decompositions should be carried out and/or re-examined while 
keeping performance requirementsin mind.

1NF
2NF

3NF
BCNF

4NF
5NF


