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Abstract

Optical motion capture is a prevalent technique for cap-
turing and analyzing movement. However, a common prob-
lem in optical motion capture is the missing marker problem
due to occlusions or ambiguities. Most methods for resolv-
ing this problem either require extensive post-processing
efforts or become ineffective when a significant portion of
markers are missing for extended periods of time. In this
paper, we present an approach to reconstruct human mo-
tion corrupted in the presence of missing or mis-tracking
markers. We propose a data-driven, piecewise linear pre-
dicting kalman filter framework to estimate missing marker
position, and reconstruct human motion in real time by rigid
body tracking solver. It allows us to accurately and effec-
tively reconstruct human motion within a simple extrapo-
lation framework. We demonstrate the effectiveness of our
method on real motion data captured using OptiTrack. Our
experimental results demonstrate that our method is effi-
cient in recovering human motion.

1. Introduction

Motion capture is the techniques of recording movement
of an subject in real life and translating it into digital data.
It is widely used in movie and video game [21] industry, as
well as in other areas such as sports [13] [1], medical [8] and
performing art etc. For example, in the movie Titanic, the
movements of all computer simulated characters are created
from motion capture data.

Amongst all motion capture techniques, optical motion
capture (e.g. Vicon [2]) is the most commonly used in var-
ious applications. A set of markers are attached onto the
object and tracked by a array of cameras. A passive sys-
tem usually uses infrared illuminator collocated with each
camera and markers are retro-reflective material to reflect
infrared back to camera. An active system use LED mark-
ers instead. Both design enables cameras to track position

of markers, and therefore to infer time-spatial varying mark-
ers by triangulation of markers position projected onto sev-
eral camera’s image plane. The captured data can be used
to compute the movements of the skeleton and transformed
into movements of digital characters.

However, even with expensive motion capture equip-
ment, data from optical motion tracking may contain noise,
outliers or missing of data for a time period. A major cause
of missing markers is occlusion, that is markers may be oc-
cluded by props, body parts or other object. Outliers may be
caused when system confuses one marker with its neighbor-
hood markers, and therefore mis-tracks marker’s position.
Because of the presence of these corrupted data in record-
ing, it requires significant amount of manual editing in the
post processing, which is not only time consuming, but also
error prone to diverse motions.

This paper presents an automatic method to predict miss-
ing or correct corrupted data and reconstruct the skeleton
movement during motion capture session in real time. The
method starts with data-driven prediction on missing or cor-
rupted marker position, consider the rigid body tracking de-
fined by marker set, as well as constraints between body
parts, to reconstruct valid human poses from corrupted data.
We focus on optical motion capture device and articulated
figure motion (human motion), demonstrate our method
on a low-cost motion capture device OptiTrack [3] and its
tracking software Arena [4].

The following section presents related work, followed by
a section showing our methodology. Then come to empir-
ical section showing the experimental results. This is fol-
lowed by a conclusion.

2. Related Work

Either caused by occlusion or ambiguities, it is all
called missing marker problem. In order to overcome
this common problem and recover data in optical mo-
tion capture system, there are various existing approaches,



mainly falling into two categories: off-line and real-time
approaches.

Some typical off-line methods interpolate data using lin-
ear or non-linear methods [10, 22, 28]. However, interpo-
lation requires future measurements, therefore it causes no-
ticeable latencies in processing, and can only be used in a
post-processing step. Some offline approach learns a series
of spatial-temportal filter bases from pre-captured human
motion data and use them to filter corrupted human motion
data [20]. Some uses a pre-trained classifier to identify lo-
cal linear model for each frame to recover missing data in a
new data sequence [19]. Some Mocap systems [5] [2] also
use interpolation techniques with kinematic information as
recovery solution. Off-line approaches also include model
based methods. Rhijn and Mulder [25] proposed a geomet-
ric skeleton based approach to bridge existing gaps in the
measured data series.

Real-time approaches to recover motion data include
predicting measurement state using Kalman filter [23, 27],
extended Kalman filter (EKF) [11] [26], or unscented
Kalman filter [24]. Information processed by Kalman fil-
ter ranges from marker’s position, velocity, to limb’s rota-
tion and angular velocity. However, process model of rota-
tion does not obey linear process. In addition, Euler angle
representation has the singularity problem and Quaternion
does not satisfy angular velocity requirement. For example,
Fang et al. [12] had to maintain unity of quaternion in order
to apply low-pass filter to the estimated angular velocity in
quaternions. Filtering non-linear orientation space is also
not computationally effective as the linear filter, therefore
many researchers explore ways to convert non-linear pro-
cess into linear filter process. Lee and Shin [18] formulated
filtering non-linear orientation data in a linear time-invariant
filtering framework, by transforming orientation data into a
vector space and then transforming the results back to ori-
entation space after applying filter.

Some real-time approaches made prediction based on
other quality measurements such as fixed distance between
markers [7]. This type of approach usually does not con-
sider kinematic information or internal skeleton model. Be-
cause it assumes markers on a given limb segment has con-
stant inter-marker distance, it becomes ineffective when all
markers on one limb segment are missing. In addition, it
uses active marker system which has problem of sensitivity
to external influences such as ambient light. Method pro-
posed by Hornung et al. [17] also takes advantage of inter-
marker signature, as well as uses rigid body tracking and
inverse kinematics to improve tracking quality. However,
they do not identify or reconstruct markers based on predic-
tion of future states like our method does. Their method can
compensate missing markers due to occlusion but may fail
in case of ambiguities that cause jitter and rapid tracking
changes.

Others resolve occlusions based on sophisticated human
model [15] [14] alone. They identify marker’s position or
disambiguate its 3D location by replacing it by expected
position on the skeleton. However, because it does not
consider historical statistical information, prediction from
skeleton alone may become ineffective when markers are
occluded or confused with neighborhood markers for a
short period of time.

Unlike previous approaches in real-time category, our
work first avoids non-linear orientation space by focusing
on position space. Building on the success of applying
Kalman filter to remove jitter, rapid changes in recorded
marker positions that do not correspond to actual move-
ments and filling the missing data gapes, we receive a con-
tinuous stream of 3d data that prevents wrong tracking and
recover missing data. We then perform rigid body track-
ing solver. With kinematic information, fixing the tracking
of a parent rigid body may lead to correct tracking of the
connected limbs. This ensures a reliable tracking even all
markers on a rigid body is occluded or corrupted over long
period of time. We demonstrate our method with a practical
optical motion capture device, OptiTrack, and its software
Arena, showing the ease but effectiveness of our method.
Our method could significantly increase the robustness of
the marker tracking, and drastically reducing or even elim-
inating the need for human intervention during the 3D re-
construction process.

3. Human Motion Reconstruction

Our method is an improvement based on the data ac-
quired from a low-cost optical motion capture device, Op-
tiTrack [3], and its skeleton model computed from its asso-
ciated software, Arena [4]. 3D tracking of each marker is
computed from 2D images of six tracking cameras of the
OptiTrack. However, despite the fact that OptiTrack pro-
duces reliable tracking results most of time, occlusions, am-
biguities or sudden changes in motion still often cause er-
roneous motion tracking or missing markers in the tracking
trajectory. For this reason, we explain in this section how
we can improve tracking with the practical motion capture
device. We focus on predicting marker’s position, where
constraints from rigid body tracking and inverse kinematics
(IK) are then applied for a more reliable tracking.

3.1. Prediction of Missing Markers

We call it missing marker problem no matter it is caused
by occlusion or ambiguities. Occlusions result in missing
gaps in data series and ambiguities result in rapid change
in data curves. We examine such a situation by monitoring
the tracking data, that is the 3D position of each marker
reported from the motion capture server of the OptiTrack.



The state of each marker in current frame xt, is compared
with its state in the previous frame xt−1, and the problem is
identified if the difference is a rapid change, represented as
|xt − xt−1| > δ, where δ is the threshold.

Prediction is made based on the Taylor series:

x(t+∆t) = x(t)+ ẋ ·∆t+ 1

2
ẍ(t) ·∆t2 +

1

6

...
x(t) ·∆t3 + · · ·

(1)
and the Kalman filter. The process model that updates the
state of the Kalman filter is given by

xt = Axt−1 +But−1 + wt−1 (2)

where A is the state transition matrix, B is the control input
matrix, u is the control vector, and w is the process noise
with zero mean and covariance Q, represented as P (w) ∼
N(0, Q). The measurement model is given by

zt = Hxt + vt (3)

where H is the measurement matrix, and v is the measure-
ment noise with zero mean and covariance R, represented
as P (v) ∼ N(0, R). Q and R represent systematic adjust-
ment according to statistical knowledge about the noise in
the process model and the measurement model respectively.

According to Kalman filter, it is a feedback control pro-
cess and mainly contains two processes: prediction and cor-
rection. In the prediction step, the predicted state x̂−t and its
error P−

t can be computed as:

x̂−t = Ax̂t−1 +But−1 (4)

P−
t = APt−1A

T +Q (5)

The correction stage is to compute the Kalman gain, and
uses Kalman gain and new measurement to correct pre-
dicted state and predicted error. Kalman gain is computed
as:

Kt = P−
t H

T (HP−
t H

T +R)−1 (6)

The new state x̂t at time t is corrected as a combination
of the prediction x̂−t and the correction from observation,
given by:

x̂t = x̂−t +Kt(Zt −Hx̂−t ) (7)

The error covariance matrix of the updated prediction is:

Pt = (I −KtH)P−
t (8)

Our goal is to predict the current state of the marker
when the marker is occluded, or correct current state of the
marker when it is a wrong tracking. We use a constant ve-
locity model involving position and velocity in the Kalman
filter, because the higher derivatives the more noisy and
higher computational cost it becomes. According to con-
stant velocity model,

xt = xt−1 + ẋt−1dt (9)

Figure 1. Comparison of velocity from con-
secutive measurements and sampling mea-
surements

where xt and ẋt is the position and velocity of the marker
respectively at time t. The predicted state in the Kalman
filter can be rewritten as:[

xt
ẋt

]
=

[
1 dt
0 1

] [
xt−1

ẋt−1

]
(10)

This model does not have control terms B and u, and the
transition matrix A becomes:

A =

[
1 dt
0 1

]
(11)

In order to improve accuracy, we do not use consecu-
tive measurements to compute velocity, but sampling in a
certain rate to compute historical information about the ve-
locity. This means we compute piecewise velocity. Suppose
our sampling rate is at δt 1, equation (10) becomes:[

xt
ẋδt

]
=

[
1 dt
0 1

] [
xt−1

ẋδt−1

]
(12)

Figure 1 illustrates the difference of velocity information
before and after sampling. Because each measurement has
white noise, it does not reflect desired historical information
and thus cannot be directly used in the filter model.

3.2. Rigid Body Tracking

3D coordinates of the marker are computed using stereo
triangulation from 2D projection images of at least two
cameras that can see the marker. Once the marker’s 3D
position is reconstructed, tracking of the marker from one
frame to the next frame is called 3D tracking. With 3D
marker tracking, a skeleton can be inferred. The process
of fitting the skeleton to the subject’s anatomy by scaling
bones length is called skeleton calibration. Essential steps
to establish a skeleton that fits in the marker cloud mainly
include:

1δt is smaller than the motion capture rate, in our case, 100 frames per
second from OptiTrack



Figure 2. Rigid body definition in Arena

1. Segment markers into groups that define body seg-
ments.

2. Compute joint position of the skeleton and determine
skeleton topology.

3. Adjust bones (or segments) length of the skeleton.

The reason to segment markers into groups is that bone
motion can be well simulated by a rigid body transforma-
tion (including translation and rotation), and marker group
attached on the rigid body can define rigid body motion.
Given the number of segments, say n, of the skeleton to de-
fine, markers can be segmented into n groups. Clusters can
be determined by minimizing the sum standard deviation of
distances over all marker pairs. Usually markers attached
on the same limb will be grouped together. With markers
partitioned into rigid segments, it can compute fixed inter-
marker distance and fixed marker’s location with respect to
joints on the segment, so called marker model. With this
marker model, the skeleton’s topology and locations of the
joints connecting segments can be determined. 3D location
of the centre of rotation (CoR) between adjacent segments
corresponds to the joint location. A general skeleton fitting
technique by estimating the CoR of markers and their asso-
ciated limbs is presented in [6]. After marker segmentation
and skeleton fitting, each marker will be labeled a unique
identity to mark which group it belongs to or which limb it
is attached to. The identity will help track the marker and
the limb it is attached to during the motion capture. Not
every limb needs to be defined as a rigid body, because the
transformation of an inner limb can be determined if the
connected joint positions are available based on the neigh-
boring limbs. For example, Figure 2 shows a typical rigid
body definition and skeleton topology, where lower arm is
not defined.

Once the skeleton and rigid body model is established, at
any time, the orientation of a rigid body can be computed as
described by Horn [16], that best aligns the marker and joint

locations for that segment. The location of joint at any time
can be computed using [9] by taking advantage of markers
attached on a limb are approximated by a rigid body.

There are many advantages of employing rigid body
tracking in the motion tracking:

1. In ideal cases, markers defining the rigid body do
not move with respect to each other. In other words,
inter-marker distance on a rigid body is fixed. How-
ever, markers are actually attached to skin or tight
clothes that may move relative to the underlying bone
structure, so constant inter-marker distance alone may
cause problem in marker identification process.

2. If only one marker is missing on the rigid body, by
tracking a rigid body of markers, it can predict position
of missing markers based on characteristics of fixed
inter-marker distances, so that the system can continue
tracking.

3. In passive optical tracking system, when markers ap-
pear again after period of occlusion, the system cannot
identify their identity but leaving them as anonymous
markers. Rigid body tracking will attempt to identify
anonymous markers. All rigid bodies that are miss-
ing one or more markers will be identified, and asso-
ciate anonymous 3D marker to the limb by the distance
closest to the marker-to-joint distance defined by the
marker model.

3.3. Inverse Kinematics

Inverse Kinematic (IK) solver is a simulation mechanism
that situates limbs according to their known end effector
position. The IK technique requires the position and ori-
entations of certain joints, named end effector, to config-
ure the remaining DoFs. FABRIK (Forward And Backward
Reaching Inverse Kinematics) is one of the popular algo-
rithms that uses points and lines to solve the IK problem.
For example, once a rigid body skeleton is fitted to the data,
rotations can be found using this algorithm. It has also been
used for marker prediction and CoR estimation.

Computing joint rotation from 3D tracking of marker
group is error prone to marker noise and require at least
three markers per segment. Using IK can improve rota-
tion computation once a rigid body skeleton is fitted to the
data. Since the rigid body skeleton and the marker model is
known, IK can find the optimal rotations that minimize the
distance from the marker position on the segment and the
input data.

4. Result

The experiments were carried out using OptiTrack mo-
tion capture system with 6 cameras. 34 markers are attached



Figure 3. Motion curve from Arena’s motion curve editor: position of the first marker on the right
upper arm, RUArm1, between frames 1550-2050. The Arena failed in tracking the marker’s position
starting around the frame 1935.

Figure 4. Comparison of motion before and after reconstruction at the frame 1984, 1956, 2023, 2126
and 2200, in a situation where the right upper and lower arm are lost during tracking due to missing
markers on the right upper arm. Above panel: Motion from original marker’s information. Rigid body
engine will make the rigid segment flex (segment in red color) to match its defined point cloud and
inverse kinematics model may cause connected limbs flex as well. Bottom panel: Motion recon-
structed from marker’s state computed using our method. Only markers located on the right upper
arm (indexed as RUArm1, RUArm2, RUArm3) are identified missing marker problem and filtered for
prediction. The motion curves before and after filtering of three markers defining rigid body of the
right upper arm are shown in Figure 4.



on the moving person, and the skeleton model as well as 13
rigid segments of the skeleton are defined in Arena and the
motion is computed in real time. This skeleton and rigid
body model has a marker model associated with it, that is
one of the segments connected to the joint have at least two
markers, and the other at least one marker. The motion cap-
ture software Arena associated with OptiTrack is used as
the server sending motion capture data, including marker’s
position information, rigid body’s position and orientation,
as well as skeleton’s information (6 degrees of freedom for
each joint). We implemented the prediction part. The algo-
rithm is implemented in C# and run on a 3-GHZ Pentium
PC. The system can process up to 100 frames per second,
which is the speed of the motion capture system. Because
the rigid body tracking and inverse kinematics are well im-
plemented in Arena, this avoids us to implement this part
by ourselves. Arena can also visualize motion on a virtual
character in real time, so we visualized the reconstructed
motion results in Arena, by reconstructing the marker’s mo-
tion curve in Arena’s motion curve editor based on our com-
putation along with its rigid body engine and inverse kine-
matics model. The data set used in the experiment is a
real data sequence captured using OptiTrack with natural
occlusions and wrong tracking, containing more than 5000
frames in the data sequence.

As shown in Figure 3, the tracking of the position (x, y
and z) of the RUArm12 over time, Arena is failed in tracking
marker’s position when there is a rapid change in marker’s
position that may be caused by ambiguities. Images in the
above panel of the Figure 4, show the constructed motions
resulted from losing track of markers on the right upper
arm. What Arena does in this situation is that the rigid
body tracking engine will make an assumption of where
that marker should be, and predicted positions are mark-
ers in grey color. Most of time, markers on the rigid body
are predicted based on its fixed position on the rigid body,
or its position relative to the rest of markers in this marker
group that defines the rigid body (called point cloud), so that
Arena can continue to track the rigid body even when some
markers are occluded. In ideal cases, predicted marker’s po-
sition should be the same as measured position, that means
markers in grey color should overlay with markers in white
color. However, when the markers are still visible but for
some reason the point cloud markers are out of original
shape, e.g. the last image in the bottom panel of Figure
4, the rigid body will flex to match that location up to a
threshold (tint the segment to yellow). Arena has a thresh-
old about how much the markers can be flexed from their
ideal location. When they distort above the threshold, the
rigid body will tint its line to red. The body tracking en-
gine in Arena places that rigid body to the best of its ability
amongest the point cloud makres, but it is not fitting exactly.

2It is the index of the first marker on the right upper arm.

The proposed method processes the data received from
the Arena server and computes in real time. When the algo-
rithm identifies a missing marker problem it can predict the
position of the marker and replace the original measured
value. Figure 5 shows the motion curve before and after
filtering of three markers that define the right upper arm,
indexed as RUArm1, RUArm2, and RUArm3. The rapid
changes in the motion curve are filtered, therefore jitter
changes are removed. According to the new motion curves
produced by our method, we can repair the motion curves
of these markers in Arena, such as the one shown in Figure
3, to visualize how it affects the motion tracking along with
the rigid body engine and inverse kinematics (IK) model
in real time. Images in the bottom panel of Figure 4 show
the reconstructed motion of our method, comparing to the
original recorded motion in the first panel of Figure 4. One
can notice that after flittering, the point cloud defining the
right upper arm are positioned better than before flittering,
because predicted marker’s position (in grey color) com-
puted by the rigid body engine overlays with our compu-
tation result, as shown in the motion images at the frame
1984 and 1956. With inverse kinematic model embedded
in the Arena, the orientation of the parent joint will affect
the orientation of the children joints. Therefore, when the
joint of the right upper arm is corrected due to the new mo-
tion curve and the rigid body matching, the joint of the right
lower arm reduces its degrees of freedom due to IK, mean-
while it is also constrained to match the point cloud due to
the rigid body engine. With more constraints, the children
joints have better chance of finding the right orientation due
to the correct orientation of the parent joints. An example is
the motion image at the frame 2126 in Figure 4. In the orig-
inal tracking, because one point on the right upper arm is
far to the left, it results the defined right upper arm hanging
over, hence the connected lower arm is handed up too. After
reconstruction, the right upper arm is located to match our
prediction, hence the connected lower arm matches its point
cloud better as well without modifying any motion curves
of markers on the right lower arm.

5. Conclusion

This paper describes a method related to the problem of
missing marker in the optical motion capture system. We
take advantage of our motion capture device OptiTrack and
its software Arena which can automatically compute the
skeleton and track motions from markers attached on the
human body. We preset a method of predicting marker’s po-
sition, along with rigid body tracking and inverse kinematic
model implemented in Arena, we are able to reconstruct
motion from new marker’s state. In the experiment section
we demonstrate how our method can effectively predict mo-
tion tracking. Our method are computed in real time using



Kalman filter and constant velocity model. Rigid body en-
gine and inverse kinematic model is also implemented to
compute in real time in Arena. This approach works effec-
tively on motion reconstruction when there is occlusion or
jigger, rapid changes in marker’s tracking. By reconstruct-
ing motion curves in Arena along with its rigid body engine
and inverse kinematic model, we are able to show that re-
constructed motion can reasonable reflect real motion and
correct erroneous tracking in the Arena. Future work will
introduce more constraints to the rigid body tracking, in-
stead of using rigid body engine in Arena, we will work on
our own rigid body engine to improve the rigid body track-
ing results.
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(a)

(b)

(c)

Figure 5. Comparison of marker’s tracking before and after filtering. (a) RUArm1: the 1st marker on
the right upper arm. The marker is missing between frames 1800-2000. (b) RUArm2: the 2nd marker
on the right upper arm. The marker is missing around the frame 1900 and right after the frame 2000.
(c) RUArm3 : the 3rd marker on the right upper arm. The marker is missing between frame 1880-1960.
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