To appear in Journal of Computer Science and Technology

Survey and Taxonomy of Large-scale
Data Management Systems for Big Data
Applications

Lengdong Wu, Li-Yan Yuan and Jia-Huai You

Department of Computing Science, University of Alberta, Edmonton, AB, Canada

Abstract. Today, data is flowing into various organizations at an unprecedented scale
in the world. The ability to scale out for processing an enhanced workload has become
an important factor for the proliferation and popularization of database systems. Big
data applications demand and consequently lead to developments of diverse large-scale
data management systems in different organizations, ranging from traditional database
vendors to new emerging Internet enterprises.

In this article, we analyze the large-scale data management systems in depth and
develop comprehensive taxonomies for various critical aspects covering storage model,
system architecture and consistency model. We map the prevailing highly scalable sys-
tems to the proposed taxonomy, not only to classify the common techniques but also
to provide a basis for analyzing current system scalability limitations. These limita-
tions indicate some possible directions that future efforts need to be undertaken by
researchers.

Keywords: Data storage; System Architecture; Consistency; Scalability

1. Introduction

Data is flowing into organizations, at an unprecedented scale in the world. Data
volumes collected by many companies are doubled in less than a year or even
sooner. The growing speed is faster than the “Moore’s Law”, which predicts
that the general-purpose hardware and software solutions that advance at the
rate of Moore’s Law will not be able to keep pace with the exploding data scale
(Agrawal et al, 2011).

The pursuit for tackling the challenges posed by management of big data

Received xxz
Revised rzx
Accepted zxx

2 L. Wu et al

has given rise to a plethora of data management systems characterized by high
scalability. Diverse systems for processing big data explore various possibilities
in the infrastructure design space. A notable phenomena is NoSQL (Not Only
SQL) movement that began in early 2009 and is evolving rapidly. Numerous
NoSQL systems, based on MapReduce and Hadoop (Dean and Ghemawat, 2008;
Shvachko et al, 2010), utilize a large collection of commodity servers to provide
high scalability for big data management application.

In this work, we provide a comprehensive study of the state-of-the-art large-
scale data management systems for big data application, and also conduct an in-
depth analysis on the critical aspects in the design of different infrastructures. We
propose taxonomies to classify techniques based on multiple dimensions, in which
every high scalable system is able to find its position. A thorough understanding
of current systems and a precise classification are essential for analyzing the
system limitations and ensuring a successful system transition from enterprise
infrastructure to the next generation of large-scale infrastructure.

1.1. Systems for Big Data Application

To date, the trend of “Big Data” is usually characterized by the following well-
known cliché:

— Volume: Excessive data volume and a large number of concurrent users require
substantially throughput raising for the systems.

— Velocity: Data is flowing in at unprecedented speed and needs to be dealt with
in a timely manner.

— Variety: Data comes in all types of formats, from structured relational data
to unstructured data.

— Veracity: Inconsistency or uncertainty of data, due to the quality of data source
or transmission latency, will jeopardize the utility and integrity of the data.

The “big data” trend has imposed challenges on the conventional design and
implementation of data management system. In particular, the ability to scale
out for processing an enhanced workload has become an important factor for
the proliferation and popularization of data management system. For example,
Google responds to the Web-scale storage challenges by developing a family of
systems. Google File System (GFS) (Ghemawat et al, 2003) is a distributed file
system for large distributed data-intensive applications, providing with an OS-
level byte stream abstraction on a large collection of commodity hardware. The
BigTable (Chang et al, 2010) is a hybrid data storage model built on GFS,
commonly used as the interface for MapReduce framework (Dean and Ghe-
mawat, 2008). Megastore (Baker et al, 2011) and Spanner (Corbett et al, 2012)
are two systems over BigTable layer. Megastore blends the scalability and fault
tolerance ability of BigTable with transactional semantics over distant data parti-
tions. Spanner is a multi-versioned, globally-distributed and synchronously repli-
cated database by adopting “True Time”, which combines an atomic clock with
a GPS clock for synchronization across world-wide datacenters. Taking Google’s
released papers as guideline, open-source equivalents were developed as well,
such as Apache Hadoop MapReduce platform built on the Hadoop Distributed
File System (HDFS) (Shvachko et al, 2010). Accordingly, a set of systems with
high-level declarative languages, including Yahoo! Pig (Olston et al, 2008), and

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications 3

Facebook Hive (Thusoo et al, 2009), are realized to compile queries into MapRe-
duce framework before execution on Hadoop platform. In addition to MapRe-
duce and Hadoop, Amazon has found a need for a highly available and scalable
distributed key-value data stores providing the reliable and “always-writable”
property, leading to the development of Dynamo (DeCandia et al, 2007). An
open-source clone of Dynamo, Cassandra (Lakshman et al, 2010), has also been
developed by the Apache community.

Systems above are regarded as generalized databases addressing properties of
being schema-free, simple-API, horizontally scalable and relaxed consistency. As
expected, traditional database vendors such as Oracle, IBM and Microsoft, have
developed their own system technologies in response to the similar requirements.
Oracle Exadata (Oracle, 2012) and IBM Netezza (Francisco, 2011) delivered high
performance by leveraging a massively parallel fashion within a collection of
storage cells. Highly parallelized I/O between storage cells and processing units
with date filtering were developed to minimize the I/O bottleneck and free up
downstream components. Microsoft developed parallel runtime systems includ-
ing Azure (Campbell et al, 2010) and SCOPE (Chaiken et al, 2008) utilizing
specific cluster control with minimal invasion into the SQL Server code base.
Some research prototypes, such as H-store (Kallman et al, 2008), later commer-
cialized into VoltDB (VoltDB, 2011), and C-Store (Stonebraker et al, 2005), the
predecessor of Vertica (Vertica, 2011), also provided their tentative solutions to
the “big data” challenge.

1.2. Synopsis

Having set the stage for the need of large-scale data management system design
and implementation, in this survey, we delve deeper to present our insights in
the critical aspects of highly scalable systems for big data applications. We give
taxonomies from essential aspects as follows:

— Data storage model. We capture both key physical and conceptual aspects of
data structure for the large-scale data management systems.

— System Architecture. The system architecture describes the organization of
all database objects and how they work together for data management. We
give a comprehensive description of diverse architectures by examining and
distinguishing the way how various modules are orchestrated within a system
and how data flow control logic is distributed throughout the system.

— Consistency model. The consistency model guarantees the possible order and
dependency of operations throughout the system, facilitating to simplify the
behaviors that must reason about and anomalies that can occur. We investigate
progressive consistency levels applied by existing systems, and analyze various
consistency models ranging from the weakest to the strongest one.

The remainder of this survey is organized as follows. Section 2 discusses
the different design of storage model from two aspects of physical layout and
conceptual model. Section 3 undertakes a deep study on the diverse scalable
architecture designs and their limitations of scalability. Section 4 presents the
different levels of consistency model, the scalability limitations and tradeoff for
availability and consistency. Section 5 concludes this survey.

4 L. Wu et al
2. Data Model

Data model consists of two essential levels: physical level and conceptual level.
The details of how data is stored in the database belong to the physical level of
data modeling!. The schemas specifying the structure of the data stored in the
database are described in the conceptual level.

2.1. Physical Level

A key factor affecting the performance for any data management system is its
storage layout on the physical layer used to organize the data on database hard
disks. There are three mechanisms to map the two-dimensional tables onto the
one-dimensional physical storage, i.e., row-oriented layout, column-oriented lay-
out, and hybrid-oriented layout.

Row-oriented Layout. Data has been organized within a block in a tradi-
tional row-by-row format, where all attributes data for a particular row is stored
sequentially within a single database block. Traditional DBMS towards ad-hoc
querying of data tends to choose row-oriented layout.

Column-oriented Layout. Data is organized in a significant deviation of the
row-oriented layout. Unlike row-oriented layout, every column is stored sepa-
rately in the column-oriented layout and values in a column are stored contigu-
ously. Analytic applications, in which attribute-level access rather than tuple-
level access is the frequent pattern, tends to adopt the column-oriented layout.
It can then take advantage of the continuity of values in a column such that only
necessary columns related with the queries are required to be loaded, which can
reduce 1/0 significantly (Abadi et al, 2008).

Hybrid-oriented Layout. The design space for physical layout is not limited
to merely row-oriented and column-oriented layout, but rather that there is a
spectrum between these two extremes, and it is possible to build hybrid layout
combining the advantages of purely row and column oriented layout.

Hybrid layout schemes are designed based on different granularities. The most
coarse-gained granularity essentially adopts different layout on different replicas
like fractured mirrors (Ramamurthy et al, 2009). The basic idea is straight-
forward: rather than two disks in a mirror being physically identical, they are
logically identical in which one replica is stored in row-oriented layout while
the other one is in column-oriented layout. Fractured mirror can be regarded
as a new form of RAID-1, in which the query optimizer decides which replica
is the best choice for a corresponding query execution. The fine-grained hybrid
schema (Grund et al, 2010; Hankins and Patel, 2003) integrates row and column
layouts in the granularity of individual tables. Some parts of the table are stored
with row-oriented layout, while other parts apply column-oriented layout. An
even finer schema is based on the granularity of disk block. Data in some blocks
is aligned by rows while some is aligned by columns (Oracle, 2012). To some
extend, we can consider that, row-oriented layout, column-oriented layout are
special extreme cases of hybrid-oriented layout.

I By physical level we mean a lower level of storage schemas, not actual file structures on disk.

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications 5
2.2. Conceptual Level

Obtaining maximum performance requires a close integration between its phys-
ical layout and conceptual schema. Based on the interpretation of data, three
different conceptual data structures can be defined, i.e., unstructured data store,
semi-structured data store and structured data store.

Unstructured data store. A unstructured data store is at the lowest con-
ceptual level. All data items are uninterrupted, isolated and stored as a binary
object or a plain file without any structural information. Unstructured data
store takes the simplest data model: a map allowing requests to put and retrieve
values per key. Operations are limited to those on single key/value pair without
cross-references between distinct pairs and thus there is no support for relational
schema. Extra efforts are required from programmers for the interpretation on
the data. Under the restricted and simplified primitives, the key-value paradigm
favors high scalability and performance advantages, providing developers the
maximal flexibility to program customized features. Unstructured data stores
have gained popularity in the large-scale web services (DeCandia et al, 2007; Ghe-
mawat et al, 2003; Cooper et al, 2008). Due to the lack of structural information
to extract data items separately, the row-oriented physical layout is the only
choice for the unstructured data store.

Semi-structured data store. A semi-structured data store is used to store a
collection of objects that are richer than the uninterrupted, isolated key/value
pairs in the unstructured data store. A semi-structured data store, being schema-
less, has certain inner structures known to application and the database itself,
and there can provide some simple query-by-value capability, but the application-
based query logic may be complex [cite???]. Because of its schemaless nature, a
semi-structured data store can only adapt row-oriented layout on the physical
layer.

Structured data store. A structured data store is used to store highly struc-
tured entities with strict relationships among them. Naturally, a structured data
store is defined by its data schemas, and usually supports comprehensive query
facilities. As a representative of structured data store, the relational database
organizes data into a set of tables, enforces a set of integrity constraints, and
supports SQL as the query language [cite??7?].

2.3. Data Model Taxonomy

Based on the classification of physical layout and conceptual schema, we ana-
lyze currently prevailing database systems and categorize them in an appropriate
taxonomy, as demonstrated in Figure 1. This classification is based on our ob-
servations outlined below.

Google File System (GFS) (Ghemawat et al, 2003), Hadoop Distributed File
System (HDFS) (Shvachko et al, 2010) and Amazon’s Dynamo (DeCandia et al,
2007) are the most typical systems belonging to the category with row-oriented
physical layout and unstructured conceptual data store. GFS and HDFS store
data as Linux files, and Dynamo is built on simple key/value paradigm by storing
data as binary objects (i.e., blobs) identified by unique keys. Therefore, these

6 L. Wu et al

Conceptual Physical
Level Level
— —
Unstructured Row-oriented Cynamao,

Google File System

Row-oriented

hongoDE, CouchDE
Data Semi-structured
Model

Hybrid-oriented BigTable, Cassandra
HEase, HyperTable

Row-oriented MSQL Cluster, H-Stare,
VoltDE, Cracle RAC

Structured Column-orientead C-Store, MonetDESX 100
SyBase 1Q, Vertica

Megastore, Spanner
Oracle ExaData

IBM MNetezza
Greenplum

Hybrid-oriented

Fig. 1. Taxonomy of Data Model

two systems are both unstructured data stores, which can only use row-oriented
physical layout.

Google’s BigTable (Chang et al, 2010) together with Cassandra (Lakshman
et al, 2010), HBase (HBase, 2009), HyperTable (HyperTable, 2008), which are
BigTable-like systems, are representatives of semi-structured data store built on
hybrid-oriented physical layout. They treat each individual table as a sparse,
distributed, multi-dimensional sorted map, in which data is organized into three
dimensions: rows, columns, and timestamps. This organization provides the semi-
structured data. Column keys are grouped together into sets named column
families that form the unit of access control. All data items stored in the same
column family is usually stored continuously in the physical disk which is row-
oriented layout. Client application can access values from individual rows and
then iterate over subset of the data in a column family.

CouchDB (CouchDB, 2010) and MongoDB (MongoDB, 2009) considered
as a document store (DocumentDB, 2012), are another typical class of semi-
structured data store using row-oriented physical layout. Data is stored with
the form of documents in XML, JSON (JavaScript Object Notation) or some
other formats that can be embedded recursively inside. Since data in a docu-
ment store is serialized from XML or JSON format, document stores usually
adopt row-oriented layout similar to key/value stores.

C-store (Abadi et al, 2006; Stonebraker et al, 2005) supports the relational
structured data model, whereas tables are stored column-oriented physically.
MonetDB /X100 (Boncz et al, 2006; Manegold et al, 2009) and commercial sys-
tems Sybase 1Q (Sybase 1Q, 2010) and Vertica (Vertica, 2011) adopts a similar
idea of C-store. These systems are typical relational databases with column-

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications 7

oriented physical layout. Same as relational systems, columns or collections of
columns can form unique primary key or be a foreign key referencing a primary
key in other tables. Data stored in each column are sorted in the same order, thus
values from different columns in same order position belong to the same logical
row. These systems benefit greatly from data compression techniques. Having
data from each column with same data type and low information entropy stored
close together, the compression ratio can be dramatically enhanced saving a large
amount of storage.

Megastore (Baker et al, 2011) and Spanner (Corbett et al, 2012) define a
structured data model based on relational tables stored on BigTable. Since they
are built on top of BigTable infrastructure, hybrid layout is applied on the phys-
ical level. The column name in the BigTable is a concatenation of the table
name and the property name. Entities from different tables can be mapped into
the same BigTable row. Each indexed entry is represented as a single BigTable
row and the key of the cell is constructed using the indexed property values
combined with the primary key of the indexed entity. Same as in traditional
relational database, the data model is declared in a schema. Client applications
can declare additional hierarchies in the database schemas. Tables are either en-
tity group root tables or child tables, which must declare a single distinguished
foreign key referencing a root table.

Oracle’s Exadata (Oracle, 2012), IBM’s Netezza Server (Francisco, 2011) and
Greenplum (Cohen et al, 2009) evolved from traditional parallel database sys-
tems, and thus support structured data store. Furthermore, Exadata introduced
Hybrid Columnar Compression (HCC) (Oracle, 2012) in the granularity of disk
block. Netezza integrates row and column oriented layout on each individual ta-
ble. Greenplum provides multiple storage mechanisms with a variety of format
with different level of compression modes. Column store with slightly compressed
format is applied for data that is updated frequently, and append-only tables are
using row store with heavily compressed format. Therefore, these systems belong
to hybrid-oriented layout category. Hybrid Columnar Compression employs the
similar idea of Partition Attributes Across (PAX) (Ailamaki et al, 2001) com-
bined with compression. In each disk block, records reside on the same block
as row-oriented store, but values of the same column are stored sequentially
together in disk blocks. This is different from the pure column-oriented store,
which stores different columns in entirely separate disk blocks. HCC has the I/O
characteristics of row store and cache characteristics of column store, providing
the compression benefits of column-oriented layout without sacrificing efficient
row-level access too much.

2.4. Data Model Scalability

777 In this subsection, we discuss the advantages and disadvantages of the various
data models and conceptual levels, especially in terms of scalability.

To achieve high scalability, systems need to distribute data to different nodes.
The simplest way for data distribution is to deploy individual tables at different
nodes with no partition. However, since concurrent transactions usually access
different portions of one table, thus data partition can improve the performance
by parallel execution on a number of nodes. In addition, when processing a single
query over a large table, the response time can be reduced by distributing the ex-
ecution across multiple nodes (Cohen et al, 2009). Partitioning can be horizontal

8 L. Wu et al

or vertical, and systems require a close integration between data model and data
partition. Each partition of a table can have a different storage format, to match
the expected workload. For row-oriented data store, horizontal partitioning is
properly used where each partition contains a subset of the rows and each row
is in exactly one partition. For column-oriented or hybrid data store, vertical
or mixed partitioning can be applied. The fine-grained mixed partition schema
is often adopted by vertically partitioning columns of a table into frequent and
static column groups. Columns frequently accessed together are clustered into
the same frequent column group, while columns seldom accessed are categorized
into static column groups (Grund et al, 2010; Jones et al, 2010). In addition,
columns with large-size data are separated independently to take the advantage
of the compression benefits in column store (Abadi et al, 2006). Column groups
are further partitioned horizontally across multiple nodes.

Regarding to the conceptual level, numerous NoSQL large-scalable systems
such as key-value stores (DeCandia et al, 2007) and BigTable-like stores (Chang
et al, 2010; Lakshman et al, 2010) represent a recent evolution in building infras-
tructure by making trade-off between scalability and functionality. They adopt
variant of the schema-less unstructured data for large-scale data application.
However, some systems named as grid databases, or databases on the cloud,
or NewSQL relatively to NoSQL, for data-centric applications, seek to pro-
vide the high scalability and throughput same as NoSQL while still preserving
the high level query capabilities of SQL, and maintaining transactional guar-
antees (Kallman et al, 2008; Baker et al, 2011; Corbett et al, 2012; Cohen et
al, 2009). The unstructured data model in lower conceptual level can simplify
the design and implementation for scale-out capability, but data model in higher
conceptual level is not an obstacle for scalability as long as an optimal parti-
tioning strategy is applied based on the schema. Inappropriate partitioning may
cause data skew. The skewed data will decline response time and generate hot
nodes, which easily become a bottleneck throttling the overall performance and
scalability (Kossmann et al, 2010; Xu et al, 2008). It has been observed that
most OLTP workloads in reality can always be constructed as a tree structure.
Every table in the schema, except the root one, has a many-to-one relationship
to its ancestor (Das et al, 2010; Kallman et al, 2008). Tuples in every descendent
table are horizontally partitioned according to the ancestor that they descend
from, so that all data related to a client is mapped into the same node. As a
consequence, data accessed by a transaction are usually deployed on the same
node. The design of partitioning scheme is based on relational schema and query
workload in order to minimize the contention.

77?7 Remove this paragraph. In this section, we discuss two key levels of data
model for systems affecting the scalability and performance: physical layout and
conceptual model. Different layouts and models are presented and compared
by analyzing how different systems trade off and implement the appropriate
integration according to various requirements.

3. System Architecture

The system architecture is the set of specifications and techniques that dictate
the way how various modules are orchestrated within a system and how data
processing logic works throughout the system. The architecture is crucial and
fundamental to achieve high availability, scalability, and performance. In this

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications 9

section, we are going to classify large-scale systems according to diverse archi-
tectures. Database vendors and network enterprises have been endeavoring to
implement systems providing considerable scalability from different dimensions
to keep pace with growing big data application trends. There are four histor-
ical shifts in the architecture technology behind large-scale data management
systems:

1. the invention of database on cluster of processors (single or multi-core) with
shared memory.

2. the improvement of database on cluster of processors with distributed memory
but common disk.

3. the rise of parallel data processing on shared-nothing infrastructure.

4. the popularization of MapReduce parallel paradigm and distributed file sys-
tem.

3.1. SMP on Shared-Memory Architecture

In the symmetric multi-processing (SMP) on shared-memory infrastructure, a
group of processors, each with its own cache, share a unique common memory
and disk storage. Threads of codes are automatically allocated to processors
for execution, and workload is balanced among the processors by the operat-
ing system. Resources such as memory and the I/O systems are shared and
accessed equally by each of the processor, as illustrated by Figure 2. This ar-
chitecture involves a pool of tightly coupled homogeneous processors running
separate programs and working on different data with the capability of sharing
common resources such as memory, I/O device, interrupt system and system bus.
The single coherent memory pool is useful for sharing data and communication
among tasks. This architecture is fairly common that major commercial database
vendors have provided products based on it. However, the architecture has the
underlying deficiencies in scalability for processing large amounts of data.
77?7 (1) citation, and (2) any upper limit for such architecture.

3.2. MPP on Shared-Disk Architecture

The massively parallel processing (MPP) on shared-disk architecture is built on
top of SMP clusters executing in parallel while sharing a common disk storage,
as demonstrated in Figure 3. Each processor within an SMP cluster node shares
memory with its neighbors and accesses to the common storage across a shared
I/O bus.

The shared-disk infrastructure necessitates disk arrays in the form of a storage
area network (SAN) or a network-attached storage (NAS) (Gibson and Van
Meter, 2000). For instance, Oracle and HP grid solution orchestrates multiple
small server nodes and storage subsystems into one virtual machine based on
SAN (Poess and Nambiar, 2005). Unlike shared-memory infrastructure, there
is no common memory location to coordinate the sharing of the data. Hence
explicit coordination protocols such as cache coherency (Bridge et al, 1997) and
cache fusion (Lahiri et al, 2001) are needed. ??? citation

The MPP architecture on the hybrid combination of SMP clusters is com-
monly used in several well-known scalable database solutions. Two notable sys-

10 L. Wu et al
SMP Cluster SMP Cluster
Pr. Pr. Pr.
|Thread | |Tl1read | |Thread | Processor Processor Processor| |Processor
- - - |Thread| |Thread| [Thread|| |[Thread]
|Thread| |Thread| |Thread| |Thread| |Thread| ‘Thread‘ ‘Thread|
! } Memory bus +
10 IFO 10|
|..-0 bus I I IiQ bus

- _)

Fig. 3. MPP on Shared-Disk Architecture

‘ Storage Area Network ’

Fig. 2. SMP on Shared-Memory Architec-
ture

tems using this architecture are Oracle Exadata Database Machine (Oracle,
2012) and IBM Netezza Performance Server (NPS) (Francisco, 2011). Exadata
is a complete, pre-configured Oracle system that combines Oracle RAC (Oracle
RAC, 2012) with new Exadata Storage Servers. Exadata improves parallel 1/O
and filters only data of interest before transmitting. Netezza integrates server,
storage and database all in a single compact platform. It proposed Asymmetric
Massively Parallel Processing (AMPP) mechanism with Query Streaming tech-
nology that is an optimization on hardware level (Francisco, 2011).

3.3. Sharding on Shared-nothing Architecture

Based on the idea that data management system can be parallelized to lever-
age multiple commodity processors in a network to deliver increased scala-
bility and performance, the parallelism on shared-nothing infrastructure was
coined for these new computing clusters, to distinguish the architecture on the
shared-resource infrastructure. The sharding on shared-nothing infrastructure
is currently a most widely used architecture for large-scale data (Ghemawat et
al, 2003; Chang et al, 2010; DeCandia et al, 2007; Baker et al, 2011; Cooper
et al, 2008; Lakshman et al, 2010; Campbell et al, 2010; Ronstrom and Thal-
mann, 2004).

In order to harness the power of this architecture, data is partitioned across
multiple computation nodes, which results in dramatic performance improve-
ments with parallel query execution. The purpose for this is to achieve the scal-
ability and parallelism advantages of shared-nothing infrastructure while reduc-
ing costs and minimizing administration overheads. Each machine hosts its own
independent instance of database system with operating on its portion of the
data. Each machine is highly autonomous, performing its own scheduling, stor-
age management, transaction management, concurrency control and replication.
Sharding on shared-nothing architecture is a two-tiered system design, as shown
in Figure 4. The lower processing unit tier is composed of dozens to hundreds or
thousands of processing machines operating in parallel. All query processing is
decoupled at the processing unit tier. In the host tier, the assigned coordinator
receives queries from clients and divides the query into a sequence of sub-queries

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applicationsl11

| Central Host |

T
Dispatching —
|| Subquery 1 Subquery 1
Central Host Tier

I Shared-nothing]infrastructure | Processing Unit Tier

Processor Processor Processor

[Thread | [Thread | [Thread |

[Thread | [Thread | [Thread |
1 f

mo
bata ata Duto
Tables Contiol Tables Comiol Tables Comtrol
Index ndex Index

Database Instance / Database Instance / \Database Instance

Fig. 4. Sharding on Shared-Nothing Architecture

that can be executed in parallel, and dispatches them to different processing
units for execution. When processing units finish, the central host collects all
intermediate results, handles post-processing and delivers results back to the
clients.

This approach facilitates all operations to be easily parallel processed on each
unit, including parsing, records access, interlocking and logging, significantly
reducing the contention of MPP on shared-disk approach. The autonomy of
processing unit also creates excellent opportunity for a big data system, allowing
additional units to be involved without concern about interruption with other
units. This architecture allows high scalability, as long as the scope of transaction
is limited into a single node, that is, each DBMS instance is hosted on one node
and processes queries without contacting with any other instance. There are
two flavors of this architecture that are centralized topology and decentralized
topology.

Centralized Topology. Centralized topology utilizes a logically centralized co-
ordinator to manage system-wide membership state. The central server hosts the
entire metadata and periodically communicates with each data server via heart-
beat messages to collect the status of each member. The central server also takes
charge of activities, typically including identifying the nodes that own the data
for the key, routing the request to the nodes and integrating for the responses.
The centralized approach simplifies the design and implementation of the com-
plex architecture since the central node has an authoritative view of the whole
system (Cooper et al, 2008; Ronstrom and Thalmann, 2004).

To prevent the central master server from becoming the bottleneck due to
the heavy workload, shadow master mechanism is employed (Ghemawat et al,
2003). The key idea is to separate the control flow and data flow in the system.
The central master is only responsible for the metadata operation, while clients
communicate directly with the data servers for reads and writes bypassing the
central master. Clients only interact with the master for metadata information
such as which data server should contact, and caches the information for a limited
time. Particularly, GF'S separates file system control, which passes through the
master, from data transfer, which passes directly between chunk-servers and

12 L. Wu et al

clients. Master involvement in common operations is minimized by a large chunk
size and by chunk leases, which delegate authority to primary replicas in data
mutations. Besides prevent centralized master from becoming a bottleneck, this
design also delivers high aggregate throughput for high concurrent readers and
writers performing a variety of task.

Decentralized Topology. Unlike the centralized topology, systems such as
Dynamo (DeCandia et al, 2007) and Cassandra (Lakshman et al, 2010) choose
implementation of decentralized topology. All nodes take equal responsibility,
and there are no distinguished nodes having special roles. This decentralized
peer-to-peer topology excels the centralized one on the aspect of single point
failure and workload balance. Since there is no explicit central node holding
membership information, any node status modification must be propagated via
a gossip-based protocol (Birman, 2007) to other nodes of the system. The gossip-
based membership protocol is a classical mechanism to exchange status among
a large number of nodes efficiently in a scalable manner. The gossip protocol
makes sure that every node keeps a routing table locally and is aware of the
up-to-date state of other nodes. All servers are organized in a ring of successor
nodes structure. Consistent hashing (Karger et al, 1997) is widely used in the
decentralized implementation. Consistent hashing is a structure for looking up
a server in a distributed system while being able to handle server failures with
minimal effort. A client can send a request to any random node, and the node
will forward the request to the proper node along the ring.

3.4. MapReduce/Staged Event Driven Architecture

In the last decade, the importance of shared-nothing clusters was enhanced in
the design of web services such as search engine infrastructure and messaging.
Interesting architectures have been proposed to deal with massive concurrent
requests on large data volume for excessive user basis. One representative de-
sign is the well-known MapReduce Framework, proposed by Google for pro-
cessing large data sets, in which the Map and Reduce modules utilize partition
parallelism to enable many Map and Reduce tasks to run in parallel (Dean
and Ghemawat, 2008). Another design is the Staged Event-Driven Architecture
(SEDA), which is intended to allow services to be well-conditioned for loading,
preventing resources from being over-committed when demand exceeds service
capacity (Welsh et al, 2001).

Google developed MapReduce, which is highly scalable and parallel for big
data processing (Dean and Ghemawat, 2008). Applications programmed with
this framework are automatically parallelized and executed on a large cluster
of commodity machines. The run-time system schedules the programs execution
across a set of machines and manages the required inter-machine communication.
The framework consists of two abstract functions, Map and Reduce, which can
be considered as two different stages. The Map stage reads the input data and
produces a collection of intermediate results; the following Reduce stage pulls
the output from Map stage, processes to final results.

MapReduce can program over high performance database tables. Since database
tables are partitioned across multiple nodes, the initial Map phase is executed
in the local database engine directly on the partition, providing fully parallel
I/O with computation “pushed” to the data. A stand alone MapReduce engine

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications13

Outgoing
E‘?‘ s

Event Queue l—O
e —
o

Thread Pool

e =

Fig. 5. Staged Event Driven Architecture

requires specified data access routines in their MapReduce script, which would
then access a remote database server via a connectivity protocol, and then “pull”
the records over to Reduce phases (Cohen et al, 2009).

Staged Event-Driven Architecture is designed based on event-driven approach
that has been introduced and studied for various software applications, such
as Dynamic Internet Servers and high performance DBMSs (Harizopoulos and
Ailamaki, 2003; Welsh et al, 2001). The event-driven approach implements the
processing of individual task as a finite state machine (FSM), where transitions
between states in the FSM are triggered by events. The basic idea of this archi-
tecture is that a software system is constructed as a network of staged modules
connected with explicit queues, as illustrated in Figure 5 (Welsh et al, 2001).
SEDA breaks the execution of application into a series of stages connected by
explicitly associated queues. Each stage represents sets of states from the FSM in
the event-driven design, and can be regarded as an independent, self-contained
entity with its own incoming event queue. Stages pull a sequence of requests, one
at a time, off their incoming task queue, invoke the application-supplied event
handler to process requests, and dispatch outgoing tasks by pushing them into
the incoming queues of the next stage. Each stage is isolated from one another
for the purposes of easy resource management, and queues between stages de-
couple the execution of stages by introducing explicit control boundaries. The
SEDA design makes use of the dynamic resource controllers to monitor the load
by an associated stage (Welsh et al, 2001).

The SEDA design has been applied to improve the database performance
through exploiting and optimizing locality at all levels of memory hierarchy of
single symmetric multiprocessing system at the hardware level (Harizopoulos and
Ailamaki, 2003). The SEDA provides a satisfied design for high scalable system,
since stages can be easily arranged to run on various node servers. As a matter of
fact, it has been shown that the aforementioned MapReduce framework can also
regard as an architecture based on SEDA, and the basic MapReduce framework
resembles the two-stage architecture. 777 citation

3.5. System Architecture Taxonomy

Based on the above analysis, we present the taxonomy of large-scale data man-
agement system architecture in Figure 6.

Due to the long-time popularity of shared-memory multi-threads parallelism,
almost all major traditional commercial DBMS providers support products with

14 L. Wu et al

SMP on Shared-Memory Microsoft SQL server,
Postgre-R, BerkeleyDE
Traditional Database

Shared-Resources

MPP on Shared-Disk Oracle RAC, ExaData,

System IBM Metezza
Architecture

Centralized ©oodle File System,
M5 Azure, MySQL Cluster,

Sharding Megastore, PNUTS, H-Store

) Decentralized [wnamo, Cassandra
Shared-Nothing Spanner, Vertica

Hive, Pig
Graenplum
MapReduce/SEDA HadoopDBE

Fig. 6. Taxonomy of system architecture

SMP on shared-memory architecture, such as Microsoft SQL Server, Oracle
Berkeley DB and Postgres-R, to name a few.

777 This whole paragraph seems off the topic. The large-scale data exac-
erbates I/0 issue, thus one trend is developing highly parallelized I/O between
storage and central processing units with MPP on shared-disk architecture. Rep-
resentative systems of this trend include Oracle RAC (Oracle RAC, 2012), Exa-
data (Oracle, 2012) and IBM Netezza (Francisco, 2011). The high scalability and
performance is delivered for large-scale data applications by leveraging a mas-
sively parallel fashion within a collection of storage cells. These systems push
as much SQL work as it can to storage cells. Each storage cell returns only the
requested rows and columns that fulfill the requirements of a query rather than
querying the entire table itself. This process of filtering out extraneous data as
early in the data stream as possible close to the data source can minimize the
I/O bandwidth bottleneck and free up downstream components such as CPU
and memory, thus having a significant multiplier effect on performance. Sys-
tems such as Exadata also adopt compression technique. Only the data being
returned to the clients are decompressed, which can reduce the I/O well. These
database systems can provide high performance for processing large-scale data
relying on dedicated hardware and software implementation, where dedicated
high-end hardware combined with complex software protocols is applied for the
fundamental infrastructure.

Microsoft Azure server (Campbell et al, 2010) is built on Microsoft SQL
Server and uses centralized topology over the shared-nothing infrastructure. This
architectural approach is to inject the specific cluster control with minimal in-
vasion into the MS SQL Server code base, which retains much of the relational
features of SQL Server. To enhance the scalability, MS Azure also assembles
multiple logical databases to be hosted in a single physical node, which allows
multiple local database instances to save on memory for the internal database
structures in the server.

MySQL Cluster (Ronstrom and Thalmann, 2004) is a typical sharding on
shared-nothing, distributed node architecture storage solution designed for high
scalability and performance based on MySQL. Data is stored and replicated on

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications15

individual data nodes, where each data node executes on a separate server and
maintains a copy of the data. MySQL Cluster automatically creates node groups
from the number of replicas and data nodes specified by the user. Each cluster
also specifies the management nodes.

H-Store (Kallman et al, 2008) is a highly distributed, row-store oriented re-
lational database that runs on a cluster on shared-nothing infrastructure, main
memory executor nodes. H-Store provides an administrator within the cluster
that takes a set of compiled stored procedures as input.

Google File System (GFS) (Ghemawat et al, 2003) is a scalable distributed
file system for large distributed data-intensive applications. A GFS cluster uses a
simple design with selecting a single master server for hosting the entire metadata
and the data is split into chunks and stored in chunk-servers hosted on other
nodes.

BigTable (Chang et al, 2010) is built on GFS, and relies on a highly-available
and persistent distributed lock service for master election and location boot-
strapping. To avoid the master from being a bottleneck, aggressively caches are
applied to minimize data transmit and save the processor time and bandwidth.

Megastore (Baker et al, 2011) is a higher layer over BigTable. Megastore
blends the scalability of BigTable with the traditional relational database. Mega-
store partitions data into entity groups, providing full ACID semantics within
groups, but only limiting consistency across them. To improve query efficiency,
both local indexes in each entity group and global indexes across multiple entity
groups are realized.

Yahoo! PNUTS (Cooper et al, 2008) is a massively parallel and geograph-
ically distributed system. PNUTS uses a publish/subscribe mechanism where
all updates are firstly forwarded to a dedicated master, and then the master
propagates all writes asynchronously to the other data sites.

GFS, BigTable, Megastore and PNUTS all elect and utilize logically central
nodes to manage the coordination of the whole cluster, thus they all belong to the
centralized topology category of sharding on shared-nothing architecture. Some
systems such as Dynamo (DeCandia et al, 2007), Cassandra (Lakshman et al,
2010) and Spanner (Corbett et al, 2012) opt symmetric structure on decentralized
topology over centralized one based upon the understanding that symmetry in
decentralization can simplify the system provisioning and maintenance. Systems
with decentralized topology basically employ a distributed agreement and group
membership protocol to coordinate actions between nodes in the cluster. The
messaging protocol uses broadcast and point-to-point delivery to ensure that
any control message is successfully received by other nodes.

Dynamo used the techniques originate in the distributed systems research of
the past years such as DHTs (Gummadi et al, 2003), consistent hashing (Karger
et al, 1997), vector clocks (Lamport, 1978), quorum (Alvisi, 2001). Dynamo is
the first production system to use the synthesis of all these techniques (DeCandia
et al, 2007).

Facebook Cassandra (Lakshman et al, 2010) is a distributed storage system
for managing very large amounts of structured data spread out across many
commodity servers. Cassandra brings together the data model from Google’s
BigTable and the distributed systems technologies from Dynamo.

Spanner (Corbett et al, 2012) is a scalable, multi-version, globally-distributed
database based on True Time API, which combines an atomic clock and a GPS
clock to timestamp data so it can then be synchronized across multiple machines
without the need for centralized control.

16 L. Wu et al

Hive (Thusoo et al, 2009; Thusoo et al, 2010), an open-source data warehous-
ing solution built on top of Hadoop, compiles SQL-like declarative queries into
a directed acyclic graph of MapReduce jobs executed on Hadoop. Pig (Olston et
al, 2008) is a high-level data flow system, in which programs are compiled into
sequences of Map-Reduce tasks and executed on the Hadoop cluster. Pig first
translates a execution plan into a physical plan, and then assign each physical
operator inside a MapReduce stage to construct a MapReduce plan.

HadoopDB (Abouzeid et al, 2009) is built based on the idea of providing
Hadoop access to multiple single-node DBMS servers and pushing data as much
as possible into the engine. The above systems relies on MapReduce framework
to ensure the scalability of Hadoop.

We have presented four different system architectures: symmetric multiple
processing on shared-memory, massively parallel processing on shared-disk, shard-
ing on shared-nothing and MapReduce/SEDA. These architectures are sup-
ported by diverse database providers. Now we will discuss the scalability of these
architectures.

3.6. Architecture Scalability

777 It is better to just present a simpler conclusion that in terms of scalability,
we have MapReduce/Staged >> Sharding Decentralized > Sharding Centralized
>> Shared MPP > Shared SMP, with some numbers and/or citations.

A small-scale SMP system consisting of a few processors is not capable of
managing large-scale big data processing. It can be scaled “up” by adding ad-
ditional processors, memories and disks devices, but is inevitably bounded by
resource limitation. In particular, dozens of processors are sharing memory and
storage. When data volumes are increasing enormously, systems based on SMP
will run out of their memory. As processors turns to access the large amount of
data in memory, the memory bus becomes a bottleneck easily. When the bus is
saturated, increasing the number of processors or the size of memory is ineffec-
tive. Hence, memory bus bandwidth is one limit ceiling for scaling-up. Similarly,
I/0 bus bandwidth can also be clogged with traffic as the amount of data trans-
ferred increases, adversely affecting the performance.

In addition, multi-processors require sophisticated logical mechanism in the
hardware to keep the L2-cache consistent, so it is rather difficult for a single
machine to have hundreds of processors unless they are specially customized
from non-commodity devices and if so, it will be very expensive but rather cost-
efficient. The SMP on shared-memory systems have the disadvantage of limited
scalability leading to a progressive decline in performance as the amount of big
data grows.

Similarly, in the systems based on shared-disk infrastructure, the internal
bus and I/O connections cannot handle the tremendous amount of traffic, which
create a performance bottleneck that inhibits scalability. In addition to bus band-
width, threads contention is another factor hindering the scalability as the hard-
ware contexts grow exponentially. Multi-threading is the main mechanism for
utilizing shared resources. Each incoming query is handled by one thread. Each
thread executes until it either blocks on a synchronization condition such as I/O
wait, or until a predetermined time quantum has elapsed. Then the CPU switches
context and executes a different thread or a different task. The overhead caused
by the context switches can be considerable high (Stonebraker et al, 2007). In

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications17

addition, complex locking manipulation is essential to control threads to access
critical data section. With excessive threads, some critical section will eventually
become a bottleneck, since critical sections need to serialize the threads which
compete for them (Johnson et al, 2009).

Due to the fact that data in the shared-disk needs to be dynamically cached in
multiple processors memory to exploit access locality, synchronization of reads
and writes requires locks management, and invalidations of stale cached data
or propagations of updated data must be conformed. The overheads induced
by the locking mechanism will become high as the system is scaled up, which
will hinder the system performance sharply. To sum up, the systems fundamental
dependency on a shared-resource design limits its ability to scale for the massively
concurrent requirements.

In the shared-nothing infrastructure, local resources serve local processor;
thus it overcomes the disadvantage of limited bus bandwidth and limited mem-
ory size. Furthermore, it can be better for communication with lower cost. The
shared-nothing design is intended to support smooth extensibility of the sys-
tem by involving new computation nodes. Therefore, sharding and SEDA on the
shared-nothing architecture are desired ways to achieve ultimate scalability, and
a large number of applications based on MapReduce framework are such good
examples. Google uses it internally to process more than 20PB data set per-
day. MapReduce reaches the ability to sort 1 PB data using 4,000 commodity
servers (Dean and Ghemawat, 2008). Hadoop at Yahoo! is assembled on 3,000
nodes with 16PB raw disk, 64TB of RAM and 32K CPU cores (Shvachko et
al, 2010). At Facebook, Hive (Thusoo et al, 2009) forms the storage and ana-
lytics system infrastructure that stores 15PB data and process 60TB new data
everyday (Thusoo et al, 2010).

777 Again, this paragraph is not properly located. In this section, we discuss
four different system architecture on top of shared-resources and shared-nothing
infrastructure. Architectures on shared-resources have limited scalability due to
the inherent resource contention. Sharding and SEDA on shared-nothing infras-
tructure are ideal architectures to achieve high scalability.

4. Consistency Model

One of the challenges in the design and implementation of a big data manage-
ment system is how to achieve high scalability without sacrificing consistency.
The consistency property ensures the suitable order and dependency of opera-
tions throughout the system, helping to simplify application development. How-
ever, most large-scale data management systems currently implement a trade-off
between scalability and consistency, in that strong consistency guarantees, such
as ACID (Lewis et al, 2002), are often renounced in favor of weaker ones, such
as BASE (Cooper et al, 2008). In this section, we are going to classify systems
according to different consistency level based on ACID and BASE.

4.1. ACID Properties

There are a set of properties that guarantee that database transactions are pro-
cessed reliably, referred to as ACID (Atomicity, Consistency, Isolation, Durabil-
ity) (Lewis et al, 2002). Database management systems with ACID properties

18 L. Wu et al

provide different isolation levels, include read committed, Snapshot isolation, and
serializability (Berenson et al, 1995).

Serializability, the highest isolation level, guarantees that the concurrent ex-
ecution of a set of transactions results in a system state that would be obtained
if transactions were executed serially, i.e. one after the other. It is typically im-
plemented by pessimistic reads and pessimistic writes, achieving the condition
that unless the data is already updated to the latest state, the access to it is
blocked.

Snapshot isolation is a multiversion concurrency control model based on op-
timistic reads and writes. All reads in a transaction can see a consistent com-
mitted snapshot of the database. A data snapshot is taken when the snapshot
transaction starts, and remains consistent for the duration of the transaction.
Restrictions such as “The First-Committer Wins” rule allows snapshot isolation
to avoid the common type of lost update anomaly (Bornea et al, 2011).

Read committed, allowing applications trading off consistency for a potential
gain in performance, guarantees that reads only see data committed and never
sees uncommitted data of concurrent transactions.

To provide high availability and read scalability, synchronous replication is an
important mechanism. With synchronous replication, rather than dealing with
the inconsistency of the replicas, the data is made unavailable until updates
operations are propagated and completed in all or most of replicas. Update op-
erations may be rejected and rolled back if they fail to reach all or a majority
of the destination replicas within a given time. When serializable consistency
is combined with synchronous replication, we can achieve one-copy serializabil-
ity (Bornea et al, 2011), in which the effects of execution a set of transactions
are equivalent to executing the transactions in the serial order within only sin-
gle up-to-date copy. Similarly, combining read committed and snapshot isolation
with synchronous replication, one-copy read committed and one-copy snapshot
isolation can be obtained respectively (Ronstrom and Thalmann, 2004; Lin et
al, 2005).

4.2. BASE Properties

The ACID properties work fine for horizontally scalable, relational database clus-
ters. However, they may not well fit in the new unstructured or non-relational,
large-scale distributed systems, in which flexible key/value paradigms are fa-
vored and the network partition or node failure can be normal rather than an
exception. Naturally, Many large-scale distributed systems, such as Amazon Dy-
namo (DeCandia et al, 2007), Yahoo! PNUTS (Cooper et al, 2008) and Face-
book Cassandra (Lakshman et al, 2010), choose BASE, a consistency model
weaker than ACID. The BASE, standing for Basically Available, Soft-state,
FEventually consistent, can be summarized as: the system responses basically
all the time (Basically Available), is not necessary to be consistent all the time
(Soft-state), but has to come to a consistent state eventually (Eventual consis-
tency) (Pritchett, 2008).

Various BASE consistency models have been specified, and thus we first cat-
egorize these models and present examples to demonstrate different levels of
consistency guarantees.

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications19
4.2.1. Eventual Consistency

Eventual consistency, one of the fundamental requirements of the BASE, in-
formally guarantees that, if no new updates are made to a given data item,
eventually all accesses to that item will return the last updated value.

Even though a system with eventual consistency guarantees to to “eventu-
ally” converge to a consistency state, it increases the complexity of distributed
software applications because eventual consistency does not make safety guar-
antees: an eventually consistent system can return any value before it con-
verges (Pritchett, 2008; Lloyd et al, 2011).

However, eventual consistency may not provide a single image system since
it makes no promise about the time intervals before the convergence is reached.
In addition, the value that eventually achieved is not specified. Thus, additional
restriction is required from applications to reason the convergence.

4.2.2. Causal Consistency

Causality informally is described as an abstract condition that ensures execution
in a cluster agrees on the relative ordering of operations which are causally
related. Conditions of causality based on reads and writes derive from causal
memory (Ahamad et al, 1995).

A write-into order — is a relation with the following properties:

a) If op; — opo, then there is a data object such that op; writes it earlier, and
opo reads it later.

b) For any operation ops, there is at most one op; such that op; — ops.

c¢) If ops reads some data object and there is no op; such that op; — ops, then
opo return L.

The write-into order defines the relative ordering of related read and write
operations that are causally related. It requires that reads respect the order of
causally related writes. Under causality, all operations that could have influ-
enced one operation must be visible before the operation takes effect. Causal
consistency is the transitive closure of the union of the write-into order and the
preceding order. In the typical key-value stores, the causal consistency guaran-
tees the causal order relation < for cases as below (DeCandia et al, 2007; Lloyd
et al, 2011):

a) Two operations a and b are submitted on the same node and a — b, then
a < b.

b) Two operations a and b are submitted on different nodes. If a has been re-
ceived and executed before b is submitted, then a < b.

¢) If 3¢, ¢ # a, ¢ # b such that a < c and ¢ < b, then a < b. This property defines
the transitive closure of the first two orders.

Operations without causal dependency are commutative. If two consecutive
operations commute, they can execute in either order. Implementation of causal
consistency usually involves dependency tracking (Lloyd et al, 2011; Bailis et
al, 2013). Dependency tracking associated with each operation is employed to
record meta-information for reasoning about causality order. Each process server
reads from their local data objects and determines when to apply the newer writes
to update the local stores based on the dependency tracking.

20 L. Wu et al
4.2.8. Ordering Consistency

Instead of merely ensuring partial orderings between dependent operations, or-
dering consistency is an enhanced variation of causality consistency ensuring
global ordering of operations. Ordering consistency provides the monotonicity
guarantee of both read and write operations to each record.

(a) The “monotonic writes” guarantee ensures write operations being applied in
the identical order on all nodes.

(b) The “monotonic reads” guarantee ensures that reads only see progressively
newer versions of data on each node.

The “monotonic writes” guarantee can be enforced by ensuring that write op-
eration can be accepted only if all writes made by the same user are incorporated
in the same node (Saito and Shapiro, 2005). It can be achieved by designating
one node as the primary node for every record; and then all updates to that
record are directing to the primary node. The primary node orders operations
by assigning them monotonically increasing sequence numbers. All update oper-
ations, together with their associated sequence numbers, are then propagated to
non-primary nodes by subscribing them to a queue ensuring updates are deliv-
ered successfully to all relevant nodes. In the case that the primary node fails,
one of the non-primary nodes is elected to act as the new primary node. To guar-
antee successive reads by the same user return increasingly up-to-date results,
the node the user access is always the same one.

From the analysis above, it is not difficult to see that considering consistency
is stronger than causal consistency in that a system that guarantees ordering
consistency also guarantees causal consistency, but not vise versa. Further, causal
consistency is stronger than eventual consistency.

If we use > to represent the stronger relationship among two consistency
models, the following demonstrates that all the three consistency models form a
linear order: (7?7 citation or formal proof)

ordering consistency > causal consistency > eventual consistency

77?7 NOTE: We may also to discuss the relationships among ACID and BASE:
that is
serializability > snapshot > read committed >~ ordering consistency

4.3. Consistency Model Taxonomy

Based on the discussion of consistency models, we categorize the implementation
of different systems into the taxonomy as shown in Figure 7. The classification
is based on our ensuing analysis.

Spanner (Corbett et al, 2012), Megastore (Baker et al, 2011) and Spin-
naker (Rao et al, 2011) provide one-copy serializability with a Paxos-based pro-
tocol (Chandra et al, 2007). Paxos ensures that data will be available as long as
the majority of the nodes are alive. Megastore and Spinnaker implement with
two phases: a leader election phase, followed by a quorum phase where the leader
proposes a write and followers accept it. Spanner’s Paxos implementation uses
TrueTime leases, in which Spanner assigns a TrueTime to each write operation in
monotonically increasing order, allowing Spanner to correctly determine whether
a state is sufficiently up-to-date to satisfy a read.

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications21

MegaStore
L Serializability —— Spanner, VoltDB
Pessimistic Spinnaker, H-Store
ACID _ MySQL Cluster
Read Committed —— y.o\ ¢ ot Azure
. Oracle Exadata
Consistency Snapshot Isolation C-Store. Vertica
Model
. . PNUTS, GFS
Ordering Conmstency—Hyperdex BigTable
BASE (Dynamo
Causal Consistency — Cassandra
COPS
éprfmfsrfc Eventual Consistency —Amazon S3

Fig. 7. Taxonomy of Consistency Model

VoltDB and H-Store (Kallman et al, 2008; Jones et al, 2010; Stonebraker
et al, 2007) support SQL transaction execution through stored procedure. By
initiating global order before execution, all nodes can asynchronously execute the
stored procedures serially to completion with the same order. Furthermore, H-
Store and VoltDB perform the sequential execution in a single-threaded manner
without any support for concurrency. The combination of above mechanisms
makes the transaction execution in such systems resemble the single operation
call.

MySQL Cluster (Ronstrom and Thalmann, 2004) and Azure (Campbell et
al, 2010) combined traditional read committed with the master-slave mode syn-
chronization. Exadata (Oracle, 2012) isolates read-only transactions using snap-
shot isolation. High water mark with low-overhead mechanism is introduced for
keeping track of its value in multi-replica environment in C-Store (Stonebraker
et al, 2005).

Hyperdex (Escriva et al, 2012) provide ordering consistency with chaining, in
which nodes are arranged into a value-dependent chain. The head of the chain
handles all write operations and dictates the total order on all updates to the
object. Each update flows through the chain from the head to the tail, and re-
mains pending until an acknowledgement of commit received from the tail. Read
operations can be dealt with by different nodes as long as the latest committed
value of data can be obtained on that node; Otherwise, read operations will be
forwarded to the tail node.

Yahoo! PNUTS (Cooper et al, 2008) provides a per-record time line consis-
tent model which preserves ordering consistency. PNUTS introduces a pub/sub
message broker, which takes charge of receiving updates from a master node
and sending them to other nodes in the identical committed sequence. Update is
considered to be committed when it is published to the broker. After being com-
mitted, the update will be asynchronously propagated and applied to different
nodes. The update will be buffered by the broker until it is applied to all nodes.

22 L. Wu et al

GFS (Ghemawat et al, 2003) and BigTable (Chang et al, 2010) both use
Chubby (Burrows, 2006), a distributed locking mechanism for distributed node
coordination. The GFS relies on Chubby with a lease agreement to apply muta-
tions to each chunk in the same order. The global mutation order is defined by
the lease grant order. In the BigTable, Chubby provides a namespace consisting
of directories and small files. Each directory or file can be added a lock, and
reads and writes to a file are atomic.

Dynamo (DeCandia et al, 2007), Voldemort (Voldemort, 2011) and Cassan-
dra (Lakshman et al, 2010) provide causal consistency for allowing applications
with “always writeable” property. In Dynamo, write operations can be accepted
by any node. Vector clock, also named version vector or timestamp vector, is
associated with multiversion of data to determine the causal dependency order
during reconciliation. Dynamo and Cassandra resolve conflicts during read op-
erations. Some other systems, such as COPS (Lloyd et al, 2011; Burckhardt et
al, 2010), enforce dependency resolution on write operations to achieve “non-
block read” property.

4.4. Consistency Scalability

We propose a consistency model taxonomy in which the model in a higher level
provides stricter guarantees than the model in a lower level. Now we discuss the
tradeoff between consistency and scalability, and especially how the implemen-
tations of different consistency models affect the scalability.

The common implementation to provide serializability is based on distributed
two-phase locking (2PL) protocol. However, locking-based protocol adds over-
head to each data access due to the manipulation to acquire and release locks,
and it limits concurrency and scalability in case of conflicting accesses, and adds
overheads due to deadlock detection and resolution (Larson et al, 2011; Ozsu,
2011; Weikum and Vossen, 2001). Another similar pessimistic concurrency con-
trol protocol implementation is based on distributed serialization graph testing
(SGT), which characterizes conflict serializability via the absence of cycles in

the conflict graph (Ozsu, 2011). The limitation of this implementation is closely
related to the problem of testing a distributed graph for cycles, which also arises
the deadlock detection. Thus, transactions executed by a distributed database
should not cause distributed deadlocks because such deadlocks are difficult and
expensive to detect. Optimistic protocols are lock-free assuming that conflicts
between transactions are rare. However, to guarantee that validation phase can
produce consistent results, a global order checking is required which will decrease
performance heavily for large-scale distributed data system (Corbett et al, 2012).
In the presence of slower network connection, more transactions may crowed into
the system causing excessively high chances of rollbacks (Larson et al, 2011).
The communication latency caused by various commit protocol implemen-
tations (e.g. two-phase commit, three-phase commit, Paxos, etc.) can limit the
scalability as well. A protocol implementation performs well within local-area
networks where latency can almost be negligible and failures are rare. However,
it may severely limit the scalability of large systems with frequent update op-
erations since the availability and coordination overhead become worse as the
number of nodes increases (Yu and Vahdat, 2002; Yu and Vahdat, 2006). For ex-
ample, the well-known two-phase commit protocol, commonly used in traditional
distributed database systems, scales poorly due to the overhead caused by mul-

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications23

tiple network round-trips (Helland, 2007). Constraining the scope of transaction
is a way to minimize communication overhead. Azure (Campbell et al, 2010),
Megastore (Baker et al, 2011) and H-Store (Kallman et al, 2008) only support
single-node transaction that can be executed to completion in a single node, and
one-shot transaction (Stonebraker et al, 2007) that can be executed in parallel
with no communication among nodes. This restrictive scope is only reasonable in
the applications where data can be well deployed, since distributed transactions
will be very rare in such cases. Despite of the high scalability, this alternative
implementation can hinder the concurrency and applicability of database fro
generalized workload.

BASE can achieve high scalability much easier than ACID. Though eventual
consistency can achieve linear scalability, it has its own potential disadvantages.
First, eventual consistency makes only liveness rather than safety guarantee,
as it merely ensures the system to converge to a consistent state in the future.
Second, the soft state presents challenges for developers, which requires extremely
complex and error-prone mechanisms to reason the correctness of the system
state at each single point in time (Cooper et al, 2008; DeCandia et al, 2007; Shute
et al, 2013). Scaling the causal consistency may lead to a trade-off between
throughput and latency (Bailis et al, 2012). Particularly, to preserve the causality,
a new write must be waiting for its dependencies before it can be applied. For this
purpose, each node maintains a data structure representing the complete graph
of dependency. The amount of time that the update is invisible is determined by
both network latency and the complexity of dependency graph. Though vertices
and edges can be removed from the dependency graph eventually, the graph must
be preserved for the whole lifetime of the operation. As a result, in the presence
of heavily concurrent workloads, the dependency graph can potentially expand to
an extremely complex structure, limiting capacity and throughput. Systems with
causal consistency always provide only single-record basis operation such that
the probability that different operations access the same data object is greatly
reduced, and thus the dependency graph is simplified so that the scalability will
not be limited by it. The total ordering protocol ensures that operations are
received in the identical order at all sites. Each operation is initiated by sending
read and write pre-declares to corresponding global scheduler node as a single
atomic action in totally ordered fashion. Though the implementation of the total
ordering algorithm performs efficiently with low network latency, it appears to be
a rather disadvantage approach for high network latencies (Cooper et al, 2008).

777 The paragraph, again, seems not in a proper place. In this section, we
explore analysis on manipulating different consistency models in large-scale data
management systems. The critical problem is to cope with the subtle and difficult
issues of keeping data consistency in the presence of highly concurrent data
accesses. Developing a suitable consistency model is an important aspect for big
data systems.

5. Conclusion

In this survey, we have investigated, studied, characterized, and categorized sev-
eral critical aspects of large-scale data management systems. These systems have
several unique characteristics including scalability, elasticity, manageability, and
low cost-efficiency. We have enumerated various data storage models about data
physical layout and data conceptual representation. Further on, we focused on

24 L. Wu et al

the design and implementation of system architecture. We have developed ar-
chitecture taxonomies for prevailing large-scale database systems to classify the
common architecture designs and to provide a basis for analysis of the scalability
limitations. These limitations represent some of the directions that can be taken
for future exploration.

We then compared two categories of the consistency models and classified pre-
vailing systems to the respective taxonomies. With this mapping, we have gained
an insight into the strategies and practices which current systems are issued with
consistency and reliability at their core. Throughout our characterization, we can
identify some of the limitations and discover vagueness of comparability. For the
purpose of verifying diverse protocol implementations, we analyze and compare
different consistency models from several orthogonal dimensions. More suitable
consistency models and effective protocols are still desired for large-scale data
management systems.

To conclude, an in-depth understanding and a precise classification are es-
sential for analyzing large-scale data management system and ensuring a smooth
transition from conventional enterprise infrastructure to the next generation of
large-scale infrastructure for big data applications. This survey delves deeper
to lay down a comprehensive taxonomy framework that, not only servers as a
direction for understanding the big data systems, but also presents a reference
for which future efforts need to be undertaken by researchers.

References

Abadi D, Madden S, Ferreira M (2006) Integrating compression and execution in column-
oriented database systems. In Proceedings of the 2006 ACM SIGMOD international con-
ference on Management of data, Chicago, IL, USA, 2006, pp 671-682

Abadi DJ, Madden SR, Hachem N (2008) Column-Stores vs. Row-Stores: How different are
they really?. In Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data 2005, June. pp 967-980

Abouzeid A, Bajda-Pawlikowski K, Abadi D, Silberschatz A, Rasin A (2009) HadoopDB: an
architectural hybrid of MapReduce and DBMS technologies for analytical workloads. In
Proceedings of the VLDB Endowment, 2009, Aug. 2(1) 922-933

Agrawal D, Das S, Abbadi A (2011) Big data and cloud computing: current state and future
opportunities. In Proceedings of the 14th International Conference on Extending Database
Technology, Uppsala, Sweden, 2011, pp 530-533

Ahamad M, Neiger G, Burns J, Kohli P, Hutto P (1995) Causal memory: definitions, imple-
mentation, and programming. In Distributed Computing, 1995, 9(1) 37-49

Ailamaki A, DeWitt DJ, Hill MD, Skounakis M (2001) Weaving Relations for Cache Perfor-
mance. In Proceedings of the 27th International Conference on Very Large Data Bases,
2001 pp 169-180

Alvisi L, Malkhi D, Pierce E, Reiter MK (2001) Fault Detection for Byzantine Quorum Systems.
IEEE Transaction Parallel Distribute System. 2001 Sep., 12(9). 996-1007

Bailis P, Fekete A, Ghodsi A, Hellerstein JM, Stoica I (2012) The potential dangers of causal
consistency and an explicit solution. In Proceedings of the Third ACM Symposium on
Cloud Computing, 2012, 1(22) 1-7

Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data, 2013, pp 761—
772

Baker J, Bond C, Corbett J, Furman JJ, Khorlin A, Larson J, Léon JM, Li Y, Lloyd A,
Yushprakh V (2011) Megastore: Providing Scalable, Highly Available Storage for Inter-
active Services. In the 5th Conference on Innovative Data Systems Research, 2011 Jan.,
pp 223-234

Berenson H, Bernstein P, Gray J, Melton J, O’Neil E, O’Neil P (1995) A critique of ANSI SQL

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications25

isolation levels. In In Proceedings of the 1995 ACM SIGMOD international conference on
Management of data, 1995, pp 1-10

Birman K (2007) The promise, and limitations, of gossip protocols. In SIGOPS Operation
System Review, 2007, Oct. pp 8-13

Boncz P, Grust T, Keulen M, Manegold S, Rittinger J, Teubner J (2005) MonetDB/XQuery: a
fast XQuery processor powered by a relational engine. In Proceedings of the 2006 ACM SIG-
MOD international conference on Management of data, Chicago, IL, USA, 2006, pp 479-490

Bornea M, Hodson O, Elnikety S, Fekete A (2011) One-copy serializability with snapshot
isolation under the hood. In Proceedings of the 2011 IEEE 27th International Conference
on Data Engineering, 2011, pp 625-636

Brantner M, Florescu D, Graf D, Kossmann D, Kraska T (2008) Building a database on S3. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of data,
Vancouver, Canada, 2008, pp 251-264

Bridge W, Joshi A, Keihl M, Lahiri T, Loaiza J, MacNaughton N (1997) The Oracle Universal
Server Buffer. In Proceedings of the 23rd international conference on Very Large Data
Bases, 1997 pp 590-594

Burckhardt S, Leijen D, Fahndrich M, Sagiv M (2010) Eventually consistent transactions. In
Proceedings of the 21st European conference on Programming Languages and Systems,
2010, pp 67-86

Burrows M (2006) The Chubby lock service for loosely-coupled distributed systems. In Pro-
ceedings of the 7th symposium on Operating systems design and implementation, Seattle,
‘Washington, 2006, pp 335-350

Campbell DG, Kakivaya G, Ellis N (2010) Extreme Scale with Full SQL Language Support in
Microsoft SQL Azure. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data, 2010, pp 1021-1024

Chaiken R, Jenkins B, Larson P, Ramsey B, Shakib D, Weaver S, Zhou J (2008) SCOPE:
easy and efficient parallel processing of massive data sets. In Proceedings of the VLDB
Endowment, 2008 Aug., 1(2) 1265-1276

Chandra TD, Griesemer R, Redstone J (2007) Paxos made live: an engineering perspective.
In Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing, 2007, pp 398-407

Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A,
Gruber RE (2006) Bigtable: A Distributed Storage System for Structured Data. ACM
Transactions on Computer Systems (TOCS) 26(2), 4:1-4:26

Cohen J, Dolan B, Dunlap M, Hellerstein JM, Welton C (2009) MAD skills: new analysis
practices for big data. In Proceedings of the VLDB Endowment, 2009, Aug. 2(2) 1481-1492

Condie T, Conway N, Alvaro P, Hellerstein JM, Gerth J, Talbot J, Elmeleegy K, Sears R (2010)
Online Aggregation and Continuous Query Support in MapReduce. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, 2010, pp 1115-1118

Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen HA, etc.
(2008) PNUTS: Yahoo!’s hosted data serving platform. In Proceedings of the VLDB En-
dowment, 2008. 1(2) 1277-1288.

Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser
C, Hochschild P, Hsieh W, etc. (2012) Spanner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX conference on Operating Systems Design and Implemen-
tation, Hollywood, CA, USA 2012, pp 251-264

CouchDB Website (2010) http://couchdb.apache.org/. 2010

Das S, Agrawal D, E1 Abbadi A (2010) G-store: a scalable data store for
transactional multi key access in the cloud. In Proceedings of the 1st ACM
symposium on Cloud computing, 2010. pp 163--174.

Dean J, Ghemawat S (2008) MapReduce: Simplified Data Processing on Large
Clusters. Communication ACM 51(1) 107--113

DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,
Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s Highly
Available Key-Value Store. In Proceedings of 21st ACM SIGOPS symposium on
Operating systems principles, Stevenson, Washington, USA, 2007, pp 205--220

DocumentDB Website (2012) http://en.wikipedia.org/wiki/Document-oriented_database.
2012

Escriva R, Wong B, Sirer E (2012) HyperDex: a distributed, searchable key-value
store. In SIGCOMM Comput. Commun. Rev., 2012, Oct. 42(4) 25--36

26 L. Wu et al

Francisco P (2011) The Netezza Data Appliance Architecture: A Platform for High
Performance Data Warehousing and Analytics. IBM Red Paper. IBM Co., Ltd. 2011

Ghemawat S, Gobioff H, Leung ST (2003) The Google file system. In Proceedings of
the 19th ACM symposium on Operating systems principles, Bolton Landing, NY,
USA, 2003, pp 29--43

Gibson GA, Van Meter R (2000) Network attached storage architecture. In
Communications of the ACM, 2000. 43(11) 37--45

Grund M, Kriiger J, Plattner H, Zeier A, Cudre-Mauroux P, Madden S (2010) HYRISE:
a main memory hybrid storage engine. In Proceedings of the VLDB Endowment,
2010, Nov. 4(2) 105--116

Gummadi K, Gummadi R, Gribble S, Ratnasamy S, Shenker S, Stoica I (2003) The
impact of DHT routing geometry on resilience and proximity. In Proceedings
of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, Karlsruhe, Germany, 2003, pp 381--394

Guo H, Larson P, Ramakrishnan R, Goldstein J (2004) Relaxed currency and
consistency: how to say "good enough" in SQL. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, 2004, pp 815--826

Hankins RA, Patel JM (2003) Data morphing: an adaptive, cache-conscious storage
technique. In Proceedings of the 29th international conference on Very large
data bases, Berlin, Germany, 2003, pp 417--428

Harizopoulos S, Ailamaki A (2003) A Case for Staged Database Systems. In CIDR,
2003

HBase Website (2009) http://hbase.apache.org/. 2009

Helland P (2007) Life beyond distributed transactions: an apostate’s opinion. In
3rd Biennial Conference on Innovative Data Systems Research, 2007, pp 132--141

HyperTable Website (2008) http://hypertable.org/. 2008

Johnson R, Pandis I, Hardavellas N, Ailamaki A, Falsafi B (2009) Shore-MT:
a scalable storage manager for the multicore era. In Proceedings of the
12th International Conference on Extending Database Technology: Advances in
Database Technology, Saint Petersburg, Russia, 2009, pp 24--35

Jones E, Abadi DJ, Madden S (2010) Low overhead concurrency control for
partitioned main memory databases. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, 2010, pp 603--614

Jones EP, Abadi DJ, Madden S (2010) Low overhead concurrency control for
partitioned main memory databases. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, 2010, June. pp 603--614

Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jones EP, Madden S,
Stonebraker M, Zhang Y, Hugg J, Abadi DJ (2008). H-store: a high-performance,
distributed main memory transaction processing system. In Proceedings of the
VLDB Endowment, 2008 Aug., 1(2) 1496--1499

Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent
hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, 1997, pp 654--663

Kossmann D, Kraskan T, Loesing S (2010) An evaluation of alternative
architectures for transaction processing in the cloud. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, 2010, June.
pp 579--590

Kraska T, Hentschel M, Alonso G, Kossmann D (2009) Consistency rationing in
the cloud: pay only when it matters. In Proc. VLDB Endow., 2009, Aug. 2(1)
253--264

Lahiri T, Srihari V, Chan W, MacNaughton N, Chandrasekaran S (2001) Cache Fusion:
Extending Shared-Disk Clusters with Shared Caches. In Proceedings of the 27th
international conference on Very Large Data Bases, 2001 pp 683--686

Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 2010, April. 44(2) 35--40

Lamport L (1978) Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web. Communication ACM,
1978 July, 21(7). 558--565

Larson P, Blanas S, and etc (2011) High-performance concurrency control

Survey and Taxonomy of Large-scale Data Management Systems for Big Data Applications27

mechanisms for main-memory databases. In Proceedings of the VLDB Endowment,
2011, Aug. 5(4) 298--309

Lewis P, Bernstein A, Kifer M (2002) Databases and transaction processing: an
application-oriented approach. 2002, pp 764--773

Lin Y, Kemme B, Patifio-Martinez M, Jiménez-Peris R (2005) Middleware based data
replication providing snapshot isolation. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, Baltimore, Maryland
2005, pp 419--430

Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2011) Don’t settle for eventual:
scalable causal consistency for wide-area storage with COPS. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, 2011,
pp 401--416

Manegold S, Kersten ML, Boncz P (2009) Database architecture evolution: mammals
flourished long before dinosaurs became extinct. In Proceedings of the VLDB
Endowment, 2009, Aug. 2(2) 1648--1653

MongoDB Website (2009) http://www.mongodb.org/. 2009

Olston C, Reed B, Srivastava U, Kumar R, Tomkins A (2008) Pig latin: a
not-so-foreign language for data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, Vancouver, Canada,
2008, pp 1099--1110

Oracle (2012) Technique overview of the Oracle Exadata Database Machine and
Exadata Storage Server. Oracle White Paper. Oracle Co., Ltd 2012

Oracle RAC Website (2012) http://www.oracle.com/technetwork/products/clustering/overview/index.html.
2012

Ozsu M (2011) Principles of distributed database systems. 2011, Chapter 11,
387--394

Poess M, Nambiar RO (2005) Large scale data warehouses on grid: Oracle database
10g and HP proliant servers. In Proceedings of the 31st international
conference on Very Large Data Bases, Trondheim, Norway 2005 pp 1055--1066

Pritchett D (2008) BASE: An Acid Alternative. In ACM Queue, 2008 May, 6(3) 48--55

Ramamurthy R, DeWitt DJ, Su Q (2003) A case for fractured mirrors. In Proceedings
of the VLDB Endowment, 2003, Aug. 12(2) 89--101

Rao J, Shekita EJ, Tata S (2011) Using Paxos to build a scalable, consistent, and
highly available datastore. In Proc. VLDB Endowment, 2011, Jan. 4(4) 243--254

Roh H, Jeon M, Kim JS, Lee J (2011) Replicated abstract data types: Building
blocks for collaborative applications. In J. Parallel Distrib. Comput., 2011,
March, 71(3) 354--368

Ronstrom M, Thalmann L (2004) MySQL Cluster Architecture Overview. MySQL
Technical White Paper, 2005, April.

Saito Y, Shapiro M (2005) Optimistic replication. In ACM Comput. Surv., 2005,
Mar. 1(37) 42--81

Shapiro M, Preguiga N, Baquero C, Zawirski M (2011) Conflict-free replicated data
types. In Proceedings of the 13th international conference on Stabilization,
safety, and security of distributed systems, 2011, pp 386--400

Shute J, Vingralek R, Samwel B, and etc (2013) F1: A distributed SQL database
that scales. In Proceedings of the VLDB Endowment, 2013, 6(11) 1068--1079

Shvachko K, Kuang H, Radia S, Chansler R (2010) The Hadoop Distributed File
System. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), 2010, pp 1--10

Stonebraker M, Abadi DJ, Batkin A, Chen X, Cherniack M, Ferreira M, Lau E, Lin
A, Madden S, 0’°Neil E, 0’Neil P, Rasin A, Tran N, Zdonik S (2005) C-store: a
column-oriented DBMS. In Proceedings of the 31st international conference on
Very Large Data Bases, Trondheim, Norway 2005 pp 553--564

Stonebraker M, Madden S, Abadi DJ, Harizopoulos S, Hachem N, Helland P (2007)
The end of an architectural era: (it’s time for a complete rewrite). In
Proceedings of the 33rd international conference on Very large data bases,
Vienna, Austria, 2007, pp 1150--1160

Sybase Website (2010) http://sybase.com/. 2010

Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P,
Murthy R (2009) Hive: a warehousing solution over a map-reduce framework.
In Proceedings of the VLDB Endowment, 2009, Aug. 2(2) 1626--1629

28 L. Wu et al

Thusoo A, Shao Z, Anthony S, Borthakur D, Jain N, Sen Sarma J, Murthy R, Liu
H (2010) Data warehousing and analytics infrastructure at facebook. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, Indianapolis, Indiana, USA, 2010, pp 1013--1020

Vertica Website (2011) http://www.vertica.com/. 2011

Vogels W (2009) Eventually Consistent. In ACM Queue, 2008, Oct. 6(6) 14--19

Voldemort Website (2011) http://project-voldemort.com/. 2011

VoltDB Website (2011) https://voltdb.com/. 2011

Weikum G, Vossen G (2001) Transactional information systems: theory, algorithms,
and the practice of concurrency control and recovery. 2001, pp 676--686

Welsh M, Culler D, Brewer E (2001) SEDA: an Architecture for Well-conditioned,
Scalable Internet Services. In Proceedings of the 18th ACM symposium on
Operating systems principles, Banff, Alberta, Canada. 2001, pp 230--243

Xu Y, Kostamaa P, Zhou X, Chen L (2008) Handling data skew in parallel joins in
shared-nothing systems. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, 2008, pp 1043--1052

Yu H, Vahdat A (2002) Minimal replication cost for availability. In Proceedings
of the twenty-first annual symposium on Principles of distributed computing,
2002, pp 98--107

Yu H, Vahdat A (2006) The costs and limits of availability for replicated
services. In ACM Trans. Comput. Syst., 2006, Feb. 1(24) 70--113

Correspondence and offprint requests to: Lengdong Wu, Department of Computing Science,
University of Alberta, Edmonton, AB, Canada. Email: lengdong@cs.ualberta.ca

